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Abstract

In this thesis, we propose a Boltzmann-type kinetic approach in order to study
the spread of an infectious disease. In particular, a mass-varying interacting multi-
agent system is used to model a population and the confinement strategies that are
adopted to stem the on-going epidemic in it, namely quarantine and vaccination.
Every agent is characterized by a microscopic state, a viral load, and a label, that
indicates the group the agent belongs to. The viral load changes as a consequence
of interactions, while the label follows a Markov-type state dependent jump process.
The quarantine strategy is firstly analyzed and the requirements for it to be effective
outlined: a prompt isolation of the infected successfully stem the epidemic. A step
further is taken by including a spatial network, e.g. of cities, in which the agents can
move. This is accomplished by the means of the same label-based framework. We
then focus on the vaccine strategy, numerically evaluating a threshold for the herd
immunity condition. We then propose a version of the vaccination model enriched
with an age-based distinction of the agents. Different interaction rates based on
age are taken into account: the herd immunity threshold is shown to depend on
these interaction rates. The four models are discussed analytically and numerically.
General kinetic equations are derived in order to describe the statistical distribution
of the agents. From those, we also derive macroscopic ODE systems for each model,
both for constant and variable parameters. To do so, in the latter case we rely on the
hydrodynamic limit. Finally, a Monte Carlo simulation via the Nanbu-Babovsky’s
scheme is carried out to confirm theoretical findings and to investigate complicated
configurations of the parameters.
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1 Introduction

In this thesis, we study the spread of infectious diseases with a Boltzmann-type
kinetic approach. Classical epidemiology is built on ODEs systems that describe
the evolution of the epidemic through the relative size of different compartments of
people. In the present agent-based description, the ODEs are not stated a priori,
they emerge from the microscopic interactions between agents by relying on kinetic
equations. Every member of the population is characterized by a microscopic state
representing their viral load. When two agents interact, they exchange some viral
load depending on a microscopic interaction rule. When a large population is con-
sidered, equations for macroscopic properties such as density or mean viral load can
be derived.

In order to contextualize this dissertation, a brief description of the main mathemat-
ical epidemiology models is given in this introduction, as well as the thesis’ structure
and some bibliographical references of the state of the art in applications of kinetic
theory.

1.1 Structure of the thesis

This thesis is organized as follows. In the following introductory chapters, a brief
description of the classical epidemiological models known as SIR (sec. 1.2.1) and SIS
(sec. 1.2.2) is given, followed by some bibliographical references on the application of
kinetic theory of gasses in the most various fields of study (sec. 1.3). sec. 2 contains a
detailed description of the mathematical and theoretical tools applied in the disser-
tation. In particular an informal derivation of the Boltzmann equation is provided
in sec. 2.1, followed by the description of binary interaction processes in sec. 2.2, the
introduction of a Markov type jump process in the kinetic framework in sec. 2.3 and
the description of the hydrodynamic limit in sec. 2.4. Finally, the description of the
numerical methods used in the dissertation to simulate the models is carried out in
sec. 2.5. sec. 3 describes the models developed in the dissertation. After showing how
the classical epidemiological models SIR and SIS can be obtained from a microscopic
kinetic description (sec. 3.1), the four models object of the thesis are presented in
sequence in sec. 3.2, sec. 3.3, sec. 3.4 and sec. 3.5. Finally, the outcomes of the nu-
merical tests performed are presented in sec. 4, divided by model. Conclusive section
sec. 5 outlines the findings of the thesis and contains final comments.
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1.2 Classical mathematical epidemiology

Epidemiology is the science that studies diseases at a population level. The main
issues are distribution, patterns and factors that can influence the appearance and
diffusion of various illnesses. The origins of epidemiology are ancient, but a math-
ematical approach to the matter is fairly new. While statistics has been used since
the second half of fifteenth century [1], the first rigorous epidemiological model was
proposed by Daniel Bernoulli in 1776 [2, 3]. It aimed to evaluate the life expectancy
gain produced by eliminating smallpox as cause of death through the inoculation of a
mild form of the virus and the subsequent immunization. For this purpose, Bernoulli
used in his model a compartmentalization of the population in two groups: suscep-
tibles and immunes. Other important works for the development of mathematical
epidemiology in the first half of the twentieth century are from W. Hamer, H.E.
Soper and Sir R. Ross [4, 5, 6]. In 1927 W. O. Kermack and A. G. McKendrick
published the first epidemiological model [7] that included the labels susceptible,
infected and recovered to describe the state of a population member with respect to
the disease. The SIR and SIS models described later in this section derive directly
from this work and its later additions [8, 9]. In more recent years, the mathematical
approach to epidemiology has gained more and more space and a manifold of models
and theories have been proposed [10, 11, 12]. For an exhaustive description of the
main models and findings of mathematical epidemiology see [13].

1.2.1 The SIR model

The SIR model is a simple ODE-based epidemiological model first introduced by
Kermack and McKendrick. Here, is proposed an essential description of the model
based on the second chapter of [13]. It describes the evolution of an epidemic
by introducing three epidemic compartments - susceptible, infected and removed.
Susceptible individuals are healthy and have not yet contracted the disease; they
can become ill if exposed. Infected individuals are the ill individuals; in a first
approximation, they are assumed to be also infectious. The removed individuals have
been infected and are no longer susceptible to the disease because of immunization or
death. Let us call the normalized number of people in the three classes, respectively,
S = #susceptible

N
, I = #infectiuos

N
and R = #removed

N
, where N is the total population;

hence the name of the model, SIR. The total number of people is assumed constant,
this yields S(t)+I(t)+R(t) = 1,∀t. The population in the classes changes during the
evolution of the epidemic due to dynamics that derives from the nature of infectious
diseases: if a susceptible person has a contact with an infectious one, they can
contract the illness with a certain probability. they can then heal or die and leave
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Figure 1: Evolution of the populations in the SIR model.

the infected group for the removed one with another probability. Let us define these
probabilities: we call the per capita contact rate 0 ≤ c ≤ 1, i.e. the probability a
contact occurs between an infectious and a susceptible individual, per time unit. We
then call 0 ≤ p ≤ 1 the probability of infection given a contact. We can now define
β = pc, the transmission rate constant. This means that the number of individual
that leaves the S class for the I class per time unit is βSIN . Let us call 0 ≤ γ ≤ 1
the probability of leaving I for R, i.e. recovery rate, we can now easily derive the
following ODEs system:


S Í(t) = −βIS

I Í(t) = βIS − γI

RÍ(t) = γI.

(1)

This system describes the evolution of the epidemic given some specific initial con-
ditions S(0), I(0) and R(0). Given the physical meaning of the variables we have
of course: S(t), I(t), R(t) ≥ 0,∀t. Of particular interest is I(t), called prevalence
of the disease. It is easy to verify that the system yields N Í(t) = 0, i.e. the total
population is constant.

Some consideration on the SIR model are in order. First of all, we have that S Í <

0,∀t. S is hence decreasing and positive, we can therefore state limt→∞S(t) = S∞.
The same reasoning, overturned, can be applied to R(t), obtaining limt→∞R(t) =

3



Figure 2: The two different cases of outbreak and extinction of the epidemic

R∞. More interestingly, the behavior of the incidence strictly depends on initial
conditions. One of the two following scenarios will show. If βS(0) − γ < 0, then
I Í(0) < 0: the infected population decreases in time and the epidemic is avoided. On
the other hand, if βS(0) − γ > 0, an outbreak occurs. The incidence first rises and
then falls to zero: we have an epidemic. It is interesting to notice how the system
yields
dS
dR

= −β
γ
S .

Solving,

S = S(0)e−β
γ

R ≥ S(0)e−β
γ

N > 0

and therefore S∞ > 0. Moreover, it is possible to show that I∞ = 0 for every initial
condition (see [13]). This means that an epidemic always dies out and not all the
susceptible individuals contract the illness. Given the simplicity of the model an
analytical study can be easily carried out to find, for example, intensity and timing
of the peak.

1.2.2 The SIS model

The SIR model is founded on the quite tight assumption that recovery gives a person
total immunity from the disease. While this is true for some illnesses such as measles
and chicken pox, it is false for others, such as influenza. Relaxing this hypothesis
bring us to the SIS model. In the simplest version, we assume that people who leave
the infected group become susceptible right away. The classes in this model are
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therefore just two, susceptible S and infected I. The same reasoning applied before
gives the ODEs system:

S
Í(t) = −βIS + γI

I Í(t) = βIS − γI
(2)

Being the total population N = S+ I, the system (2) can be reduced to the logistic
equation:

I Í(t) = rI(1 − I

K
), (3)

where r = βN − γ and K = r
β
. Let us call r growth rate and distinguish two cases:

• If r < 0, the number of new infected per unit of time is lower than the number
of recovered per unit of time. Analytically, we have I Í(t) ≤ rI(t). This means
that I Í(t) < 0 ∀t and I(t) approaches 0 exponentially in time.

• If r > 0, we have to solve the logistic equation to find the evolution of the
incidence. The solution is (see [13], chapter 2.3)

I(t) = KBert

1 +Bert
, (4)

where B = I(0)
(K−I(0)) . We have limt→∞I(t) = K, this means that the disease

does not die out and becomes endemic.

Therefore, we can define the reproduction number R0, that characterize the trend of
the epidemic, as R0 = βN

γ
. It is easy to see that if R0 > 1 we are in the endemic case,

if R0 < 1 the disease dies out. “Epidemiologically, the reproduction number gives
the number of secondary cases one infectious individual will produce in a population
consisting only of susceptible individuals” (Martcheva, 21).

We have briefly discussed two of the simplest models in mathematical epidemiology.
These models can be improved to take into account many different characterizations,
such as age [13], and possible interventions, such as lockdowns and hospitalizations
[3].

1.3 The kinetic approach

In recent years, an agent-based approach to a wide variety of social and biological
issues has been largely adopted. These methods are founded on the Boltzmann
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Figure 3: Some endemic solutions of the logistic equation, for different initial con-
ditions.

kinetic gas theory and in particular on the Boltzmann equation. The framework
offered by the kinetic theory is proven to be versatile and successful by the rich
literature that has been flourishing in the most different areas of study, from biology
[17, 18] to economics [15, 16], from sociology [19, 20, 21] to opinion formation [22, 23]
and vehicular traffic [24, 25, 26]. The key idea shared by these works is to employ
the mathematical formalism offered by physics of gasses to describe the behavior
of interacting agents in the place of molecules that collide. While in gas dynamics
molecules interact by exchanging kinetic energy and are characterized by properties
as position and velocity, other type of agents may have microscopic state, or states,
of different nature and may interact following different rules, depending on the
single application. As in the classical application to gasses collective properties
arise from simple microscopic interacting rules when a large number of particles is
considered, so they do in social or biological systems. As a large number of agents
is considered, they are described statistically. In particular, as the total number
of agents is always assumed constant, a probability distribution function can be
introduced for describing the statistical distribution of the states of the agents and
it may be used in order to define macroscopic quantities through the moments of
the probability distribution. Its evolution is described by the Boltzmann equation.
For a complete overview on the methodologies and applications of kinetic theory we
recommend [34].The kinetic theory developed by Boltzmann [27] provides us with
sophisticated mathematical tools to study this type of systems. In particular, the
integro-differential Boltzmann equation allows us to derive macroscopic equations
for various moments of the state of the agents, at least in simple analytical settings.
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In general this equation can be hard to solve analytically and numerical methods
are required to find a solution. These numerical methods often are Monte Carlo
direct simulations (DSMC) [28] in the form of Bird [29] or Nanbu-Babovsky [30]
schemes. The physical phenomena described by epidemiology are well suited to
be investigated by means of the kinetic approach. In a large and interconnected
population, agents interact with each other and disease carriers - such as viruses or
bacteria - are transferred from one person to the other. It is no surprise then the fact
that this approach has been applied to the matter of epidemiology in different forms
[31, 32]. Of particular interest for this dissertation is the innovative non-conservative
kinetic equations introduced in [32]. The thesis aims at developing the findings of
this work and proposes two epidemiological models based on these equations.
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2 Mathematical tools

In this chapter we introduce some mathematical tools that will be used in the
epidemiological models discussed later. Firstly, a simple derivation of the Boltzmann
equation is carried out and some of its properties outlined. Then, we introduce the
innovative Markov-type label switching process and we plug it into the kinetic model.
A mass-varying interacting multi-agent system is obtained. The hydrodynamic limit
is then discussed as it will be crucial to the analysis of the time-varying parameters
cases. Lastly, we examine the Nanbu-Babovsky scheme for Monte Carlo simulations
of multi-agents systems that will be massively employed as a numerical method to
validate theoretical findings.

2.1 Boltzmann equation

The Boltzmann equation is the theoretical starting point of the study of multi-agent
interacting systems from the kinetic point of view. First introduced by Ludwig
Boltzmann in 1872 [37], it is a partial integro-differential equation that describes
the evolution of the density of a rarefied gas. In one of its more general forms, it
reads:

∂f(t, x, ξ)
∂t

= −ξ · ∇xf(t, x, ξ) + αQ(f, f)(t, x, ξ) (5)

where f(t, x, ξ) is the particle density function. This means that f(t, x, ξ)dxdξ indi-
cates the number of particles with position x ∈ [x, x+dx] and velocity ξ ∈ [ξ, ξ+dξ]
at time t. The terms in the right-hand side of the equation account, respectively, for
the free particle transport and for the collisional interaction between particles. It
is founded of the assumumption called Boltzmann ansatz, which states a statistical
independence of positions and velocities of particles. An informal derivation of this
equation is now proposed, based on [33]. We want to study the behavior of the
particles that elastically collide in a gas. Mathematically, we consider N identical
hard spheres of diameter σ, whose position xi ∈ Ω ∈ R3 and velocity ξi ∈ R3,
i = 1, .., N , is represented by a point in the phase space. We indicate with z(x, ξ)
the 6-dimensional point vector in this space. The probability density in the phase
space is the non-negative function f(t, z) and its domain is the set ΩN × R3N , with
Ω ⊆ R3. It is possible to demonstrate [33] that, in absence of external forces, f is
constant along the trajectory of z in the phase space. Let us define the set Λ as
Λ = ΩN × R3N \ Υ , where Υ = {z : ∃i, j ∈ {1, 2, ..., N}(i Ó= j) : |xi − xj| < σ}.
Saying that f(t, z) > 0 in Υ would mean that two spheres are coexisting in the same
spatial coordinates and this is impossible, since they are hard. Therefore, we will
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Figure 4: The symmetry of pre and post collision velocities. Here ξ2 = 0, hence
V12 = ξ1.

have f(t, z) = 0 ∀z ∈ Υ, we will also take f(t, z) differentiable with respect to z
and t on Λ. Under this hypothesis the so called Liouville equation states that [33]:

∂f

∂t
+

NØ
i=1

ξi · ∂f
∂xi

= 0 (z ∈ Λ). (6)

Equation (6) needs to be completed with suitable initial and boundary conditions.
The former will simply be the value f(0, z), while the latter will have to account
for the non-overlapping condition, even if the movement is boundless. To do so,
it is necessary to assess the properties of the collision between two spheres. From
the physics of elastic collisions we know that conservation of momentum and energy
must hold. Being (ξ1, ξ2) the pre-collision velocities and (ξÍ

1, ξ
Í
2) the post-collision

ones, this yields:

ξ1 + ξ2 = ξÍ
1 + ξÍ

2

|ξ1|2 + |ξ2|2 = |ξÍ
1|2 + |ξÍ

2|2. (7)

Moreover, we know that the directions of ξi, i = 1, 2 change instantly when a collision
occurs. What happens is that the relative velocity V12 = ξ1−ξ2 undergoes a specular
reflection. This is schematized in Figure 4, where a sphere is represented before and
after an elastic collision, with the respective velocities.

Since the collision creates a discontinuity in velocities, on the boundaries of Λ, i.e.
where these collision happen, we must impose that:

f(t, z) = f(t, zÍ) (z ∈ Λ) (8)
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and explaining the variables, equation (8) reads [33]:

f(t, x1, ξ1, ..., xi, ξi, ..., xj, ξj, ..., xN , ξN) = (9)
f(t, x1, ξ1, ..., xi, ξi − nij(nij · Vij), ..., xj, ξj + nij(nij · Vij), ..., xN , ξN)

if |xi − xj| = σ (i Ó= j), where Vij = ξi − ξj and nij is the unit vector directed as
xi − xj.

Obviously, other boundaries conditions will have to be added if one wants to consider
a domain that is a subset of R3. In the study of actual gasses, equation (6) can not
be applied. The order on magnitude of N, and therefore the number of variables, is
1023 and some sort of adjustment needs to be carried out. The Boltzmann equation
serves us for this purpose. Let us consider the sphere labeled as 1 and the relative
one-particle distribution function f (1)(t, x, ξ). This function depends only on the
position and velocity of the sphere, other than the time. The challenge here is to
obtain a closed equation for f (1), i.e. one that does not depend explicitly on f (2).
Boltzmann did so by means of a heuristic argument.

Without any collision, the density f (1) would satisfy the Liouville equation (6) with
N = 1 [33]. It seems reasonable to investigate the effects of the collisions on f (1)

to obtain an evolution equation. For a particle, let us say particle 1, to collide it is
necessary to have at least another particle, let us say particle 2. Hence, we have to
consider two particles, f (2) = f (2)(t, x1, ξ1, x2, ξ2). We introduce now a correction of
the equation (6), that reads

∂f (1)

∂t
+

NØ
i=1

ξi · ∂f
(1)

∂xi

= G− L (10)

where G and L are gain and loss terms with the following meaning:

• Gdx1dξ1 is the expected number of particles gaining position in [x1, x1 + dx1]
and velocity in [ξ1, ξ1 + dξ1] due to a collision in [t, t + dt]. With abuse of
terminology we can say that the particle enters the [x1, x1 +dx1]× [ξ1, ξ1 +dξ1]
box.

• Ldx1dξ1is the expected number of molecules leaving that same box in the time
interval [t, t+ dt] due to a collision.

For the sake of simplicity, let us imagine sphere 1 as at rest and with a double
diameter, i.e. radius σ, and any other particle as a mass point of velocity with
respect to particle 1 Vi = ξi − ξ1. The number of collisions particle 1 will have is
the number of expected collisions any particle will have with it. Let us call g and l
the contributions of a single particle, say particle 2, to, respectively, gain and loss.
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Being (N − 1) the other particles, we obtain:

G =(N − 1)g
L =(N − 1)l.

Let us focus on the collision between particles 1 and 2. We take the point x2 on
sphere 1. Being n the unit vector normal to the surface, we build the cylinder
with height dh = |ξ2 · n · dt| and infinitesimal base dS = σ2dn, so that it contains
the particles with velocity ξ2 that reach the base dS in the time interval [t, t + dt].
The volume of the cylinder is dh · dS = |ξ2 · n|σ2dndt. We can now compose
the probability of a collision between particles 1 and 2, respectively in the boxes
[x1, x1 + dx1] × [ξ1, ξ1 + dξ1] and [x2, x2 + dx2] × [ξ2, ξ2 + dξ2], in [t, t+ dt] and that
occurs in dS, as f (2)(t, x1, ξ1, x2, ξ2)dx1dξ1dξ2 × |ξ2 ·n|σ2dndt. Some of the collisions
will contribute to the gain term, whereas others to the loss term. If ξ2 · n < 0,
particle 2 is moving toward particle 1. This means that the collision is about to
happen and will remove the particle from the considered range. If ξ2 ·n > 0, particle
2 is moving away from particle 1. This means that the collision has already happened
and has moved the particle into the considered range. The former case will add to
the loss term and the latter to the gain one. To consider the whole sphere and all
the possible velocities of particle 2 we integrate over dn and dξ2. We denote with S−

the hemisphere corresponding to the loss and with S+ the hemisphere corresponding
to the gain:

L =(N − 1)σ2
Ú
R3

Ú
S−
f (2)(t, x1, ξ1, x1 + σn, ξ2)|(ξ2 − ξ1) · n|dξ2dn (11)

G =(N − 1)σ2
Ú
R3

Ú
S+
f (2)(t, x1, ξ1, x1 + σn, ξ2)|(ξ2 − ξ1) · n|dξ2dn. (12)

To plug these results into the modified Liouville equation (10) we need to account
for the probability density’s property of continuity at collisions, equation (9), that
for i = 1 and j = 2 and integrated with respect to the other N − 2 particles reads
[33]:

f (2)(t, x1, ξ1, x2, ξ2) = f (2)(t, x1, ξ1 − n(n · V ), x2, ξ2 + n(n · V )) (13)

if |x1 − x2| = σ, where V = ξ1 − ξ2 and n = −n12.
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We note that, from the physics of collisions explained in equation (7)

ξÍ
1 = ξ1 − n(n · V )
ξÍ

2 = ξ2 + n(n · V ). (14)

Thus, we have:

G = (N − 1)σ2
Ú
R3

Ú
S+
f (2)(t, x1, ξ

Í
1, x1 + σn, ξÍ

2)|(ξ2 − ξ1) · n|dξ2dn. (15)

Let us introduce the molecular chaos hypothesis. When a real gas is considered, the
number of particles involved in the dynamics is enormous and their diameter is very
small. To give some context, if we take a 1 cm3 box of gas we have N ≈ 1020 and
σ ≈ 10−10 m. This means that the product N · σ2 is finite but we can neglect the
quantity σn. When N → ∞ and σ → 0 with N · σ2 finite we are in the so-called
Boltzmann-Grad limit. In this limit the molecular chaos hypothesis, or Boltzmann
ansatz, can be considered valid. It states that [35] collisions are so rare that only
binary ones are considered and that two particles about to collide are randomly
chosen and their one-particle distribution functions are statistically independent.
This yields, for particles about to collide:

f (2)(t, x1, ξ1, x2, ξ2) = f (1)(t, x1, ξ1) · f (1)(t, x2, ξ2)
= f (1)(t, x1, ξ1) · f (1)(t, x1 + σn, ξ2). (16)

In the Boltzmann-Grad limit and by means of the Boltzmann ansatz we can write
the equation for the loss term as

L = Nσ2
Ú
R3

Ú
S+
f (1)(t, x1, ξ1) · f (1)(t, x1, ξ2)|(ξ2 − ξ1)n|dξ2dn (17)

and for the gain term, with the post-collision velocities instead of the pre-collision
ones and thanks to the transformation (14):

G = Nσ2
Ú
R3

Ú
S+
f (1)(t, x1, ξ

Í
1) · f (1)(t, x1, ξ

Í
2)|(ξ2 − ξ1)n|dξ2dn. (18)

We can now write the Boltzmann equation by plugging these definitions into equa-
tion (10):

∂f (1)

∂t
+

NØ
i=1

ξi · ∂f
(1)

∂xi

=Nσ2
Ú
R3

Ú
S+

5
f (1)(t, x1, ξ

Í
1) · f (1)(t, x1, ξ

Í
2)+

− f (1)(t, x1, ξ1) · f (1)(t, x1, ξ2)
6

· |(ξ2 − ξ1)n|dξ2dn. (19)
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If we drop the distribution superscript to lighten the notation, equation (19) is
equivalent to equation (5) if

s
R3
s

S−

5
f (1)(t, x1, ξ

Í
1) · f (1)(t, x1, ξ

Í
2) − f (1)(t, x1, ξ1) ·

f (1)(t, x1, ξ2)
6

· |(ξ2 − ξ1)n|dξ2dn = Q(f, f)(t, x, ξ) and Nσ2 = α.

By boiling down the notation for the derivative with respect to time, Boltzmann
equation reads

Dtf(t, x, ξ) = αQ(f, f)(t, x, ξ). (20)

Q(f, f)(t, x, ξ) is often referred to as the interaction kernel and α is connected to
the collision frequency. When the Boltzmann equation is applied to problems dif-
ferent from the gas dynamics, the interaction kernel adapts to the specific situation
considered, defining the physics of the agents’ interactions. For the sake of sim-
plicity, we now replace position and velocity in the phase space with the generic
variable v ∈ V ⊆ R, that represents the microscopic state of the agent. In the study
of interacting multi-agent systems it is of pivotal importance the mass conservation
property of the interaction kernel Q, i.e. the trivial fact that agents do not disappear
in interactions. Mathematically, this translates in

Ú
R
Q(f, f)(t, v)dv = 0 ∀t. (21)

This property allows us to give the density f(v, t) a probabilistic sense. If we start
with a density f(v, 0) such that

s
R f(0, v)dv = 1, we will be sure that this will

continue to be true for all subsequent times. Hence
Ú
R
f(t, v)dv = 1 ∀t > 0. (22)

The probabilistic interpretation of the one-particle distribution function naturally
implies the possibility of computing averages. For a generic observable ϕ(v), ϕ :
V → R, it is possible to calculate the average at time t over a generic random
variable X with probability distribution f(t, v) as

éϕ(X, t)ê =
Ú
R
ϕ(v)f(t, v)dv. (23)

Of particular interest in our dissertation will be the observable quantities ϕ(v) = 1
and ϕ(v) = v, i.e. the moments of order 0 and 1 of the microscopic state. In other
applications higher order moments are used. As an example, if we assume ϕ(v) = 1,
we multiply this quantity to both members of (20) and we perform the integral on
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both members we obtain an expression for the evolution of the mass in time as

d

dt

Ú
f(t, x, ξ)dxdξ = 0.

Hence, we have formally shown that the mass is conserved in time.

2.1.1 Maxwellian distribution

If we write the Boltzmann equation as in (20), it is clear that if a function f =
f(t, x, ξ) exists such that Q(f, f) = 0 this function is a good candidate as equilibrium
point for the system. It can be proven that, if f is a non-negative function such that
log(f)Q(f, f) is integrable, such function exists and has the form [33]

f(t, x, ξ) = A · exp(−b(ξ − v)2). (24)

Equation (24) is the so-called Maxwellian distribution. Non-drifting distributions,
i.e. Maxwellians with v = 0, are often considered. Moreover, it can be proven that
the Maxwellian distribution is in fact a statistical equilibrium point for the system
if and only if the parameters A, b, v depends on t and x [33]. In fact, by means
of the acclaimed H theorem [37], Boltzmann proved that the distribution function
f(t, x, ξ) of a rarefied gas described by the Boltzmann equation converges toward a
Maxwellian distribution.

2.2 Binary interaction models

The type of interaction kernel that we will be using in this thesis describes binary
interactions between agents. In particular, we will be dealing with interactions that
involve a non-negative microscopic state that changes following an interaction rule
of the type

vÍ = p1v + q1w

wÍ = p2v + q2w pi, qi > 0, i = 1, 2. (25)

where v and w are the microscopic states of the interacting agents and pi, qi are
referred to as mixing parameters and can be either stochastic or deterministic. In
this work we will be dealing with symmetric interactions with p1 = p2 and q1 = q2.
Let us investigate what happens to an observable quantity ϕ(v) due to interactions
in the more general case of stochastic parameters. If we take the interactions as
instantaneous, and the event of an interaction distributed as a Bernoulli probability
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distribution T ∈ {0, 1} of parameter ∆t we obtain

éϕ(vÍ)ê = éϕ(p1v + q1w)ê · ∆t+ éϕ(v)ê(1 − ∆t),

where the é·ê indicates the expected value after a time interval ∆t. Hence,

éϕ(vÍ)ê − éϕ(v)ê
∆t = éϕ(p1v + q1w)ê − éϕ(v)ê. (26)

If we compute the limit for ∆t → 0+ we obtain d
dt

éϕ(v)ê = éϕ(vÍ)ê − éϕ(v)ê. Let us
explicit the average through (23):

d

dt

Ú
V
ϕ(v)f(t, v)dv = é

ÚÚ
V ×V∗

ϕ(vÍ)f (2)(t, v, w)dvdwê −
Ú

V
ϕ(v)f(t, v)dv. (27)

In equation (27) the é·ê indicates the expected value over the stochastic parameters
pi, qi, i = 1, 2 and V∗ indicates the domain of the second agent involved in the
interaction. Function f (2)(t, v, w) is the two particle density function. Without
loss of generality we shall consider V = V∗. The Boltzmann ansatz allows us to
factorize the density function f (2)(t, v, w) = f(t, v)f(t, w) and, remembering the
mass conservation property’s consequence (22), we obtain

d

dt

Ú
V
ϕ(v)f(t, v)dv = é

ÚÚ
V ×V

3
ϕ(vÍ) − ϕ(v)

4
f(t, v)f(t, w)dvdwê. (28)

Equation 28 is the weak form of the Boltzmann equation, whose meaning is that
the variation in time of the average of an observable quantity is equal to the mean
variation of that same observable quantity in all interactions.

Let us show some properties of physical systems that can be obtained through this
formula.

• Mass conservation is immediately clear by taking ϕ(v) = 1:

d

dt

Ú
V

1 · f(t, v)dv = 0 =⇒
Ú

V
f(t, v)dv = cost. (29)

Which means that the number of agents does not change.

• Setting ϕ(v) = v in (28) allows us obtain the evolution of the microscopic state
that depends on the interaction rule. If the mixing parameters are such that

ép1 + q2ê = ép2 + q1ê = 1, (30)

we have a so-called conservative model and the average
s

V vf(t, v)dv = m(t)

15



is conserved. In the symmetric case we have

dm(t)
dt

= ép+ q − 1êm, (31)

that is 0 if (30) is true. Otherwise, m has an exponential trend either toward
0 or ∞.

• If we take ϕ(v) = v2 we obtain the second moment of the microscopic state,
namely the energy of the system. In fact, we know from physics that the second
order moment of velocity is, disregarding the mass, the kinetic energy K(t).
The kinetic energy has two components, one due to molecular agitation, called
internal energy, and the other due to the mean movement m(t) of molecules.
Mathematically, with unitary mass, this reads

K(t) = e(t) +m(t)2 . (32)

If we impose
s

V v
2f(v, t)dv = K(t) and we compute the variance of the prob-

ability distribution f(v, t), we obtain

V ar(f) =
Ú

V
(v −m)2f(t, v)dv =

=
Ú

V
v2f(t, v)dv − 2m

Ú
V
vf(t, v)dv +m2

Ú
V
f(t, v)dv =

= K(t) −m(t)2 = e(t) . (33)

Thus, the variance of the probability distribution is equal to the internal energy
of the system. For symmetric interactions the evolution of the energies reads

dE

dt
= ép2 + q2 − 1êE + 2épqêm2,

de

dt
= ép2 + q2 − 1êe+ é(p+ q − 1)2êm2 (34)

and both tend asymptotically to a finite non-vanishing value if ép2 + q2ê < 1.

The Boltzmann equation with the appropriate binary interaction rule allows us
to describe manifold physical systems in which the interaction between agents is
determinant for the dynamics of the system. As we will see, often other mechanisms
can affect the dynamics and the challenge is to include them into this theoretical
framework.
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2.3 Label switch process

One of the mechanisms above mentioned is a label switch process. This idea has been
introduced in [32]. Let us imagine that agents in the system are equipped with a label
that identifies the group whose the agent belongs to. The label is x ∈ I = {1, ..., n}.
Let us consider here a non-negative microscopic state. The agents’ label changes
following a discrete Markov-type stochastic jump process defined by a transition
probability

T = T (t, v;x|y) ∈ [0, 1] ∀v ∈ R+, x, y ∈ I, t > 0. (35)

Hence, an agent in the group y has a probability T , that depends on his state v and
on time, to jump into group x at time t, if a transition occurs. T is a probability
density if satisfies the normalization condition:

Ú
I
T (t, v;x|y)dx =

nØ
i=1

T (t, v; i|y) = 1 ∀v ∈ R+, y ∈ I, t > 0. (36)

This also ensures the mass conservation property to hold. The agents are therefore
divided into groups when they interact in the binary interaction model. The model
accounts for possible differences in interaction rules for contacts within the same
group or between different groups. In order to unify these mechanisms we have to
give a kinetic description of the label switch process. Thus, we take a distribution
function f(t, x) ≥ 0 of agents with label x at time t and compute its evolution with
a kinetic equation describing the jump process, of the same type as equation (28):

d

dt

Ú
I
ϕ(x)f(t, x)dx = λ

ÚÚ
I×I

1
ϕ(x) − ϕ(y)

2
T (t;x|y)f(t, y)dxdy. (37)

Where λ > 0 represents the constant switch frequency. We can exploit the fact that
I is discrete to decompose f(t, x) in separated components such that

f(t, x) =
nØ

i=1
fi(t)δ(x− i), (38)

where fi(t) is the probability distribution restricted to the i-th group and δ(x− i) is
the Dirac distribution centered in x = i. By plugging this definition into equation
(37) and replacing the integral with a sum, we obtain

nØ
i=1

ϕ(i)f Í
i(t) = λ

nØ
i=1

nØ
j=1

1
ϕ(i) − ϕ(j)

2
T (t; i|j)fj(t). (39)
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It is possible now to show the evolution of a single group’s distribution. If we chose
ϕ(i) = 1 for a certain i ∈ I and ϕ(x) = 0 ∀x ∈ I \ {i} we are counting agents with
label i. By plugging this observable into equation (39), we obtain the evolution of
the density of one group as

f Í
i(t) = λ

 nØ
j=1

T (t; i|j)fj(t) − fi(t)
 i = 1, ..., n. (40)

We are now ready to merge the two descriptions, i.e. interacting agents that are
characterized by a switching label. We present the calculations for the most simple
case, in which agents are equipped with one microscopic state v and one label x
and there is only one mechanism that influence each variable. More complicated
cases can easily be derived from this description and will be covered in the next
chapters, where we will discuss two labels and two state-involving mechanisms for
the application to epidemiology. Thus, we want to write a weak Boltzmann equation
for the joint distribution function f(t, x, v) ≥ 0, namely the proportion of agents
with label x ∈ I and microscopic state in [v, v + dv] at time t. With the same
reasoning adopted before we can discretize the distribution

f(t, x, v) =
nØ

i=1
fi(t, v)δ(x− i). (41)

As we have shown above, both for the interaction process and the jump process
the mass conservation property holds. Hence, we can assign a probabilistic sense to
f(t, x, v) by normalization:

nØ
i=1

Ú
R+
fi(0, v)dv = 1,

and hence,

nØ
i=1

Ú
R+
fi(t, v)dv = 1 ∀t > 0. (42)

The addends of the sum are the masses of the agents with label i,

ρi(t) :=
Ú
R+
fi(t, v)dv, (43)

that satisfies

0 ≤ ρi(t) ≤ 1 ∀i,
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nØ
i=1

ρi(t) = 1 ∀t > 0.

Let us consider the random variable pair (Xt, Vt) ∈ I × R+ representing label and
state of an agent at time t. During the small time interval ∆t > 0 the agent may
change their label or state, depending on if a label switch occurred or a binary
interaction occurred instead. None of them and both of them are also possibilities.
This situation is easily described with a discrete time random process involving the
random variables (Xt, Vt):

Xt+∆t = (1 − Θ)Xt + ΘJt

Vt+∆t = (1 − Ξ)Vt + ΞV Í
t .

(44)

Where Jt is the new label, V Í
t the post interaction state and Θ,Ξ are Bernoulli

random variables, independent from the other quantities, that represent the event
of, respectively, a label switch or a binary interaction. Considering the time interval
∆t we takeP (Θ = 1) = λ∆t

P (Ξ = 1) = µ∆t ,
(45)

with ∆t ≤ min{ 1
λ
; 1

µ
} for consistency, being P a probability. Quantities 1

λ
and

1
µ
are mean time intervals between two consecutive interactions or label switches,

respectively. We are assuming as true the intuitive fact that the bigger the time
interval, the bigger the probability of having an event and we are considering time
intervals small enough to contain, with satisfactory approximation, a single event
of the same type. We are characterizing the label switch process with the random
variable Jt ∈ I and the interactions with the random variable V Í

t ∈ R+ . If P (t, j, v)
is the joint probability distribution function of the post label switch pair (Jt, Vt), we
will have

P (t, j, v) =
Ú

I
T (t, v; j|y)f(t, y, v)dy =

nØ
i=1

T (t, v, j|i)fi(t, v). (46)

This means that the probability for an agent with microscopic state v to be at time
t in the j-th group is the sum of the transition probabilities from all the groups
toward group j, multiplied by the density of each group.

If a binary interaction happens instead, the post event pair will be (Xt, V
Í

t ). To
account for possible differences in the interaction rule depending on the groups, let
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us define

V Í
t =̂δXt,YtV̄

Í
t + (1 − δXt,Yt)Ṽ Í

t , (47)

where δXt,Yt is the Kronecker delta and

V̄ Í
t = p̄Vt + q̄V ∗

t

Ṽ Í
t = p̃Vt + q̃V ∗

t ,

where V ∗
t is the state of the other agent in the interaction and p̄, q̄, p̃, q̃ ∈ R are

mixing parameters. Let us investigate the evolution of a observable quantity ϕ =
ϕ(x, v) : I × R+ → R. If we consider a time interval ∆t, the mean variation of ϕ is

éϕ(Xt+∆t, Vt+∆t)ê − éϕ(Xt, Vt)ê
∆t

and, plugging in the information from equations (44) and (45):

éϕ(Xt+∆t, Vt+∆t)ê − éϕ(Xt, Vt)ê
∆t = (1 − λ∆t) · (1 − µ∆t)éϕ(Xt, Vt)ê

∆t

no event
+ (1 − λ∆t) · µ∆téϕ(Xt, V

Í
t )ê

∆t

interaction
+ λ∆t · (1 − µ∆t)éϕ(Jt, Vt)ê

∆t

label switch
+ λ∆t · µ∆téϕ(Jt, V

Í
t )ê

∆t

both
− éϕ(Xt, Vt)ê

∆t . (48)

If we let ∆t → 0+ and perform the limit, we obtain, for the istantaneous time
variation:

d

dt
éϕ(Xt, Vt)ê = λéϕ(Jt, Vt)ê + µéϕ(Xt, V

Í
t )ê − (λ+ µ)éϕ(Xt, Vt)ê. (49)

Let us stress how the case where both events occur, as it is quadratic with respect
to time, has been neglected as ∆t → 0+. We can further divide the interaction
member in the left-hand side due to equation (47) and obtain

d

dt
éϕ(Xt, Vt)ê = λéϕ(Jt, Vt)ê + µéδXt,Ytϕ(Xt, V̄

Í
t )ê+

+ µé(1 − δXt,Yt)ϕ(Xt, Ṽ
Í

t )ê − (λ+ µ)éϕ(Xt, Vt)ê. (50)
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Considering (41), we have:

• éϕ(Jt, Vt)ê = qn
i=1

qn
j=1

s
R+
ϕ(i, v) · T (t, v; i|j)fj(t, v)dv ,

• éδXt,Ytϕ(Xt, V̄
Í

t )ê = qn
i=1

s
R+

s
R+

éϕ(i, v̄Í)ê · fi(t, v)fi(t, v∗)dvdv∗ ,

• é(1 − δXt,Yt)ϕ(Xt, Ṽ
Í

t )ê = qn
i=1

qn
j=1,j Ó=i

s
R+

s
R+

éϕ(i, ṽÍ)ê · fi(t, v)fj(t, v∗)dvdv∗ ,

where, likewise we did before, the mean value inside the integral has to be intended
with respect to possible stochastic mixing parameters and the hypothesis of molec-
ular chaos holds. It is now possible to finally write a weak Boltzmann-type equation
for the joint distribution function:

d

dt

nØ
i=1

Ú
R+
ϕ(i, v)fi(t, v)dv = λ

nØ
i=1

nØ
j=1

Ú
R+
ϕ(i, v)T (t, v; i|j)fj(t, v)dv

+ µ
nØ

i=1

Ú
R+

Ú
R+

éϕ(i, v̄Í)êfi(t, v)fi(t, v∗)dvdv∗

+ µ
nØ

i=1

nØ
j=1,j Ó=i

Ú
R+

Ú
R+

éϕ(i, ṽÍ)êfi(t, v)fj(t, v∗)dvdv∗

− (λ+ µ)
nØ

i=1

Ú
R+
ϕ(i, v)fi(t, v)dv . (51)

Equation (42) allows us to include the loss term (the last term in the left-hand side
of equation (51)) into the gain terms. If we take ϕ(x, v) = ψ(x)φ(v), with ψ(i) = 1
for a certain i and ψ(j) = 0 ∀j Ó= i we can write equation (51) for a single group i
as

d

dt

Ú
R+
φ(v)fi(t, v)dv = λ

Ú
R+
φ(v)

3 nØ
j=1

T (t, v; i|j)fj(t, v) − fi(t, v)
4
dv

+ µ
Ú
R+

Ú
R+

éφ(vÍ) − φ(v)êfi(t, v)fi(t, v∗)dvdv∗

+ µ
nØ

j=1,j Ó=i

Ú
R+

Ú
R+

éφ(ṽÍ) − φ(v)êfi(t, v)fj(t, v∗)dvdv∗ (52)

i = 1, ..., n .

Equation (52) is a non-conservative weak Boltzmann equation for the density of
each group fi. Of course, the agents’ mass within each group is not constant and
the mass conservation property holds only for the whole system. If we take φ(v) = 1
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we can compute the mass for the i-th group as

d

dt
ρi(t) = λ

Ú
R+

nØ
j=1

T (t, v; i|j)fj(t, v) − fi(t, v)dv

= λ
nØ

i=1

Ú
R+
T (t, v; i|j)fj(t, v)dv − λρi(t) . (53)

Not surprisingly, it turns out to depend on the label switch process only, since the
interactions only involve the microscopic state v and not the label x.

The formalism just introduced is quite general and allows to describe a wide plethora
of situations. We recommend [32] and [36] for a complete dissertation on the topic.

As for this thesis in concerned, two interaction cases will be adopted in the next
chapters: same interaction rule for all agents and interaction among agents in the
same group only. Let us discuss these two situations:

• To have the same interaction rule for all agents means, mathematically, that
v̄Í = ṽÍ = vÍ and equation (52) becomes

d

dt

Ú
R+
φ(v)fi(t, v)dv = λ

Ú
R+
φ(v)

3 nØ
j=1

T (t, v; i|j)fj(t, v) − fi(t, v)
4
dv

+ µ
nØ

j=1

Ú
R+

Ú
R+

éφ(vÍ) − φ(v)êfi(t, v)fj(t, v∗)dvdv∗

(54)

i = 1, ..., n .

• To have interaction among same-labelled agents only could be modeled by
letting the inter-group interactions be ineffective. Mathematically, this can be
achieved by imposing ṽÍ = v. Thus, we obtain

d

dt

Ú
R+
φ(v)fi(t, v)dv = λ

Ú
R+
φ(v)

3 nØ
j=1

T (t, v; i|j)fj(t, v) − fi(t, v)
4
dv

+ µ
Ú
R+

Ú
R+

éφ(vÍ
i) − φ(v)êfi(t, v)fi(t, v∗)dvdv∗ (55)

i = 1, ..., n .

Here, the post-interaction state vÍ
i and therefore the interaction rule is taken

potentially dependent on the label of the agents. It is of pivotal importance to
remember that interactions among agents with different labels do not vanish,
they happen without producing an effect. This seemingly subtle difference is
fundamental when numeric simulations are implemented, since the algorithm
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has to account for this. The expected number of interactions is µ∆t and not
counting the effect-less interactions in this number leads to perform to many
interactions.

2.4 Hydrodynamic limit

The description of a system by means of the Boltzmann equation is by its very
essence microscopic. If we want to analyze a system composed by a large number of
particles it is often more convenient to appeal to macroscopic equations. The same
thing is true when we want to consider the effects of slower mechanisms influencing
a system of agents interacting on a much faster scale. The hydrodynamic limit is the
mathematical tool that allows to describe the system on larger scales, both spatial
and temporal. To introduce this, let us take a step back and consider a physical
system of particles in a gas. Remembering the notation used in sec. 2.1, we consider
the density function f = f(t, x, ξ) describing the probability to find a particle with
position in [x, x + ∆x] and [ξ, ξ + ∆ξ] at time t. We consider a box Λδ of side δ−1,
where δ will be sent to zero as the limit is performed. We assume that the number
of particles in the box is proportional to its volume ([33]):

Ú
Λδ×R3

f(t, x, ξ)dxdξ = δ−3 ∀t. (56)

The Boltzmann equation describes the time evolution of the system. Hence, we have

Dtf(t, x, ξ) = αQ(f, f)(t, x, ξ) , (57)

where Dt = ∂
∂t

+ ξ ∂
∂x

indicates whole derivation with respect to time. If we look
at the whole system, though, the microscopic variables t and x are inappropriate
to well describe the behavior of the gas and we would prefer variables of the same
order of magnitude of the box. Hence, let us define the new variables

r = δx r ∈ Λ
T = δt T ∈ R+ (58)

and the density function

f̂(r, ξ, t) = f(x, ξ, t) (59)
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normalized to unity
Ú

Λ×R+
f̂(r, ξ, t)drdξ = 1. (60)

Owing to equation (59), macroscopic and microscopic description are equivalent and
they differ only on the scale of the parameters. Since microscopic quantities such
as mean free path and mean free time are of the same order as δ, if we assume
δ → 0+, on the macroscopic scale they turn out to be infinitesimal. If we write the
macroscopic Boltzmann equation

∂f̂

∂T
+ ξ · ∂f̂

∂r
= δ−1αQ(f, f)(T, r, ξ) , (61)

we note that the right-hand side is scaled by a factor δ−1. This means that the
interaction kernel has to be of the same order as δ to secure equation (61) to hold,
i.e. each interaction account for a infinitesimal change of the variables [35]. Let us
now consider a neighborhood of point r ∈ Λ. According to the kinetic theory, on the
fast time scale t the density function of the portion of gas in this neighborhood will
assume, reaching equilibrium, the shape of a Maxwellian. This distribution will have
parameters A(δ−1r), b(δ−1r), v(δ−1r) related with fluid-dynamic macroscopic quanti-
ties such as density, energy and drift. This parameters will evolve on the macroscopic
scale according to the classical fluid-dynamic laws. Thus, we have individuated two
dimensional scales. The microscopic scale is the one where the kinetic interpretation
holds and where Maxwellian equilibrium is quickly reached, the macroscopic scale
is the one where fluid-dynamic laws hold and is where the Maxwellian parameters
evolve. For a rigorous and complete description we recommend [35].

In this dissertation, we will be dealing with a scaling that involves only the time
variable t. Let us introduce a kinetic system in the variables (t, v) ∈ R+ × R with
two different kernels Q(f, f)(t, v) and P (f, f)(t, v). We can write a Boltzmann-type
equation for the evolution of this system as

Dtf(t, v) = λQ(f, f)(t, v) + µP (f, f)(t, v) , (62)

where λ, µ take the meaning of interaction rates. Let us assume that the two events
take place on very different time scales. Mathematically, we let δ → 0 and we state
λ ≈ 1 and µ ≈ δ−1. Without loss of generality we can take λ = 1 and µ = δ−1. By
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means of this argument equation (62) can split in

Dtf(t, v) = δ−1 · P (f, f)(t, v)
Dtf(t, v) = Q(f, f)(t, v) , (63)

where the first equation operates on the fast time scale, while the second equation
operates on the slow one. Let us note that for equation (63) to hold we have to
assume that P is of the same order as δ. Let us define a new time scale

τ=̂δ−1t (64)

and refer to it as the fast time, while the slow time is t, and a new density function

f̃(τ, v) = f(t, v). (65)

Hence, we can rewrite equation (63) as

Dτf(τ, v) = P (f, f)(τ, v)
Dtf(t, v) = Q(f, f)(t, v) (66)

and give the following interpretation. On the fast time τ the density f quickly evolves
by action of P toward its (possible) equilibrium, e.g. a Maxwellian distribution.
On the slow time the reached configuration evolves through the evolution of its
characteristic parameters, e.g. density, mean microscopic state and energy, by action
of Q.

2.5 Numerical Methods

In the previous sections, we have presented the main analytical tools that will be
employed in this thesis. In particular, the Boltzmann equation (5) is the foundation
of the models here depicted. Unfortunately, as an integro-differential equation, it
is analytically solvable only in a few simplified cases and sophisticated numerical
methods are required. Moreover, as it is common in this field, theoretical findings
will be supported by numerical simulations. It is therefore clear that numerical
methods are of pivotal importance in the study we are carrying out in this disserta-
tion. We propose here a brief description of the algorithms and techniques adopted
in the following sections, for a more complete picture we recommend [41]. The large
number of agents in the population and the non-linear integral that describes the
interaction among them makes the numerical solution of the Boltzmann equation
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(5) computationally expensive [41]. A probabilistic Monte Carlo (MC) approach
to the matter has proven to be preferable to deterministic methods for two main
reasons. The computational cost is noticeably reduced and no discretization grid is
required, since variables can assume any value.

Firstly, let us define Monte Carlo integration in general terms and investigate its
approximating error. We want to evaluate the integral

I[g] =
Ú

Ω
g(x) · f(x)dx, Ω ⊆ Rd, d ≥ 1 , (67)

where 0 ≤ f(x) ≤ 1 is a probability density function. If we take the random vector
X distributed as f(x), the equality

I[g] = E
1
g(X)

2
(68)

holds [34]. Moreover, if Xn is a sequence of N pseudo-random vectors distributed
as f(x), we can write [34]

ĪN [g] = 1
N

NØ
i=1

g(Xi), E
3
Ī[g]

4
= I[g]. (69)

Remembering the law of large numbers

lim
N→∞

P (|ĪN [g] − I[g]| > ε) = 0 ∀ε > 0 , (70)

where ĪN [g] is the integration by means of Monte Carlo method of the integrals
Ω g(x) · f(x)dx. Let us now define the independent identically distributed random
sequence

Yn =

1
I[g] − g(Xn)

2
σg

(71)

where σ2
g =

s
Ω

1
g(x)−I[g]

22
f(x)dx is the variance of g(Xn). We have, given equation

(68),

E(Yi) = 0

E(Y 2
i ) =

Ú
Ω

1
I[g] − g(Xn)

22

σ2
g

dx = 1

E(Yi · Yj) = 0 i Ó= j . (72)
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Let us define the Monte Carlo integration error as

ÔN [g] := I[g] − ĪN [g]. (73)

If we consider the sum SN [g] = 1
N

qN
i=1 Yi = ÔN [g]

σg
and we remember the independence

of Yi’s:

E(S2
N [g]) = E

 1
N2

A
NØ

i=1
Yi

B2


= 1
N2

EA NØ
i=1

Y 2
i

B
+ E

A
NØ

i=1

NØ
j=1,j Ó=i

Yi · Yj

B
= 1
N2 (N + 0) = 1

N
. (74)

We thus obtain for the Monte Carlo error

E(ÔN [g]2) 1
2 = E

1
(I[g] − ĪN [g])2

2 1
2 = σgN

− 1
2 . (75)

Hence, the convergence rate of the Monte Carlo integration is O(σgN
− 1

2 ). In ad-
dition to that, by means of the central limit theorem we can assert that (ĪN [g] −
I[g])/(σgN

− 1
2 ) is distributed as a standard normal distribution [34]. Let us re-

mark that, for a deterministic grid-based method of order r, the convergence rate
is O(N− r

d ) [34], this means that Monte Carlo integration should be better if r
d

≤ 1
2 .

As a general rule, Monte Carlo methods are less precise than deterministic algo-
rithms, but they are preferable when the dimension of the problem d is high. As we
have seen, the error in MC integration is εN = O(σgN

− 1
2 ), which means that a low

variance σg of the statistical samples is the key to a precise and computationally
feasible integration. Thus, various variance reduction methods have been developed,
we recommend [44]. This general argument can be restricted to the computation of
integral of the type

s
Ω g(x)dx, d ≥ 1 by taking Xn uniformly distributed. In fact,

we will be mainly interested in evaluating moments of order zero and one of the
density f(x), i.e.

Mk[f ] = I[xk] =
Ú

Ω
f(x) · xkdx k = 0, 1

M̄k
N [f ] = 1

N

NØ
n=1

(Xn)k k = 0, 1. (76)

We will be focusing on algorithms known as direct simulation Monte Carlo (DSMC)
and in particular on the so-called Nanbu-Babovsky scheme [39]. Another important
DSMC scheme is the one owed to G.A. Bird [40]. These methods consist in evolving
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a finite set of agents that randomly interact with one another. Hence, in some sense
they simulate the physics of the process at a microscopic level rather than to solve
the Boltzmann equation. Let us consider a gas system and the Boltzmann equation
with initial condition that describes the distribution of its particles

∂f(t, x, ξ)
∂t

+ ξ · ∇xf(t, x, ξ) = αQ(f, f)(t, x, ξ)

f(0, x, ξ) = f0(x, ξ) . (77)

Usually, a splitting operation is used to simplify the problem. The collision term
and the convection term are solved separately, the latter using as initial condition
the result of the former. Hence, the first step will be to integrate for all x ∈ Ω


∂f̊
∂t

= αQ(f̊ , f̊)

f̊(0, x, ξ) = f0(x, ξ)
(78)

and the second will be to solve
∂f
∂t

+ ξ · ∇xf = 0

f(0, x, ξ) = f̊(∆t, x, ξ) .
(79)

This process gives the solution after a time step ∆t and can be iterated at will
to obtain the evolution of f(t, x, ξ). The schemes from Bird and Nanbu apply to
the first step, it being the non linear and hence the more complicated one. Let us
assume that the operator is spatially homogeneous and that it can be divided into
its gain and loss components as in system (80). This is true for Boltzmann equation
for Maxwellian gas [41], i.e. gases where Q(f, f)(ξ) =

s
R3
s

S σ(n) ·
5
f(ξÍ

1)f(ξÍ
2) −

f(ξ1)f(ξ2)
6
dndξ2. Problem (78) now reads


∂f̊
∂t

= α
è
Q+(f̊ , f̊) − µf

é
f̊(0, x, ξ) = f0(x, ξ) ,

(80)

where µ Ó= 0 is a constant. We divide the time interval [0, tmax] into nT OT steps of
size ∆t = tmax

nTOT
. If we apply the forward Euler scheme to the problem we obtain

fn+1 = (1 − αµ∆t)fn + αµ∆t · Q
+(fn, fn)

µ
, (81)

where fn(ξ) is an approximation of f(n ·∆t, ξ). Equation (81) can be interpreted as
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follows. In each time step, a particle with velocity ξ does not interact with proba-
bility (1−αµ∆t) and does interact with inverse probability αµ∆t. If the interaction
happens, the interaction law contained in the collision kernel applies. A version of
Nanbu’s scheme for velocity-independent kernels is reported in Algorithm 1.

Algorithm 1 Nanbu scheme
Data:

• N ∈ N total number of particles.

• V0 := {ξ0
1 , ..., ξ

0
N} initial velocities, sampled from initial density f0(ξ).

• ∆t time interval and nT OT number of time steps.

for n = 1 to nT OT

for i = 1 to N

sample Ξ ∼ Bernoulli(αµ∆t)
if Ξ == 0

set ξn+1
i = ξn

i

else
select a random particle j
set ξn+1 according to the interaction rule
between particle i and particle j

end for

end for

The main problem rising from Algorithm 1 is that energy and impulse are not
conserved in each collision, but only on average [42]. Babovsky [39] tackled this
objection, introducing a conservative version of the Nanbu’s scheme, reported in
Algorithm 2.

In this version of the algorithm particles are selected in pairs and both particles, at
the same time, evolve according to the microscopic rule that describes the binary
collision, making it possible to conserve energy and impulse. The Nanbu-Babovsky
scheme converges to the solution of the Boltzmann equation under suitable con-
straints [43]. As we have seen, DSMC methods are straightforward and easy to
implement and their computational cost is fairly low, it being O(N) while the cost
for deterministic methods is O(Nα)with α ≥ 2 [34].
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Algorithm 2 Nanbu-Babovsky scheme
Data:

• N ∈ N total number of particles.

• V0 := {ξ0
1 , ..., ξ

0
N} initial velocities, sampled from initial density f0(ξ).

• ∆t time interval and nT OT number of time steps.

for n = 1 to nT OT

set Nc = åN
2 αµ∆tæ

sample Round ∼ Bernoulli(N
2 αµ∆t−Nc)

set Nc = Nc +Round
select Nc pairs (i, j) uniformly
set ξn+1

i and ξn+1
j according to the

interaction rule
set ξn+1

i =
ξn

i for the particles that have not been selected

end for
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3 Kinetic models for epidemiology

This dissertation aims to describe a possible kinetic approach to the study of epi-
demiology. The mathematical tools presented in the above section can successfully 
be applied to model various aspects of the spread of an infectious disease in a popu-
lation and the confinement methods adopted to stem i t. In the following sections we 
will firstly show how the classical models described above, i .e. SIR and SIS models, 
can be obtained in a kinetic environment directly from the label switch process of 
sec. 2.3. Then, we will analyze in depth two confinement methods, namely the quar-
antine of diagnosed individuals and the vaccination of the population. In fact, these 
have been the confinement strategies adopted in 2020 and 2021 by the majority of the 
nations on the planet to face the SARS-CoV-2 pandemic, and that are in effect while 
the authors are writing.

3.1 Classical models

The ODE-based models such as SIR and SIS describe the evolution of the epidemic 
through the evolution of the size of certain compartments of population. Individuals 
switch from one compartment to another following rules specific to the model and 
to the level of complexity adopted. In the simple SIR and SIS models described in 
sec. 1.2.1 and sec. 1.2.2 the transition rates are either constant or directly propor-
tional to the classes’ size. The microscopic label switch process described in sec. 2.3 
can be seen as a model of the underlying dynamics happening in the population 
that lead to the macroscopic description of SIR and SIS models. In this section, 
we will show how these two models are specific cases of a  kinetic Markov-type label 
switch process. Let us begin with the SIR model. We take three possible labels 
x ∈ ISIR = {1, 2, 3}, indicating, respectively, the three population classes suscep-
tible, infected and removed. We also take the transition probability T = T (t, x|y) 
in order to match, in the macroscopic limit, the SIR model. If we remember the 
meaning of the function f = f(t, x) as relative mass of the agents with label x at 
time t and the discretization owed to (38), we can define the transition probabilities 
as

T (t; 1|1) = 1 − βf2(t) T (t; 2|1) = βf2(t) T (t; 3|1) = 0
T (t; 1|2) = 0 T (t; 2|2) = 1 − γ T (t; 3|2) = γ

T (t; 1|3) = 0 T (t; 2|3) = 0 T (t; 3|3) = 1
, (82)

where β is the transmission rate constant and γ is the recovery rate with the same
meaning as in sec. 1.2.1. Note that transition probabilities (82) are consistent proba-
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bilities and satisfy the normalization condition qi T (t; i|j) = 1 ∀j, that also ensures
the mass conservation property to hold. We can now write the weak Boltzmann-type
equation (39) for the evolution of an observable quantity ϕ(x) within a class i:

3Ø
i=1

ϕ(i)f Í
i(t) =

3Ø
i=1

3Ø
j=1

1
ϕ(i) − ϕ(j)

2
T (t; i|j)fj(t), (83)

where the superscript indicates the derivative with respect to time and λ has been
assumed unitary. Hence, it is possible to compute the time evolution of the mass of
each class in the population in the same way we did for equation (40). Plugging in
the transition probabilities (82), we obtain


f Í

1 = −βf1f2

f Í
2 = βf1f2 − γf2

f Í
3 = γf2,

(84)

that is a SIR model.

The same type of reasoning can be extended to the SIS model. In this case, the label
will have only two possible values x ∈ ISIS = {1, 2} and the transition probabilities
will be

T (t; 1|1) = 1 − βf2(t) T (t; 2|1) = βf2(t)
T (t; 1|2) = γ T (t; 2|2) = 1 − γ.

(85)

Thus, we obtain the SIS model
f

Í
1 = −βf1f2 + γf2

f Í
2 = βf1f2 − γf1.

(86)

We have shown how the classical ODE-based epidemiological models can be derived
from microscopic dynamics in a kinetic theory framework. For this purpose, we have
employed the kinetic label switch process alone, meaning that binary interactions
were not involved in the description. In this case the labels have been chosen to
mimic the classes of the classical models. In the following models, we will merge the
two processes and this will allow us to use the labels to add features to the model
rather than to describe the epidemic dynamics, task that will be taken on by the
microscopic state and by the binary interaction process.
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3.2 Quarantined - non quarantined model

From a kinetic point of view, the evolution of an ongoing epidemic can be fruitfully
described by the microscopic state that characterizes every agent in the population.
In fact, if we assume that the microscopic state v ∈ V = R+ represents a viral load,
the kinetic framework of sec. 2.2 implies that agents in a large population exchange
viral load when interacting with each other. This seems a reasonable formalization
of the contagion dynamics that takes place when an epidemic of an infectious disease
occurs. The agents are therefore no longer divided into compartments and there is
not a clear division between healthy and ill individuals, but a continuous quantity
that measures the infection on a spectrum. It is important to point out that the
viral load is not a medical quantity and it has to be intended as a mathematical-
physical quantity for the sake of the model. Freed from their descriptive role, the
labels can now represent another important aspect of the modeling of an epidemic:
the containment strategies. The first kinetic epidemiological model considered is
a quarantine model, based on [32]. It describes the evolution of the epidemic if
diagnosed individuals are subject to quarantine and removed from the interaction
process. The label switch process is therefore used to model the transition of the
agents from the non-quarantined state to the quarantined state. Hence, we will be
referring to this model by Q-nQ model. Mathematically, we assign to every agent
the label x ∈ I = {1, 2}, where x = 1 means that the agent is free and x = 2 means
that the agent has been diagnosed and it is therefore quarantined. Undiagnosed
people interact with each other and may eventually contract the illness. When an
agent is diagnosed, they are not allowed to interact and they receive medical care.
Therefore they undergo a healing process rather than a binary interaction one. A
quarantined agent can heal and return to the undiagnosed population when their
viral load is low enough. With the tools described in sec. 2.3, this can be seen
as the case where interaction happens only among same-labeled agents, with the
interaction rule depending on the label. Hence, we will refer to equation (55) for
the evolution of an observable quantity φ(v), that we re-write here for clarity with
n = 2:

d

dt

Ú
R+
φ(v)fi(t, v)dv = λ

Ú
R+
φ(v)

3 nØ
j=1

T (t, v; i|j)fj(t, v) − fi(t, v)
4
dv

+ µ
Ú
R+

Ú
R+

éφ(vÍ
i) − φ(v)êfi(t, v)fi(t, v∗)dvdv∗

i = 1, 2 .
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Let us assume the transition probabilities to be

T (v; 1|1) = 1 − α(v), T (v; 2|1) = α(v)
T (v; 1|2) = β(v), T (v; 2|2) = 1 − β(v), (87)

where 0 ≤ α(v), β(v) ≤ 1. Parameters α(v) and β(v) are, respectively, the probabil-
ity that an agent with viral load v is diagnosed and quarantined and the probability
that a quarantined agent with viral load v is reintegrated in the interaction process.
Hence, it is reasonable to assume α(v) non-decreasing and β(v) non-increasing in v.

The interaction rule is different for the two classes. For undiagnosed people, it
reflects the binary interaction process and reads

vÍ
1 = (1 − ν1 + η)v + ν2v∗ , (88)

where ν1, ν2 ∈ [0, 1] are exchange rates and η ∈ (ν1 − 1,+∞) is a zero-mean random
variable accounting for random fluctuations of the viral load in an agent. Recalling
the definitions of sec. 2.2 the mixing parameters are p1 = p2 = p = (1 − ν1 + η) and
q1 = q2 = q = ν2. Hence, the interaction is symmetric, with a stochastic parameter
and a deterministic one. For quarantined people, the interaction rule reflects the
healing process and reads

vÍ
2 = (1 − γ + ξ)v, (89)

where γ ∈ [0, 1] is the recovery rate and ξ ∈ (γ−1,+∞) is another zero-mean random
variable, independent from η. The mixing parameters here are p1 = p2 = (1−ν1 +η)
and q1 = q2 = 0 and hence the interaction is symmetric. Thus, we can separate
equation (55) into its two components and write, for the undiagnosed people (x = 1),

d

dt

Ú
R+
φ(v)f1(t, v)dv = λ

Ú
R+
φ(v)

3
β(v)f2(t, v) − α(v)f1(t, v)

4
dv

= µ
ÚÚ

R+×R+
éφ(vÍ

1) − φ(v)êf1(t, v)f1(t, v∗)dvdv∗ (90)

and, for the quarantined people (x = 2),

d

dt

Ú
R+
φ(v)f2(t, v)dv = λ

Ú
R+
φ(v)

3
α(v)f1(t, v) − β(v)f2(t, v)

4
dv

= µ
Ú
R+

éφ(vÍ
2) − φ(v)êf2(t, v)f2(t, v∗)dv . (91)

Let us point out that in equation (91) the interaction kernel is linear with respect
to f2. This reflects the fact that, owing to q1 = q2 = 0, the healing process is not a
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proper binary interaction process but a linear evolution of the state of quarantined
people. Rigorously, it follows from equation (42) by noticing that interaction rule
(89) does not contain v∗.

3.2.1 Constant transition probabilities

From equations (90) and (91) we can compute the evolution of the zero and first order
moments. These two quantities together depict a detailed picture of the ongoing
epidemic. In fact, while the former represents the evolution of the relative masses
of the two classes, diagnosed and undiagnosed, the latter represents the evolution
of the mean viral load, divided per class. Let us firstly investigate the simple case
where the probabilities α, β are assumed constant. We assume the two processes to
take place on the same time scale and therefore, without loss in generality, we can
write

λ = µ = 1.

We take φ(v) = 1 to compute the evolution of the masses and φ(v) = v to compute
the evolution of the mean viral load, we obtain the ODE system



dρ1
dt

= −αρ1 + βρ2

dρ2
dt

= αρ1 − βρ2

d
dt

(ρ1m1) = −[α + (ν1 − ν2)ρ1]ρ1m1 + βρ2m2

d
dt

(ρ2m2) = αρ1m1 − (β + γ)ρ2m2.

(92)

We have of course ρ1 + ρ2 = 1 and dρ1
dt

+ dρ2
dt

= 0. The natural initial conditions
ρ1,0 = 1 and ρ2,0 = 0 lead to

ρ1(t) = β

α + β

1 + α

β
e−(α+β)·t


ρ2(t) = α

α + β

1 − e−(α+β)·t

 , (93)

that, in the limit for t → ∞, yield

ρ∞
1 = β

α + β

ρ∞
2 = α

α + β
.
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This means that the quarantine is a condition a portion of the population remains
subject to at any time. This could suggest that the illness can not be eradicated
and becomes endemic. We need to carry out a more detailed investigation and look
at the mean viral load to gain a more exhaustive perspective on the matter - and
prove this conclusion false. We can rewrite the last two equations in (92) in vector
form as

d

dt

m1

m2

 =
(ν2 − ν1)ρ1 − β ρ2

ρ1
β ρ2

ρ1

αρ1
ρ2

−
1
αρ1

ρ2
+ γ

2
m1

m2

 . (94)

The system matrix is time-dependent and hence the system is non-autonomous due
to the presence of ρ1 and ρ2. We can study the large time behavior of the mean viral
load by noticing that for equations (93) the masses reach their asymptotic values
exponentially in time. We can therefore approximate ρ1 ≈ ρ∞

1 and ρ2 ≈ ρ∞
2 and

obtain

d

dt

m1

m2

 =
(ν2 − ν1) β

α+β
− α α

β −
1
β + γ

2
m1

m2

 . (95)

The most desirable scenario is of course the one where, asymptotically, m∞
1 = m∞

2 =
0. This would mean that the illness has been completely eradicated. The statistical
configuration that corresponds to this scenario is

f∞
1 (v) = β

α + β
δ(v) = ρ∞

1 δ(v)

f∞
2 (v) = α

α + β
δ(v) = ρ∞

2 δ(v). (96)

We want to assess the stability and attractiveness of this configuration. Let us focus
on two significant cases. Firstly, we consider the case ν1 = ν2. In this case, the binary
interaction process among non-quarantined agents does not affects the mean viral
load value. In fact, the mixing parameters of this process are such that ép+ qê = 1
and the dynamics is therefore conservative. Conversely, the healing process of the
quarantined agents has parameters such that ép+ qê = 1 − γ < 1. Hence, we expect
the mean viral load to decrease in time. We can study the behavior of the linear
system (95) by investigating the eigenvalues λ1 and λ2 of the system matrix

A =
−α α

β −(β − γ)

 =⇒ λ1,2 =
−(α + β + γ) ±

ñ
(α + β + γ)2 − 4αγ
2 .
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Hence, if we disregard the trivial case γ = 0 that leads to an overall conservative
system, we obtain a globally asymptotically stable system if α > 0, i.e. if there is
a non-null probability of being quarantined. The speed of convergence, anyway, is
massively effected by α. If we perform the limit for α → 0+ the eigenvalues ω1 and
ω2 of system (95) will read

λ1 = − αγ

β + γ
+ o(α)

λ2 = −(β + γ) + o(1) .

From the theory of linear stability, λ1 makes the convergence speed potentially very
low.

As a second case let us consider ν1 = 0, ν2 > 0. This means that each interaction
increases, on average, the viral load of the agents. In fact, the mixing parameters
of the binary interaction process are here such that ép + qê = 1 + ν2 > 1. Hence,
the interactions alone would have the viral load m1 to blow up in time. The healing
process owed to the quarantine state forces m1 to converge to zero if α satisfies

α > α† := max

max
;

0, −(2β + γ) +
√
γ2 + 4ν2β

2

<
,

−β +
ò1

1 + 4ν2
γ

2
+ 4ν2β

2

 .
This constraint has been obtained by means of the same kind of investigation on the
eigenvalues carried out for the previous case. The expression of α† indicates that
the higher the contagion rate ν2 is, the higher the diagnosing probability needs to
be to contain the contagions.

3.2.2 Variable transition probabilities

A more realistic description is obtained with variable parameters α and β. The
analysis in this case is more complicated and we need to appeal to some assumptions.
Let us assume that the binary interactions take place on a much faster scale than
the label switch process. Mathematically, without loss of generality, we assume

λ = 1 , µ = 1
δ
,
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with 0 < δ ¹ 1 small parameter. As we did in sec. 2.4, we can split equation (90)
as

d

dt

Ú
R+
φ(v)f1(t, v)dv = 1

δ

ÚÚ
R+×R+

éφ(vÍ
1) − φ(v)êf1(t, v)f1(t, v∗)dvdv∗

d

dt

Ú
R+
φ(v)f1(t, v)dv =

Ú
R+
φ(v)

3
β(v)f2(t, v) − α(v)f1(t, v)

4
dv . (97)

If we introduce the new time scale

τ := t

δ

and we define

f̃1(τ, v) := f1(t, v) ,

system (97) reads

d

dτ

Ú
R+
φ(v)f̃1(τ, v)dv =

ÚÚ
R+×R+

éφ(vÍ
1) − φ(v)êf̃1(τ, v)f̃1(τ, v∗)dvdv∗ (98)

d

dt

Ú
R+
φ(v)f1(t, v)dv =

Ú
R+
φ(v)

3
β(v)f2(t, v) − α(v)f1(t, v)

4
dv . (99)

Remembering the interpretation of the hydrodynamic limit, we say that the inter-
action dynamics on the fast time τ quickly reaches an equilibrium profile while the
label switch process is bound to the slow time t. It is interesting to investigate in
this limit the conservative case ν1 = ν2. With this configuration, the equilibrium
profile reached on the fast time scale by the interaction dynamics turns out to be
parameterized by the two macroscopic quantities ρ1(t) and m1(t), both constant on
the quick time scale τ . Let us indicate the equilibrium distribution on the t-scale as

f1(t, v) = ρ1(t)
m1(t)g1

3
v

m1(t)

4
, (100)

where g1 : R+ → R+ satisfies the normalization conditions
Ú
R+
g1(v)dv = 1 ,

Ú
R+
vg1(v) = 1 .
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If we apply the same reasoning to (91), with f̃2(τ, v) := f2(t, v), we obtain

d

dτ

Ú
R+
φ(v)f̃2(τ, v)dv =

Ú
R+

éφ(vÍ
2) − φ(v)êf̃2(τ, v)dv (101)

d

dt

Ú
R+
φ(v)f2(t, v)dv =

Ú
R+
φ(v)

3
α(v)f1(t, v) − β(v)f2(t, v)

4
dv . (102)

Here, the quick dynamics does not conserve mean viral load of the distribution and
the τ -asymptotic distribution on the t scale is therefore parameterized only by the
mass ρ2(t). Hence,

f2(t, v) = ρ2(t)g2(v) , (103)

where g2 : R+ → R+ satisfies
Ú
R+
g2(v)dv = 1 .

We can now solve the slow scale equation (99) by using distributions (100) and
(103). Remembering ρ1(t) + ρ2(t) = 1 and re-scaling the distributions, we obtain



dρ1
dt

=
s

R+
β(v)g2(v)dv

ρ2 −

s
R+
α(m1v)g1(v)dv

ρ1

ρ2 = 1 − ρ1

d
dt

(ρ1m1) =
s

R+
vβ(v)g2(v)dv

ρ2 −

s
R+
vα(m1v)g1(v)dv

ρ1m1 .

(104)

To solve system (104) it is necessary to know the distributions g1(v) and g2(v).
For the healing process in the quarantined class, it is easy to see that, being
ép + qê = 1 − γ < 1, m2 → 0+ exponentially in time. Hence, we have g2(v) = δ(v).
Let us now focus on the binary interaction process. Distribution g1(v) is a normal-
ized distribution with mean value m1(t) and variance V ar(g1) = K(t) −m(t)2 (see
equation (33)). Considering that we are interested in the mean viral load and that
it is not affected by the zero-mean fluctuations η in the interaction rule (88), let us
assume η = 0. We compute the second-order momentum

d

dτ
(ρ̃1K̃1) =

ÚÚ
R+×R+

51
(1 − ν)v + νv∗

22
− v2

6
f̃1(τ, v)f̃1(τ, v∗)dvdv∗ , (105)

39



where K̃1 represents the energy and ν = ν1 = ν2. Remembering that on the fast
time scale τ the mass ρ1 is constant, we obtain

d

dτ
K̃1 = 2ν(ν − 1)ρ1

5
K̃1 − m̃2

1

6
. (106)

Solving linear non-homogeneous equation (106) leads to

K̃1(τ) = C · e2ν(ν−1)ρ̃1τ + m̃2
1 ,

Where C is a constant that depends on the initial conditions. With 0 < ν < 1 this
yields

K̃∞
1 = m̃2

1

and hence V ar(g1) = 0. We can therefore consider, in this approximation with
η = 0, the distribution g1(v) as a Dirac delta peaked in m̃1:

g1(v) = δ(v − m̃1). (107)

For the sake of completeness, let us point out that distribution g1 can be explicitly
determined in a suitable quasi-invariant regime without imposing η = 0 [32].

System (104) can therefore be re-written as


dρ1
dt

= β(0)(1 − ρ1) − α(m1)ρ1

d
dt

(ρ1m1) = −α(m1)ρ1m1 ,
(108)

that yields

β(0) − ρ∞
1

1
β(0) + α(m∞

1 )
2

= 0

α(m∞
1 )ρ∞

1 m
∞
1 = 0.

Hence, we obtain, for β(0) > 0, that the mass of non quarantined people is non-null,
ρ∞

1 > 0. If we also assume α(v) > 0 ∀v Ó= 0 and α(0) = 0, then for the second
equation we obtain m∞

1 = 0. Plugging this result in the first equation we obtain, in
conclusion

ρ∞
1 = 1, ρ∞

2 = 0, m∞
1 = 0.
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Hence, we have

f∞
1 (v) = δ(v), f∞

2 (v) = 0.

This means that, in the long period, the population fully recover and there are no
quarantined people

.

3.3 Q-nQ model on the network

The Q-nQ model of the previous section is based on the assumption that every
agent has the same probability to interact with every other agent in the population.
While this assumption is acceptable when considering dense interconnected clusters
such as neighbourhoods or cities, it is not accurate if we want to consider epidemics
on larger scales. In this section, we propose a version of the Q-nQ model laid on a
spatial network. The network can model, e.g., a number of interconnected cities. We
consider each city as an interconnected cluster with agents that can transfer from one
city to another following a given probability matrix. The mathematical tool used to
model the network is the kinetic label switch process. Agents in this model will be
equipped with two labels each, one that indicates whether the agent is quarantined
or not and the other one that indicates in which city the agent is at the moment. In
addition to that, agents are characterized by the microscopic state viral load, as in
the simple Q-nQ model. Hence, we consider label x ∈ I = {1, 2} for the quarantine
process and label a ∈ C = {1, 2, ..., n} to indicate the city. The interactions occur
only among non-quarantined agents that are in the same city. Hence, we will refer
to the same same-labeled interaction equation we did for the Q-nQ model, equation
(55). However, the presence of a second label requires some adjustments on the
results and definitions of sec. 2.3. The density distribution function f can now be
discretized as

f(t, x, a, v) =
2Ø

i=1

nØ
j=1

f j
i (t, v)δ(x− i)δ(a− j),

where the subscript i refers to the label x and the superscript j refers to the label
a. The normalization yields

2Ø
i=1

nØ
j=1

Ú
R+
f j

i (t, v)dv = 1, ∀t > 0.
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We can define the mass of the agents with label x = i and in city a = j as

ρj
i (t) :=

Ú
R+
f j

i (t, v)dv.

The travel between two cities is modeled by a second label switch process and
regulated by a transition probability matrix

R = R(t, v, x; a|b) ∈ [0, 1], ∀t, v ∈ R+, x ∈ I, a, b ∈ C, (109)

that we interpret as the probability that an agent with viral load v and label x travels
at time t from city b to city a. For it to be consistent and for the conservation of
mass to hold, R has to satisfy

Ø
a∈C

R(t, v, x; a|b) = 1, ∀t, v ∈ R+, x ∈ I.

If we consider the random variable triplet (Xt, At, Vt) ∈ I × C × R+ and the small
time interval ∆t > 0, following the same reasoning that led us to (44), we have


Xt+∆t = (1 − Θ)Xt + ΘJt

At+∆t = (1 − Ω)At + ΩBt

Vt+∆t = (1 − Ξ)Vt + ΞV Í
t .

Where Jt, Bt and V Í
t are the post-event attributes and Θ, Ω and Ξ are the Bernoulli

random variables that represent each event. They hold

P (Θ = 1) = λ∆t

P (Ω = 1) = ω∆t

P (Ξ = 1) = µ∆t , ∆t ≤ min{ 1
λ
, 1

ω
, 1

µ
}.

(110)

When the mean variation of the observable quantity ϕ = ϕ(x, a, v) is considered,
this leads to a modified version of equation (48) that includes the third process. In
the limit for ∆t → 0+, it reads

d

dt
éϕ(Xt, At, Vt)ê = λéϕ(Jt, At, Vt)ê + ωéϕ(Xt, Bt, Vt)ê + µéϕ(Xt, At, V

Í
t )ê+

− (λ+ ω + µ)éϕ(Xt, At, Vt)ê. (111)

If we choose ϕ(x, a, v) = φ(v)ψ(x)χ(a) with ψ(i) = 1 for a certain i ∈ I and ψ(j) = 0
for j Ó= i and χ(i) = 1 for a certain i ∈ C and χ(j) = 0 for j Ó= i, we can write the
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weak Boltzmann-type equation for this model as

d

dt

Ú
R+
φ(v)f j

i (t, v)dv = λ
Ú
R+
φ(v)

3 2Ø
k=1

T (t, v; i|k)f j
k(t, v) − f j

i (t, v)
4
dv

+ ω
Ú
R+
φ(v)

3 nØ
j=1

R(t, i, v; j|k)fk
i (t, v) − f j

i (t, v)
4
dv

+ µ
Ú
R+

Ú
R+

éφ(vÍ
i) − φ(v)êf j

i (t, v)f j
i (t, v∗)dvdv∗ (112)

i ∈ I, j ∈ C.

Equation (112) accounts for the fact that interactions among agents in different
cities are forbidden as well as interactions with quarantined people. The transition
probability matrix T is the same of the Q-nQ model, as are unmodified the interac-
tion rules (88) and (89). Let us define transition probabilities between cities. It is
clear that quarantined agents are forbidden to travel, hence

R(v, 2; a|b) = 1 if a = b, R(v, 2; a|b) = 0 if a Ó= b .

Conversely, non-quarantined people are free to move between cities. Let us define the
probability matrix D(v, t) ∈ [0, 1]n×n such that the probability for an undiagnosed
agent with viral load v to go at time t from city i to city j is Di,j ∈ [0, 1], i, j ∈ C.
D satisfies

nØ
j=1

Di,j = 1 ∀i.

Let us now write the weak Boltzmann-type equations for undiagnosed people (x =
1):

d

dt

Ú
R+
φ(v)f i

1(t, v)dv = λ
Ú
R+
φ(v)(β(v)f i

2(t, v) − α(v)f i
1(t, v))dv

+ ω
Ú
R+
φ(v)(

3Ø
j=i,j Ó=i

Dj,i(t, v)f j
1 (t, v)+

−
3Ø

j=1,j Ó=i

Di,j(t, v)f i
1(t, v))dv

+ µ
ÚÚ

R+×R+
éφ(vÍ

1) − φ(v)êf i
1(t, v)f i

1(t, v∗)dvdv∗ (113)

for i = 1, ..., n.
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We can lighten the notation by observing that, in the travel process, we can include
the case i = j in both the sums so they elide. Equation (113) now reads

d

dt

Ú
R+
φ(v)f i

1(t, v)dv = λ
Ú
R+
φ(v)(β(v)f i

2(t, v) − α(v)f i
1(t, v))dv

+ ω
Ú
R+
φ(v)(

mØ
j=i

Dj,i(t, v)f j
1 (t, v)+

−
mØ

j=1
Di,j(t, v)f i

1(t, v))dv

+ µ
ÚÚ

R+×R+
éφ(vÍ

1) − φ(v)êf i
1(t, v)f i

1(t, v∗)dvdv∗v∗ (114)

for i = 1, ..., n.

For quarantined people (x = 2) we have

d

dt

Ú
R+
φ(v)f i

2(t, v)dv = λ
Ú
R+
φ(v)(α(v)f i

1(t, v) − β(v)f i
2(t, v))dv

+ µ
Ú
R+

éφ(vÍ
2) − φ(v)êf i

2(t, v)dvv∗ (115)

for i = 1, ..., n.

Let us note that the travel-related label switch appears only in the equation for
non-quarantined people, i.e. the only ones that can travel.

3.3.1 Constant transition probabilities

The same kind of analysis carried out in the previous section for the simple Q-nQ
model can be applied to this version. If the transition probabilities α, β and D are
constant and we assume

λ = ω = µ = 1,

we obtain, for the time evolution of the mass and the mean viral load:



d
dt
ρi

1 = βρi
2 − αρi

1 +qn
j=1 Dj,iρ

j
1 −qn

j=1 Di,jρ
i
1

d
dt
ρi

2 = αρi
1 − βρi

2

d
dt
ρi

1m
i
1 = βρi

2m
i
2 − αρi

1m
i
1 +qn

j=1 Dj,iρ
j
1m

j
1 −qn

j=1 Di,jρ
i
1m

i
1 − (ν1 − ν2)ρi

1ρ
i
1m

i
1

d
dt
ρi

2m
i
2 = αρi

1m
i
1 − βρi

2m
i
2 − γρi

2m
i
2 .

(116)

44



The dimension of system (116) quickly rises when more than one city is considered.
Hence, it is not well suited for the qualitative analysis of the previous model. How-
ever, it is possible to compute the evolution of aggregated macroscopic quantities,
both over cities and over quarantine condition. If we sum over the superscript i we
obtain the evolution of mass and mean viral load on the whole network as

d
dt
ρ1 = βρ2 − αρ1

d
dt
ρ2 = αρ1 − βρ2

d
dt

(ρ1m1) = βρ2m2 − αρ1m1 − (ν1 − ν2)qn
i=1 ρ

i
1ρ

i
1m

i
1

d
dt

(ρ2m2) = αρ1m1 − (β + γ)ρ2m2 .

(117)

Note that this system is similar to the one obtained for the Q-nQ model with the
difference that the interactions are restricted to agents in the same city. Let us
investigate the two cases ν1 = ν2 and ν1 = 0, ν2 > 0. In the first case, system (118)
resembles system (92) and therefore leads to the same results. In the second case,
we notice that while first two equations and the last one remain unchanged, in the
third equation we have qn

i=1 ρ
i
1ρ

i
1m

i
1 ≤ qn

i=1 ρ
i
1 ·qn

i=1 ρ
i
1 ·qn

i=1 m
i
1 = ρ1ρ1m1. Thus,

for the masses we obtain

ρ∞
1 = β

α + β

ρ∞
2 = α

α + β
,

as in the Q-nQ model. We also have

d

dt
(ρ1m1)NET W ORK Q−nQ ≤ d

dt
(ρ1m1)SIMP LE Q−nQ, ∀t > 0 .

If we assume the same initial conditions between the two models and we study the
asymptotic behavior assuming ρi = ρ∞

i , i = 1, 2, we can state

0 ≤ (m1(t))NET W ORK Q−nQ ≤ (m1(t))SIMP LE Q−nQ.

Thus, owing to the so-called squeezing theorem, we can assure that, in the Q-nQ
model on the network, m1 converges to zero at least for α > α†, where α† is the
same as in sec. 3.2.1. The speed of convergence is at least the same as the speed of
convergence of the simple Q-nQ model.

As a side note, let us point out that if we aggregate over the subscript we obtain the
system divided per city, with the time evolution of the population and mean viral
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load inside each city, disregarding the quarantine condition. This is


d
dt
ρi = qn

j=1 Dj,iρ
j
1 −qn

j=1 Di,jρ
i
1

d
dt
ρimi = qn

j=i Dj,iρ
j
1m

j
1 −qn

j=1 Di,jρ
i
1m

i
1 − (ν1 − ν2)ρi

1ρ
i
1m

i
1 − γρi

2m
i
2 .

(118)

3.3.2 Variable transition probabilities

The same hydrodynamic limit analysis with variable transition probabilities of sec. 3.2.2
can be applied to the network case. We assume the transition probability matrix
D = D(t, v) to depend on time t and on the viral load v. It seems reasonable to
assume it non-increasing in v, for the higher the viral load of an agent, the less likely
they will travel. Transition probabilities α and β are assumed also to be variable.
Here, we assume that both the label switch processes operate on the slow time scale
t, while the binary interaction process operates on the fast time scale τ , where τ := t

δ

with 0 < δ ¹ 1. Hence, we have

λ = ω = 1, µ = 1
δ
.

Defining f̃ i
1(τ, v) := f i

1(t, v) and f̃ i
1(τ, v) := f i

2(t, v), we can split the weak Boltzmann
equations (114) and (115) in

d

dτ

Ú
R+
φ(v)f̃ i

1(τ, v)dv =
ÚÚ

R+×R+
éφ(vÍ

1) − φ(v)êf̃ i
1(t, v)f̃ i

1(t, v∗)dvdv∗ (119)

d

dt

Ú
R+
φ(v)f i

1(t, v)dv =
Ú
R+
φ(v)

3
β(v)f i

2(t, v) − α(v)f i
1(t, v)

4
dv

+
Ú
R+
φ(v)

 nØ
j=1

Dj,i(t, v)f j
1 (t, v) −

nØ
j=1

Di,j(t, v)f i
1(t, v)

dv
(120)

and

d

dτ

Ú
R+
φ(v)f̃ i

2(τ, v)dv =
Ú
R+

éφ(vÍ
2) − φ(v)êf̃ i

2(t, v)dv (121)

d

dt

Ú
R+
φ(v)f i

2(t, v)dv d
dt

=
Ú
R+
φ(v)

3
α(v)f i

1(t, v) − β(v)f i
2(t, v)

4
dv , (122)

respectively. The interpretation of these equations is that on the fast time scale
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τ , agents in each city are isolated from other cities and in every cluster a different
equilibrium profile based on the initial conditions will be rapidly reached. Travel
and diagnosis processes are frozen to the slow time scale t. If we assume again
ν1 = ν2 = ν, we obtain the same equilibrium distributions as in the simple Q-nQ
case, parameterized with local macroscopic quantities. These are

f i
1(t, v) = ρi

1(t)
mi

1(t)g
i
1

3
v

mi
1(t)

4
f i

2(t, v) = ρi
2(t)g2(t) , (123)

with the usual normalization
Ú
R+
g1(v)dv = 1 ,

Ú
R+
vg1(v) = 1 .

Ú
R+
g2(v)dv = 1 .

The general system for the evolution of the macroscopic quantities is therefore



d
dt
ρi

1 =
3 s

R+
β(v)g2(v)dv

4
ρi

2

3 s
R+
α(m1

1v)g1(v)dv
4
ρi

1

+qM
j=i

3 s
R+
Dj,i(mj

1v, t)g1(v)dv
4
ρj

1 −qM
j=1

3 s
R+
Di,j(mi

1v, t)g1(v)dv
4
ρi

1

d
dt
ρi

2 =
3 s

R+
α(mi

1v)g1(v)dv
4
ρi

1 −
3 s

R+
β(v)g2(v)dv

4
ρi

2

d
dt

(ρi
1m

i
1) =

3 s
R+
vβ(v)g2(v)dv

4
ρi

2 −
3 s

R+
vα(mi

1v)g1(v)dv
4
ρi

1m
i
1

+qM
j=i

3 s
R+
vDj,i(mj

1v, t)g1(v)dv
4
ρj

1m
j
1+

−qM
j=1

3 s
R+
vDi,j(mi

1v, t)g1(v)dv
4
ρi

1m
i
1

d
dt

(ρi
2m

i
2) =

3 s
R+
vα(m1

1v)g1(v)dv
4
ρi

1m
i
1 −

3 s
R+
vβ(v)g2(v)dv

4
ρi

2 .

(124)

By means of the same arguments adopted in the Q-nQ case, if we assume η = 0, we
can state

gi
1(v) = δ(v − m̃i

1), g2(v) = δ(v)
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and hence write the system


d
dt
ρi

1 = β(0)ρi
2 − α(mi

1)ρi
1 +qn

j=1 Dj,i(mj
1, t)ρj

1 −qn
j=1 Di,j(mi

1, t)ρi
1

d
dt
ρi

2 = α(mi
1)ρi

1 − β(0)ρi
2

d
dt

(ρi
1m

i
1) = −α(mi

1)ρi
1m

i
1 +qn

j=1 Dj,i(mj
1, t)ρj

1m
j
1 −qn

j=1 Di,j(mi
1, t)ρi

1m
i
1 .

(125)

We can now aggregate cities and investigate the overall evolution of the epidemics.
We obtain,



d
dt
ρ1 = β(0)(1 − ρ1) −qn

i=1 α(mi
1)ρi

1

ρ2 = 1 − ρ1

d
dt

(ρ1m1) = −qn
i=1 α(mi

1)ρi
1m

i
1 ,

(126)

where qn
i=1 α(mi

1)ρi
1 ≥ 0 and qn

i=1 α(mi
1)ρi

1m
i
1 ≥ 0. Since ρ1 = 0 ↔ ρi

1 = 0, i =
1, ..., n, the first equation yields ρ∞

1 > 0 and hence ∃i ∈ {1, ..., n} : (ρi
1)∞ Ó= 0. If we

assume again α(v) > 0∀v Ó= 0 and α(0) = 0, second equation yields (ρi
1)∞ Ó= 0 ⇒

(mi
1)∞ = 0, i.e. null viral load if there is population in the city. Thus, we obtain the

same asymptotic results of the simple Q-nQ model

ρ∞
1 = 1, ρ∞

2 = 0, m∞
1 = 0 =⇒ f∞

1 (v) = δ(v), f∞
2 (v) = 0.

In this dissertation we chose the transition probability D = D(v, t) to depend on
the microscopic state v and on time t. Another possibility would have been to make
it dependent on the mean viral load of diagnosed people in the various city, namely
D = D(mi

2). This choice would have made it possible to elaborate a confinement
strategy based on selective restriction on travels to stem the epidemic.

3.4 Vaccine model

In the last sections, we have showed how the binary interaction label switch joint
description can describe the effects of a quarantine confinement strategy on an epi-
demic. Another massively used method to fight epidemics is vaccination. In this
section, we will introduce a kinetic based description of the evolution of an infectious
disease epidemic on a population subject to vaccination. We will refer to this model
as the Vax model. It is important to point out that for modeling vaccination, we
need to make a choice on what vaccination means from the transmission point of
view. It can mean either that vaccinated people can no longer be infected, and they
are therefore removed from the population, or it can mean that they can no longer
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develop symptoms, but they still can get infected and infect other people. In this
dissertation, we will focus on the worse-case scenario of vaccines that prevents symp-
toms but not infection, scenario that some studies, e.g. [45], suggest could be the
one the world is facing due to Covid-19. Vaccines equip patients with antibodies to
fight the disease they are designed for. Hence, while they can still spread the illness
when infected, agents that have been vaccinated will quickly recover. Let us restore
the viral load v ∈ V = R+ as the microscopic state of the binary interaction process.
We then assume the label of the Markov-type label switch process x ∈ I = {1, 2, 3}
such that x = 1 means that the agent has not been diagnosed, x = 2 means that
the agent has been diagnosed and they are being cured and x = 3 means that the
agent has been vaccinated. When an agent is diagnosed or vaccinated, they will
take part in a healing process that will lower their viral load v. Hence, in this model
there are two processes involving the viral load: the binary interaction process and a
linear healing process that will update the value of v. Diagnosed people can return
to the undiagnosed group when their viral load is low enough, but they can not
be vaccinated. Undiagnosed people can be diagnosed when their viral load is high
enough and can be vaccinated. Vaccinated people can not be diagnosed and remain
vaccinated forever. Let us define the transition probability

T = T (t, v;x|y) ∈ [0, 1], ∀v ∈ R+, t > 0, x, y ∈ I

as the probability the label of an agent with viral load v has to change from y to x
at time t. It holds

Ø
x∈I

T (t, v;x|y) = 1, ∀v ∈ R+, t > 0, y ∈ I.

Since agents belonging to each group interact in the same way, we are in the case of
same interaction rule described at the end of sec. 2.3. However, also in this case the
presence of a second process involving v produces some differences with respect to
equation (54). The definition of the distribution function f (41) holds, since there
are only one microscopic state and one label. If we describe the state of an agent
with the random variable pair (Xt, Vt) ∈ I × R+, since the new healing process
influences the same quantity as the interaction process, equation (44) becomes


Xt+∆t = (1 − Θ)Xt + ΘJt

Vt+∆t = (1 − Ξ)(1 − Ω)Vt + Ξ(1 − Ω)V Í
t

+(1 − Ξ)ΩV ÍÍ
t + ΞΩV ÍÍÍ

t ,
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where V Í
t , V ÍÍ

t and V ÍÍÍ
t are the post-event viral loads in the case an interaction oc-

curred, the healing process activated or both events happened, respectively. Let us
point out that V ÍÍÍ

t will not show in the Boltzmann type equation as it appears only
in order two or three in time addends, neglected as ∆t → 0+. As usual, Jt is the
post label switch label and Θ, Ω, Ξ are Bernoulli random variables. If we call the
healing process’ frequency with the parameter ω, we can write the weak Boltzmann
type equation for the evolution of an observable φ = φ(v) as

d

dt

Ú
R+
φ(v)fi(t, v)dv = λ

Ú
R+
φ(v)

3 3Ø
j=1

R(t, v; i|j)fj(t, v) − fi(t, v)
4
dv

+ µ
3Ø

j=1

ÚÚ
R+×R+

éφ(vÍ) − φ(v)êfi(t, v)fj(t, v∗)dvdv∗

+ ω
Ú
R+

éφ(vÍÍ
i ) − φ(v)êfi(t, v)dv (127)

for i = 1, 2, 3.

The second term in the right-hand side of equation (127) allows interaction with
agents from every group to happen. The interaction rule of the binary interaction
process is the same as in the Q-nQ model

vÍ = (1 − ν1 + η)v + ν2v∗. (128)

The healing process updates the viral load following the rule

vÍÍ
i = (1 − γi + ξ)v , (129)

where we assume γ1 = 0 since undiagnosed people does not receive any medical care.
Let us define the transition probabilities as T (t, v; i|j) = Ti,j, where Ti,j is the i-th,
j-th component of the matrix T

T =


1 − α(v) − ζ(t) β(v) 0

α(v) 1 − β(v) 0
ζ(t) 0 1

 .
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We notice how q3
i=1 Ti,j = 1, ∀j. Finally, we can write the weak Boltzmann type

equation for the Vax model. For undiagnosed people (x = 1) it reads

d

dt

Ú
R+
φ(v)f1(t, v)dv = λ

Ú
R+
φ(v)

3
β(v)f2(t, v) −

1
α(v) + ζ(v)

2
f1(t, v)

4
dv

+ µ
3Ø

j=1

ÚÚ
R+×R+

éφ(vÍ) − φ(v)êf1(t, v)fj(t, v∗)dvdv∗

+ ω
Ú
R+

éφ(vÍÍ
1) − φ(v)êf1(t, v)dv . (130)

For diagnosed people (x = 2) it reads

d

dt

Ú
R+
φ(v)f2(t, v)dv = λ

Ú
R+
φ(v)

3
α(v)f1(t, v) − β(v)f2(t, v)

4
dv

+ µ
3Ø

j=1

ÚÚ
R+×R+

éφ(vÍ) − φ(v)êf2(t, v)fj(t, v∗)dvdv∗

+ ω
Ú
R+

éφ(vÍÍ
2) − φ(v)êf2(t, v)dv . (131)

For vaccinated people (x = 3) it reads

d

dt

Ú
R+
φ(v)f3(t, v)dv = λ

Ú
R+
φ(v)ζ(v)f1(t, v)dv

+ µ
3Ø

j=1

ÚÚ
R+×R+

éφ(vÍ) − φ(v)êf3(t, v)fj(t, v∗)dvdv∗

+ ω
Ú
R+

éφ(vÍÍ
3) − φ(v)êf3(t, v)dv . (132)
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3.4.1 Constant transition probabilities

Let us analyze the case with constant transition probabilities. If we assume α, β
and ζ constant with ζ > 0 and λ = µ = ω = 1 we obtain the ODE system



d
dt
ρ1 = βρ2 − (α + ζ)ρ1

d
dt
ρ2 = αρ1 − βρ2

d
dt
ρ3 = ζρ1

d
dt

(ρ1m1) = βρ2m2 − (α + ζ)ρ1m1

+ν2ρ1(ρ1m1 + ρ2m2 + ρ3m3) − ν1ρ1m1

d
dt

(ρ2m2) = αρ1m1 − βρ2m2

+ν2ρ2(ρ1m1 + ρ2m2 + ρ3m3) − ν1ρ2m2

−γ2ρ2m2

d
dt

(ρ3m3) = ζρ1m1

+ν2ρ3(ρ1m1 + ρ2m2 + ρ3m3) − ν1ρ3m3

−γ3ρ3m3 .

(133)

Let us firstly focus on the first part of system (133), the one concerning the masses.
The first two equations are a stable linear ODE system that yields ρ∞

1 = ρ∞
2 = 0.

Hence, we have ρ∞
3 = 1. This is reasonable since the vaccination process aims to

immunize the whole population. This leads the second part of the system to reduce
to d

dt
m3 = (ν2 − ν1 − γ3)m3, that blows to infinity if ν2 − ν1 − γ3 > 0 and goes to

zero if ν2 − ν1 −γ3 < 0. Anyway, in this situation the whole population has received
the vaccine and therefore one could argue that the analysis on the mean viral load
is unnecessary, since nobody can virtually contract the disease.

Albeit desirable, it can be hard to reach the complete vaccination of the population.
Let us investigate a constant parameters case in which the portion of vaccinated
people is a constant 0 ≤ c ≤ 1 and ζ = 0. The first part of system (133) modifies as



d
dt
ρ1 = βρ2 − αρ1

d
dt
ρ2 = αρ1 − βρ2

ρ1 + ρ2 = 1 − c ,

(134)
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Table 1:

Ex. 1 α = 0.8 β = 0.4 ν1 = 0 ν2 = 0.2 γ2 = 0.3 γ3 = 0.3
Ex. 2 α = 0.8 β = 0.4 ν1 = 0 ν2 = 0.2 γ2 = 0.1 γ3 = 0.3
Ex. 3 α = 0.2 β = 0.4 ν1 = 0 ν2 = 0.2 γ2 = 0.1 γ3 = 0.3

that yields

ρ∞
1 = (1 − c) β

α + β
= a

ρ∞
2 = (1 − c) α

α + β
= b

ρ∞
3 = c .

If we plug in these values, the second part of system (133) reads


d
dt
m1 = (−α + ν2a− ν1)m1 + (α + ν2b)m2 + (ν2c)m3

d
dt
m2 = (β + ν2a)m1 + (−β + ν2b− ν1 − γ2)m2 + (ν2c)m3

d
dt
m3 = (ν2a)m1 + (ν2b)m2 + (ν2c− ν1 − γ3)m3 .

(135)

The system matrix in this case is quite complicated and an analytical study of
the stability through the computation of the eigenvalues is out of reach. In order
to evaluate the stability properties of this case, a numerical computation of the
eigenvalues has been carried out. In particular, we are interested in the evolution of
the maximum eigenvalue when the parameter c goes from 0 to 1. In fact, when the
portion of population that has received the vaccine rises, it reaches a point where
it is high enough to stem the epidemic. If we call that point c† we have that the
system blows if c < c† and it is globally asymptotically stable if c > c†. The value
of c† depends on the values of α, β, ν1, ν2, γ2 and γ3. Figure 5 shows the variation
of the value of the maximum eigenvalue with c when the other parameters have the
value indicated in Table 1. In example 2, for instance, we have c† Ä 0.86. Hence, in
a situation with those parameters, the epidemic can be eradicated if at least 86% of
the population gets the vaccine. This situation is often referred to as herd immunity.

3.4.2 Variable transition probabilities

Let us investigate the variable transition probabilities case for the Vax model. We
assume variable probabilities α and β with the same trend as previous models and a
constant ζ, since it is hard to imagine a probability of being vaccinated that varies
on a (unknown) viral load. The binary interaction process and the healing process
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Figure 5: The evolution of the max eigenvalue of the system matrix of system (135)
when c goes from 0 to 1.

operate on the fast time scale τ and the label switch process operates on the slow
time scale t. As usual, if we define a small parameter 0 < δ ¹ 1 we can write

λ = 1 , µ = ω = 1
δ
, τ := t

δ

and separate equations (130), (131) and (132). On the fast time scale τ the equation
reads the same for every group:

d

dτ

Ú
R+
φ(v)f̃i(τ, v)dv =

3Ø
j=1

ÚÚ
R+×R+

éφ(vÍ) − φ(v)êf̃i(τ, v)f̃j(τ, v∗)dvdv∗

+
Ú
R+

éφ(vÍÍ
i ) − φ(v)êf̃i(τ, v)dv (136)

for i = 1, 2, 3.

On the slow time scale we need to diversify the equations, they read

d

dt

Ú
R+
φ(v)f1(t, v)dv =

Ú
R+
φ(v)

3
β(v)f2(t, v) −

3
α(v) + ζ

4
f1(t, v)

4
dv (137)

d

dt

Ú
R+
φ(v)f2(t, v)dv =

Ú
R+
φ(v)

3
α(v)f1(t, v) − β(v)f2(t, v)

4
dv (138)

d

dt

Ú
R+
φ(v)f3(t, v)dv =

Ú
R+
φ(v)ζf1(t, v)dv . (139)
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Considering a conservative binary interaction process ν1 = ν2 as in the previous
analysis, owing to γ1 = 0 and γ2, γ3 > 0 in interaction rule (129), we obtain an
overall trend towards zero on the fast time scale τ that yields

fi(t, v) = ρi(t)δ(v) . (140)

Hence, in this case, the fact that interactions occur among all groups in the same
way leads to the complete eradication of the illness on the fast time scale t. This
makes the hydrodynamic limit for the vaccine model quite uninteresting.

3.5 Age-structured vaccine model

One of the most important attributes an individual in an epidemiological model
can be equipped with is the chronological age. From the medical point of view,
age can affect the response of an agent both to the virus and to the cure, while
from the perspective of population dynamics it can affect the rate at which an agent
interacts with others. Both these aspects heavily influence the spread of an epidemic
in a population. In addition to that, the vaccination campaigns often rely on age
to choose who needs to be vaccinated first. For all these reasons, we propose an
age-structured version of the Vax model. As we did for the quarantine model on
the network, we base this additional characteristic of the agents on a second label
a ∈ A = {1, 2, ..., n}. Thus, we assume n age classes the agents can belong to.
Considering that an epidemic has usually a time horizon of a few years at most, if
the number of age classes n is sufficiently low, the aging of agents can be neglected.
Hence, while the model contains two labels, only the label switch process regarding
label x ∈ I = {1, 2, 3} is at work. The interactions happen among agent in every
group and in every age class. Agents of different ages, however, can interact with
different rates. In this dissertation we chose three age classes (n = 3), where a = 1
correspond to young agents, a = 2 to adult agents and a = 3 to elderly agents.
Let us define a frequency adjustment coefficient ri. An agent will interact with a
probability P = riµ∆t, that depends on their age as well as on the (small) time
interval ∆t. For probability P to be consistent, it needs to be

∆t ≤ 1
riµ

, ∀i ∈ {1, ..., n}.

Moreover, if we want to maintain from the Vax model the expected number of
interactions E(µ∆tN), where N is the total number of agents in the population,
and we denote with Nk the number of agents in the k-th age class, the adjustment
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coefficient needs to satisfy

µN = µ
nØ

k=1
rk ·Nk ⇒

nØ
k=1

ρkri = 1 . (141)

The introduction of the frequency adjustment coefficient just slightly modifies the
derivation of the weak form of the Boltzmann equation in sec. 2.3. In fact, it only
affects the computation of the mean of the post interaction observable quantity
φ = φ(Xt, At, V

Í
t ), that reads

µéφ(Xt, At, V
Í

t )ê = µ
Ø

i,j,k,l

ri

ÚÚ
R+×R+

éφ(i, k, vÍ)êfk
i (t, v)f l

j(t, v∗)dvdv∗ .

As mentioned before, age can affect the way a person respond to the same level of
infection as well as the vaccination priority a person is subject to. Therefore, we let
the transition probability matrix to depend on age, T = T (t, a, v;x|y). In particular,
we choose an age-dependent version of the simple Vax model transition probability

T =


1 − α(v, a) − ζ(t, a) β(v, a) 0

α(v, a) 1 − β(v, a) 0
ζ(t, a) 0 1

 .

We can now write the weak Boltzmann-type equation for the age-structured Vax
model. For undiagnosed people (x = 1) it reads

d

dt

Ú
R+
φ(v)fk

1 (t, v)dv = λ
Ú
R+
φ(v)

3
β(v)fk

2 (t, v) −
1
α(v) + ζ(v)

2
fk

1 (t, v)
4
dv

+ µ
3Ø

j=1

nØ
l=1

rk

ÚÚ
R+×R+

éφ(vÍ) − φ(v)êfk
1 (t, v)f l

j(t, v∗)dvdv∗

+ ω
Ú
R+

éφ(vÍÍ
1k) − φ(v)êfk

1 (t, v)dv . (142)

For diagnosed people (x = 2) it reads

d

dt

Ú
R+
φ(v)fk

2 (t, v)dv = λ
Ú
R+
φ(v)

3
α(v)fk

1 (t, v) − β(v)fk
2 (t, v)

4
dv

+ µ
3Ø

j=1

nØ
l=1

rk

ÚÚ
R+×R+

éφ(vÍ) − φ(v)êfk
2 (t, v)f l

j(t, v∗)dvdv∗

+ ω
Ú
R+

éφ(vÍÍ
2k) − φ(v)êfk

2 (t, v)dv . (143)
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For vaccinated people (x = 3) it reads

d

dt

Ú
R+
φ(v)fk

3 (t, v)dv = λ
Ú
R+
φ(v)ζ(v)fk

1 (t, v)dv

+ µ
3Ø

j=1

nØ
l=1

rk

ÚÚ
R+×R+

éφ(vÍ) − φ(v)êfk
3 (t, v)f l

j(t, v∗)dvdv∗

+ ω
Ú
R+

éφ(vÍÍ
3k) − φ(v)êfk

3 (t, v)dv . (144)

Let us notice that the healing process produces an updated viral load vÍÍ
ik that de-

pends on both the labels x and a. This is due to the fact that people with different
ages can responsse

differently to the same medical treatment, and hence they can heal differently.

3.5.1 Constant transition probabilities

Let us discuss the constant transition probability case for the age-structured Vax
model. It is interesting to study the case where α and β are constant with respect
to the viral load v and ζ = 0, with a fixed portion of population that has been
vaccinated. Being n = 3, let us define 0 ≤ ci ≤ 1, i = 1, 2, 3 the portion of,
respectively, young people, adults and elderly people that has received the vaccine.
Let us express the dependency of the transition probabilities from the age as

α(a) = αi for a = i

β(a) = βi for a = i, i = 1, 2, 3.
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The ODE system for the macroscopic quantities obtained is


d
dt
ρk

1 = βkρ
k
2 − αkρ

k
1

d
dt
ρk

2 = αkρ
k
1 − βkρ

k
2

d
dt
ρk

3 = 0

d
dt

(ρk
1m

k
1) = βkρ

k
2m

k
2 − αkρ

k
1m

k
1

+rk

1
ν2ρ

k
1(q3

j=1
q3

l=1 ρ
l
jm

l
j) − ν1ρ

k
1m

k
1

2
d
dt

(ρk
2m

k
2) = αkρ

k
1m

k
1 − βkρ

k
2m

k
2

+rk

1
ν2ρ

k
2(q3

j=1
q3

l=1 ρ
l
jm

l
j) − ν1ρ

k
2m

k
2

2
−γ2kρ

k
2m

k
2

d
dt

(ρk
3m

k
3) = rk

1
ν2ρ

k
3(q3

j=1
q3

l=1 ρ
l
jm

l
j) − ν1ρ

k
3m

k
3

2
−γ3kρ

k
3m

k
3 .

(145)

The first part regarding the masses is composed by three uncoupled systems, whose
asymptotic solutions are

ρk,∞
1 = (1 − ck) βk

αk + βk

= ak

ρk,∞
2 = (1 − ck) αk

αk + βk

= bk

ρk,∞
3 = ck .

If we plug these distributions in the second part of system (145) we can write



ak
d
dt
mk

1 = βkbkm
k
2 − αkakm

k
1

+rkak

1
ν2(q3

l=1 alm
l
1 + blm

l
2 + clm

l
3) − ν1m

k
1

2
bk

d
dt
mk

2 = αkakm
k
1 − βkbkm

k
2

+rkbk

1
ν2(q3

l=1 alm
l
1 + blm

l
2 + clm

l
3) − ν1m

k
2

2
−γ2kbkm

k
2

ck
d
dt
mk

3 = rkck

1
ν2(q3

l=1 alm
l
1 + blm

l
2 + clm

l
3) − ν1m

k
3

2
−γ3kckm

k
3 .
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If ρk,∞
i Ó= 0, for i, k = 1, 2, 3, we can simplify the masses to obtain


d
dt
mk

1 = αkm
k
2 − αkm

k
1

+rk

1
ν2(q3

l=1 alm
l
1 + blm

l
2 + clm

l
3) − ν1m

k
1

2
d
dt
mk

2 = βkm
k
1 − βkm

k
2

+rk

1
ν2(q3

l=1 alm
l
1 + blm

l
2 + clm

l
3) − ν1m

k
2

2
−γ2km

k
2

d
dt
mk

3 = rk

1
ν2(q3

l=1 alm
l
1 + blm

l
2 + clm

l
3) − ν1m

k
3

2
−γ3km

k
3 .

(146)

We can numerically evaluate the eigenvalues of the 9×9 system matrix to investigate
the behavior of the mean viral load. In particular, it is interesting to see how the
threshold ci† changes according to the value of the parameters. Let us see a few
examples. If we assume the value of αk, βk, ν1, ν2, ρk, rk as listed in Table 2 and we
let γi,k change, we notice how the threshold for the vaccination of adult people c2†

changes if we assume that the most of the young population has been vaccinated,
or the most of the elderly population has instead. Figure 6 shows the trend of the
maximum real part of the eigenvalues of the matrix associated with system (146).
The parameter γ is assumed as listed in Table 3. The chart on the top correspond
to the table on the left while the chart on the bottom to the table on the right.
The two lines on each chart correspond to the two vaccination strategies adopted:
the line in blue corresponds to the vaccination of the elderly people first, assumed
completed at 95%, while only 5% of young population is vaccinated. The line in cyan
corresponds to the opposite situation, where only 5% of elderly people and 95% of
young people are vaccinated. As it is clear from the charts, the best strategy depends
on the specific situation. In this example we have highlighted the dependency on
the characteristics of the cure: if the medical care received by diagnosed people is
much more effective on young people, it is best to vaccinate the elderly first; if the
difference is less pronounced, it is best to vaccinate the young people first. This is
due to the fact that young people have more interactions than elderly people and
hence they allow the illness to proliferates. In fact, we can see from Figure 7 that
if we assume rk = 1 for k = 1, 2, 3, the best strategy is to vaccinate elderly people
first, even in the case of a small difference in the effectiveness of the cure.

We do not investigate the hydrodynamic limit for this case as it proved uninteresting
since the epidemic is eradicated on the fast time scale t.
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Table 2:

αk βk ν1 ν2 ρk rk

[0.5, 0.7, 0.8] [0.4, 0.4, 0.4] 0 0.2 [0.33, 0.34, 0.33] [1.5, 1, 0.5]

Table 3:

The values of γi,k in the example
0 0 0

0.5 0.3 0.07
0.5 0.5 0.4

0 0 0
0.3 0.2 0.1
0.5 0.5 0.4

Figure 6: The maximum real part of eigenvalues of the matrix of the system (146).
On the top γi,k is assumed as listed in the left part of Table 3. On the
bottom γi,k is assumed as listed in the right part of Table 3.
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Figure 7: The case with γi,k as in the right part of Table 3 with rk = 1 for k =
1, 2, 3.

4 Numerical tests

All the kinetic models described in the previous section have been numerically sim-
ulated. The simulations have been carried out following a modified version of the
Nanbu-Babovsky scheme described in sec. 2.5. This version includes, according to
the circumstances, one or more mechanisms to transfer agents from one label to
the other and a microscopic state updating mechanism for the healing process, in
addition to the binary interaction process of the original version. General versions
of the algorithms used for the simulations of the Q-nQ and Vax models are shown
in Appendix. A large number (N = 106) of agents is considered in each one of the
four algorithms implemented, one for each model. The algorithms aim to reproduce
the time discrete microscopic processes of sec. 2.3 that led to the kinetic equations
in the limit for ∆t → 0+. Random variables Θ, Ξ and, if needed, Ω are sampled
from the Bernoulli distribution (110). They define the agents that are involved in an
event of interaction, label switch or healing, as appropriate. In the age-structured
vaccination model, Ξ needs to be differentiated according to the frequency adjust-
ment coefficient ri, i = 1, 2, 3. Jt and Bt are conditionally distributed as (87) and
(109), respectively. V Í

t is defined according to the appropriate interaction rule ((88)
or (89) for the Q-nQ models and (128) for the Vax models). If present, V ÍÍ

t is defined
according to (129). Once the algorithm has established through Θ, Ξ and Ω which
agent is involved in which event (or combination of events), the viral load and/or
the label of those agents are updated. This happens according to the limitations of
each case: a quarantined agent will not change their city label nor will interact, even
if they were supposed to. Another important thing is that every process happens
simultaneously. Hence, agents who are supposed to be subject to more than one
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Table 4: Constant parameters for the simple Q-nQ model

Parameter N λ ∆t ν2 γ

Value 106 1 10−2 0.2 0.3

Table 5: Parameters that change from test to test

Parameter Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13
µ 1 1 10 1 10 1
α 0.8 0.2 0.8(1 − e−v) 0.8(1 − e−v) 0.8(1 − e−v) 0.8(1 − e−v)
β 0.4 0.4 0.4e−v 0.4e−v 0.4e−v 0.4e−v

ν1 0 0 0.2 0.2 0 0
α† 0.28 0.28 / / / /

process do so at the same time. Let us refer to an example for more clarity: if an
agent in the Q-nQ model on the network undergoes both the label switch processes,
i.e. both label x ∈ I and a ∈ C change, in the same time interval ∆t, all happens ac-
cordingly to the pre-event attributes. This means that if they were not quarantined
and they are diagnosed in this ∆t, they can still travel in the same time interval.

Let us now show the results of the simulations carried out following this scheme. For
each model, some of the simulations are intended to confirm the theoretical findings.
Hence, a comparison with the numerical solution of the ODE system obtained for
the model from the kinetic equations is shown. In other cases the simulations are
intended to investigate cases that are not covered by the developed theory, e.g.
variable transition probabilities without scale separation or hydrodynamic limit with
non-conservative interactions.

4.1 Q-nQ model

Let us begin with the simple Q-nQ model. The initial conditions in every test are
such that none of the agents is quarantined at t = 0 and the viral load is sampled
from a uniform distribution in [0, 1]:

f1,0(v) = U[0,1](v), f2,0(v) = 0 .

In Table 4 we list the parameters constant to all simulations while in Table 5 we list
the parameters that change in the various tests.

Figure 8 and Figure 9 show the evolution of mass and mean viral load in the case
of constant transition probabilities of sec. 3.2.1. In particular we show how if the
diagnosis probability α is higher than the threshold α† the system converges to zero
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Figure 8: Evolution of mass and mean viral load in time with constant transition
probabilities and α > α†.

Figure 9: Evolution of mass and mean viral load in time with constant transition
probabilities and α < α†.

(Figure 8), while if α < α† it blows to infinity (Figure 9). We notice how the mass
of quarantine people and non-quarantined people quickly reaches level predicted in
(93), in both cases (Figure 8 and Figure 9). For both tests the solutions of the
corresponding ODE systems (92) are shown. Numerical simulations and theoretical
findings almost totally coincide.

Figure 10 refers to the case with variable transition probabilities and separated time
scales. In particular, we chose α = 0.8(1 − e−v) non decreasing in v and β = 0.4e−v

Figure 10: Evolution of mass and mean viral load in time with variable transition
probabilities in the hydrodynamic limit µ º λ.
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Figure 11: Evolution of mass and mean viral load in time with variable transition
probabilities with µ = λ and ν1 = ν2.

Figure 12: Evolution of mass and mean viral load in time with variable transition
probabilities with µ º λ and ν1 = 0.

non increasing in v, as in sec. 3.2.2. In this case the numerical solution of the ODE
system (104) follows less closely the trend of the numerical simulation. This is due
to the finiteness of the simulation environment as well as the various approxima-
tions adopted to obtain the ODE system. Anyway, the numerical simulation shows
that, as predicted by the qualitative analysis, the epidemic expires and no person is
quarantined in the long run.

The last three simulations explore cases not investigated theoretically. First, let us

Figure 13: Evolution of mass and mean viral load in time with variable transition
probabilities with µ = λ and ν1 = 0.
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Table 6: Constant parameters

Parameter N λ ω ∆t ν2 γ

Value 106 1 1 10−3 0.2 0.3

Table 7: Parameters that change from test to test

Parameter Figure 14 Figure 16 Figure 17 Figure 18 Figure 19
µ 1 1 10 1 10
α 0.8 0.8 0.8(1 − e−v) 0.8(1 − e−v) 0.8(1 − e−v)
β 0.4 0.4 0.4e−v 0.4e−v 0.4e−v

ν1 0 0 0.2 0.2 0
i.c. as in (147) as in (148) as in (147) as in (148) as in (148)

focus on the case with conservative binary interactions (ν1 = ν2) happening on the
same time scale as label switches. This situation does not allow for the hydrodynamic
limit. From the results in Figure 11 we see anyway that both the trends of mass
and mean viral load are similar to the case µ º λ. In fact, with a slightly slower
convergence rate, in the long run the epidemic expires with no quarantined people.
Figure 12 and Figure 13 refer to the case with variable transition probabilities and
ν1 = 0. In the first case we assume µ º λ while in the second case µ = λ.
The comparison of the two cases well highlight the importance of the quarantine:
Figure 12 shows that, if the diagnosis’ process is too slow, the quarantine fails to
stem the epidemic and the mean viral load is high despite a consistent portion of
population is quarantined. Conversely, if the infected agents are promptly diagnosed,
the mean viral load does not rise and the portion of quarantined people is reduced.
This is shown in Figure 13.

4.2 Q-nQ on the network model

The simulations of the Q-nQ model on the network confirms the findings of the
qualitative analysis of sec. 3.3. The initial condition in this case changes from test
to test as it is a crucial factor in the realization of the simulation. Table 6 lists the
constant parameters while Table 7 lists the parameters in the various tests.

Figure 14 and Figure 16 show the evolution of mass and mean viral load in the three
cities when transition probabilities are assumed constant. In the former the initial
condition is the same in every city, with viral load uniformly distributed in [0, 1],
hence

f i
1,0(v) = U[0,1](v), f i

2,0(v) = 0 , i = 1, 2, 3. (147)
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Figure 14: Evolution of mass and mean viral load in time with constant transition
probabilities and epidemic that starts from every city in the same way.

Figure 15: Evolution of aggregated mass and mean viral load in time with constant
transition probabilities and equal initial conditions compared with the
evolution of the same quantities in the simple Q-nQ model.

Figure 16: Evolution of mass and mean viral load in time with constant transition
probabilities and the epidemic that starts from the smaller city.
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Figure 17: Evolution of mass and mean viral load in time with variable transition
probabilities and the epidemic that starts in each city at the same way,
with µ º λ, ω.

In the latter the epidemic is assumed to begin to spread from the smaller city, we
have

f 3
1,0(v) = U[0,1](v), f i

1,0(v) = δ(v) , f i
2,0(v) = 0 , i = 1, 2. (148)

This leads to two completely different trends in the epidemic. In the first case
(Figure 14) the profile resembles the trends of the simple Q-nQ case with same pa-
rameters (Figure 8). We notice how the mean viral load reaches its highest point in
the bigger city, where people make more interactions. In the second case (Figure 16)
the epidemic quickly expires and mean viral load has really low peaks. The reduced
possibility to interact in the small city makes it impossible for the illness to prolifer-
ate. In both cases, mean viral load converges to zero since α > α† as predicted from
the qualitative analysis. In particular Figure 15 shows how the speed of convergence
is higher in the network case than in the simple Q-nQ case. In both cases, the mass
and mean viral load obtained from the numerical solution of the ODE system (117)
perfectly matches the outcome of the simulation.

Figure 17 refers to the hydrodynamic limit case: the transition probabilities are
variable and the interactions happen on a much faster time scale than the label
switches. As expected, the mean viral load converges to zero as well as the mass
of quarantined people. The solution of the ODE system does not follow strictly
the simulation due to approximation, as in the simple Q-nQ case; the trend is yet
conserved. Figure 18 and Figure 19 shows the outcome of the simulations of two
cases with variable transition probabilities not theoretically investigated. For both
of the tests the initial condition was the one in (148) and the trend is similar to the
one obtained with the same parameters in the simple Q-nQ model (Figure 11 and
Figure 12).
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Figure 18: Evolution of mass and mean viral load in time with variable transition
probabilities and the epidemic that starts in the small city, with µ =
λ = ω. Both divided and aggregated by city.

Figure 19: Evolution of mass and mean viral load in time with variable transition
probabilities and the epidemic that starts in the small city, with µ º
λ, ω and ν1 = 0. Both divided and aggregated by city.

68



Table 8: Constant parameters

Parameter N λ ∆t ν2

Value 106 1 10−2 0.2

Table 9: Variable parameters

Parameter Figure 20 Figure 21 Figure 22 Figure 23
µ, ω 1 1 1 1
α 0.8 0.8 0.8 0.8
β 0.4 0.4 0.4 0.4
ζ 0.1 0.1 0 0
ν1 0 0 0 0
γ [0, 0.1, 0.1] [0, 0.1, 0.3] [0, 0.1, 0.3] [0, 0.1, 0.3]
c / / 0.8 0.9

Parameter Figure 24 Figure 25 Figure 26 Figure 27
µ, ω 10 10 10 10
α 0.8(1 − e−v) 0.8(1 − e−v) 0.8(1 − e−v) 0.8(1 − e−v)
β 0.4e−v 0.4e−v 0.4e−v 0.4e−v

ζ 0.1 0.1 0 0
ν1 0.2 0 0 0
γ [0, 0.1, 0.1] [0, 0.1, 0.1] [0, 0.1, 0.3] [0, 0.1, 0.3]
c / / 0.8 0.9

4.3 Vaccine model

We show now the simulations of the Vax model described in sec. 3.4. For all these
tests the initial conditions are of two types, depending on the value of the vaccination
rate ζ. If ζ > 0 we set the entire population in the non diagnosed group x = 1. The
initial viral load is sampled from a uniform distribution, as usual. We have

f1,0(v) = U[0,1](v), f2,0(v), f3,0(v) = 0 .

Otherwise, if ζ = 0, the simulation aims to show the trend of the epidemic in a given
vaccination scenario. Hence, we set

f1,0(v) = f3,0(v) = U[0,1](v) ,

ρ1,0 = (1 − c) , ρ2,0 = 0 , ρ3,0 = c .

Table 8 e Table 9 list the values of the constant and variable parameters, respec-
tively.
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Figure 20: Evolution of mass and mean viral load in time with constant transition
probabilities, increasing vaccination and γ3 < ν2 − ν1.

Figure 21: Evolution of mass and mean viral load in time with constant transition
probabilities, increasing vaccination and γ3 < ν2 − ν1.

Figure 22: Evolution of mass and mean viral load in time with constant transition
probabilities, fixed vaccination and c < c†.
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Figure 23: Evolution of mass and mean viral load in time with constant transition
probabilities, fixed vaccination and c > c†.

Figure 24: Evolution of mass and mean viral load in time with variable transition
probabilities in the hydrodynamic limit µ, ω º λ, increasing vaccina-
tion and γ3 > ν2 − ν1 (ν1 = 0.2).

The first four figures refer to the constant transition probability case. The behavior
of each test has been predicted by the qualitative analysis in sec. 3.4.1. Figure 20 and
Figure 21 show how with an increasing portion of population being vaccinated in
time, the mean viral load may either blow to infinity or converge to zero depending
on the value of γ3. Figure 22 and Figure 23 show how the achievement of herd
immunity makes the epidemic expire, and vice versa. In every case, the numerical
solution of ODE systems (133) and (135) closely follows the trend of the simulations.

The last four figures refer to the variable transition probability case. Figure 24
shows that, accordingly to the qualitative analysis of sec. 3.4.2, the mean viral load
converges to zero in the conservative binary interaction case ν1 = ν2. The other
figures investigate situation that we did not cover with theoretical analysis. In the
case of ν1 = 0 with µ, ω º λ the epidemic does not expire since the healing power of
the vaccine is not high enough to contrast the contagion process. Rather, the mean
viral load blows to infinity as shown in Figure 25. Figure 26 and Figure 27 refer
to the case with a single time scale and variable coefficients. Likewise the constant
transition probability case, mean viral load blows if c < c† and converges if c > c†.
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Figure 25: Evolution of mass and mean viral load in time with variable transition
probabilities in the hydrodynamic limit µ, ω º λ, increasing vaccina-
tion and γ3 < ν2 − ν1 (ν1 = 0).

Figure 26: Evolution of mass and mean viral load in time with variable transition
probabilities, fixed vaccination, c < c† and µ = ω = λ.

Figure 27: Evolution of mass and mean viral load in time with variable transition
probabilities, fixed vaccination, c > c† and µ = ω = λ.
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Table 10: Constant parameters

Parameter N λ ω µ ∆t ν1 ν2 α β ζ

Value 106 1 1 1 10−3 0 0.2 [0.5, 0.7, 0.8] [0.4, 0.4, 0.4] [0, 0, 0]

Table 11: Variable parameters

Parameter Figure 20 Figure 21 Figure 22 Figure 23
r [1.5, 1, 0.5] [1.5, 1, 0.5] [1, 1, 1] [1.5, 1, 0.5]
c [0.95, 0.15, 0.05] [0.95, 0.75, 0.05] [0.05, 0.75, 0.95] [0.05, 0.75, 0.95]

4.4 Age-structured vaccine model

Finally, we present the simulation outcomes for the age-structured vaccine model.
These simulations aim to confirm the results of the theoretical analysis of sec. 3.5.1.
Hence, the initial conditions are such that:

fk
1,0(v) = fk

3,0(v) = U[0,1](v) , k = 1, 2, 3 ,

ρk
1,0 = (1 − ck) , ρk

2,0 = 0 , ρk
3,0 = ck , k = 1, 2, 3.

Table 10 lists the parameters constant in every test, while Table 11 lists those that
change from test to test. For every simulations the healing rate is fixed as

γ =


0 0 0

0.3 0.2 0.1
0.5 0.5 0.4

 ,

i.e. as in example 2 of sec. 3.5.1. With the chosen parameters, we can evaluate the
value of threshold c2,† from Figure 6 (bottom) as c2,† u 0.65.

Figure 28 and Figure 29 refer to the strategy of vaccinating young people first.
Hence, the 95% of the young population and the 5% of the elderly population have
been vaccinated. With this value of the healing rate γ this strategy allows to stem the
epidemic if enough adults get the vaccine. In Figure 28 this threshold is not reached
while in Figure 29 it is. Figure 30 and Figure 31 refer to the strategy of vaccinating
elderly people first instead. This means that the percentages are inverted. In both
cases the 75% of adult people is vaccinated but, as it is clear from the charts, in the
first case this is enough to stem the epidemic while in the second it is not. This is
due to the fact that in the first case every age group interact with the same frequency
while in the second case the young people interact way more than the elderly people.
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As predicted by the qualitative analysis, this affects the threshold c2,† and produces
the two behaviors shown here, even with the same value of c2.

Figure 28: Evolution of mass and mean viral load in time with the majority of
young people vaccinated„ diversified interaction rate and c2 < c2,†.

Figure 29: Evolution of mass and mean viral load in time with the majority of
young people vaccinated, diversified interaction rate and c2 > c2,†.

Figure 30: Evolution of mass and mean viral load in time with the majority of el-
derly people vaccinated, un-diversified interaction rate and c2 = 0.75 >
c2,†.
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Figure 31: Evolution of mass and mean viral load in time with the majority of
elderly people vaccinated, diversified interaction rate and c2 = 0.75.
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5 Conclusions

In this dissertation, we have applied tools and methodologies from the kinetic theory
of gasses to epidemiology. In particular, Boltzmann-type non-conservative equations
have been adopted to describe the time evolution of an epidemic in a large and
interconnected population. The microscopic state the agents are equipped with has
been intended as a viral load, whose first and zero order moments are able to describe
the ongoing epidemic. In addition, the agents are characterized by one or more labels
that model important epidemiological aspects, namely quarantine, vaccination, age
and geographic distribution of agents. These labels change following a Markov-
type viral load-dependent probabilistic jump process for which a microscopic kinetic
description has been provided. The kinetic framework proved to be useful in the
modeling of epidemics. The innovative models introduced in the thesis show a rich
variety of behaviors while depending on few epidemiological parameters. They are
a simple quarantine model, a quarantine model laid on a city network, a vaccine
model and a age-structured vaccine model. Kinetic equations are derived for each
model to describe the evolution of the epidemic. Through various analytical tools,
among which the hydrodynamic limit provided by the kinetic theory, we have been
able to gain some insights on the role and importance of various parameters of the
models. In detail:

1. Quarantine can be an effective confinement strategy if the diagnose process is
punctual. If diagnoses are too slow they fail to lower the viral load level and
the epidemic explodes.

2. The higher the number of interacting people, the higher the mean viral load.
When considering an epidemic on a cities network where interactions happen
only within the same city, the max mean viral load reaches lower values than
in the case where all agents can interact with each other.

3. We have been able to numerically evaluate a herd immunity threshold if the
population is subject to a vaccination campaign. It depends on parameters
such as diagnosis power, healing rate, infectivity.

4. The kinetic approach allow to account for different interaction rates based
on the age of the agents. The fact that young agents usually have more
interactions than older agents can affect the vaccination strategy: it may be
best to vaccinate young people first, as they spread the virus more, even if older
people heal less quickly. This depends on the parameters of the epidemic and
of course holds within the model, reality is much more complicated.

Incidentally, the classical SIR and SIS models can be obtain as specific cases of

76



this kinetic description. Numerical algorithms based on a modified version of the
Nanbu-Babovsky scheme have been developed to simulate all the four models. The
numerical simulations confirm all the results of the theoretical analysis and provide
us with a precious tool to investigate complicated situations that are hard to study
analytically. In fact, explicit solutions are possible only in few simple cases and
numerical simulations are needed to investigate more realistic scenarios. These sim-
ulations are quite efficient in simple models but computational time increases when
the age or the spatial network are considered.

The label based kinetic description adopted in this dissertation allows the models
to be merged or integrated to include additional features, e.g. different kind of
therapies or a more detailed age-based characterization. Finally, we have carried
out a theoretical analysis where parameters have been freely chosen to explore a
wide range of scenarios. It would be interesting to focus on a real world epidemic
for which large scale statistics are available and to extract the parameters of the
model to test it in a “real life situation”.
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Appendix

Algorithm 3 General simulation scheme for the Q-nQ model on the network.
First part.
Data:

• N ∈ N total number of particles.

• V0 := {ξ0
1 , ..., ξ

0
N} initial velocities, sampled from initial density f0(ξ).

• ∆t time interval and nT OT number of time steps.

for t = 1 to nT OT

compute ρa
x(t) = Na

x (t)
N

, ma,n
x = 1

Na
x

q
agents in (x,a) v

n;
repeat

pick randomly two agents i and j with i Ó= j.
for h = i, j do

sample Θ ∼ Bernoulli(λ∆t);
if Θ = 1 then

if xn
h = 1 then

sample J ∈ {1, 2}
with prob {1 − α(vn

h), α(vn
h)};

if xn
h = 2 then

sample J ∈ {1, 2}
with prob {β(vn

h), 1 − β(vn
h)};

set xn+1
h = J;

else

set xn+1
h = xn

h;
sample Ω ∼ Bernoulli(ω∆t);
if Ω = 1 then

sample Q ∈ {1, ..,#cities}
with prob Dh,k(vn

h);
set an+1

h = Q;
else

set an+1
h = an

h;
sample Ξ ∼ Bernoulli(µ∆t);
Continues...
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Algorithm 4 General simulation scheme for the Q-nQ model on the network.
Second part.

...
if Ξ = 1 then

if xn
i = xn

j = 1, an
i = an

j then

update vn
i , vn

j to vn+1
i , vn+1

j according to (88);
if xn

i = 1,xn
j = 2 or vice versa then

set vn+1
i = vn

i

update vn
j to vn+1

j according to (89)
or vice versa ;

if xn
i = xn

j = 2 then

update vn
i , vn

j to vn+1
i , vn+1

j acccording to (89);
if xn

i = xn
j = 1, an

i Ó= an
j then

set vn+1
i = vn

i , vn+1
j = vn

j ;

else

set vn+1
i = vn

i , vn+1
j = vn

j ;

until no unused pairs are left

82



Algorithm 5 General simulation scheme for the age-structured Vax model
Data:

• N ∈ N total number of particles.

• V0 := {ξ0
1 , ..., ξ

0
N} initial velocities, sampled from initial density f0(ξ).

• ∆t time interval and nT OT number of time steps.

for t = 1 to nT OT

compute ρa
x(t) = Na

x (t)
N

, ma,n
x = 1

Na
x

q
agents in (x,a) v

n;
repeat

pick randomly two agents i and j with i Ó= j.
for h = i, j do

sample Θ ∼ Bernoulli(λ∆t);
if Θ = 1 then

if xn
h = 1 then

sample P ∈ {1, 2, 3}
with prob [1 − α(vn

h) −
ζ(xn

h), α(vn
h), ζ(xn

h)];
if xn

h = 2 then

sample P ∈ {1, 2}
with prob [β(vn

h), 1 − β(vn
h)];

if xn
h = 3 then

set P = 3;
set xn+1

h = P;
else

set xn+1
h = xn

h;
sample Ω ∼ Bernoulli(ω∆t);
if Ω = 1 then

update vn
h to vn+1

h according to (129);
else

set an+1
h = an

h;
sample Ξ ∼ Bernoulli(µ∆t · rai · raj) ;
if Ξ = 1 then

update vn
i , vn

j to vn+1
i , vn+1

j according to (128);
else

set vn+1
i = vn

i , vn+1
j = vn

j ;

until no unused pairs are left
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