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Abstract

Coronary artery diseases represent a significant cause of death worldwide. In fact, their
occlusion can cause lack of oxygen to the heart tissue, leading to heart failure or heart
attack. Coronary artery bypass grafting is a surgical procedure to restore a proper blood
supply. In this context, Computational Fluid Dynamics (CFD) can be a significant tool
to improve coronary artery bypass grafts and to avoid unfavorable flow conditions in
the region of the anastomosis, which can be associated with the failure of the surgical
procedure.
In this thesis the development of a Reduced Order Model (ROM) for the investigation
of hemodynamics in a patient-specific configuration of coronary artery bypass graft is
proposed. The method deployed extracts a reduced basis space from a collection of high-
fidelity solutions via a Proper Orthogonal Decomposition (POD) algorithm and employs
Artificial Neural Networks (ANN) for the computation of the modal coefficients. The main
goal is to characterize blood flow for different settings that are relevant in the clinical
practice, such as several stenosis factors, in a rapid and reliable way. The Full Order
Model (FOM) is represented by the incompressible Navier-Stokes equations discretized by
using a Finite Volume (FV) technique. The computational domain is referred to coronary
arteries, in particular left branches when a stenosis of the Left Main Coronary Artery
(LMCA) occurs.
In the first stage, only a stenosis that reduces the width of the vessel by 50% is taken
into account, so the time is the only parameter considered in the model. Then, stenosis
from mild to severe is added too. Several numerical results are analysed, underlining the
computational performance of the proposed approach, such as the error between computed
FOM and ROM solutions as well as the substantial speed-up achieved at the online stage.
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Introduction

When severe coronary artery diseases occur, one or more coronary arteries are occluded
causing a poor perfusion of oxygen-rich blood to the heart. Coronary artery bypass graft-
ing is still one of the most used surgical procedure worldwide, although after some years
blood supply fails again, causing the need of reintervention. Investigating blood flow fea-
tures near the anastomosis is of remarkable clinical interest, because some fluid dynamic
indicators are related to restenosis and they can be estimated by means of numerical
simulations. Therefore, several computational hemodynamic studies have been performed
during the last years. High fidelity simulations for each new parameter are unfeasible and
reduced order models are applied to avoid this problem. In fact, reduced order models
enable fast computations varying the parameters, as often required in the clinical context,
and they aim at a possible improvement of the surgical operation. In this thesis compu-
tational reduction techniques are developed, focusing on patient specific geometries.
Reduced order models and machine learning are two key words of the thesis. In the last
years reduced order models have been applied in many different fields, allowing to obtain
an accurate description of the system with a significant reduction of the computational
cost. In addition, recently, machine learning and artificial intelligence seem to have an
increasing impact in many different areas. So, proper orthogonal decomposition - neural
network (POD-NN) method is considered in this thesis.
A finite volume discretization is employed on high performance computing facilities. Then,
the basis functions are computed from the snapshots of the full order model. In particular,
artificial neural networks are employed to accurately approximate the coefficients of the
reduced solution.
The structure of the thesis is as follows. Chapter 1 provides an overview of the clinical
problem. The anatomy of coronary arteries is deployed, focusing on the main branches.
Afterwords, atherosclerosis, which is the main disease of coronary vessels, with some pos-
sible surgical treatments, is presented. Some papers are discussed in order to understand
better the reasons and the geometries of our work. Finally, the importance of mathemat-
ical investigation on this topic is highlighted.
Chapter 2 contains a description of the blood components and a discussion about some
models used to describe the blood flow. It is useful to justify the use of a Newtonian
model. Then, we introduce the strong formulation of incompressible Navier-Stokes equa-
tions, explaining how the assumptions modify the model. In the last section, boundary
conditions are introduced, focusing on realistic flow rate waveform obtained from litera-
ture.
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Introduction

Chapter 3 deals with the finite volume method. In particular, it is analysed the dis-
cretization of the domain, trying to minimize errors due to the grid. Then, in order to
ensure that the finite volume model converges to a solution, a mesh convergence analysis
is carried out.
Chapter 4 deals with the computational reduction framework and presents several results
on the patient specific bypass graft configuration. A POD-NN model is introduced and
operations performed during offline/online stages are specified. In addition, a detailed
justification for the use of this method is deployed. Qualitative and quantitative results
for time and for stenosis degree reduction are shown, comparing full-order and reduced-
order solutions.
Finally, some conclusions and an outlook of possible future research conclude this thesis.
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Chapter 1

Cardiovascular system

In the first section, we introduce some basic knowledges about the cardiovascular system,
focusing on the coronary arteries, in order to understand structures and connections of
the vessels. It will be done also a general overview about the main diseases of the coronary
arteries with notes on the most used surgical procedures. This chapter is not intended to
be a complete discussion of coronary anatomy and pathology. The goal is to understand
better the problem and to underline the importance of mathematical investigation on
this topic. Finally, it is specified the problem of our interest, which will be developed in
collaboration with Sacco hospital in Milan.

1.1 Anatomy of coronary arteries
Coronary arteries form a network of vessels that wrap around the entire heart. Their main
function is to supply oxygenated blood to the myocardium. Because the myocardium lacks
the ability to contract anaerobically, the constant supply of oxygen by the coronary vessels
is crucial for the regular function of the heart [1].
The arrangement of coronary arteries varies considerably among people, for this reason
in our work the real geometry of the patient will be extracted from medical images. In
the following, we briefly analyse the main branches, without focusing on the individual
differences.
The right coronary artery (RCA) and the left main coronary artery (LMCA) are the first
two branches of the coronary arteries and both originate from the root of the aorta.
The RCA emerges from the anterior ascending aorta and supplies blood mainly to the
right atrium and right ventricle. Then, the RCA typically divides into smaller branches:
the right posterior descending artery (PDA) and the right marginal artery. The posterior
descending artery supplies oxygenated blood to the posterior one-third of the interven-
tricular septum. The left anterior descending artery (LAD) is responsible for the anterior
two-thirds of the septum. Actually, the supply of interventricular septum was estimated
to be different in each heart, as better specified in [23].
The LAD is one of two major branches of the LMCA, the other is the left circumflex
(LCx) coronary artery. Together, these two branches supply blood to the left atrium and
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left ventricle. The circumflex artery provides blood supply to the left atrium and the
posterior-lateral part of the left ventricle, while the LAD supplies blood to the anterior
portion of the left ventricle [22]. For the sake of clarity, anatomy described is shown in
Figure 1.1 and a more detailed explanation can be found in [36].

Figure 1.1: Diagram of coronary arteries.

1.2 Atherosclerosis
Cardiovascular diseases are the main cause of death worldwide. The world health orga-
nization estimates that 17.9 million people die each year for disorders of the heart and
blood vessels, about 31% of all deaths in the world. These numbers are sufficient to justify
research in this area.
The two major vascular diseases are aneurysm, which is briefly a gradual dilation of an
arterial segment with a consequent possible haemorrhage, and atherosclerosis, which is
the disease of interest in our work.
Atherosclerosis is the accumulation of fatty materials, fibrous elements and calcium in the
arteries. It is a progressive disease that can take decades for the development of symp-
toms. The initial stages are completely benign, but as the lesion develops it can reduce
the lumen of the vessel creating a stenosis that obstructs blood flow leading to clinical
complications. Clinically dangerous is the development of thrombi or the rupture of the
plaque leading to emboli which are deposited in downstream vessels causing infarctions
[1].
Coronary stenosis can be classified according to their location:

• proximal stenosis literally means situated nearer to the center of the vessel under
examination, in practice it is located at the beginning of the vessel,

• mid stenosis is located in the central region of the vessel,

• distal stenosis means away from the center of the vessel, in practice it is located at
the end of the vessel,

12



1.3 – State of the art

• ostial stenosis is located at the bifurcation of the vessel. If it is a predivisional
stenosis, it comes before the division.

Finally, it is possible to associate a degree of severity to each stenosis. If the level of
obstruction is less than 50%, the stenosis is mild, between 50% and 70%, it is moderate
(they are rarely symptomatic), then it is classified as severe [25]. It is important to clarify
that in this work, if not specified, the severity of the stenosis refers to the diameter of the
vessel and not to its area.

1.2.1 Treatments
A surgical procedure applied to severely stenotic arteries is grafting. There are two tech-
niques: vessel replacement and bypass. Replacement (end-to-end anastomosis) involves
removing the stenotic artery and replacing it with another vessel. Bypass (side-to-side
anastomosis) provides an alternative route for blood to bypass the stenosis, which is left
in place [1]. Grafts can be done using arteries or veins from the patient, commonly the
following patch graft materials are utilized: internal thoracic artery (ITA), autologous
pericardia and saphenous vein (SV). Internal thoracic artery closely mimics the charac-
teristics of the native coronary artery, but it may be limited by the conduit harvest. On
the contrary, the pericardium is easily harvested, but it promotes calcification and subse-
quent restenosis. The saphenous vein is favoured by a number of surgeons for its size and
character, which allow simple creation of a funnel-shaped ostium. However, its elasticity
may bring about a tendency to dilatation and it may result in long-term restenosis [26].
Practically, single or multiple bypass grafting are possible in order to restore a better per-
fusion flow. All grafts suffer from complications, 50% close within 10 years after surgery.
The most common failures are due to thrombus formation, restenosis of the vessel and
deterioration of the graft material. Anyway, there is very active research into the devel-
opment of new materials for grafts, this is still an open question.
Another minimally invasive procedure is stenting, where a catheter is advanced from a
peripheral artery to the site of the stenosis. The stenosis is generally disrupted by dilat-
ing it with a balloon (angioplasty) which expands a wire mesh stent used to support the
vessel walls. A common problem with stents is restenosis, which occurs at a significant
rate. Consequently metallic stents and biodegradable stents have been developed. Several
types of drug-eluting stents have been tested in clinical trials to limit cell migration and
proliferation in the region of the stent [1].
Both approaches (grafting and stenting) can be adopted to revascularize all stenotic ves-
sels (complete revascularization) or it is possible to select only some conduits (incomplete
revascularization).

1.3 State of the art
Many papers study different coronary stenosis in order to establish a good clinical treat-
ment, especially in term of mid-long survival. In this section we report some clinical
studies on stenosis of the common trunk and their main results in order to outline and to
understand better the state of the art.
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Patients with isolated stenosis of the left main coronary artery (LMCA) are considered in
[24]. Results after surgical revascularization show that 86.8% of patients were alive and
71.7% were free of any intercurrent coronary event after four years. In particular, they
observed that extracorporeal circulation times and aortic clamping times are factors of
risk for coronary events. In some cases of reintervention, LMCA treatment consisted of
angioplasty, but the conclusion of the investigator is that it should not be considered an
alternative to surgery except in certain favourable situations. In addition, focusing on
patients with ostial stenosis, no significant differences are found in term of survival.
Paper [26] focuses only on isolated ostial stenosis of the LMCA. The authors try to un-
derstand if, in this rare case, angioplasty is a viable alternative to traditional bypass. The
long-term mortality after angioplasty is found to be about 8%. In particular, they found
that non-ostial stenosis, stenosis extending beyond the proximal LMCA and calcification
remain an absolute contraindication to angioplasty, so conventional bypass should remain
the standard procedure for such patients. Otherwise, they observed that both age and
poor left ventricle function are not contraindication for this approach.
Patients often do not have isolated stenosis, so it is important to evaluate the impact of
completeness of revascularization and multiple bypass grafting. This is the purpose of
[28], where it is shown that for short-term outcomes revascularization strategy does not
have a significant impact. Otherwise, after about four years, multi-arterial coronary artery
bypass grafting (MA-CABG) has a survival advantage compared with single-arterial coro-
nary artery bypass grafting (SA-CABG). Similarly, complete revascularization achieves
better results than incomplete revascularization. Of course, one single revascularization
strategy cannot be applied to all patients; but we can tell that in young patients complete
revascularization with multiple arterial conduits is ideal. As supported by [25], less com-
plete revascularization is accepted to limit invasiveness. In this work, patients with RCA,
LAD and LCx diseases are considered and both percutaneous and operative strategies
have been followed. It can be observed that survival is less in patients with left main
trunk stenosis with incomplete revascularization of the LCx and RCA, with high-grade
stenosis in the LCx system, and with high-grade proximal RCA stenosis. Instead, diseases
in the mid and distal RCA were risk factors for reintervention. So, even if left ITA-LAD
graft is the most important part of the bypass operation for most patients, it does not
fully compensate for the presence of diseases in other coronary systems.
In [29], the study demonstrates again the significant superiority of coronary artery bypass
over percutaneous coronary intervention, especially in patients with complex three-vessel
diseases. Only in left main diseases with amenable anatomy, percutaneous approach is an
alternative option.
Finally [27] is the work closest to our interest. Two surgical approaches are compared for
isolated predivisional stenosis of the left main coronary artery: bilateral internal thoracic
artery grafts and ITA on the left anterior descending artery and saphenous vein on the
circumflex system. The main finding is that the addition of a second ITA graft or of a
SV graft to the first ITA does not lead to different long-term angiographic patency. In
particular, the use of SV as a complementary graft to the circumflex system does not
jeopardize long-term patency of the ITA-LAD graft. It is an interesting result even if the
sample size is limited and the angiographic follow-up rate was not 100% due to the death
of some patients. So, it reinforces the need for further studies in this area and it justifies
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mathematical simulation, as explained better in the next section.

1.4 Importance of the mathematical formulation
Nowadays, mathematical simulations can support researchers in the analysis of the circu-
latory system in physiological and pathological situations. The increasing demand from
the medical community for quantitative investigations of cardiovascular diseases gave an
impulse to develop studies. Naturally, the first motivation for cardiovascular modelling is
the diffusion of cardiovascular diseases, the largest cause of death worldwide, especially
in the developed countries.
Many groups focused on simulations of blood flow through arterial grafts and recon-
structed vascular segments in order to provide knowledge of flow behaviour and the ap-
plied stress fields. A better understanding of these factors is crucial to our understanding
of the diseases and investigations on realistic geometries determined from medical imaging
are useful to optimize surgical procedures.
Better understanding of the flow and stress in grafts and graft junctions will aid in surgical
planning of grafting and may improve the lifetime of grafts.
Numerical models of vascular flows on coronary system can also provide a virtual experi-
mental platform to be used as a training system for new vascular surgeons and they can
give specific design indications for the realization of surgical operations. It can help the
surgeon in understanding how different surgical solutions may affect blood circulation and
guide the choice of the most appropriate procedure for a specific patient [1].

1.5 Our work
Our study focuses on the blood flow in the coronary system when an isolated stenosis of
the LMCA occurs. Varying the severity of the stenosis, two configurations are analysed
in order to restore a proper blood supply:

• a CABG (Coronary Artery Bypass Grafting) performed with LITA (Left Internal
Thoracic Artery) on the LAD. In the following we refer to this with the abbreviation
CABG1 (Figure 1.2a),

• a CABG performed with LITA to restore the flow in the LAD and one performed
with RITA (Right Internal Thoracic Artery) or with the radial artery or with the SV
to restore the flow in the LCx. In the following we refer to this with the abbreviation
CABG2 (Figure 1.2b).

An isolated stenosis of the main trunk is rare, and there is not a sample of consolidated
studies which allow to establish the most appropriate procedure to perform. Therefore,
numerical simulations of vascular flow represent a tool of significant importance. Numer-
ical models can provide specific indications for the flow, vessel patency and wall shear
stress (WSS). It supports surgeons when they have to choose the most appropriate pro-
cedure for a specific patient.
Effectively data provided by Sacco hospital will be used by the SISSA mathLab team
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in order to reconstruct a virtual 3D model to perform numerical simulations. The re-
construction of the geometry will be indicatively obtained starting from post-operative
data. However, if they are compromised, we will opt for a reconstruction starting from
pre-operative data, with virtual addition of vessels inserted to comply with the actual
intervention.
Although numerical methods such as finite volumes and finite elements are known and
widely used in order to find an accurate solution of the Navier Stokes equations, a reduced
model will be developed in order to significantly reduce the time simulation. This aspect
is fundamental when the aim is to find patient specific data for different flow conditions
and for different geometric configurations.
In order to compare the flow properties for CABG1 and CABG2, a reduced method for
numerical simulation based on machine learning algorithms is developed and it will be
analysed in details in the following. In particular, it is interesting to consider a stenosis of
variable degree, from mild to severe, on the geometry under examination. The variables
of interest are velocity, pressure and WSS. Therefore, the following preliminary scenarios
are defined:

• CABG1 in the case of mild stenosis,

• CABG1 in the case of severe stenosis,

• CABG2 in the case of mild stenosis,

• CABG2 in the case of severe stenosis.

The results obtained want to provide various possibilities of intervention to the medical
specialist in a field where the bibliography does not currently provide exhaustive guide-
lines and / or standardized protocols.
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(a) CABG1. (b) CABG2.

Figure 1.2: Surgical approaches.
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Chapter 2

The mathematical model

In this chapter, we introduce a mathematical model which describes the motion of viscous
incompressible fluid substances, i.e. incompressible Navier-Stokes equations.
Firstly, we describe some features of the blood in order to understand better the assump-
tions about the fluid under consideration. It follows a discussion on the conservation of
the momentum and the conservation of the mass, with a focus on boundary conditions.

2.1 Blood flow features
Blood is a suspension of cellular elements that includes red blood cells (RBCs) or ery-
throcytes, white blood cells (WBCs) or leukocytes and platelets or thrombocytes. They
are suspended in an aqueous polymer solution, the plasma, containing electrolytes and
organic molecules such as hormones, enzymes, antibodies, fibrinogen and other proteins.
Erythrocytes exert the most significant influence on the mechanical properties of blood,
due to their presence in very high concentration compared to the other elements, com-
prising about 45% of its volume in healthy individuals.
Although plasma is nearly Newtonian in behaviour, whole blood exhibits marked non-
Newtonian characteristics, particularly at low shear rates. The non-Newtonian behaviour
of blood is mainly explained by three phenomena:

• the propensity of the erythrocytes to form a three-dimensional microstructure at low
shear rates,

• the deformability of erythrocytes,

• the tendency of erythrocytes to align with the flow field at high shear rates.

The macroscopic effect of the presence of RBCs is that blood is a shear-thinning fluid, it
means that the viscosity decreases as the rate of deformation increases. Below a critical
vessel calibre (about 1 mm), blood viscosity becomes dependent on the conduit radius
and decreases sharply because red blood cells move to the central part of the capillary,
whereas the plasma stays in contact with the vessel wall. This layer of plasma facilitates
the movement of the red cells, thus causing a decrease of the apparent viscosity [1].
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There are also others studies about non-Newtonian characteristics of the blood, such as
[2], where the results show that fibrinogen causes the aggregation of RBCs with an in-
crease in viscosity, preferentially at low shear rates.
Regardless, it is clear that blood is a non-Newtonian fluid, but the purpose of this section
is to understand whether or not it is necessary to include non-Newtonian blood models in
modelling blood flow in coronary arteries.
In [3] is presented a transient study of blood flow in four different human right coronary
arteries with Newtonian model and Power blood (non-Newtonian) model. Comparing the
two blood viscosity models shows that the non-Newtonian one is only significant for ap-
proximately 30% of the cardiac cycle. During these periods, the wall shear stress (WSS)
is very low, with the regions of lowest WSS in the same positions for both models. Thus,
it can be concluded that a Newtonian model for blood viscosity is an adequate approxi-
mation for transient simulations. Moreover, it appears that in terms of wall shear stress
distribution, there is little practical difference between a Newtonian and a non-Newtonian
model for blood viscosity. However, for simulation purposes, to study wall shear stress
a Newtonian model would be satisfactory, but to study the flow in more detail, to look
at mixing within the blood or stresses on individual blood cells for example, the non-
Newtonian behaviour of the blood should be counted.
Also paper [4] compares some numerical results between two non-Newtonian models (Car-
reau and Carreau-Yasuda models) and Newtonian blood flow viscosity using 9 patient
specific coronary artery models including the full range of real stenosis. Results show that
the wall shear stress varies along the artery. It increases with decreasing of artery cross
sectional area. Newtonian and non-Newtonian models result in different WSS distribu-
tions, but behave similarly at the stenosis location. This indicates that the Newtonian
model is acceptable in predicting WSS over the stenosis segment.
So, it is reasonable in our study to consider blood as a Newtonian fluid because:

• we are interested in the medium flow and not in the deeper details of the flow itself,
therefore non-Newtonian behaviors can be neglected [3],

• we consider arteries with the radii of the order 5 mm, where the velocity and shear
rate are not so small, therefore the apparent viscosity is nearly a constant, and the
non-Newtonian effects like shear thinning can be neglected [5], [6].

In addition, we assume blood as an incompressible flow, like a lot of work in literature [3],
[4], [5], [7], [8].
Mathematical details following these assumptions are given in the next section. Finally,
for the sake of simplicity, the model is developed in an isothermal setting.

2.2 Navier-Stokes equations
The Navier-Stokes (N-S) equations are the fundamental equations of fluid dynamics.
Georg Gabriel Stokes (1816–1903) and Louis Marie Henri Navier (1785–1836) derived
these equations independently, so these equations take their names. Their complicated
mathematical form mostly confines engineers to the numerical solution of these equations.

20



2.2 – Navier-Stokes equations

The mathematical proof of the existence of a global solution of the N-S equations is still
one of the millennium problems [18].
In the case of an isothermal flow, N-S equations represent two physical conservation laws:
the mass conservation and the momentum conservation.
In the following, we present only the local form of these models, even if it is not difficult
to derive from the global form as presented in [19].

2.2.1 Mass conservation
Let us consider the motion of the blood in a time independent domain Ω ⊂ R3 over a time
interval of interest (t0, t∗], such that ∂Ω is smooth enough to apply the Gauss divergence
theorem.
If ρ = ρ(x, t) is the density of the fluid and u = u(x, t) its velocity field, the mass
conservation low is:

∂ρ

∂t
+∇ · (ρu) = 0 Ω× (t0, t∗]. (2.1)

For the assumption of incompressible flow, the density is considered constant, so from 2.1
we obtain the velocity is a divergence-free vector:

∇ · u = 0 Ω× (t0, t∗]. (2.2)

2.2.2 Momentum conservation
The local momentum conservation low is called Cauchy equation:

∂

∂t
(ρu) +∇ · (ρuuT ) = f +∇ · T Ω× (t0, t∗], (2.3)

where f = f(x, t) are the forces applied on the fluid and T = T(x, t) is a symmetric tensor,
named stress tensor, which represents surface forces and it does not depend on surface
normal.
For a Newtonian viscous fluid, it holds the constitutive relation 2.4:

T = [−p+ λ(∇ · u)]I + 2µD(u), (2.4)

where p is the hydrostatic pressure or simply pressure, µ is the dynamic coefficient of vis-
cosity, λ is the second coefficient of viscosity [20] and D(u) = ∇u+∇uT

2 is a linear function
of the components of the velocity gradient, named deformation tensor [1].
Since we have decided to consider blood as a Newtonian fluid, the viscosity µ is indepen-
dent of any kinematic quantity. So, using 2.4 and 2.2, the local momentum conservation
equation 2.3 is modified as follows:

∂u
∂t

+∇ · (uuT ) = f
ρ
−∇

(p
ρ

)
+ ν∇ · (∇u +∇uT ) Ω× (t0, t∗], (2.5)

where ν = µ
ρ is the kinematic viscosity.

It is possible to write:

∇ · (uuT ) = ∇ · (u⊗ u) = (u · ∇)u, (2.6)
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and, using the incompressible constrain:

∇ · (∇u +∇uT ) = ∆u +∇(∇ · u) = ∆u. (2.7)

So, setting P = p
ρ the pressure divided by the density (kinematic pressure) and F = f

ρ the
forces per unit of mass, we obtain a compact form for incompressible N-S equations:{

∂u
∂t + (u · ∇)u− ν∆u +∇P = F Ω× (t0, t∗]
∇ · u = 0 Ω× (t0, t∗]

, (2.8)

where ∂u
∂t is the eulerian acceleration of the fluid, ∆u represents the molecular diffusion

process and (u ·∇)u is a non linear term which describes the convective transport process.
For the good position of the problem 2.8, it is necessary to assign initial conditions:

u(x, 0) = u0(x) ∀x ∈ Ω, (2.9)

and boundary conditions:{
u(x, t) = φ(x, t) ∀x ∈ ΓD,∀t ∈ (t0, t∗]
[ν(∇u +∇uT )n− Pn](x, t) = ψ(x, t) ∀x ∈ ΓN ,∀t ∈ (t0, t∗]

, (2.10)

where u0, φ and ψ are assigned vector functions, ΓD and ΓN are parts of ∂Ω such that
ΓD ∪ ΓN = ∂Ω and

◦
ΓD ∩

◦
ΓN = ∅, finally n is the normal unit vector to ∂Ω [21].

2.3 Boundary conditions
Boundary conditions are essential in order to obtain meaningful cardiovascular simulation
results. It is fundamental that boundary conditions capture as much as possible the
physiology of vascular networks outside of the domain of the model. For this reason, in
the present work, we opted for boundary conditions based on realistic flow rate waveform.
In our geometry, we have:

• inflow boundaries: for LMCA and LITA,

• vessel wall boundary: the interface between the fluid domain and the vessel wall,

• outflow boundaries: for LAD and LCx.

For inflow boundaries, we will prescribe a zero gradient condition for the pressure and a
flow wave profile obtained from literature. The flow rate at each inlet of the computational
model is expressed as:

qi(t) = f iq̄i(t) i = LMCA,LITA. (2.11)

Some points of the function q̄i(t) are taken from [8] thanks to engauge digitizer. Then a
linear combination of sines and cosines so that the period is equal to the cardiac cycle (0.8s)
is used to fit the data points extracted. It is performed using the class OLS (ordinary
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2.3 – Boundary conditions

least squares) of the python module statsmodels. Functions obtained and data points
extracted for LMCA and LITA are shown in Figure 2.1.
The multiplicative factor f i is computed from [52], [53] and [54]. In particular for LITA the
average flow of [53] and of the Figure 2.1 are compared to find fLITA ' 0.82. For LMCA
the comparison of diastolic velocity peak in [52] and in the Figure 2.1 gives fLMCA ' 1.12.
For the last calculation the average area of the LMCA section is necessary because in [52]
there is the diastolic peak of the velocity while in Figure 2.1 the flow is plotted. This data
is provided by [54].
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Figure 2.1: Boundary conditions of the LMCA and LITA.

For the vessel wall boundary, traditionally it is used a rigid wall assumption, in which a
zero velocity condition is applied on this surface, the so called no slip condition. For the
pressure a zero gradient condition is used because this condition simply extrapolates the
quantity from the nearest cell value.
Finally, for the outflow boundaries, it is prescribed a pressure value that is uniform over
the face (spatially constant) and a zero gradient velocity condition. It is interesting to
observe that, since we are not interested in the exact pressure value for an incompressible
flow in a channel, but only pressure differences, we would set the pressure to be 0 at the
outlet and zero gradient on the inlet.
Since stenosis changes the inlet flow and it will be considered more than one stenosis
degree, it is relevant to scale flow rates at each inlet as:

Q̄healthy
LMCA = Q̄stenosis

LMCA + Q̄stenosis
LITA = GQ̄healthy

LMCA + CQ̄healthy
LITA , (2.12)

where Q̄i = 1
T

∫ T
0 f iq̄i(t) dt with i = LMCA,LITA, G is related to the degree of the

stenosis and C is the parameter used to scale the boundary condition of the LITA.
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Chapter 3

Numerical discretization

In the current chapter, we discuss the discretization method used in our work, the finite
volume method (FVM). It is a discretization procedure applied to solve numerically differ-
ential equations. Similar to other numerical methods used for fluid dynamic simulations,
the FVM transforms the set of partial differential equations under consideration into a
system of linear algebraic equations. The basic step for FVM is the discretization of the
domain, so in the following we will analyse also some problems related to this topic.

3.1 Finite volume method
FVM is a discretization technique used especially for physical conservation laws, as N-S
equations. The numerical procedure developed involves two basic steps. In the first step,
the domain is discretized into non-overlapping finite volumes, named control volumes. The
partial differential equations are then transformed into algebraic equations by integrating
them over each discrete element. In the second step, interpolation profiles are chosen in
order to approximate the variation of the variables in each element and relate the surface
values of the variables to their cell values.
Because the flux entering a given volume is identical to that leaving the adjacent volume,
the FVM is conservative. This property of the FVM makes it the favourite method in
CFD [30]. As [33] and [34], we decided to use this approach for our study on coronaries.
This choice is supported also by [32], where a validation of numerical solutions of the
entire coronary artery model was performed.
Let us consider a decomposition of Ω in control volumes Vj and a time step ∆t > 0 such
that tn = n∆t, n = 0,1, . . ..
Equation 2.8 can be written using the divergence theorem as follow:

∂

∂t

∫
Vj

udΩ +
∫
∂Vj

(u⊗ u) · dA− ν
∫
∂Vj

∇u · dA +
∫
Vj

∇PdΩ =
∫
Vj

FdΩ. (3.1)

Each term is examined in detail.
If Af is the surface vector of each face f of the control volume, the discretization of the

25



Numerical discretization

convection term brings to:∫
∂Vj

(u⊗ u) · dA '
∑
f

(uf ⊗ uf ) ·Af =
∑
f

(uf ·Af )uf , (3.2)

where uf ·Af is the convective flux associated to u through face f of the control volume
and uf is the fluid velocity relative to the centroid of each control volume face. Different
interpolation methods can be used to compute the value of the convective flux and the
velocity at the face f ; we will use the convection linear upwind difference scheme. Consider
P local control volume central point and N neighbour control volume central point as in
Figure 3.1. The value of a physical quantity φf under consideration changes according to
the direction of the flow as follows:

φf =
{3φN−φP

2 uf < 0
3φP−φN

2 uf > 0
. (3.3)

Similarly, the diffusion therm can be discretized as:∫
∂Vj

∇u · dA '
∑
f

(∇u)f ·Af . (3.4)

In the case of mesh orthogonality, i.e. vectors df and Af in Figure 3.1 are parallel, it can
be treated as follow:

(∇u)f ·Af = uN − uP
df

|Af |, (3.5)

where df is the distance between P and N .
For non-orthogonal meshes, a correction term may be necessary:

(∇u)f ·Af = (∇u)f ·∆f︸ ︷︷ ︸
ortogonal contribution

+ (∇u)f · kf︸ ︷︷ ︸
non ortogonal correction

, (3.6)

where vectors ∆f and kf in Figure 3.1 satisfy:

Af = ∆f + kf . (3.7)

Many possible decompositions exist and a detailed explanation can be found in [31].
So far, we have analysed surface terms. For volume terms we can use indifferently the cell
centre value or the cell mean value. It is possible because we use second order methods
and the difference between the cell centre value and the cell mean value is of higher order.
For the pressure term, if P is the centroid of the control volume under consideration and
N a cluster of points around it, it is possible to write:∫

Vj

∇PdΩ = (∇P )P |Vj |. (3.8)

In order to estimate the pressure gradient, we use the least square method. If we consider
the plane:

eN = PN − (PP + df · (∇P )P ), (3.9)
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3.1 – Finite volume method

Figure 3.1: Non-orthogonal mesh.

this method want to minimize the weighted error:

e2
P =

∑
N

(wNeN )2, where wN = 1
|df |

. (3.10)

This yields to the following form of the gradient:

(∇P )P =
∑
N

w2
NG
−1 · df (PN − PP ), where G =

∑
N

w2
Ndfdf . (3.11)

For the source term, as before we can write simply:∫
Vj

FdΩ = FP |Vj |. (3.12)

Finally if: ∫
Vj

udΩ = uP |Vj |, (3.13)

using a backward differencing scheme, the temporal derivative is calculated:

∂uP
∂t

= 1
∆t
(3

2unP − 2u0
P + 1

2u00
P

)
, (3.14)

where unP = uP (t+ ∆t), u0
P = uP (t) and u00

P = uP (t−∆t).
To solve the Navier-Stokes equations we need to use a solution approach able to deal
with the coupled set of equations. Many numerical methods exist, we use a segregated
pressure-correction method. The velocity field is obtained from the momentum equation
and the individual governing equations for the primitive variables are solved one after
another.
The PISO and PIMPLE methods are available in OpenFOAM®for unsteady simulations.
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The PISO (Pressure-Implicit with Splitting of Operators) algorithm, chosen for this work,
consist of three steps briefly mentioned:

• Predictor step: the pressure field at the previous step tn is used in the solution of
the implicit momentum equation to yield the u∗ velocity field. It should be noted
that in general it does not satisfy the zero-divergence condition.

• First corrector step: A new velocity field, u∗∗ together with a corresponding new
pressure field, p∗, is now sought such that the zero-divergence condition is met. In
this step a Poisson equation for the pressure is derived applying the divergence to the
momentum equation and using the zero-divergence condition. The p∗ field obtained
is inserted in the explicit momentum equation yielding u∗∗.

• Second corrector step: A new velocity field, u∗∗∗ together with a corresponding new
pressure field, p∗∗, is now sought as before.

It can be shown that two corrector steps are a good number in order to obtain velocity
and pressure fields that approximate the exact solution well enough.
Actually, for accuracy and stability reasons, the method presents some modifications not
analysed here. Details are discussed in [35].

3.2 Domain discretization
The generation of the mesh is the first step to solve numerically N-S equations. It is
fundamental to build a good quality mesh in order to obtain meaningful results.
If the goal is to discretize a complex domain as coronary arteries, inevitably some of the
following errors are made:

• errors due to grid gradient, it is caused by different characteristic lengths of consec-
utive cells (Figure 3.2c),

• errors due to non orthogonality of the mesh, caused by the angle between the line
joining the nodes of two adjacent control volumes and the face intersected it (Figure
3.2b),

• errors due to obliquity, caused by the distance between the midpoint of the face and
the intersection point between the junction of the nodes of adjacent cells and the
face (Figure 3.2a).

In our simulations, the mesh is built by step in order to limit previous errors:

• around the geometry we generate a parallelepiped discretized with squared cells;

• intersection between the external block and the geometry is performed in order to
maintain only cells in the internal region of the coronary;

• finally, castellation and snapping are carried out in order to obtain a more realistic
boundary.
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3.2 – Domain discretization

(a) Error obliquity. (b) Error non-orthogonality.

(c) Error grid gradient.

Figure 3.2: Errors due to grid.

In addition, it could be possible to switch on surface layer insertion. The Reynolds number
in the coronary system is small when compared to larger arteries like carotid and aorta
due to reduced blood flow rate and diameter of the coronary arteries, so the surface layer
insertion could not be necessary in our application (remember the inverse proportionality
between Reynolds number and boundary layer thickness). However in order to obtain
meaningful results in term of WSS we decided to introduce the boundary layer. This
is advisable when dealing with hemodynamics because the solution near the wall, in
particular the wall velocity gradient, is rather important as it is used to compute the wall
shear stress. By the way, this allows to observe that the flow is generally assumed to be
laminar for coronary arteries like LMCA, LCx, LAD and RCA [37], so turbulence models
are not required.
Actually, some studies as [37], [38] and [39] show that blood flow through coronary arteries
under stenotic condition could result in transition from laminar to turbulent flow. In
particular, blood flow in stenotic coronary arteries can be turbulent in nature for area
stenosis above 70% and the transition to turbulent flow starts from 50% stenosis. The
reason is simply that in the region of the stenosis the velocity increases and the radius
decreases, so that the flow is still laminar, but in the region downstream of the stenosis,
whilst the velocity is still high by inertia, the increase of the radius causes turbulence.
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This aspect cannot be neglected because, even if in a stenosis the pressure drop is well
predicted without introducing a turbulence model [39], WSS calculated using turbulence
model deviates from laminar by more than 10% and as the turbulence level in the blood
flow rises the value of the WSS increases due to growth in the velocity gradient at the
wall [37].
However, our aim is to avoid introducing turbulence models solving the motion field in all
its parts appropriately refining the mesh and doing a mesh convergence analysis, basically
performing a DNS (Direct Numerical Simulation).

3.3 Geometry

Due to covid emergency, Sacco hospital in Milan could not provide us a new geometry. So,
we decided to use an old domain of Francesco Ballarin’s doctoral thesis [36] opportunely
modified. Using VMTK and Meshmixer in order to close the boundary and to remove
additional branches, we obtained the configurations for CABG1 and CABG2 respectively
shown in Figure 3.3a and 3.3b. Only two slight differences can be seen with respect to
the configurations in the Figure 1.2a and 1.2b. In fact, the bypass is performed with the
SV from the LITA instead of with the RITA from the subclavian artery. It is necessary in
order to avoid the introduction of an additional boundary condition for the RITA, which
would have been unrealistic due to the lack of studies. Furthermore, the bypass does not
end directly on the LCx, but on a subsequent branch. This is due to the initial geometry,
however it does not lead to substantial differences.

(a) CABG1. (b) CABG2.

Figure 3.3: Configurations.
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3.3.1 Mesh convergence
Mesh convergence identifies how many elements are needed in a model to ensure that
the results of an analysis are not influenced by the size of the mesh. After convergence
is achieved, extra mesh refinement does not impact the results. By this time the model
and its results are independent of the mesh. A mesh convergence study ensures that the
FVM model converges to a solution. It also gives a justification for mesh independence
and clarifies when additional refinement is unnecessary.
The geometry chosen for this analysis is CABG1 without stenosis and features of the grids
used for the study are shown in Table 3.1. In Figure 3.4 are shown the mean pressure and

Cells number Min-max volume [mm3] Non-orthogonality Max skewness
Mesh1 518.299 8.5e-14 - 1.9e-10 13.2 2.50
Mesh2 986.278 2.8e-14 - 8.0e-11 12.9 2.95
Mesh3 1.829.291 1.2e-14 - 2.5e-10 12.7 2.60

Table 3.1: Features of the grids.

velocity over time for the three meshes. To be clear, mean pressure and mean velocity
are:

p̄ = 1
Ω

∫
Ω
pdΩ,

Ū = 1
Ω

∫
Ω
UdΩ.
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Figure 3.4: Mean pressure and velocity over time.

It is possible to observe how the simulation reaches the steady state already from the
first cardiac cycle. Moreover, qualitatively it is clear that results are good for all meshes,
because the graphs are totally overlapping.
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Quantitatively, we can compute the relative error:

ε = 1
n

n∑
i=1

|xij − xi3|
x̂i3

, with j = 1,2 and x = p̄, Ū ,

where n is the number of time steps, the subscript 3 (and j) indicates the quantity of
Mesh3 (and Mesh1, Mesh2) and x̂i3 is the mean of x3. Results are shown in Table 3.2.
Finally, thanks to the introduction of the boundary layer, it is possible to obtain mean-

Mesh1 Mesh2
εp(%) 0.73 0.15
εU (%) 0.23 0.047

Table 3.2: Relative errors due to grid.

ingful results also in terms of WSS. If the stress tensor is:

τ = ν(∇u +∇uT ), (3.15)

WSS is defined as:
WSS = τ · n, (3.16)

where n is the unit normal vector.
In Figure 3.5 can be found the point value of WSS for the three meshes at the bifurcation
point at 1.8s and similar results are observed for the other time steps.
For all simulations of the work, we will use Mesh2 and the Reynolds number Re = UL

ν is
about 100.
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(a) WSS Mesh1. (b) WSS Mesh2.

(c) WSS Mesh3.

Figure 3.5: WSS convergence.
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Chapter 4

Reduced order method

High-fidelity numerical methods are very used in applications with parametrized partial
differential equations, where the parameters are geometric features, boundary conditions
and physical properties [40]. This is exactly our case because the problem under exami-
nation 2.8 applied to the coronary geometry depends on the parameter µ ∈ P such as the
time, the degree of the stenosis or the inlet flow.
For applications which require repeated model evaluations over a range of parameter val-
ues, high-fidelity simulations remain expensive in terms of CPU time and memory demand
due to the large amount of degrees of freedom Nh. The need of cost reduction in such
applications has led to the development of reduced-order modeling (ROM) that wants
to build low-dimensional models fast and cheap to evaluate but providing accurate pre-
dictions [41]. The aim of these methods is to replace the full-order system by one of
substantial smaller dimension, to decrease the computational cost while leading to a con-
trolled loss of accuracy.
Reduced basis (RB) methods represent a well-known and widely-used example of reduced
order modeling techniques [42]. The final goal of RB methods is to approximate any
member of the solution manifold with a low number of basis functions. This set of basis
functions is denoted as the reduced basis [43]. RB methods consist of two stages:

• offline: computationally it is the most expensive step, however it only needs to be
performed once. The goal of this phase is the construction of a reduced base for the
problem through the POD algorithm.

• online: it can be performed in an environment that has limited computational power
and memory. It consists of a projection of the problem onto the space spanned by
the reduced basis. During this stage, it is possible to explore the parameter space at
a significantly reduced cost.

Actually, operations performed during these stages are a little different for each RBmethod
chosen.
The reader is referred, e.g, to [9], [10], [11], [12], [13], [14], [15], [16] and [17] for a com-
plete review about the state of the art. In this work, we decided to implement POD-NN
method (Proper Orthogonal Decomposition-Neural Network), so at the offline stage also
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the training of a network to find the coefficients of the reduced solution is carried out.
Due to the development and diffusion of intelligent technologies with increasing impact
for human beings [44], we decided to apply a RB method based on machine learning. It
is relevant to note that, to our knowledge, it is the first time that POD-NN method has
been applied in the case of coronary arteries.
We decided to implement this method for some reasons clarified in the following.
In particular, in [55] it is developed a machine learning approach that demonstrates the
possibility of using machine learning as a fast and accurate alternative to CFD in order to
estimate steady state hemodynamic fields of the human thoracic aorta. In this approach,
CFD is seen as a black box, and the machine learning algorithm learns the nonlinear link
between CFD input and output. So, it appears that machine learning models can be an
appetizing alternative to CFD simulations to support clinical decisions and treatments for
specific patients. It is also argued by [56], where it is proposed a deep learning approach
to estimate the time average wall shear stress (TAWSS), an hemodynamic risk indicator,
based on the vessel geometry. The neural network model predicts TAWSS on left main
coronary artery with a 10.4% deviation from the real value. Concerning WSS, also [58]
aims to use machine learning as an alternative to CFD. The goal is to produce hemo-
dynamic parameters in real-time diagnosis during medical examinations. As in previous
papers, CFD is used to compute the data set for training and testing. They have explored
multivariate linear regression, multi-layer perceptron and convolutional neural network
architectures. With good results, they were able to produce WSS values from coronary
artery geometry directly without CFD.
Others works employ neural network architectures as physics-informed neural networks
(PINN). For example [57] uses it to solve the forward and inverse problems for the one-
dimensional and two-dimensional Euler equations. In this case, the architecture of PINN
contains two NNs sharing hyper-parameters and both contributing to the loss function,
one is the uninformed NN associated with the data while the other is the informed one
associated with the conservation laws. In [59], PINN is proposed to estimate flow variables
as blood velocity, wall displacement and pressure in a given arterial network. Actually,
this method is used with success also in areas totally different such as molecular dynamics
[60]. Therefore, all these studies have brought us closer to artificial intelligence, in partic-
ular our attention has focused on the artificial neural network method.
Anyway, more classical methods can coexist in harmony with deep neural networks. Our
aim is to come up with a partnership between machine learning and more classical compu-
tational methods that has the potential to enrich both fields. So, fueled by this ambition,
we analysed two papers [40] and [42]. There, a good performance is found in the combi-
nation of reduced models and neural networks. In particular POD-NN method is applied
in [42] for the Poisson equation and the two-dimensional incompressible steady Navier-
Stokes equations and POD-PINN in [40] for the Burger’s equation, lid-driven cavity flow
problem and natural convection.
Therefore, the presented bibliographic research prompted us to try to apply and extend
POD-NN method also in the hemodynamic field. Actually, in the future we would like to
try to use the POD-PINN method as well.
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4.1 Proper orthogonal decomposition (POD)
To begin, let’s clarify some notations. So far, we have not specified that the solution of
the problem depends on some parameters µ ∈ P, but hereinafter it is crucial. The exact
solution u = u(µ) of 2.8 is not available in an analytic way. This is why FVM is required.
From now on, uh(µ) is the solution obtained with the FVM and it is called truth solution.
We assume that the distance between u(µ) and uh(µ) can be made arbitrarily small for
any given parameter value µ ∈ P, substantially we assume that with the FVM we can
solve the truth problem at any required accuracy. However, we will not specify the details
of this topic because it goes beyond the purpose of the project. At this point we can
define the solution manifolds [43]:

M = {u(µ), µ ∈ P}, (4.1)

and
Mh = {uh(µ), µ ∈ P}. (4.2)

There are two major techniques to generate the reduced space: POD and greedy algorithm.
With the last, the basis vectors coincide with the snapshots (i.e., high fidelity solutions of
the parametrized differential problem) themselves, carefully selected. Greedy strategy is
typically more effective and efficient than POD because fewer high-fidelity solutions are
computed [42]. However, we will use the POD method because there exist problems for
which a greedy approach is not viable, simply because a natural criterion for the choice
of the snapshots is not available (more details about the failure of the greedy algorithm
are present in [45]).
Let us introduce a discrete and finite-dimensional point-set Ph = {µ1, . . . , µN} ⊂ P in the
parameter domain generated by either a uniform lattice or randomly generated points. It
is possible to introduce a collection of N snapshots {uh(µ1), . . . ,uh(µN )} and :

M{µ1,...,µN} = span{uh(µ1), . . . ,uh(µN )}. (4.3)

We assume that M{µ1,...,µN} is good enough to represent Mh if the number of snapshots is
sufficiently large.
Operatively, consider the snapshots matrix:

S = {uh(µ1)| . . . |uh(µN )} Nh ×N. (4.4)

Usually, this matrix is not square, and, denoting by R ≤ min(Nh, N) its rank, the singular
value decomposition (SVD) allows to factorise S as:

S = WDZT , (4.5)

where W = {w1| . . . |wNh
} Nh × Nh and Z = {z1| . . . |zN} N × N are two orthogo-

nal matrices composed of left singular vectors and right singular vectors respectively in
columns, and D Nh×N is a diagonal matrix with R non-zero singular values σ1 ≥ σ2 ≥
· · · ≥ σR > 0.
At the algebraic level, our goal is to approximate the columns of S by means of L < R
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orthonormal vectors. The Schmidt-Eckart-Young theorem states that the POD basis of
rank L consists of the first L left singular vectors of S, {w1, . . .wL} [46]. So we can
introduce the matrix:

V = {w1| . . . |wL} Nh ×N, (4.6)
and the reduced space:

Vrb = span{w1, . . . ,wL}. (4.7)
From a more theoretical point of view, it is interesting to note that the POD basis of size
L is the solution to the minimization problem:

min
V
‖S− VVTS‖ s.t. VTV = I, (4.8)

where ‖ • ‖ is the Frobenius norm or the Euclidian norm.
Substantially we are looking for the basis that minimizes the distance between the snap-
shots and their projection into the space spanned by the basis. In addition, the error
in the POD basis is equal to the sum of the squares of the neglected singular values,
i.e., by controlling the size L, we can approximate the snapshots matrix S with arbitrary
accuracy. Many problems exhibit an exponential decay of the singular values, allowing
the use of a low-dimensional reduced space to approximate the high-fidelity solution with
adequate accuracy [40]. So, essentially, in order to choose L, we will plot the singular
values as function of N .
Finally, another interesting observation is the parallelism with the principal component
analysis (PCA). In order to recognize the link between PCA and SVD we calculate the
following matrix:

C = SST = WDZTZDWT = WD2WT , (4.9)
that we can interpret as a covariance matrix. It suggests that the square roots of the
eigenvalues of C are the singular values of S and the left eigenvectors of S represent the
vectors pointing in the direction that maximizes the variance [47].
POD method is implemented entirely offline, because it is expensive and it needs to be
performed only once.

4.2 Artificial neural network (ANN)
Artificial neural network (ANN) or simply neural network (NN) is a computational model
able to learn from observational data. It consists of neurons and a set of directed weighted
synaptic connections among the neurons. Substantially, it is an oriented graph, with the
neurons as nodes and the synapses as oriented edges, whose weights are adjusted by means
of a training process to configure the network for a specific application. Let us consider
the neuron j and suppose that it is connected with m sending neurons {s1, . . . sm} and n
receiving neurons {r1, . . . rn}. Neuron j gets the weighted inputs wsk,jysk

(t) and send out
the output yj(t+ ∆t). To understand better, a scheme is reported in Figure 4.1.
Three functions characterize completely the neuron j:

• the propagation function: it converts the input {s1, . . . , sm} into a scalar uj =∑m
k=1 wsk,jysk

, so it is used to transport values through the neurons of an ANN. A
common choice is the weighted sum, but also non linear choices are possible.
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4.2 – Artificial neural network (ANN)

Figure 4.1: Scheme of a neuron.

• the activation function: it quantifies to which degree neuron j is active. It is a
function of the input uj and a threshold parameter θj chosen during the training
process. Operatively the neuron threshold is set to zero and θj is treated as a synaptic
weight wb,j = −θj with output yb = 1. The most commonly used activation functions
are non-linear activation functions, because if a linear function is used, the network
can adapt to only the linear changes of the input, but real world possesses non-linear
characteristics. Commonly used functions are sigmoid function, hyperbolic tangent,
RELU, SoftMax. More details can be found in [48].

• the output function: it calculates the scalar output yj based on the activation state
aj of the neuron. Often it is the identity function, so that activation and output of
a neuron coincide.

The interconnection of neurons within a network defines the topology of the network [42].
A feedforward network, also called perceptron, is one whoso topology has no closed paths
and often it is used for function regression tasks. The input nodes are the ones with no
arcs to them, and the output nodes have no arcs away from them. All other nodes are
hidden nodes. In a feedforward neural network, neurons are arranged into layers, so input
nodes define one input layer and the same holds for the output layer and for the hidden
layers. Neurons in a layer can only be linked with neurons in the next layer, towards the
output layer. When an input vector is supplied, a feedforward network establishes a map
between the input space and the output space. A network is fully connected if each node
in layer I is connected to all nodes in layer I + 1 for all I.
Layered feedforward networks have become very popular firstly because they have been
found in practice to generalize well. Secondly, a training algorithm called backpropaga-
tion exists which can often find a good set of weights (and biases) in a reasonable amount
of tune. Backpropagation is a variation on gradient search. The procedure repeatedly
changes the weights of the connections in the network in order to minimize the difference
between the actual output vector of the net and the required output vector. It gener-
ally uses a least-squares optimality criterion. The key to backpropagation is a method
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for computing the gradient of the error with respect to the weights for a given input
by propagating error backwards through the network. For a complete discussion of the
backpropagation we refer to [50]. A loss function is introduced to optimize the parameter
values in a neural network model. This class of functions maps a set of parameter values
for the network onto a scalar value that shows how well those parameters achieve the
purpose the network is intended to do. Different loss functions can be employed according
to the problem under examination.
Feedforward networks can be classified depending on the number of hidden layers. Multi-
layer neural network with two hidden layers and differentiable activation functions can
approximate any function [49], for this reason we will use a network similar to Figure
4.2. In addition to the parameters already mentioned, also the number of neurons in the
hidden layers is decided during the learning process. Hence, given an initial amount of
training samples Ntr, we train the network for increasing values of hidden neurons H,
stopping when overfitting of training data occurs, due to an excessive number of neurons.
Naturally, because it needs to be done only once, the training step in order to find an
optimal network configuration is implemented offline.

Figure 4.2: Topology of the network.

In our case, the reduced coefficients are calculated by a neural network. The ANN
seeks to minimize the mean squared error on sampled training points in parameter space.
So labeled data are needed for the training. The loss function of the network becomes the
sum of the mean squared errors between the network output and the labels.
In order to understand better where the ANN introduced before is used, it is necessary
to make some observations. Once the reduced basis is available, we can write an element
of Vrb as a combination of the basis functions:

vrb = Vα =
L∑
j=1

vjrbwj =
L∑
j=1

vjrb
Nh∑
i=1

Vi,jφi =
Nh∑
i=1

(Vvrb)iφi, (4.10)

where α is a vector of coefficients to be found and {φ1, . . . , φNh
} is a basis of Vh.
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The projection of uh into Vrb algebraically corresponds to the projection of uh into col(V)
(the space generated by the columns of V), and this projection is the element of col(V)
closest to uh in the Euclidian norm. Aware that VVT is the projection matrix (in fact it
can be written as VVT =

∑
i 〈wi, ·〉wi), the reduced solution urb is given by:

uh ' urb = VVTuh =
Nh∑
i=1

(VVTuh)iφi =
L∑
j=1

(VTuh)jwj . (4.11)

The aim is to approximate the function:

π : µ ∈ P −→ VTuh ∈ RL, (4.12)

with a neural network.
Once the approximated function π̄(µ) is computed, the solution can be simply calculated
for any parameter as Vπ̄(µ) during the online stage.
More in detail, the network will have an input layer of dimension given by the parameter
vector µ, n hidden layers of the same dimension H and an output layer of dimension given
by the function π̄(µ).
The training set is constructed using random sampling in the parameter space. The
performance of neural networks is affected by the range of the input, thus feature scaling
needs to be performed before feeding the training data into the network. For the parameter
µ, the mean µ̄ and the standard deviation σµ of the training data can be utilized to scale
the input as follow [51]:

µ = µ− µ̄
σµ

. (4.13)

Since it is a supervised learning method, in the training phase the goal will be to minimize
the loss function defined as the mean squared error of the training data [40] [42].

4.3 Numerical Results
In this section, results for time and for stenosis degree reduction are shown. To avoid
being repetitive, we choose the CABG1 configuration to test the ROM theory described
before. Firstly, for simplicity, we set the stenosis degree and we look only the time as
parameter, then we will consider both time and stenosis degree. Stenosis is introduced in
our geometry thanks to mimmo C++ library for manipulation and morphing of surface
and volume meshes (Figure 4.3). To compare results, it is important to warp the mesh
and not only the geometry, so that the same number of cells is present in all geometries.

4.3.1 Computational time reduction
For this study, CABG1 with 50% stenosis is taken into account. Two hundred snapshots
are collected with the FVM every 0.004s on a cardiac cycle, precisely between 1.6s and
2.4s. POD modes are computed as explained in Chapter 4 using MATLAB. Figure 4.4
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(a) Lattice. (b) Deformed lattice. (c) Stenosis 50%.

Figure 4.3: Introduction of the stenosis.

shows the cumulative energy of the eigenvalues for pressure p, wall shear stress WSS, and
velocity magnitude U. The nth cumulative eigenvalues is computed as:∑n

i=1 σi∑N
i=1 σi

, (4.14)

where N is the total number of eigenvalues.
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Figure 4.4: Cumulative eigenvalues in the case of time reduction.

In order to retain the 99% of the system energy, 3 modes for the pressure, 15 for the
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velocity and 16 for the WSS are selected. Then, using pytorch library, we implement a
neural network to compute the coefficients of the reduced solution. A POD-NN approach
is deployed, taking as data the snapshots obtained with the FVM. Three different neural
networks are trained respectively to find the pressure, the velocity and the WSS. In Table
4.1 are shown parameters used in the neural networks. In all cases, the input dimension
of the network is 1, the output dimension is equal to the number of modes selected, the
hidden layers are 3, the optimizer with the best performance is the Adam optimizer and
the loss function measures the mean square error (MSE). In addition, all data are scaled
to zero mean and unit variance. The combinations of these parameters exhibit a good

Neurons per layer Activation function Number of epochs Learning rate
p 500 ReLU 50.000 1.00e-6
U 850 Tanh 100.000 8.25e-6

WSS 900 Tanh 100.000 5.50e-6

Table 4.1: Parameters of the NNs for time reduction.

performance, as the loss and the accuracy trend indicate in Figure 4.5 and 4.6. The test
set is 5% of the whole data set and the over-fitting phenomenon is absent at the end of
the training because the curves in Figure 4.6 are close each other. For completeness, in
Figure 4.6a the test accuracy at the end of the training is about 96%, in 4.6b is about
92% and in 4.6c it is about 95%.

Even if the test accuracy is not 100%, it is high enough to reach satisfactory results, as
validated in Figure 4.7. In these graphs, we show some coefficients of the reduced solution
and red points (i.e. test points) are consistent with training data.
In addition, the following figures display a qualitative comparison between full order model
(FOM) and reduced order model (ROM) at test time 1.832s. Figure 4.8 indicates on the
whole a good estimate of the pressure with POD-NN. It is also confirmed in Figure 4.9
and 4.10, where the pressure at the junction LITA-LAD and downstream of the stenosis
is shown.

ROM is able to provide a good reconstruction also for the WSS, as proved in Figure
4.11, 4.12 and 4.13. In addition, it can be seen that a region of high WSS is located
around the anastomosis.

In order to investigate the flow field, velocity streamlines in Figure 4.14, 4.15 and 4.16
are obtained using 500 points with a random sampling. In addition, a slice in the region
of the stenosis shows the internal velocity field in Figure 4.17. It appears that the velocity
is higher in the LITA and in general in the central region of the vessel, decreasing to 0 on
the boundary as enforced by no slip condition.

From a quantitative point of view, relative errors of the reduced solutions are shown
in Figure 4.18, in addition the maximum, the minimum and the mean of the errors can
be seen in Table 4.2. They show overall a good performance of the method.

Lastly for completeness, the time of the online phase, SVD analysis time, training
time of the networks, the speed up and the time required for high fidelity simulations
can be found in Table 4.3. To be clear, the snapshots are obtained from SISSA/ICTP
supercomputer on 20 processors.
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Figure 4.5: Loss trend in the case of time reduction.

Max Min Mean
p 0.15660649 0.0012431271 0.017409940
U 0.069776229 0.0010527188 0.0089876854

WSS 0.073688335 0.0010436620 0.010549063

Table 4.2: Maximum, minimum and mean of the relative errors in the case of time reduc-
tion.

4.3.2 Variation in the degree of the stenosis

In order to generalize the previous analysis, we consider CABG1 configuration with degree
of stenosis from 50% to 75% with step 5. Two hundred snapshots are collected for each
geometry with the FVM every 0.004s on a cardiac cycle (between 1.6s and 2.4s). So, we
construct a matrix with 986.278 rows for p and U (193.625 for WSS) and 6× 200 = 1200
columns (snapshots) in order to extrapolate POD modes. Due to the large size of the
matrix, we compute only the first one hundred cumulative eigenvalues and left eigenvectors
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Figure 4.6: Train-test accuracy in the case of time reduction.

tonline[s] tSV D[s] ttraining[s] Speed up tFOM [s]
p 8.778422832 180.8203177 895.0288848 3.350214561e5
U 10.70492005 350.0547475 3209.481549 2.747297491e5 147048 × 20

WSS 2.072308063 21.33345222 2406.573431 1.419171238e6

Table 4.3: Time required for some stages of the time reduction.

with the python library sklearn.decomposition.TruncatedSV D. In this case, 3 and 10
modes for the pressure are sufficient in order to reach respectively the 99% and 99.9%
of the system energy. For the pressure, it is necessary to consider 10 modes in order to
reach satisfactory results because otherwise the error of the reduced solution exhibited in
Figure 4.20c is too high. For the velocity, 29 and 79 modes need to reach 99% and 99.9%
of the system energy. So, due to the huge number of modes and due to the reasonable
error trend in Figure 4.20a, we choose to keep 29 modes to find the reduced solution.
Finally, for the WSS, 29 and 80 modes are used to get to 99% and 99.9% of the system
energy. Similar to the velocity, 29 modes are considered for the study. The maximum, the
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Figure 4.7: Modal coefficients of the reduced solutions in time.

minimum and the mean of the errors can be found in Table 4.4. Due to the increase of the
parameters, the errors are greater compared to the previous case. The maximum of the
relative error shows that the model is not able to reproduce properly the truth solution
around the time 2s, whereas for the others time steps the method performs well.

Max Min Mean
p - 3 modes 2.370129 0.0035572464 0.12618929
p - 10 modes 0.40112498 0.000935177 0.028314954

U 0.3500804 0.0031757178 0.03131248
WSS 0.35365012 0.0038626634 0.055840865

Table 4.4: Maximum, minimum and mean of the relative errors with the stenosis as
parameter.

Cumulative eigenvalues for p, U and WSS are shown in Figure 4.19.
As before, a neural network model is trained to predict the coefficients of the reduced
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Figure 4.8: Comparison of FOM/ROM pressure in the case of time reduction.

solutions. Three different neural networks are trained respectively to find the pressure,
the velocity and the WSS. In particular, a single neural network is used to predict the
coefficients for all geometries under examination. The input dimension of the network is
2 (as the parameters) and the output dimension is equal to the number of modes selected.
In particular, we choose data corresponding to 70% of stenosis as test, so these data are
not included in the training phase. In Table 4.5 are shown parameters used to train the
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Figure 4.9: Comparison of FOM/ROM pressure at the graft junction in the case of time
reduction.

networks. What is not specified here is the same of the previous section.

Neurons per layer Activation function Number of epochs Learning rate
p 1300 Tanh 50.000 8.25e-6
U 1300 Sigmoid 100.000 5.00e-5

WSS 1300 Tanh 100.000 8.50e-6

Table 4.5: Parameters of the NNs with the stenosis as parameter.

Loss and accuracy trend can be found in Figure 4.21 and 4.22. In this case, for the
pressure the final test accuracy is about 93%, for the WSS and for the velocity it is about
88%. A slight overfitting can be seen in Figure 4.22b and 4.22c, but it does not introduce
issues.

In fact, as support to the functionality of the networks, some coefficients of the reduced
solutions are presented in Figure 4.23, where test points are consistent with training data.

Again, from a qualitative point of view, the pressure at test time 1.832s and 70%
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Figure 4.10: Comparison of FOM/ROM pressure near the stenosis in the case of time
reduction.

stenosis is shown in Figure 4.24. Also the region of the graft and the region of the stenosis
in Figure 4.25 and 4.26 exhibits successful results.

In Figure 4.27, it can be appreciated a vary similar distribution of the WSS on the
wall domain. It can be seen also in Figure 4.28 and 4.29, where the usual details of the
geometry are displayed.

In this case, it is attractive to remark that, in the region of the graft, WSS distributions
for stenosis 50% and 70% in Figure 4.30a and 4.30b are similar. However, due to the higher
velocity imposed on the LITA, the WSS reaches a greater value when 70% stenosis occurs.
It is reflected at the beginning of the LAD and LCx as well (Figure 4.31).

In order to investigate the flow field, velocity streamlines can be found for the whole
geometry, for the graft and for the stenosis in Figure 4.32, 4.33 and 4.34. In addition, in
the region of the stenosis, it can be seen the internal velocity field in Figure 4.35.

Consistently with the Figure 4.30 and 4.31, also the velocity achieves greater values
when the obstruction increases. It can be noted both near the anastomosis and the stenosis
(Figure 4.36 and 4.37).

All these graphs show that it is possible to use the ROM in order to obtain accurate
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Figure 4.11: Comparison of FOM/ROM WSS in the case of time reduction.

simulations with a significant reduction of the computational cost. It is highlighted in
Table 4.6, where training time of the networks, the time required for the online phase,
SVD analysis time, the speed up and the time required for the high fidelity simulations
can be found.
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Figure 4.12: Comparison of FOM/ROM WSS at the graft junction in the case of time
reduction.

tonline[s] tSV D[s] ttraining[s] Speed up tFOM [s]
p 5.426410198 2371.641028 13182.88197 5.419715599e5
U 9.416581153 2827.823787 24545.71179 3.123171724e5 147048 × 20

WSS 1.695662517 10.73292016 25118.61685 1.734401728e6

Table 4.6: Time required for some stages with the stenosis as parameter.
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Figure 4.13: Comparison of FOM/ROM WSS near the stenosis in the case of time reduc-
tion.
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Figure 4.14: Comparison of FOM/ROM streamlines in the case of time reduction.
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Figure 4.15: Comparison of FOM/ROM streamlines at the graft junction in the case of
time reduction.
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Figure 4.16: Comparison of FOM/ROM streamlines near the stenosis in the case of time
reduction.
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Figure 4.17: Comparison of FOM/ROM internal velocity in the case of time reduction.
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Figure 4.18: Error trend over time in the case of time reduction.
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Figure 4.19: Cumulative eigenvalues with the stenosis as parameter.
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Figure 4.20: Error trend over time in the case stenosis 70%, chosen as test sample.
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Figure 4.21: Loss trend with the stenosis as parameter.
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Figure 4.22: Train-test accuracy with the stenosis as parameter.
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(b) 2nd coefficient of WSS.
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Figure 4.23: Modal coefficients of the reduced solutions with the stenosis as parameter.
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4.3 – Numerical Results

Figure 4.24: Comparison of FOM/ROM pressure with the stenosis as parameter.
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Reduced order method

Figure 4.25: Comparison of FOM/ROM pressure at the graft junction with the stenosis
as parameter.
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4.3 – Numerical Results

Figure 4.26: Comparison of FOM/ROM pressure near the stenosis with the stenosis as
parameter.
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Figure 4.27: Comparison of FOM/ROM WSS with the stenosis as parameter.
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4.3 – Numerical Results

Figure 4.28: Comparison of FOM/ROM WSS at the graft junction with the stenosis as
parameter.
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Figure 4.29: Comparison of FOM/ROM WSS near the stenosis with the stenosis as pa-
rameter.

(a) 50% stenosis. (b) 70% stenosis.

Figure 4.30: Comparison of WSS between 50% and 70% stenosis near the junction.
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4.3 – Numerical Results

(a) 50% stenosis. (b) 70% stenosis.

Figure 4.31: Comparison of WSS between 50% and 70% stenosis near the stenosis.
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Figure 4.32: Comparison of FOM/ROM streamlines with the stenosis as parameter.
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4.3 – Numerical Results

Figure 4.33: Comparison of FOM/ROM streamlines at the graft junction with the stenosis
as parameter.

71



Reduced order method

Figure 4.34: Comparison of FOM/ROM streamlines near the stenosis with the stenosis
as parameter.
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4.3 – Numerical Results

Figure 4.35: Comparison of FOM/ROM internal velocity with the stenosis as parameter.
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(a) 50% stenosis. (b) 70% stenosis.

Figure 4.36: Comparison of U between 50% and 70% stenosis near the junction.

(a) 50% stenosis. (b) 70% stenosis.

Figure 4.37: Comparison of U between 50% and 70% stenosis near the stenosis.
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Conclusion and perspectives

In this work, a non-intrusive ROM using POD-NN method is employed in order to in-
vestigate the blood flow in coronary arteries when a stenosis of the LMCA occurs. The
proposed framework has been applied to a patient-specific CABG configuration. As a first
case, we considered only the time as parameter, than the degree of the stenosis from mild
to severe is added too. The goal of the thesis is to verify the solid performance of the
method for a complex geometry by using a data-driven analysis.
Incompressible Navier-Stokes equations are the starting point, then the FVM is used to
find the so called high fidelity solutions. For the velocity, we have used boundary condi-
tions which try to capture as much as possible the physiology of vascular networks outside
of the domain. In all cases, after a computationally intensive offline stage performed on
HPC architectures, POD-NN method has allowed to obtain haemodynamic simulations at
greatly reduced computational costs. In addition, this ROM allows to obtain very accu-
rate distributions on the whole domain for the variables considered, i.e. pressure, velocity
and WSS.
However several improvements are possible for the proposed framework and in the study
of patient-specific coronary artery bypass grafts. In order to obtain better results, it could
be interesting to introduce a Windkessel RCR model. It could help us to improve bound-
ary conditions, which represent a crucial step to obtain meaningful outcomes.
Due to covid emergency, we could not receive the geometry by Sacco hospital in Milan.
So, we have modified another domain removing some branches and adding stenosis, in
order to obtain the configurations of interest for the medical staff. The first (CABG1)
is a bypass performed with the LITA on the LAD, while the second (CABG2) uses ad
additional graft of SV from the LITA on the LCx.
The ROM theory has been successfully tested only for the configuration CABG1, there-
fore in the future it could be interesting to involve CABG2 too and as soon as possible
it would be attractive to compare these two configurations with the help of the medical
specialists, in order to understand which is the best choice from a practical point of view.
In this work, firstly we have considered only the time as parameter to test the reduced
method and it performs well. When we introduce the stenosis as parameter, the error
of the reduced solution rises. Even if it is popular that more parameters mean higher
error, it could be investigated better the parameterization with the aim of reducing the
difference between FOM and ROM solution. Basically for example, we can use more
data in term of the degree of the stenosis and we can observe if the error of the reduced
solution decreases. In addition, in order to explore the training process of the networks,
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Conclusion and perspectives

used to find the coefficients of the reduced solution, it could be interesting to implement
a POD-PINN approach and to compare POD-PINN and POD-NN in terms of time and
accuracy.
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