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1. INTRODUCTION

1.1. Nanosatellites overview

In the recent years the space sector has attracted a lot of social interest and economic
investments by both public and private entities. The development of new technologies, that can
be useful and applied in many fields, has allowed the foundation of different realities that are
now leaders of the space industry. In this context a particular implementation of these new
technologies, that is becoming a very important part of the space exploration sector, is made up
by the CubeSats.

The first CubeSat was developed in the “California Polytechnic State University” and “Stanford
University” in 1999 for educational purposes, then due to their low costs they have been adopted
in space industry for many types of missions. These artificial satellites can be very small and
light, normally with a mass below 500 kg, and they are instrumented with particular devices
called payloads used for collecting data and in general for performing an assigned mission (data
collection, science experiments, ...). Depending on their masses, they can be classified in
minisatellites (100~500Kg), microsatellites (10~100Kg) or nanosatellites (1~10Kg). In general
the fundamental standard for CubeSats is the 1U (one unit) that has dimensions 10x10x10 cm,
1 dm3 volume and a weight not more than 1.33 Kg; is also possible to have bigger ones with
other configurations like 3U CubeSat with dimensions of 10x10x30 cm or 6U CubeSat
10x20x30cm and so on.

Figure 1: Tyvak’s Commtrail nanosatellite (3U)

They are widely employed because their production and launch costs are cheaper compared to
a bigger standard satellite: in general the bigger is the satellite the bigger the rocket must be for
reaching the desired orbit and, in addition, it is also possible to deploy more satellites with a
single launch. Nowadays nanosatellites can be applied in many different fields that range from



earth observation to space exploration and, in the near future, in planetary defence too with the
ESA’s “Hera” mission. Due to their small dimensions they can be easily employed in swarm for
performing missions that could not be possible for single satellites: data collection about the
same phenomenon from different positions, in-orbit inspection of bigger satellites and many
others. Even if their concept is very simple since the body of these satellite is made up by cubes,
they involve very complex technologies from both electronic/mechatronics (sensors, actuators,
...) and software side for implementing all the required subsystems that the satellite needs.

Among these subsystems there is the ADCS (attitude, determination and control system),
intended for monitoring the attitude of the satellite and to autonomously perform control
actions on the actuators for accomplishing several duties, for example the “detumbling” of the
satellite when it is deployed in the orbit. This system in particular requires a software
framework able to collect data from several sensors and to send the right control action to the
mounted actuators, at a fixed rate (that can be very high). In order to simplify the software
implementation and management, a framework like ROS2 (second version of the Robot
Operating System) can take advantage for its simplicity and modularity. It’s strongly supported
by the community and provides native functions that ranges from navigation services to
graphical visualization for simulation and debugging. ROS2 it’s widely used in the robotic
industry, but it can be easily applied to different fields due to the advantages listed before.

1.2. Thesis objective and context

This thesis work is an R&D (research and design) project which context takes place in the
aerospace industry, particularly in the field of software engineering for nanosatellites. The
design and the validation of a software framework is one of the most critical phases in the
realization of a complex system like nanosatellites and it must follow a precise life cycle dictated
by software engineering rules. The steps to achieve a good software realization can be described
with a V-shaped process flow, presented in Figure 2:

User Acceptance

Requi ntAl
equirement Analysis Testing

Functional
Specification

Integrated Test
Plan

Detailed Design /
Program Specification

Figure 2: V-shape process flow of software design

8



The left part of the V-shaped flow includes the verification and design process of the system
while the right part includes the validation process:

e The first phase is the analysis of the system in terms of requirements. Based on the
functionality of the system, the requirements can be classified in functional requirements
(to describe how the system must respond to specific input and the list of the operations
that the system must perform) and domain requirements (to specify the domain of
interest of the system). This phase also incorporates the prediction of the cost of the
system.

e The second phase is the system design and it includes a first part concerning the
architectural design, which defines which are the applications that must be implemented
and how they communicate with each other. The second part is the detailed design and
program specification, to define the deadlines for the development of the applications
and how to implement them.

e After that, the drawing up of the code can start and it results to be the core phase of the
software development.

e Once all the applications of the software are developed, the software needs to be
validated. To do this, different kind of tests are performed to check that the system works
properly. The first test to be performed is the unit testing which consists to test the single
applications developed to check if bugs are present and if they realize the proper
functionality. After that, the applications modules are integrated into subsystems and
they are tested together as a group (integration testing). If in these two phases, all the
functionalities are satisfied and the subsystems work properly, the whole system is
integrated and tested (system testing) to check that all the functionalities are
implemented and cooperate properly.

¢ Finally, the software framework design can be considered completed and it is delivered
to the clients, but it always needs to be maintained.

The maintaining phase includes also the so-called “evolution” of the system, which incorporate
bugs to be fixed, changes in the requirements, new updates and releases or new features to be
added. All these operations are considered critical since they increase the cost of the
development.

To simplify these processes, new approaches to software engineering are considered. A first and
widely adopted solution is MBSD (Model Based Software Design) which consists in realizing a
model of the system in a simulation environment like Matlab/Simulink and auto-generate the
C/C++ code, with provided toolboxes, for implementing control systems in suitable embedded
systems. Considering nanosatellites as example, this solution can be a good choice for the
development of the ADCS since the control laws are designed in Simulink and, once the
simulations results are evaluated, the code can be directly obtained from these models.
Another possible solution is to design the software framework with tools and libraries like ROS



(Robot operating system) or ROS2. These have taken hold mainly in robotics applications but
they can be easily employed in the design of any kind of complex system, even nanosatellites, by
providing a lot of APIs (Application programming interfaces) to implement common features for
mechatronic systems.

In this scenario takes place this thesis work, linked to a new R&D project started by “Tyvak
International” and intended to demonstrate and realize a first implementation of a personal
flight software framework for nanosatellites using ROS2 and to study the problem of Attitude
Control and the auto-generation of code.

The main reason that convinced the software team of “Tyvak International” to start this new
R&D project (named Phoenix) is related to the fact that it is a start-up born by the American
counterpart called “Tyvak Nanosatellites” that provides technologies for the their satellites,
including the software framework.

For this reason “Tyvak International” does not hold its own flight software framework, and that
could cause problems in managing the software, find bugs and realize patches to correct them.
This means that, if there is an intention of implementing a new feature, a reverse engineering
process has to be done to understand how to integrate that feature on the provided framework
realized by “Tyvak Nanosatellites”. The flight software framework developed by “Tyvak
Nanosatellites” (MK-2) has been taken as starting point to understand what are the main
applications that are needed for a real satellite to allow it to perform in-orbit operations. After
that, the fundamental applications to realize a first implementation of the system to achieve an
attitude determination (watchdog, reading sensors and telemetry) are implemented into ROS2
nodes and their structure will be described in the following chapters of the thesis.

1.3. Structure of the thesis

The thesis is intended to explain the development process of some applications enabling the
ROS2 flight software framework, by explaining the concept of each node and why the selected
solution can be better compared to another one. Finally, an application related to the Attitude
Control system is studied and tested in MATLAB/Simulink. The thesis is structured as following:

e Chapter 2: a brief explanation of both the hardware and software used for the project,
starting from the sensor module to the Raspberry Pi 3 B+ embedded system, describing
their usage and reporting the circuit diagram used as reference for building the final
electronic circuit. Finally, an overview of ROS2 is presented, listing some peculiarities and
advantages.

e Chapter 3: description of the implemented nodes in ROS2, explaining the concept of each
one and some architectural choices. Finally their functioning and the practical

implementation in python are reported

e Chapter 4: the mathematical tools and the actuators used for the attitude control are
presented and explained. Then the scenarios of “detumbling” phase and “Earth-pointing”
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task performed with a suitable control system are addressed.

Chapter 5: the MATLAB/Simulink simulations for testing the desired control algorithms
are described and the obtained results presented. Finally, the auto generation of the code
for the control system is performed.

Chapter 6: some personal conclusions about the project and suggestions for future
improvements and developments.
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2. SYSTEM ARCHITECTURE

2.1. Project overview

The main objective of the thesis is to realize a first version of a new flight software framework,
based on ROS2, and in order to study in detail a possible application, a preliminary selection of
fundamentals applications needed in a flight software is performed. To this aim the MK-2 flight
software developed by “Tyvak Nanosatellites” is taken as example, for understanding how a
flight software is designed and which applications are needed for realizing a first
implementation.

Among the applications implemented in the MK-2 flight software, this combination of them has
been preferred:

e Watchdog: to check the status of other important applications.
e Sensors reader: for enabling the sensor data reading over 12C/SPI buses.
e Sensors telemetry: to store the collected data.

The selection of these applications (detailed in the following sections) is not casual: indeed they
can ensure the enabling of a first draft of a flight software framework, that will be able to collect
data from sensors, store them and to autonomously react to sudden crashes affecting its
processes. Moreover this first version of flight software can be used for a simple ADCS
application.

In order to test the developed flight software the reference embedded system selected is the
Raspberry Pi 3 B+.

2.2. Hardware configuration

This section is devoted to broadly introduce all the hardware needed for the thesis project,
paying attention to the connections between all the components rather than describing in detail
each one of them; this job will be performed in the following sections.

The components used are:

e Raspberry Pi 3 B+ as embedded system, used for managing the collected sensors data and
executing all the ROS2 processes.

e A custom sensor module, provided by “Tyvak International”, generally used for attitude
determination purposes. It mounts an AD7415 temperature sensor, an HMC5883L
magnetometer and a E910.86 sun sensor.

e A custom connector for interfacing with the sensor module.

e A TXB0108 level shifter for properly connecting the sun sensor to the Raspberry.

12



A level shifter is a very simple device that rescales a certain voltage, in this case the 5V voltage
coming from the MISO output line of E910.86, to another desired voltage, in this case the 3.3V
accepted by the Raspberry GPIO pins.

The TXB0108 level shifter is mandatory for connecting the E910.86 sun sensor to the Raspberry
Pi 3 B+ without damaging the board because, as can be seen in Figure 3, the MISO output signal
that would go from the sun sensor to the Raspberry pins works at voltages that are greater than
the voltage tolerated by the Raspberry GPIO pins, that is 3.3V.

No. | Parameter | Condition | Symbol | Min. | Typ. | Max. Unit
SPI DC Characteristics, output terminal MISO
1 | Outputvoltage low I=0.5mA Vool 0.4
2 | Output voltage high I=-0.2mA SO V- 0.4

Figure 3: E91086 MISO output voltages. Vdd=4.5V to 5.5V

The connections between all the components are schematized in this circuit diagram:

Raspberry Pi 3 B+

29 [ gps svp2 |
k7 et 5V§_I Sensors Module Connector
3.3v SDA 5.0V
l%TXO 3.3V L sCL 4
S Rt 5 MOSI 6
SDA 3 MISO 8
% GP12 SCL ?9 TXB0108 Level Shifter SCLK 3.3 VI
GP13 MOSI (-2 Lv1 HV1 /cs 2
38 1Gp16 MISO Lv2 HY2 13 14
%GDIQ 4 | sck %i V3 HV3 GND GND
> { CE1 CED Lv4 HV4 GND GND
Gp20 (38 CE GND GND GND
L1 Gpa Gp21 (40 3.3V 5V
§ GP17 GP26 [ —LV5 HV5 "
52 1Gp1s# Lv6 HVG GND
} GP22 GND [ Lv7 HV7 <
L0 1 Gp23 GND—Q;4 Lv8 HV8
GP24 GND 57
¢ 1Gp2s GND |2 £
21627 gmg—% GND
%%—ID?SDJ; GND (22
¢ 11D_sC GND [-2

Figure 4: Components connections circuit diagram

This is the reference used for performing all the connections between the components and the
real implementation is reported in Figure 23.

2.2.1. Temperature sensor AD7415

The AD7415 sensor is a standalone digital temperature sensor, widely used in several fields of
applications, from automotive to aerospace, that is mounted in the provided sensor module. The
serial interface is I2C and SMBus compatible, due to this the sensor can be easily interfaced with
“smbus2” python library. The sensor requires a 2.7V to 5.5V power supply and so it can be used
without any problems with a Raspberry PI 3 B+. A schematic representation of the sensor
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register structure is portrayed in the following figure:

TEMPERATURE

VALUE -
| REGISTER
ADDRESS
POINTER

REGISTER —\
r CONFIGURATION
REGISTER

P<4r0

|--—» SDA

[--—— SCL

Figure 5: AD7415 Register structure

To correctly initialize the AD7415 we must configure it by writing a particular byte in its
configuration register at “0x01” address.

' Default settings at power-up.

D7 | D6 D5 | D4 | D3 | D2 D1 Do
PD | FLTR TEST MODE ONE SHOT | TEST MODE
o 11 0s' 0Os! 0s'

Figure 6: AD7415 Configuration register bits definition

For the thesis purposes a very simple configuration has been selected by writinga “1” in the ONE
SHOT bit of the configuration register. In this way the AD7415 is expected to power-up, perform
a single conversion and then power down again automatically.

Finally, the sensor is able to perform the temperature sensing and to store the result on the
temperature register at “0x00” address. The temperature value register is a 10-bit, read-only
register that stores the temperature reading from the ADC in twos complement format.

Two “read” operations are necessary to read the actual data from this register:

Temperature Value Register (First Read)
D15 D14 | D13 | D12 D11 D10 | D9 | D8
MSB B8 B7 B6 B5 B4 B3 B2

Temperature Value Register (Second Read)

D7 D6 D5 D4 D3 D2 D1 Do
B1 LSB N/A N/A N/A N/A N/A N/A

Figure 7: AD7415 Temperature value register readings output
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As written in Figure 7 above, by reading the temperature value register twice, we will obtain two
bytes containing the actual 10-bit data needed and other N/A bites that are neglectable. After
extracting the raw digital value of the temperature in the 10-bit form from this row of bits (from
D6 bit to D15 bit), is easy to retrieve the actual value of the temperature in °C: since the
temperature resolution of the ADC is 0.25 °C, which corresponds to 1 LSB of the ADC, the
following function can be used:

Raw_digital_temperature [gecimar
4

Temperature[°C]| =

the value of the temperature in °C is obtained.
The circuit diagram of the sensor is reported in Figure 8.

3V3

AD7415ARTZ 0 1uF

2 IGND VDD

SDA
Lias SCLY

G?D I2C ADDR: 0X49 GND

|-l>-|u1 "

Figure 8: AD7415 circuit diagram

2.2.1.1. AD7415 test

In this section some tests are performed in order to check the correct behaviour of the sensor
and the software drivers used for interfacing with it.

The first test consists in an easy “read” operation and to display the sensed temperature in
degrees [°C]. The sensor is left still on the table in the company office, so we expect to read a
value around 20~23 °C.

ubuntu@ubuntu: ~/ros2_ws - @
File Edit View Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors_reader_i2c busl
Reading data from I2C busl ...

emperature: . [°C]

emperature: . [°C

emperature: o [°cl

emperature: L [°cl
emperature: . [°C
emperature: . [°C
emperature: 23.: [°cl
emperature: . [°C]

Figure 9: AD7415 sensor test
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As we can see from the picture above the temperature has been properly read (with a frequency
of 0.5 Hz), and its values are the expected ones. Obviously the sensor is affected by noise and so
the outputs are oscillating around 23.25 °C. Let’s now see what happens if the sensor module is
heated, for example by holding it in an hand.

ubuntu@ubuntu: ~/ros2_ws o =

File Edit View Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors_reader i2c busl
Reading data from I2C busl ...

emperature: 28. °C]

emperature: '

emperature:

emperature:

emperature:

emperature:

emperature:
emperature:
emperature:
emperature:
emperature:
emperature:
emperature:

Figure 10: AD7415 sensor heated test

As expected the temperature is increased, till reaching 30 °C, due to the heating of the sensor
module at contact with an higher temperature “object”.

2.2.2. Magnetometer HMC5883L

The HMC5883L sensor is a 3-axis magnetometer supported by a 12-bit ADC coupled with a Low
noise AMR sensor that achieves a 5 milli-Gauss resolution in * 8 Gauss fields. This enables a 1°
to 2° compass heading accuracy that makes this sensor suitable for mobile phones and auto-
navigation systems. This magnetometer provides an I2C serial bus interface, just like the
AD7415, and can be supplied with a voltage up to 3.6V.

The device is controlled and configured via several on-chip registers, described in the table
below:

Address Location | Name Access

00 Configuration Register A Read/Write
01 Configuration Register B Read/Write
02 Mode Register Read/Write
03 Data Qutput X MSB Register Read

04 Data Output X LSB Register Read

05 Data Qutput Z MSB Register Read

06 Data Output Z LSB Register Read

07 Data Output Y MSB Register Read

08 Data Output Y LSB Register Read

09 Status Register Read

10 Identification Register A Read

11 |dentification Register B Read

12 |dentification Register C Read

Table 1: HMC5883L register list
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So in order to use the sensor we need to properly set the bits of the configuration register A and
B, and the mode register. This can be easily done with a “write” operation on the proper address
location. For our purposes a “continuous-measurement” mode is selected by writing all zeroes
in the mode register: in this mode the device is expected to continuously perform measurements
and to place the result in the data register at each iteration.

The result is stored in 3 channels (one for each axis): X, Y and Z channels and each one of them
is made up by two 8-bit output registers (A and B ) where we can find the desired measurement.

DXRA7 | DXRA6 | DXRA5 | DXRA4 | DXRA3 | DXRA2 | DXRA1 | DXRAO
©) ) ) (0) (0) (0) (0) (0)
DXRB7 | DXRB6 | DXRB5 | DXRB4 | DXRB3 | DXRB2 | DXRB1 | DXRBO

0) ) (0) (0) (0) (0) 0) (0)

Figure 11: HMC5883L channel X data output registers A and B

Taking for example the A and B output registers of the X channel (in the figure above) is possible
to see that each register contains 8-bit (the number in the parenthesis indicates the default value
of that bit), and in the specific: the A output register will contain the MSB of the measurement
result while the B output register will contain the LSB.

The value stored in these two registers is a 16-bit value in 2’s complement form, whose range is
from “0xF800” address to “0x07FF” address.

The circuit diagram of the sensor is reported below.

HMC5883L
) DRD'\'.—lE—.—
11 .
11GND T, 0.22uF
GND seTc -k }—_—I
= ol SETP|
GND T’_“C spal 16 3V3
4T7UF 1 nc soLp—o ] 04uF
M~ NC “ e
24 NC S1
5NE . 13 1
52 INC VDDIO
1 e—3 NC vDD |2
GND =
[2C ADDR: OX1E GND

Figure 12: HMC5883L circuit diagram

2.2.2.1. HMC5883L test

To test the sensor, the values measured on the three axes are printed with a frequency of 0.5 Hz
and the results are shown in. The output values of the magnetic field measured by the
magnetometer are expressed in Gauss (G) and these values are expressed in the reference frame
provided by the magnetometer with X axis pointing down, Z axis pointing out of the sensor and
Y axis to complete a right-handed reference frame.

Obviously is difficult to say if this values are the correct ones since the magnetometer is
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measuring the magnetic field present in the desk of the company office, so there may be various
noises affecting the measurements. The shell in which the results are printed is reported in
Figure 13.

ubuntu@ubuntu: ~/ros2_ws -

-08.865137614678899
.865137614678899 [G
-0.865137614678899 [G
-8.865137614678899 [G

5137614678899

-0
-8.8651
-8.865137614678899 [G
.865137614678899 [G
865137614678899 [G
-0.865137614678899 [G
.865137614678899 [G
-0.865137614678899
.865137614678899 [G
865137614678899 [G
65137614678899 [G
-8.865137614678899
-0.865137614678899 [G
.865137614678899 [G
.865137614678899 [G

Figure 13: HMC5883L sensor test

2.1.1. Sun sensor E910.86

The E910.86 is a two-axis digital sun sensor, manufactured by “Elmos”, that provides three
sensing possible functions:

e The angle of light incidence in both XZ (Xn) and YZ (Yn) plane
e The light intensity for each of two different spectral range
e The chip temperature

The only output used for the purpose of this thesis is the first one. The physical representation
of the Xn angle, with respect to the magnetometer reference frame, can be seen in Figure 14:

X

mid

—90°

Figure 14: physical model of Xn angle

18



Obviously the same model can be used for the Yn angle by considering the YZ plane.

These output values are accessible through the SPI protocol that uses a 16 bit word to
communicate, composed by an address and a data section. The datasheet of the sensor states
that “Read” commands start with a “00” and “write” commands start with “10” while the SPI
response word always starts with “01”. According to the sensor datasheet, the commands used
in order to initialize the sensor and to perform a “read” operation are:

Command \ Operation \ SPI response Data
10x100XXYYPSZDDD | Write E910.86 and | 011100XXYYPSZDDD E910.86 and analog
analog output output status
status
X0x000xXXXXXXXXXX Read Xn and Yn 0100X5X4X3X2X1X0Y5Y4Y3Y2Y1Yo | X and Y sensor data

sensor angle data

Yn= angle yz-plane
Xn=angle xz-plane

Table 2: E910.86 write and read commands used

The data section of the word is used to configure the pull diodes (XX and YY operating mode (Z
and DDD bits).

In order to communicate with the sensor using the SPI protocol, the python “SPldev” library is
used. Once the initialization command is sent through the “xfer2” SPIdev function, and the SPI
mode and frequency are set, the sensor is ready to be read.

Once the byte word (16 bits) is read, we can extract the bits referred to Xn and Yn data obtaining
the following digital value: X5X4X3X2X1X0Y5Y4Y3Y2Y1Yo.

The float value of the angles can be easily retrieved by using the following linear relation
contained in the sensor datasheet and represented in Figure 15.

X _ 75*anyteword + 15 Y _ 75*anyte word +15
Ndeg — 27 Ndeg — 27

[s important to note that the angles value can span from a minimum of 15° to a maximum of 165°
with a resolution of 2.7°.

Digital output

moeo O — —  —— | -
|

011011 _ = = — — —

000000 I ‘ |
5 Angle of light

Figure 15: digital output - angles relation
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Once the conversions are computed, the resulting values are the Xn and Yn angles (in radians).
Now that these angles are known is possible to compute the sun vector referring to the model
depicted in the figure below.

SUNLINE
PROJECTION OF THE
SUNLINE ON THE
¥g — Zg PLANE
> %5

OF TH
SUNLINE ON THE
Is— ZSPLAI!

Figure 16: sun vector model

Referring to the Figure 14, the angle 3 can be computed as: 3 = Xn — 90°. In this way, when Xn
is ranging from 15° (the minimum value that can be obtained from the sensor) to 90°, the value

of B is negative; instead, when Xn is ranging from 90° to 165° (the maximum value that can be

obtained from the sensor), {3 is positive. In this way we are setting as our “0°” angle the output
value of 90°, that is sensed when the light is positioned right in front of the sensor as is possible
to see in the following tests. Obviously the same model can be used for the angle Yn, using angle
a instead of [3.

In this way, using the values of a and [3, and referring to the picture in Figure 16, we can easily
compute X, Y, Z coordinates of the sun vector, expressed in the sensor frame, by applying the
following formula:

Ysp tana

Xsp [tanﬁ ]
Zsp

The resulting vector is not normalized because the third component is always set to “1”. Since
only the direction of the vector is in general required for several purposes, for example the
“Attitude determination” based on the information of the position of the sun with respect to the
spacecraft, the vector obtained from the previous formula can must be normalized. Finally the
circuit diagram of the sensor, used for performing all the connection with the rest of the
hardware, is reported in Figure 17.
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100k E910.86 et
R2 /RST VDD
4.7k

out

je— 1EST MOSIL _________ most
I AAA—— MISO
5% RES1 SCLK SCLK
{&| RES2 /cs /CS
{¢| RES3
(.| RES4 R
{| RESS nea %
(.| RES6 NC3 —x
{&_| RES?7 Nes [0S
| RESS —x
{&| RES9
{¢_| RES10 PAD
% | RES11 GND
GND

Figure 17: E910.86 circuit diagram

2.1.1.1. E910.86 test

As stated in the previous section, the output values provided by the Sun sensor are the angles
described by the incident light in the XZ and YZ planes (respectively named Xn and Yn) of the
sensor reference frame. Knowing this information a first test has been performed in order to
check if the sensor correctly measures these angles. A simple situation is selected in order to
easily verify if the output values are correct or not, indeed the sensor is needed to sense an angle
0of 90° on both XZ and YZ plane when a light is positioned in front of it, as it is shown below:

il a0l s

Figure 18: E910.86 testing setup

Knowing that the measured angle when the light is right in front of the sensor should be 90°, the
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outputs obtained from this experiment, presented in Figure 19, are compared with the expected
ones.

ubuntu@ubuntu: ~/ros2_ws - o

File Edit View Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors_reader spi bus@
Reading data from SPI bus@ ...
Mn:  92.77777777777777 [°]. ¥n: 92.77777777777777
Kn:  92.77777ITTITIITY Yn: 92.777777177T77T7
Yn: 92.77777777777777

1. [°]
IE [°]
1. [°]
1. Yn: 92.77777777777777 [°]
1. [°]
1. [°]
IE [°]

85.55555555555556

[
[
95.55555555555556 [
95.55555555555556 [
[
[

° Yn: 92.777717777777777
° Yn: 92.77777777777777

Yn: 92.77777777777770

92.7777777TITTTY
92.77777 17T

Figure 19: E910.86 Xn, Yn angles at 90°

As it can be seen, the output angles are correct and this proves the proper behaviour of the
sensor, but there is an error of 2.7° affecting the measurements and this is due to the resolution
of the sensor. Now a second test is performed by moving the light along the X axis of the Sun
sensor reference frame, in particular from the left side of the sensor to the right side, and
checking if the Xn angle changes accordingly. The results are presented in Figure 20:

/]

ubuntu@ubuntu: ~/ros2_ws =
File Edit View Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors_reader_spi bus@
ing data from SPI bus@ ...
[®]. ¥Yn: 90.8 [°]
[®1. ¥n: 92.77777777777777 [°]
42 .77777777777778  [°]. ¥n: B87.22222222222223 [°]
42.77777777777778 [° m: 84.44444444444444 [°]
.B888888868888886 [°]. Yn: B81.66666666666667 [°]
TTTTTTTITNTTY °]. ¥n: B81.66666666666667
.B8B8B8B8888B888889 °]. ¥n: 78.888888858888889
R e R °]. ¥n: 78.88888888888889
2.77117111171177777 °]. ¥n: B87.22222222222223
J11111111111111 °]. Yn: 90.0 [°]
2.22222222222223 [°]. ¥Yn: 90.0 [°]
120.55555555555556 °1. Yn: 87.22222222222223 [°]
126.11111111111111 °1. Yn: 87.22222222222223 [°]
128.588888888886889 [°]. Yn: 98.0 [°]

[ o
[ o
[ o
[ o

Figure 20: E910.86 Xn changing test

The obtained results are correct since the Xn values are changing going from lower values to
higher ones (due to the movement of the light). The Yn angle is correctly maintained to a value
of approximately 90° but the precision is about 10° since the light is moved by hand and some
changes also on the YZ planes are encountered due to the movement that is not perfectly fixed
to the Y axis.

Finally the very same test is performed by moving the light along the Y axis to check if the Yn
values are correctly changing during the movements of the light. The results are presented in
Figure 21:
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ubuntu@ubuntu: ~/ros2_ws = 2 8

File Edit View Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors_reader spi buse
Reading data from SPI bu

>3.888888888888886
»3.858888888888886
»3.858888888888886

.33333333333334

4.44444444444444
2.77777777777777

.33333333333333

109.44444444444444
115.0 [°]

120 6
128. 88888888888889

Figure 21: E910.86 Xn changing test

Also for this test the results are the expected ones and so the sensor is working properly even if
the light source is fixed or moving along the axis of the sensor reference frame.

2.1.2. Raspberry PI 3 B+

The Raspberry Pi 3 B+ is a widely used single-board computer of small dimensions that can be
equipped with different Linux based operating systems (mainly Raspbian and Ubuntu). The
board doesn’t have an integrated hard disk, so the installation of the operating system is done
with the flashing from an SD card.

Raspberry is often used for academic usage but also in companies for rapid prototyping as
control unit, in projects of all size and application fields, mainly because is a low-cost board, is
simple to configure and to use and has an high efficiency in terms of CPU consumption.
Considering the older models, Raspberry Pi 3 B+ has an extended GPIO (General Purpose
Input/Output) with 40 pins. The board and its GPIO scheme can be seen in Figure 22 .

Alternate Alternate
Function Function
. - 2w rwn |
= [4]svewr |
" - Ie-::ﬂ 18] cnp

8 [uARTO TX_
10 UARTO RX |
i 12]GPIo 18 |
ffovo |
16]Pro 23 |
18]GP10 24 |
[ spro MosI]GPIO 10 [19) 20[Gno ]
[spromisofGrios  [21] 22[cpi0 25 |

[sproscik Jopro 11 23 2a[pros  Jsero cso |

[Gno____[28 26lcrro 7 Jsprocs1 |
= Reserved [27] 28] Reserved |
PR w— P05 [29] ofeno
= i- GP106 31 32[GP10 12 |
14393 fEK] (2393 [GP10 13 [33] salono |

| A3AY YAV (sor1 misofGrio s 55 FofGrio t6_Jseri cso |

o [GP10 26 [37) 38[cp10 20 | spr1 mosr]

[no J3s) a0]GP1o 21 | spri1 Scik |

Figure 22: Raspberry Pi 3 B+ board and GPIO scheme.
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For the aim of this thesis work, the connection of the following pins is necessary:

e Supply: Pins “1, 17” for the 3.3 V and pins “2, 4” for 5 V supply

e SPI communication: Pins “19, 21, 23, 24” in order to communicate through SPI protocol
with the sun sensor mounted on the sensor module

e [2C communication: Pins “3, 5” in order to communicate through I2C protocol with the
magnetometer and the temperature sensor mounted on the sensor module

e GND: Pins “14, 30, 34” are used for ground connection

These connections must be done as proposed in the schematic of Figure 4, resulting in this real
circuit:

Figure 23: final circuit with: Raspberry PI, logic level converter and sensor module

2.2. Software configuration

In the following section is presented the software configuration used for developing the thesis
work.

As presented in section 2.1.2, the used board for testing the ROS2 software is the Raspberry Pi
3 B+. The first step for starting to develop with an embedded system is to install an OS (operating
system) suitable for the aim of the work. Generally, for what concerns embedded systems, there
are two different possibilities for installing an 0S:

e The first one is realizing an image, generally composed by bootloader, kernel and rootFS,
with an automatized toolbox, like Buildroot or YOCTO, that generates embedded linux
images and then flash it on the system following a certain procedure that may be different
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from board to board .Buildroot provides a graphical user interface which allows to select
on a menu the bootloader, kernel, rootFS, predefined or custom packages and everything
that we would need on our board . It may be a hard procedure to obtain a working image
(specially for customized boards), but some boards may need this solution because of
their strong customization. This approach is explained in the Appendix A [8].

e The second solution is to download an existing operating system (like Debian or Ubuntu)
and then flash it on the board following the proper procedure. For example, with
Raspberry is very easy since you can just upload the OS image on the SD and then insert
it in the SD slot.

Since the purpose of this thesis is to develop a software framework based on ROS2, an OS image
that has ROS2 installed is necessary.

To obtain this result, the first solution is not the preferred one since in order to have ROS2 on
the image, according to ROS official installation page, the only available method is following the
“build from source” procedure which means to download the ROS2 source code and then cross-
compile it for the Raspberry Pi processor, which can be a difficult procedure to do (and not so
intuitive).

Proceeding with the second solution because of its immediacy, once the operating system is
downloaded and mounted on the SD card, is just a matter of following the procedure “Installing
ROS2 via Debian Packages” described in the ROS official installation page. The only existing
operating system that can support the last version of ROS2 (Foxy) is Ubuntu 20.04, so it's the
one used for this thesis work.

2.2.1. ROS2 overview and advantages

The Robot Operating System (ROS) is not a real operating system as the name may suggest, but
a set of software libraries and tools, generally also called “middleware”, for building robot
applications. Since ROS was started in 2007, a lot has changed in the robotics and ROS
community and the goal of the ROS2 project is to adapt to these changes leveraging what is great
about ROS1 and improving what isn’t; the most interesting part of this updating procedure is
that you can always connect the latest version of ROS2 in use with ROS1, with a mechanism
called bridge, in order to not lose any functionality neither of one nor the other.

ROS is heavily used in robotics, but it can be used in general for autonomous/semi-autonomous
systems that may need to read sensors, have perception of their position and attitude in space
and to control actuators. For these reasons it is a very good choice for developing a software
framework also for aerospace applications, like drones or in this case nanosatellites.

In this thesis project the latest version of ROS2 is used and it is called “ROS2 Foxy Fitzroy”. There
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are many versions of ROS2 and most of them are constantly updated and supported until their
EOL date (End of life); the actual situation is portrayed in Figure 24 :

Distro Release date Logo EOL date

Eloquent Elusor Nov 22nd, 2019

Figure 24: ROSZ latest distributions and EOL dates

Beyond the reasons explained above there are other benefits for using ROS:

e Itis totally open-source and constantly updated by developers all around the world for
many application fields.

e C(reating truly robust, modular and efficient robot/mechatronics software is in general an
hard job, so ROS provides plug-and-play solutions to common problems in developing
software frameworks.

e Isbased on the DDS standard for the managing of data distribution for real-time systems,
that provides an easy publish-subscribe paradigm.

e Comes with many ready-to-use tools for debugging, data visualization and simulation.

e Possibility to develop software in python and C++ and to get connected with
Matlab/Simulink for testing and code auto-generation.

Another great advantage of using ROS/R0S2 is the possibility to integrate a generic ROS system
with MATLAB and Simulink by using the official ROS Toolbox. This feature is fundamental for
the MBSD approach, addressed in the introduction, since the toolbox natively provides a function
for autogenerating C++ code (with Simulink Coder), from Simulink models, for ROS/R0OS2 nodes.
The ROS Toolbox provides an interface able to connect MATLAB and Simulink with ROS and
ROS2 enabling the creation of a distributed network of ROS/R0OS2 nodes among the target
embedded system, running the ROS software, and the local PC with MATLAB/Simulink.

The toolbox includes MATLAB functions and Simulink blocks to import and analyze ROS/R0OS2
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messages sent and received from specific topics.

At the heart of any ROS 2 system is the ROS graph. The ROS graph refers to the network of nodes
in a ROS system and the connections between them by which they are able communicate. This
graph is made up by the elementary concepts of ROS that are:

Nodes: are the smallest entities constituting every complex system. They can be seen as
processes, intended for few and elementary operations, that can communicate with other
nodes over topics. Each node can be a subscriber or a publisher of a certain topic.
Obviously the core concept at the basis of the nodes is the modularity of the system,
indeed using nodes is very simple to add functionalities just by integrating it in the
already present ROS network.

Topics: each topic has a name and a specific kind of message that it can handle. They are
the principal and simplest “hubs” where messages are collected, when sent by publisher
nodes, and sent to subscriber nodes.

Figure 25: Publisher “Node” sends a message over the topic “Topic”

Services: another method of communication for nodes based on a call-and-response
model. While topics allow nodes to subscribe to data streams and get continual updates,
services only provide data when they are specifically called by a client. A representation
of this system is presented here:

Figure 26: Call-and-response method implemented by the service
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By means of these simple components we can establish really complex systems like robots or
even nanosatellites. At the end of our development , including sensors reading, control of
actuators and storing of useful data, it is really helpful for debugging and analysis to represent
the overall system in its nodes and topics using the rqt_graph. A simple but clear example of this
functionality is represented in Figure 27 extracted from the official ROS2 tutorial.

furtiel/rotate_absolute/_action/status

Figure 27: rqt_graph of the official teleop turtle tutorial
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3.ROS2 FLIGHT SOFTWARE FRAMEWORK

In this chapter is described the proposed solution for the fundamental nodes implemented for a
draft of the ROS2 based flight software framework. As stated in the introduction the applications
selected are related to the sensor data reading and storing and to a Watchdog for monitoring the
overall system status. These applications will be implemented as ROS2 nodes; all the details are
reported in the following sections.

3.1. Watchdog node

The watchdog is an electronic or software timer that is used to detect and recover from system
malfunctions, in order to make the whole system running properly. Particularly, its main duty is
to check if the applications that it has to monitor are active and properly running or not and, in
case they are not, to re-start them again.

In general a software watchdog is a process that perform these operations after being configured
by reading the needed informations, contained in a specific configuration file (written in YAML,
JSON or other data-serialization language), that watchdog reads when it is launched.

Is always a good safety precaution to have a software watchdog in an automatic system, but it is
necessary in critical systems that must be active for a long period like nanosatellites since if a
process crashes it’s necessary to immediately re-start it, to not compromise all the system.

An example of watchdog application in a complex software framework is the one used on the
MK-1 framework produced by Tyvak International. Its working flow is presented in Figure 28.

1 timer =timer - 1
TNO

4 YES
——>»_ timer>0 —>»

Launch applications SETIRESET YES

of the config file timer = WD_timer

All keep alive

Start —>» Read config file ——» received?

NO

; .
| Send a kill signal tu‘
those applications

for safety reasons

| Check missing
| applications

Launch again the
applications

Figure 28: Mark-1 watchdog flow chart

When the watchdog application is started, it reads a configuration file (written in YAML) and
stores informations about the applications that it has to control, among other settings regarding
the timer period and so on. These executables are then launched by the watchdog itself. Each
application then is intended to send an heartbeat/keep alive message with a specified frequency
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in order to signal to the watchdog that is running correctly. To check this, an infinite loop with
the operations described below is performed:

e A watchdog timer with a specified frequency is set.

o If the timer is greater than zero, the watchdog checks if all the “keep alive” messages has
been collected from the applications to be guarded. If this doesn’t happen it decreases its
timer, otherwise the timer is reset and the loop restarts.

e Ifthe watchdog timer is equal to zero, it means that one or more applications did not send
the “keep alive” message. This could happen for many reasons, for example the
applications could be stuck in an infinite loop or it could be crashed.

The watchdog checks the missing applications and it sends a kill signal to those processes
for safety reasons. After that, it restarts the missing applications and resets the watchdog
timer.

In the ROS2 developed framework, the working principle of the watchdog node is different since
the desired application works mainly with pre-existent ROS2 API (Application programming
interface). Since an API called “get nodes_names”, which returns a list with the names of the
active nodes, is already existent in ROS2, the usage of the “keep alive” messages became useless
for detecting which nodes are alive or not.

This gives an important advantage for the system communications because it reduces the
amount of messages that a node has to send through topics. Moreover, in order to re-start the
nodes that are not alive, the ROS2 launch file service is used.

ROS2 launch files are Python scripts that allow to start up and configure a number of executables
containing ROS2 nodes simultaneously. These files include the package name and the executable
name of the node to be launched, and other parameters like the arguments to pass at the launch
command. They must be contained in a suitable “launch” folder and they can be executed through
the “ros2 launch” command from a shell, but there is also a provided API called
“launch_a_launch_file” that allows to launch other nodes programmatically, by passing as
argument the path to the correspondent launch file of the desired node.

Attributes and methods of the Watchdog class are presented in Figure 29:

= Watchdog (Node)

guarded_nodes: dictionary

active_node_names_list: list

watchdog_launcher(launch_path)
create_active_nodes _names_list()

checking_missing_nodes()

watchdog_callback()

Figure 29: Watchdog(Node) class
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The flow chart of the developed ROS2 based watchdog is presented in the figure below:

l YES

] .
Compare active an
——>  guarde:

NO
‘ Launch the missing ‘
nodes ‘

Figure 30: ROS2 based watchdog flow chart

Al guarded nodes
present?

Start \ > ad Store name of the Call the watchdog 3 Check the active
| nodes names

Re:
watchdog_cfg.yaml nodes to be guarded callback every 55

When the watchdog node is started, it reads the configuration file (written in YAML) in which
are stored the names of the nodes to be guarded and the path to their launch file, and it stores
the names in “self.guarded_nodes” field of the class. An example of the YAML file is presented
here:

1 guarded nodes:

2 nodel:

3 name: 'i2c busl'

4 launch path: '/home/ubuntu/ros2 ws/src/sensors/launch/i2c busl launch.py'
node2:

name: 'spi bus('
launch path: '/home/ubuntu/ros2 ws/src/sensors/launch/spi bus0 launch.py'

Figure 31: watchdog config YAML

The YAML file is organized as a dictionary with a key called “guarded_nodes”, which value is the
list of the nodes to be guarded. Each node is a list itself that contains two keys: the name of the
node and the path to its launch file.

The core function of the watchdog node is the “watchdog callback” which is called with a
frequency of 5 seconds. When the callback is called, the Watchdog stores the list of the active
nodes into the specific list, using the method “create_active_nodes_ name_list” and the API
“get_nodes_name” presented above. Then, a method called “checking missing nodes” is executed
in order to compare the guarded nodes list and the active nodes one. If one or more nodes are
not present, the “watchdog_launcher” method is executed through a subprocess call (present in
the multiprocessing Python library).

This method executes the launch file of the missing nodes using the API “launch_a_launch_file”
presented above. Once these operations are done, the callback is called again after 5 s.

The Watchdog node can be executed through the “ros2 run” command via shell.

For the purpose of this thesis work, the nodes that are guarded by the watchdog are the sensors
nodes presented in the following paragraphs.

Considering its implementation, the realized watchdog node does not acts like a publisher or a
subscriber node butitis like a stand-alone node which autonomously controls the status of other
important nodes, needed for the correct working of the whole system.
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3.1.1. Watchdog node test

In order to check the correct performances of the designed Watchdog node, some tests are
performed. The first situation is the one in which all the node that must be guarded from the
Watchdog are already running, and the Watchdog just needs to acknowledge this and to print a
message with the list of the active nodes. The results obtained from this scenario are presented
in Figure 32:

ubuntu@ubuntu: ~fros2_ws - @

File Edit Wiew Search Terminal Tabs Help

ubuntu@ubuntu: ~fro... * ubuntu@ubunktu: ~fro... * ubuntu@ubuntu: ~fro... ® [ -

ubuntu@ubuntu: % ros2 run watchdog watchdog
Active nodes: ['i2c busl', 'spi bus@', 'watchdog']
i2c busl present

spi bus® present

ctive nodes: ['i2c busl', 'spi bus@®', ‘'watchdog’]
i2c busl present
spi bus® present

Figure 32: Watchdog node test: all the guarderd nodes are running

The Watchdog correctly print a list of the active nodes (including itself) and a message that
shows that the sensors nodes are correctly running, so additional operations are not required.
The second situation is the one in which one of the two guarded nodes (for example the one that
read data from the SPI bus) is not running. The Watchdog is in charge of recognize the missing
node and to start this node up. The results are presented below:

ubuntu@ubuntu: ~fros2_ws - @

File Edit WView Search Terminal Tabs Help

ubuntu@ubuntu: ~fro... ubuntu@ubuntu: ~/ro... * ubuntu@ubuntu: ~fro... % [ -

ubuntu@ubuntu: % ros? run watchdog watchdog

Active nodes: ['watchdog', 'i2c busl']

Node 12c busl present

Launching missing node: spi bus®

[INFO] [launch]: ALl log files can be found below /home/ubuntu/.ros/log/2821-83-
B9-10-45-21-757562-ubuntu-25865

[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [sensors reader spi-1]: process started with pid [25866]
Active nodes: ['watchdog', 'spi bus@', "i2c busl']

Node 12c busl present

Node spi bus® present

Figure 33: Watchdog node test: SPI sensors reader node is missing
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As it can be seen, when the Watchdog callback is called for the first time, the only node present
in the active nodes list, except the Watchdog, is the one that read data from the 12C bus. For this
reason, the Watchdog launches the SPI node and print an info message that contains the PID of
the process started. After that, when the callback is called for the second time, all the nodes are
present in the list of active nodes and the execution process proceeds normally.

The last scenario is the one in which both nodes are not running and Watchdog needs to start
them up. This test is performed in order to check that the Watchdog can start more nodes
simultaneously when requested. The results are presented in Figure 34:

File Edit WView Search Terminal Tabs Help

ubuntu@ubuntu: ~fro... % ubuntu@ubuntu: ~/ro... * ubuntu@ubuntu: ~fro... X [ -

ubuntu@ubuntu: $ ros2 run watchdog watchdog

Active nodes: ['watchdog’]

Launching missing node: 1i2c busl

Launching missing node: spi bus@

[INFO] [launch]: A1l log files can be found below /home/ubuntu/.ros/log/2021-83-
B89-10-46-39-999698 -ubuntu-25913

[INFO] [launch]: ALl log files can be found below /home/ubuntu/.ros/log/20821-83-

B9-10-46-40-007670-ubuntu-25914
[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [sensors reader i2c-1]: process started with pid [25915]
[INFO] [sensors reader spi-1]: process started with pid [25916]
Active nodes: ['watchdog', 'i2c busl', 'spi bus@’]

i2c busl present

il present

Figure 34: Watchdog node test: all the guarderd nodes are missing

The obtained results are pretty similar to the ones of the previous test. Firstly only the Watchdog
node is present and the sensors nodes are missing. So, the Watchdog start them up and print two
messages with their PIDs. When the callback is called for the second time, all the nodes are
correctly present and the execution process proceed normally.

3.2. Sensors Bus node

When we have different digital devices that need to communicate one with another, there is
always a communication system that enables this data exchange.

In the case presented in this thesis there is a sensor module, instrumented with several sensors,
that can communicate with an external device by means of dedicated buses, and in particular:
the AD7415 temperature sensor and the HMC5883L magnetometer can be interfaced through
an I12C bus, while the E910.86 sun sensor with an SPI bus.

The detailed description of these two communication systems is reported in the successive
sections while here only the architectural choice of how the ROS2 framework will handle the
sensors, and why, is discussed.
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The first possible implementation that has been examined is also the most intuitive one: one
ROS2 node for each sensor.

In this way is possible to obtain a very easy to visualize system where each node is referred to
one single sensor and so it can be also easy to handle each sensor in different ways. But there
are also two significant problems with this implementation, that made the second solution to be
the best one.

Imagining a very usual situation like the one depicted in the following figure:

E910.86 E910.86
sensor 1 sensor2 | 7
SPI BUS

Figure 35: SPI bus example with several identical sensors

where there are many identical sensors that have to perform exactly the same type of
measurement and in the same manner, for example on a satellite we may have many sun sensors
(such as in Figure 35) or magnetometers collecting data for attitude determination. In cases like
these the solution “one node one sensor” is not so optimal form the software engineer point of
view because there will be many identical nodes performing exactly the same tasks and each one
of them is implemented exactly in the same way.

This totally goes against the efficiency and reusability philosophy of ROS2 and object
programming in general.

The second significant problem is related to the message traffic that our system would bear
whenever each node, representing each sensor, have to send messages over topic at very high
frequencies, containing the collected data.

The second implementation analysed solves these two issues in this way: each node represents
a particular bus used by many sensors.

Referring to the Figure 35, in this implementation the node will represent the SPI bus and not
each sensor attached to it, drastically reducing the redundancy of exactly the same piece of code.
From the message traffic point of view the situation in improved because now the node
representing the bus collects all the data from each sensor and then it works as an hub for sorting
the messages and send them to the right topic, instead of having many nodes continuously
sending messages at each collection of data.

For fully understand the differences between the two approaches we can consider a more
realistic situation, as the one presented in Figure 36:
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E910.86 E910.86 AD7415 HMC5883L HMC5883L
sensor 1 sensor 2 sensor 1 sensor 1 sensor 2

[ SPIBUS 1 } [ 12CBUS 1 J

Figure 36: Realistic situation with many sensors on two different buses

The first presented method for handling sensors with ROS2 node, would lead to have 5 nodes
for collecting data coming from the sensors connected to different buses, while with the second
solution only two nodes will be created.

3.2.1. 12C bus node

[2C (Inter Integrated Circuit) is a serial communication system used in embedded systems. It’s a
master/slave communication that normally have one master and one or more slaves. Each of
them is recognizable by a unique hexadecimal address. The hardware protocol needs two serial
lines for the communication: SDA (Serial data) for data and SCL (Serial Clock) for the clock
(mandatory since 12C is a synchronous bus). Two other lines are used: one for the reference
connection (called GND) and one for the voltage supply (typically 5 or 3.3 V). The hardware
representation of the I2C protocol can be found in :

MASTER T Rp ; Rp

SDA i

SCL a . 2

[ | [

SLAVE #1

SLAVE #2

Figure 37: 12C protocol representation

Considering the ROS2 based framework developed, one node for each I2C bus present on the
used board is created. The node can be created with the command “ros2 run sensors
sensors_reader_i2c busN” where N is the number of the bus that is wanted to be read. Raspberry
Pi, used for this work, has only one 12C bus (bus 1) but other boards could have more than one
bus so it’s necessary to specify which bus is wanted to be read.

To handle the i2c communication, smbusZ2 python library is used. It is the commonly used library
for this kind of communication and it provides several useful functions to open/close the
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communication with a specified bus and read /write data to a specific slave address.

For what regard the purposes of this thesis work, two sensors communicate through I2C bus: an
AD7415 temperature sensor and a HMC5883L magnetometer, both described in the previous
paragraphers.

Since the I12C bus node must acts like a publisher and send a message that contains the sensors
data read on a dedicated topic, a custom message that can contain these informations must be
created. All the custom messages created for this thesis work are contained in a suitable folder.
The structure of sensors message is presented in Figure 38.

1 int32[2] temp raw
2 floatéd temp

3 1int32[6] mag raw
4 floatéd[3] mag
int32 sun raw
floated[2] sun

Figure 38: Sensors custom message structure

In the “raw” fields of the message are contained the raw values returned by the related sensor
without any kind of conversions (binary value). The other fields of the message contain the data
values of the related sensors that can be used for computation for other nodes of the system.
Since all the possible kinds of sensors are present in the message and some of them may
communicate through SPI protocol (they will be present in the following paragraph), their fields
will always be empty when considering an 12C bus node. Otherwise, the 12C bus sensors fields
will be empty when an SPI node is created.

Considering 12C bus node software, its flow chart is presented in Figure 39:

Publish the msg on

the topic
[ Read | Create an object for Call the sensor
B \ | i2c_busN_cfg.yaml Initialize smbus2 Launch the > each sensor on the . Initialize sensors
Sl / and store sensors bus | 12C_busN node bus and a list with Epsmaicyliuch msg
informations | | B them | FE iSRS )
=0

. NO
=i+l —_i < len(sensors_list) -

l YES
Read sensors data
and raw data on the

bus at the specified
address |

Store them in their
relative field of the
msg

Figure 39: 12C bus node flow chart
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Its attributes and methods are then presented in Figure 40:

12C_bus(Node)

bus: smbus? bus object
sensors_info: dictionary
n_bus: int

sens: objects list

sensor_reading()

Figure 40: 12C bus node class

After the node is launched, it reads the configuration file (written in YAML) presented below:

n_bus:

2 [lsensors:

: $ sensorl:

4 | type: 'temp'
5 % addr: 0x49
(@ ? sensor2:

7 I type: 'mag'
B = addr: O0x1E

Figure 41: 12C bus node YAML configuration file

Each bus is characterized by two keys: its number and a list of the sensors present on the bus.
Each element of the list has two keys: the type of the sensor and its address on the 12C bus. The
number of the bus and the list of sensors are stored in suitable python variables by scrolling the
YAML file as a dictionary structure. The [2C bus is then initialized using the dedicated smbusZ2
function and after that the node is created.

In the constructor of the 12C bus node, an object list of sensors is created by scrolling the list
retrieved from the YAML file and creating an object for each of them.

The core function of the I2C bus node is the “sensor_reading” callback, called with a frequency of
0.05 seconds. Every time that this function is called, a new sensors message is initialized. A for
loop is performed by scrolling on the list of sensors objects created in the constructor. The raw
and data values are read and stored into the message related fields for each sensors.

The message is then published on the topic and the callback is called again after 0.05 seconds.

3.2.2. SPI bus node

The SPI protocol (Serial peripheral interface) is a serial communication protocol used for
establishing a connection between microcontrollers or in general digital devices and, just like
the I2C system, it uses a master-slave paradigm. In this communication system we don’t have an
address for each slave, instead there is the chip/slave select signal that is used for identifying a
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slave among the others.
The SPI protocol connection between master and slaves is performed by four signal lines:

e SCLK: serial clock emitted by the master

e MISO: Master input slave output, that is the signal collecting data by the master

e MOSI: Master output slave input, like the MISO but in the inverse direction

e SS: Slave select, that is the signal emitted by the master for selecting the slave it wants to
communicate with

The hardware representation of the SPI protocol is depicted in the following figure:

¥ SCLK
# MOSI SPI
SPI MISO Slave
Master » S5
t—» SCLK
» MOSI SPI

MISO Slave
» SS

- SCLK

» MOSI SPI
MISO Slave
SS

Figure 42: SPI communication protocol example with a Master and three slaves

Just like the 12C bus node, the ROS2 framework can create a node representing a specific SPI bus.
The node can be created with the command “ ros2 run sensors sensors_reader._spi busN ” where
N is the number of the bus where there are sensors wanted to be read. For the Raspberry used
in this project the SPI bus where the sun sensor is connected, is the number 0.

In order to access via software the SPI interface, the spidev python library is used.

For what concerns the message definition of the SPI bus node and the functional concept of the
implementation, is possible to refer to the previous section (3.2.1 section) where all these details
are presented and explained.

Considering the SPI bus node implementation, its class diagram and flow chart are presented in
Figure 43 Figure 44. As is possible to see the class diagram is the same as the 12C bus node and
also the flowchart is actually very similar. The main difference between an [2c bus node and an
SPI bus node is in its config file, where instead of having an “addr” section now there is a “cs”
section representing the chip select signal of the slave:

= SPI_bus(Node)

bus: spidev bus object
sensors_info: dictionary
n_bus: int

sens: objects list

sensor_reading()

Figure 43: SPI_bus node class diagram
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Publish the msg on
the topic

Call the sensor
reading callback ——
every 0.05 seconds

Initialize sensors
msg

Read
spi_busN_cfg.yami I Launch the SPI_busN
il stors sonsors 1 Initialize spidev bus —» =3
informations

Store them in their
relative field of the
ms

Figure 44: SPI_bus node execution flowchart

1 n_bus:

2 Esensors:

i [H =sensorl:

r type: 'sun'
- cs:

Figure 45: SPI_bus node configuration file

3.3. Sensors Telemetry node

The Telemetry is a technology that allows to measure and store informations of interest for the
designer or operators who want to know relevant data of the system. Telemetry data can be sent
in real-time, but they can also be collected in a suitable file (for example a binary file) and sent
once the file has reached a defined size of after a certain amount of time. Telemetry is widely
used in complex systems like nanosatellites for monitoring the status of its subsystems. In this
way, they can send the most critical data (downlink) to ground operators who know how to
interpret them.

For what concerns the ROS2-based software developed, the data that must be stored using
telemetry are those that come from the sensors nodes described in the previous paragraphs.

A Telemetry node is created for each I2C or SPI bus to store all the sensors data that are present
in that bus both in raw and interpreted form. When a predefined number of messages has been
collected, a new telemetry file is created. All the sensors telemetry files are collected inside a
folder called “sensors_log” inside the “src” folder of the telemetry package.

The files in which the data are stored can be created with different extensions. For what concerns
this thesis work, two different approaches were implemented. The results are compared by
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means of the size of the produced files and then the smaller one is selected as the suitable one.

The first attempt was done by using database (db3) files that can be easily read by using a
software that supports SQL files. The advantage of this kind of files is that they can be easily read
by an operator since the data are organized in database tables. On the other hand, the produced
files have a big size and, if the amount of data is large, the folder in which those files are contained
can became very large.

The second attempt was done by writing the data on binary (bin) files. These files are not easy
to read and the structure of the written data must be known a-priori, but they are compact and
their size is almost the half of a db3 file so this choice was the used one. The name of the binary
files is composed by the type of the bus (I12C or SPI), the number of the bus and a timestamp with
date and creation time. The structure of an I2C or SPI bus telemetry node is the same; the only
thing that changes are the sensors that are present on the bus and so the kind of data stored. The
attributes and methods of an [2C or SPI bus telemetry node are presented in Figure 46:

= SensorsTelemetryl2C/SPI

recording: boolean

ind: int

create_binary()

insert_data()

sensors_telemetry_callback()

Figure 46: 12C/SPI bus sensors telemetry class

The flow chart of an I2C/SPI bus telemetry node is shown in Figure 47:

Create Subscribe to | Call
Start } i2c/spi_sensors_telemetry_busN i2c/spi_sensors_telemetry_busN —self recording = False —» self.ind =0 sensors_t y_callback

node topic | if a new message arrives

l

Set N_MAX = 1000

&

Close the file whe: YES 2 selfind = selfind + 1
lose the file where 2 :
the data are stored [€ seiind ==HN_MAX > :

IND
. o NO Insert the msg
~"NOT self.recording OR . received with the
~ selfind > N_MAX -1 -~ sensors data into the
. 4 binary file
— =
YES

Create the binary file |—> self. ing = True | selfind =0

Figure 47: 12C/SPI bus sensors telemetry class
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A telemetry node can be created by using the shell command “ros2 run telemetry
sensors_telemetry_i2c/spi busN” to start recording data of the sensors present on the 12C or SPI
specified bus.

The created node acts like a subscriber on the topic where the specified bus publishes its data.
Once the node is created and the subscription to the topic has been done, a boolean variable
“recording” is initialized to check if the desired topic is already recorded. Particularly, if the
variable is set to False the topic is not recorded, otherwise it is recorded. Another variable “ind”
is initialized to zero and it is used to count the number of messages arrived.

The “sensors_telemetry_callback” is called every time a new message is published on the desired
topic by the related sensors node. When the callback is called, a variable “N_max” is set to define
the maximum number of messages to collect inside a binary file and, once this number of
messages is reached, a new binary file is created.

The operations performed when the callback is called are:

e Checkingif the actual value of “ind” is equal to “N_max”. If yes, it means that the maximum
number for a binary file is reached so the binary file is closed.

e Checkingif “ind” is greater than “N_max” -1 or if the topic is already recorded by using the
variable “recording”. If yes is necessary to: create a new binary file, set the recording value
to true and reset “ind” to zero

e The message received is then written inside the binary file using the Python library
“struct”.

After that, the “ind” variable is increased by 1 and the callback is called again when a new
message arrives on the topic.

3.3.1. Telemetry node test

Since the behaviour is the same for both 12C and SPI nodes, only the [2C telemetry node is
considered for testing. In order to check that a new file is created every time that the maximum
number of messages is reached, the “N_MAX” variable is set to 5 in order to rapidly check the
correct behaviour. The output obtained is presented below:

ubuntu@ubuntu: ~/ros2_ws -

File Edit View Search Terminal Tabs Help

ubuntu@ubuntu: ~fros2_ws x ubuntu@ubuntu: ~/ros2_ws x ubuntu@ubuntu: ~/ros2_ws x M -

ibuntu@ubuntu:~ 2 ws$ ros2 run telemetry sensors_telemetry i2c busl
ogging data in: /home/ubuntu/ros2 ws/src/telemetry/sensors log/i2c_busl/i2c busl sensors data-03-89-2021-11:08:24.bin

RECORDING. . .
RECORDING. . .

RECORDING. . .
ogging data in: /home/ubuntu/ros2_ws/src/telemetry/sensors_log/i2c_busl/i2c_busl sensors_data-63-89-2021-11:08:29.bin
RECORDING. . .

RECORDING. . .

RECORDING. . .
RECORDING. . .
RECORDING. . .
ogging data in: /home/ubuntu/ros2_ws/src/telemetry/sensors_log/i2c_busl/i2c busl sensors data-63-09-2021-11:08:34.bin
RECORDING. . .
RECORDING. . .

Figure 48: Telemetry node test: creation of a new file

41



The first line shows the creation of the first file in which the data of the I12C sensors are stored.
After that, a “Recording...” message is printed every time a new message is stored in the file. Once
the “N_MAX” number of messages is reached, 5 as we can see from the picture, a new file is
correctly created and filled with the new messages.

In order to demonstrate that the data are stored correctly, a Python file is prepared to read the
created binary files. This script uses the “unpack” function of the “Struct” Python library.

The data read from the script are presented in :

ubuntu@ubuntu: ~/ros2_ws/src/telemetry -

File Edit WView Search Terminal Tabs Help

ubuntu@ubuntu: ~fros2_ws/src/tele... x ubuntu@ubuntu: ~/ros2_ws x ubuntu@ubuntu: ~/ro:

ubuntu@ubuntu: $ python3 read_teleme py
Reading sensors data from: sensors_log/i2c_bus1/i2c_busl_sensors_data-83-89-2021-12:03:37.bin

Temperature raw value: 6x15  ©x60

Temperature value: 21.5 [

Magnetic field raw value oxeb Oxfd ©xe7 @xfc ©xb8

Magnetic field coordinates: ©.45045870542526245 [G] -0.4926605522632599 -0.7786422209739685

Temperature raw value:
el 2

oxfc  Oxb7

-0.4944954216480255 G -8.7715596556663513

Temperature raw value: 0x15 @x60

Temperature value: 21.25

Magnetic field raw value oxeb oxfd Oxe6 @xfc @xb9

Magnetic field coordinates: ©.45845870542526245 [G] -0.4935779869556427 G -0.7697247862815857

Temperature raw value: 0x15 Bxad
rature value:
eb oxfd oexe6 exfc ©xb9
045870542526245 [G] -©.4935779869556427 G -8.7697247862815857

Temperature raw value: 0x15 ©x20
Temperature value:
Magnetic field raw va Bx xea Oxfd @xe6 Oxfc ©xb8
t H 954127073287964 [G] -0.4935779869556427 [G] -0.7706422209739685

Figure 49: Telemetry node test: reading stored data
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4. ATTITUDE CONTROL

When a spacecraft, or in general an autonomous system, is asked to perform some actions and
interact with an environment, there is always the problem of determining its position (in the
orbit) in the space and its attitude (orientation with respect to a ref. frame). These two
informations are fundamental and needed to be mathematically defined with respect to a well-
defined reference frame.

In this thesis only the attitude information is needed for performing the attitude determination,
so the position in the orbit of our system is neglected.

In the following sections the mathematical tools for determining the attitude of our spacecraft
are presented.

4.1. Rotation matrices and quaternions

Let’s suppose that we are in a situation like the one depicted in Figure 50:

Figure 50: F1, F2 reference frames and a generic particle

There is a generic particle (red dot in the figure) and two reference frames (F1 green, F2 blue)
that are translated and not aligned, so a mathematical tool for representing the relative position
and attitude between them is needed.

To this aim is possible to analyze the situation by representing the position of the particle with
respect to the two reference frames:

R=XI+YIJ+ 7K position of the particlein F1
R,=XI1I+Y,J+ 2K position of the origin of F2
r=uri+yj+zk position of the particlein F2

Figure 51: position of the particle with respect to F1, F2
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The mathematical tool needed is such that it can represent the relationship between the
coordinates (X,Y,Z) and (x,y,z). To this aim is possible to rewrite each coordinate of R in this way:

X=R.I=(Ry+r) I=X,+al ityl j+:I-k
YV=R-J=(Ry+r) T=Y,+aJ-i+yJ - j+:J -k
Z=R-K=[R,+r) K=27,+2K-i+yK-j+-K-k

r I-i 13 1k
+T|y|. T=|J1 J-j J-k
z Ki K-j K-k

Figure 52: R written in matrix form in function of (x,y,z)

As is possible to see from the relation above (Figure 52), each element of the T matrix is a dot
product between the F1 and F2 versors, that are called the direction cosines. These elements
represent the orientation of each axis of one frame with respect to each axis of the other one,
and due to this the T matrix is usually called Direction Cosine Matrix (DCM). An interesting
feature deriving from this analysis is that is possible to split the problems of translation and
rotation and to treat them independently, since the T matrix is referred only to the rotation while

the Ry vector is only referred to the translation between the reference frames.
The DCM T can be interpreted in two ways, and is fundamental to always understand which
interpretation is being used:

e Alias: is referred to the transformation of coordinates. For example T can be interpreted

as a coordinate transformation F, — Fj.
e Alibi: is referred to the rotations. For example T can be interpreted as the rotation matrix

such that F; = F,.

The rotation matrices are a minimal and useful mathematical tool that can be easily employed
for representing the attitude of a spacecraft, but their affected by a well known and dangerous
limitation. Since matrices are used for representing the actual attitude of a generic system, it
happens that in certain configurations the matrix loses a degree of freedom. In these situations,
there is a singularity corresponding to the loss of an information, and that’s exactly what happens
when the so called “Gimbal-lock” occurs. This problem can be overcome by using non-minimal
representations of the attitude.

A possible alternative to the DCM are the “quaternions”. They are mathematical objects used as
a generalization of complex numbers to a 3D space, but they can also be used for representing
rotations. They're based on the Euler’s theorem and the elements of the quaternion are four
variables called Euler parameters, that are used for describing a rotation around a specific axis.
The advantages with respect to other representations are:

e Efficiency from a computational point of view
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e Less sensitive to rounding errors
e (Gimbal-lock avoided since it is a non-minimal representation

A quaternion can be written using these notations that are equivalent:

q = g+4q
g0+ @11+ @] + g3k

cosg +u sing
.l.l“i
e 2
) 8 I -3
= (coa 5, u1sin 5, ugsin 5, ug sin 5)

= (90,91 92:93) ]

qo cos

= n. C = = r
(40 y { q } [using }

Figure 53: quaternion equivalent notations

The ¢ is the real part of the quaternion while the ( is its imaginary part, when the real part is

null the quaternion is said to be pure. The U and IB are respectively the axis of rotation and the

angle around the body is rotating, that can be found by applying the Euler’s theorem computing
the eigenvalues and eigenvectors of the rotation matrix describing the rotation.
Let’s now introduce some properties and algebra related to quaternions:

e The null quaternion is such that its real and imaginary parts are null

The identity quaternion is such that the real partis g = 1 while the imaginary part

is null.
e The complex conjugate of a quaternion is just like the quaternion but with the
imaginary part sign inverted: Qconj = —Qinit -

e The products involving quaternions are the following:

Quaternion product (Hamilton product)
q@p=(w0+a)@(o+p)=...
= (qopo —a-p) + (wp + Poa+4q x p)

dot product
3
AP =21 4P

cross product

q2pP3 — q3p2
qxp= q3p1r — q1p3
q1p2 — q2m

Figure 54: Algebra of quaternions
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e Given a rotation defined by a quaternion, is possible to represent the inverse of the
rotation by computing the conjugate of the quaternion.

With the properties listed above, quaternions are a suitable non-minimal representation of
rotations that are widely adopted nowadays for defining the attitude of complex systems like
robots, spacecrafts and so on.

[s also possible to pass from a representation to the other by using the proper formulas:

Quaternions — DCM:

@ +ai — a3 — a3 ez —aoa) - 2(a19s + a02)
2Aq1g2 +9093) @ -+ — 4 2095~ q0m) |
2(q193 — qog2) 2qes +q0q1) @ -7 — @ +a@

T —

DCM — quaternions (qp # 0):
qo=3vTii+ T2 + T3 + 1

T39 —Tog
q= ﬁ Tig — T3

T — Tiz

Figure 55: DCM « Quaternions formulas

4.2. Reference Frames

A reference frame is specified by an ordered set of three mutually orthogonal, possibly time
dependent, unit-length direction vectors. In order to describe the orbital motion of satellites
around the Earth, there exists a set of standardized coordinate reference frames that can be used.
The most relevant ones are:

e ECEF (Earth Centred Earth Fixed): also known as conventional terrestrial system, the
point (0, 0, 0) denotes the centre of the Earth. X-Y plane is coincident with the equatorial
plane and its versors point in the directions of longitude 0° (passing through Greenwich
meridian) and 90°, while the Z-axis is orthogonal to them and points in direction of the
true North Pole. The ECEF frame is presented in the figure below:

Figure 56: representation of ECEF frame

46



This frame rotates with respect to the stars because it is tied with the Earth and so itis a
non inertial frame (with respect to the stars). ECEF reference frame is in general used for
its simplicity in describing the motion of objects that are moving on the Earth’s surface.

e ECI (Earth Centred Inertial) frame: has its origin at the centre of mass of the Earth, like
the ECEF frame, and its axes lay on the same planes of the ECEF frame but it is fixed with
respect to the stars and so it is considered inertial (with respect to the stars). An equinox
occurs when the earth is at a position in its orbit such that a vector from the earth toward
the sun points to where the ecliptic intersects the celestial equator. The equinox that
occurs near the first day of spring is called the vernal equinox. It can be used as a principal
direction for ECI frame. It is useful to describe the motion of celestial bodies and
spacecraft. The location of an object can be defined by using right ascension and
declination (spherical coordinates like longitude and latitude) or using Cartesian
coordinates. One commonly used ECI frame is defined with the Earth’s Mean Equator and
Equinox at 12:00 Terrestrial time on 1 January 2000 and is called J2000. The x-axis is
aligned with the mean equinox and z-axis is aligned with the Earth’s rotation axis, the y
axis completes the right-handed triad.

e LVLH (Local vertical, local horizontal coordinates): is a geographical coordinate system
based on the tangent plane defined by the local vertical direction and Earth’s axis of
rotation. The axes are positioned as follows: one axis is pointed towards the northern
pole, one along the local eastern axis and on represents the vertical position. If the third
axis is positive when it points up the frame is called ENU (East North Up), otherwise is
called NED (North East Down). These frames are used to represent state vectors (set of
data that describe where an object is located in space). A representation of an ENU frame
with respect to the ECEF is presented in Figure 57:

Figure 57: ENU frame with respect to ECEF

e Body-fixed frames: these frames are tied to a predefined body and move/rotate with it.
The axes can be placed as wanted accordingly to the semplifications that may occur in
orienting the frame in a certain manner or another, and it is centered in the center of mass
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of the body. Considering the system of this thesis work, the body frame considered is the
one coincident with the sun sensor E910.86 frame, used to provide the sun coordinates
and it is presented in Figure 58.

Figure 58: body frame used representation

The z-axis is pointing out of the sensor body, the y-axis points up with respect to it and x-axis is
orthogonal to them.

4.3. Satellite dynamical model

In this paragraph the derivation of a suitable dynamical model for representing a nanosatellite
is presented. Generally a spacecraft can be approximately described as a rigid body moving with
respect to an inertial frame (in general an ECI frame), and its motion can be decomposed into
two independent blocks:

(0,6,1)orq
EEE—

kinematic
equations

dynamic
eqguations

Figure 59: spacecraft dynamical model block diagram

Referring to Figure 59 the first block is related to the dynamics of the rigid body, so it relates the
angular velocities to the forces/torques applied to it, while the second block represents the
changing of the attitude of the body when certain angular velocities are present.

The kinematic equations of an approximated model of a spacecraft can be easily computed with
respect to different attitude representations (DMC, euler angles, quaternions...) and for this
thesis the quaternion represention is chosen since it ensures the avoidance of singularities. So
the goal here is to describe the time evolution of the attitude quaternion g in function of the
angular velocities around each axis of the body frame. Both the quaternion and the angular
velocities are depending on time, so si possible to represent the quaternion at a generic time

48



instant q(t + At), with respect to the quaternion g(t), by using the quaternion properties
described in 4.1:

q(t +At) = q) ® Aq(t)

Where Aq(t) represents the variation of the quaternion along the time interval At. Under the
assumption of very small At the rotation angle performed is wAt and considering U as the

rotation axis it follows that @ = wu. And so for small At, the incremental quaternion Aq(t)
can be written as:

1
Aq(t) = |wAt
2

Now is possible to derive the quaternion derivative:

wAt
. . - . - . 4®(1=- )-(1,0) 1
At—0 At At—0 At At—0 At 2 w

Finally is possible to rewrite everything in the following form:

—q1 —q2 —q3
) 1 qo —q3 q:
1= 2 Qw, Q= qs do —%1
—q> q1 4o

This form is widely used when representing the kinematics of nanosatellites, and this is general
in the sense that it can represents the satellite attitude variation related to the nanosatellite
angular velocity (this interpretation will be used for the detumbling control scenario) but also
the variation of the quaternion error related to the angular velocity error (this interpretation
will be used in the Earth-pointing control scenario).

The second block of the block diagram proposed in Figure 59 has been defined, let’s now define
the dynamic equations. The most important aspect of the dynamics of the nanosatellite is that
the input M, that can represent the actuators torque or even disturbances torques, can be easily
related to angular velocities triggered of the nanosatellites. This allows to close the chain that
connects the actuators action to the outcome in terms of quaternions, and so the attitude of the
spacecraft. The dynamics derivation is based on the second law of dynamics for a rotating body
which states that:

H=M

Where H is the angular momentum (moment of momentum) and M is the generic torque applied
to the body. Recalling that:
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H:HB+ (l)XH, H:]w, HB=](1)

We obtain the Euler moment equation:

Jo+ wxJo =M

This equation is nonlinear and in general no analytical solution is available. With this
relationship the nanosatellite dynamical model can be easily implemented in Simulink, along
with the kinematics block defined before.

4.4. General overview of AC systems

One of the most important subsystems for a nanosatellite, but in general for any spacecraft, is
the GNC subsystem. GNC stands for “ Guidance Navigation & Control “and is intended for sensing
the actual state of the spacecraft and, eventually, to perform control actions in order to
manipulate it for accomplishing a given task. In general the GNC subsystem can be represented
as the combination of two subsystems that are the ADCS (attitude determination & control) and
the ODCS (orbit determination & control). As the names can suggest, the ADCS is in charge to
perform the determination of the spacecraft attitude and to change it whenever is needed. In this
thesis only the Attitude control part is deepened.

In order to accomplish the attitude control, the following classical control scheme is taken as
reference:

Disturbances

Attitude Attitude

Reference u
Error Controller Actuators Spacecraft vy
Dynamical system

Attitude
Estimation

Sensors [«

Sensors
noise

Figure 60: Attitude Control block scheme

But for the thesis purposes the attitude estimation part is not represented and the spacecraft
state are supposed to be all measured at each time instant.

The ACS (attitude control system) objectives can be the spacecraft attitude stabilization about
a reference attitude or the reference tracking in attitude manoeuvres; we can classify the
attitude control system as:
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e Passive: based on the body dynamics and/or environmental forces.

e Semi-active (semi-passive): based on reaction wheels and/or interactions with the
Earth Magnetic Field.

e Active: based on thrusters.

The selection of the right set of actuators for a nanosatellites is crucial, since it defines which
manoeuvres, and their accuracy, can be performed once in orbit. For this thesis the only kind of
actuators mounted on the simulated nanosatellites are the magnetorquers.

4.4.1. Magnetorquers

Magnetic control actuators are actuators capable of exerting a torque on the nanosatellite by
interacting with the Earth Magnetic Field. As is well known the magnetic field of the earth can
be represented as a magnetic dipole whose dipoles are located at the magnetic poles of the earth.

Figure 61: Earth magnetic field dipole representation

The interaction between the nanosatellite and the earth magnetic field follows a really simple
physical phenomenon that also makes the compass needle to point the magnetic North. Indeed
when there is a magnetic dipole immersed in a magnetic field, a torque is produced by the

interaction between the magnetic moment of the immersed dipole M and the magnetic flux

density B; the mathematical relation is the following:
T=mxB

By exploiting this relation, magnetic actuators find their place in actuation systems because
they are lightweight, very cheap and require low power for actuating a control action.
Compared to other actuators, like thrusters, that can be used by consuming a power source
that is fixed and that cannot be produced once in orbit (like propellant), magnetorquers are
more reliable from this point of view since they need only electrical energy that can be stored
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and reproduced by solar panels. A further advantage that increases their reliability over other
actuators, like reaction wheels, is the absence of moving parts.
The main drawbacks of these actuators are:

e strong dependence on the Earth magnetic field (or in general a persistent magnetic
field) so they are not suitable for deep space missions but ideal for LEO missions.
e the actuation system composed only by magnetorquers is underactuated since the

vectorial product between m and B produces torques that can act only on a plane

perpendicular to B.

The magnetorquer construction design is really simple and it consists on a coil with a defined
area and number of turns depending on the required performances. There are three types of
magnetorquers, different from each other but based on the same concept:

e Air-core magnetorquer: this is the very basic concept of magnetorquer, a conductive wire
wrapped around a non-conductive support anchored to the satellite. This kind
of magnetorquer can provide a consistent magnetic dipole with an acceptable mass and
encumbrance.

e Embedded coil: constructed creating a spiral trace inside the PCBs of solar panels which
generates the effect of the coil. In this way is possible to minimize the impact on the
satellite as it is entirely contained within the solar panels. By the way this implementation
it is not able to produce an high value of the magnetic dipole, and so produced torques
will be smaller.

e Torquerod: this is the most efficient solution in terms of produced dipole moments. Is
made by conductive wire wrapped around a ferromagnetic core which is magnetized
when excited by the coil. The drawback is the presence of a residual magnetic dipole that
remains even when the coil is turned off because of the hysteresis in the magnetization
curve of the core. It is therefore necessary to demagnetize the core with a proper
demagnetizing procedure.

Independently to their construction, magnetorquers can produce a magnetic dipole:

m=N-1-A

Where N is the number of windings of the coil, I is the current flowing on the coil and A is the
area vector of the coil.

4.4, Attitude control scenarios

As stated in previous chapters the simulated control system only comprises a set of
magnetorquers as actuators, so the right selection of the control scenarios to simulate must be
performed, taking into account the under actuation of the control system.
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Considering the type of system available and which control actions can be implemented, the
choice was made on two important applications for magnetic actuators: satellite detumbling and
earth-pointing.

In this chapter only the theoretical treatment of the control problems is detailed, while on
chapter 5 we will see the MATLAB/Simulink implementation and finally in chapter 6 the
simulation results and the code generation of the control system.

4.4.1. B-dot control for detumbling phase

Generally when a nanosatellite is deployed from the launcher, it is pushed out by a deployer and
this procedure causes unwanted rotations of the nanosatellite that would result in an unstable
system; in these situations the nanosatellite is said to be “tumbling”.

So the first task that the attitude control system must perform is to detumble the spacecraft, in
other words it must mitigate these rotations until reaching a condition where the satellite has a
little (ideally zero) angular momentum. Finally when the nanosatellite is detumbled, the ACS can
start its nominal work.

The most reliable, and used, way to detumble a satellite in those orbits where the magnetic flux
density of earth magnetic field is not neglectable, is by using magnetic actuators.

The main idea behind the concept of detumbling a satellite by means of magnetorquers is that
the magnetometers mounted on the satellite, in tumbling phase, will measure at each time

instant a different magnetic flux density B and depending on the angular velocities is possible

to obtain a derivative of the magnetic flux density B. The concept of the B-dot control algorithm
is to actuate a torque of opposite sign with respect to the magnetic flux density variation, in order
to dampen the rotations. There are several possible implementations of a B-dot control involving
proportional terms or current control, but since in Tyvak International the detumble of
nanosatellites is performed by using a B-dot bang controller, only this variant will be detailed.

The B-dot bang controller is characterized by the fact that the magnetic dipole produced will not

be proportional to variation of the magnetic flux density B, indeed the control system will
always produce the maximum absolute value of the magnetic dipole. One advantage of this
controller is the faster spin decay compared to other approaches since the highest control action
is always used for counteracting the angular rotations.

As previously stated the torque produced by the magnetorquers is given by the vectorial product
between the magnetic dipole and the magnetic flux density, this relation obviously holds also for
a B-dot bang bang controller but let’s check how the B-dot bang bang magnetic dipole can be
defined mathematically:

) . m; forB, <0
m; = —m; -sign(B,) = max . , fori=12,3
Lctrl ! max g ( 1) {_mi - forB, >0 f
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As we can see each component of the magnetic dipole will be set at the maximum value with a
sign discordant with the variation of each component of the magnetic flux density. Recalling that
the magnetic dipole is related to the number of windings N, the current flowing on the coil [ and
the area vector of the coil A; is possible to write the previous relation in function of the current,
that will be our control signal on the actuators:

m; ctrl = (N ' Ii ctrl ' Al) = —(N ' Ii max . Al) . Sign(Bl)
l
. . I  for B, <0
[ ctrl —I; max Slng(Bl) = {_Ii o for Bl- >0

Since the Bang-Bang controller already involves only the usage of maximum current there is no
need of saturators in the Simulink model.

4.4.2. Earth-pointing control

When a satellite is designed, the type of mission that it will have to carry out is always kept in
mind: for example the payload that is mounted on it that can be a camera or a particular sensor
that must be pointed towards the earth for performing the right task. To this aim the control
system design is very important for orienting the attitude of the satellite in the proper manner.
After the deploying in orbit, as we have already discussed in previous paragraph, the satellite
needs to be detumbled in order to achieve a “stable” state from which the ADCS can start to
perform the required tasks. For some applications the “Earth-pointing” control (or Nadir
pointing) is the nominal operational situation for the spacecraft, for example if it is needed to
take photos of the Earth all along the orbit. For visualizing the kind of the desired attitude of the
spacecraft for the Earth-pointing control we can refer to the following figure:

Earth equator

X
Figure 62: ECI, Body and LVLH reference frames
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As is possible to notice, in the simplest Earth-pointing control scenario only three different
reference frames are involved: the standard ECI frame which components are denoted with the
I subscript (used as “fundamental” reference frame), the body frame denoted with the B
subscript (representing the attitude of the spacecraft) and finally the LVLH frame denoted with
the LVLH subscript. The LVLH frame (already discussed in 4.2) can be detailed in this way for
the Earth-pointing control scenario:

e Origin: coincident with the origin of the body frame, in the centre of the spacecraft.

e 7 axis: along the direction of the vector connecting the origin of the ECI frame with the
origin of the Body frame, with verse pointing towards the Earth.

e Y axis: perpendicular to the orbital path, with opposite verse with respect to the orbit
normal.

e X axis: perpendicular to the Z/Y axes in order to form a right-handed triad.

The Earth-pointing control action is required to stabilize the nanosatellite attitude, represented
with the body frame orientation with respect to the ECI frame, around the LVLH frame for having

the Z g axis pointing towards the Earth. This control problem can be easily performed with a
fully actuated control system, for example by using reaction wheels, without encountering
strange problems since in that case the actuators can exert the needed torque, computed by the
controller, to the satellite.

In our case this can’t be done, because the system is underactuated and, moreover, the control
torques that can be applied are strictly related to the environment, in particular to the Earth
mangetic field acting on the nanosatellite. Due to these two problems the challenge of controlling
a spacecraft with only magnetic actuators for accomplishing the Earth-pointing task has been
addressed by the scientific community and many papers have been published proposing
effective and mathematically supported control algorithms. For this thesis the theoretical work
presented in the [6] is used as reference for setting the control problem.

The fundamental idea of this control law, and its capability to achieve the task, is based on the
particularity of the Earth magnetic field, along a LEO orbit, to be periodic and so even if the
control system is underactuated, it can be able to decrease the error between the desired and
the actual attitude of the spacecraft to zero (ideally). The first assumption that must be taken
into account is that the LEO orbit of the satellite can be approximated to a circular one, and this
is our case since the eccentricity of our orbit is very small. This assumption is very important for
the problem setting since it allows to easily compute the angular velocity error between the body
frame angular velocity and the LVLH one. Let’s now present the control law and its terms:

— b
Myesired = (quv + debo)
Where:

e (,: vectorial part of the quaternion representing the attitude error between the body
and the LVLH frame.
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. a)go: angular velocity error between the body and the LVLH frame.

. Kp: 3x3 matrix containing the coefficients proportional to the q,, error.

e K,;: 3x3 matrix containing the coefficients proportional to the w’go error.

The control law is very simple since it is a PD (proportional-derivative) control action, where
the proportional action Kp is related to the quaternion error ,,, while the derivative term K,
to the angular velocity error w,’io, that defines the changing rate of q,,. This particularity of

having matrices instead of coefficients allows to improve the performances of the control action
since there are more degree of freedom for designing the control algorithm and is also possible

to mitigate the coupling dynamics involving different axis, but for simplicity in this thesis the Kp

and K, matrices are considered diagonal and each element of them is equal to the other. The

relationship above for computing the M j,4ireq is not directly used in control algorithms since
we know that the control system is intrinsically underactuated and in particular that the control
torque available in the end will be perpendicular to the magnetic field. Is possible to exploit this
information in order to avoid useless power consumption for producing the dipole: since we
know that only perpendicular torques can be produced, with respect to the magnetic field, we

can compute the actual M ¢; by projecting M jp5ireq ON the plane perpendicular to the

magnetic field B. This is done because in general only the part of M j,4j-0q thatis perpendicular
to the magnetic field, is responsible for the production of a torque on the spacecraft and so the

magnetic dipole M ;; and the correspondant produced torque can be computed as follows:

Metry = (KpCIv + dego) x B
T =M XB

And this will be the final relationships that will be implemented in Simulink for representing the
controller.

56



5. MATLAB/SIMULINK MODELS

In order to simulate and test the control algorithms, a simulation environment is needed for
representing the satellite in its orbit and its interactions with the Earth magnetic field. To this
aim an orbit propagator is designed for collecting the useful data needed for reconstruct the
magnetic flux density along the orbit and the position of the satellite.

Since the Skyfield python library is widely used for this purposes, even in Tyvak International, a
python script implementing its functions is used for the propagation of the orbit. First of all we
have to select a desired orbit: for this thesis a LEO is preferred and in particular the one of the
Tyvak International nanosatellite “ Tyvak-0092 ” (Commtrail), that has been in orbit for over a
year now. The informations and characteristics about a certain orbit can be collected and
represented by means of the so called TLE: the two-line element set is a data format encoding a
list of orbital elements of an Earth-orbiting object for a given point in time; TLEs are used for
describing trajectories only of Earth-orbiting objects like satellites and debris. The TLE
representing Commtrail orbit is the following:

TYVAK-8892
1 448520 19889A 21052.22088221 .80009573 ©0000-0 51478-4 @ 9999
2 44852 36.9677 65.5974 0007145 313.1735 46.8406 15.88042%925 65725

Figure 63: Tyvak-0092/Commtrail nanosatellite TLE

A TLE contains all the informations needed for identifying an object orbiting around the Earth
in only two coded lines, the informations are organised in this way:

e Line 1: contains informations about the Satellite catalog number (used for univocally
identify an artificial object), informations about the launch that brought the satellite in its
orbit and on the mean motion about that orbit.

e Line 2: contains the classical orbital elements for identifying the orbit like the
eccentricity, inclination, argument of Perigee etc...

By using Skyfield functions for computing the position along the desired orbit, is possible to
obtain and store the desired geocentric coordinates (latitude, longitude and elevation) based on
the WGS84 (World Geodetic System 84) used for representing an ellipsoid approximating the
Earth geometry. In particular the WGS84 is defined as follows:

e C(Center: in the Earth mass center.

e 7 axis: passing in the North pole.

e Xaxis: chosen in order to have the Greenwich meridian laying on the XZ plane.
e Y axis: for completing the right-handed triad.

As is possible to imagine, this triad can be interpreted as an ECEF reference frame.
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Finally by running the script, a "log_orbit.txt" file is produced containing all the informations
required, as is possible to see in the following picture:

year month day hours minutes seconds time[s] lat[®] lon[°] elev[m]
2021 2 9 9 @ @ @ 19.471655784372214 150.7692389703974 564446
2021 2 9 @ @ 1 1 19.438185989226824 150.8212413633378 564439
2021 2 9 9 @ 2 2 19.40469871285869 150.87322082905044 564432
2821 2 9 @ @ 3 3 19.371193994589518 150.92517748765658 564425
2021 2 9 9 @ 4 4 19.337671873704895 150.97711113931493 564418
2821 2 9 @ @ 5 5 19.304132389458115 151.82982280642223 564411
2821 2 9 8 8 6 6 19.278575581868748 151.880891822260862 564485
2021 2 9 @ @ 7 7 19.237001487723354 151.13277565472396 564398

Figure 64: Orbit propagation log_orbit.txt file snippet

[s important to notice that the file contains all the data stored as columns, where we can find
the UTC date along with the latitude, longitude and elevation. This kind of structure is crucial
for using the log_orbit.txt file as a data file to import in MATLAB, in this way we can easily
obtain all the required data in MATLAB and to store them in suitable variables. Along with the
previously detailed file, another one is needed for computing the quaternion representing the
attitude of the LVLH frame with respect to the ECI. The same script also produces another log
file that is the following:

time[s] x1 x2 x3 y1 y2 y3 71 22 23

@ 0.6425168625952835 0.733593183876978 -0.22138852815532983 -0.4111208185225473 0.08620999509130706 -0.9074950511559493 -0.6466464361380889 0.674098468758051 0.3569868919833884

1 0.6418111101360169 ©.7343285480146995 -0.22099737891673085 -0.41111990617723626 0.08621103777162104 -8.9074953656756228 -0.6473474968288846 0.6732971920301253 0.3572283717088072
2 0.6411045917679788 ©.7350630378725106 -0.2206059660156829 -0.41111899498523347 0.08621208132155642 -0.9074956795878426 -0.6480477874841546 0.6724951119819992 0.3574694245627315
3 0.6403973083292488 0.7357966525723675 -0.22021428991907935 -0.4111180849484275 ©.08621312574003892 -0.907495992892025 -0.6487473072667183 0.6716922295661536 0.3577100502566736
4 0.6396892606597325 9.7365293912363668 -0.21982235109447967 -0.4111171760686037 ©.08621417102367551 -0.9074963055876263 -0.6494460553394712 0.6708885457370014 0.35795024850234664
5 0.6389804495995601 0.7372612529883351 -0.219430150009467 -0.41111626834759923 0.08621521716961822 -0.9074966176740844 -0.6501440308668709 0.6700840614491678 0.3581900196122073
6 0.6382768759899116 ©.737992236952992 -0.21903768713202626 -0.4111153617872549 0.08621626417500936 -0.9074969291568359 -0.6508412330141481 ©.6692787776583952 6.3584293614991771
7 0.6375605406730597 ©.7387223422559238 -0.,21864496293053243 -0.41111445638939 0.0862173120369985 -0.9074972400173278 -0.6515376609472863 0.6684726953215777 0.35866827567662607

8 0.6368494444916185 0.7394515680243479 -0.21825197787333792 -0.4111135521558046 0.08621836075274494 -0.9074975502730132 -0.6522333138337569 0.6676658153959109 0.3589067612586271

Figure 65: Orbit propagation LVLH_orbit.txt file snippet

This file includes the components, expressed with respect to ECI frame, of the LVLH frame at
each time step.

In the following paragraphers we will see how these data are used and how to model in Simulink
all the subsystems needed for the simulation and the design of the control system.

5.1. Orbit and Earth magnetic field propagator

Once all the data have been imported in MATLAB and saved in suitable timeseries variables, we
can use the following (Figure 67) Simulink model for computing the Earth magnetic field flux
density “B_eci”, expressed in ECI frame, and the quaternion “q_eciZlvlh” describing the
orientation of the LVLH frame (local orbital frame) with respect to the ECI frame. As is possible
to see in Figure 67, the Simulink model is made up by two branches: the upper branch devoted
to the computation of the Earth magnetic flux density and the lower one designed for computing
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the orientation of the local orbital frame with respect to ECI frame. Let’s deepen each branch and
see how the computations are performed:

e Magnetic flux density computation: the geocentric coordinates describing the orbit are
taken as input by the International Geomagnetic Reference Field model IGRF-13 (Simulink
Aerospace Blockset), that computes in output the magnetic flux density vector expressed
in NED coordinates. Since we want it expressed in ECI frame, two coordinate

transformations are performed: the NED to ECEF coordinate transformation is done by

,elzzf and then the ECEF to ECI coordinate

transformation by means of the “ecefZeci()” function contained in the Aerospace Blockset.

using a suitable transformation matrix R

e LVLH quaternion with respect to ECI: The computation of the LVLH quaternion is really
simple once the components of the LVLH axis, with respect to the ECI frame, are stored.

This is because in general the Rflfllh rotation matrix, that represents the attitude of the
LVLH frame with respect to the ECI frame, has for columns the components of each axis
computed with respect to the ECI frame. So as is possible to see from the Simulink model
we just need to concatenate these vectors for obtaining Rj[j3,. The obtained matrix can

be easily converted in quaternions with the “dcmZ2qua()” function, obtaining the desired
quaternion that will be used as reference in Earth-pointing control. Notice that this
quaternion will be used only for the computation of the initial condition of the quaternion
error in Earth-pointing scenario.

After the simulation the propagated magnetic flux density B expressed in ECI coordinates, that
the nanosatellite will experience in its orbit has the following behaviour:

time [s] x10*

Figure 66: Magnetic flux density components: Bx, By and Bz (top to bottom)

59



Magnetic flux density computation (ECI)

XYZ (nT) » 109

B h (m) P mu

H(nT) ™ $ Interpreted

B_ned fen ~ MATLAB Fcn
E| P b (deg) @ D (deg) Ned2Ecef coord. transf.

altitute, latitude
and longitude | (deg)

out.B_eci

» | (deg) orbit_date_utc.
F (nT)

International Geomagnetic Reference Field
IGRF-13

LVLH quaternion orientation wrt ECI

» out.q_eci2lvih

A 4

g normal(qg)

q [ nterpretea |
ol | Interpreted
iih_y % P| MATLAB Fon |
2

L
EcizLvLH Eci2LVLH quaternion

imulink model

Orbit propagator S
60

Figure 67



5.2.

Satellite model

In this section the “Satellite dynamical model” implementation in Simulink is presented and
discussed. As anticipated in 4.3 a spacecraft can be represented by means of two input-output
blocks, one describing the dynamics of the rigid body and the other one the kinematics.

For the detumbling scenario the setting is very simple, indeed the dynamics and kinematics
described before have been just implemented as they are. In this scenario also environmental
disturbances have been included. This is the overall block diagram representing our satellite and
environmental interactions:

Environment perturbations —|_b
_,—D—o
0
B_bodyf ————
o M
" ’ q_ecizbody ———
whb—
wdot ——
B_eci » E_eci
e HF——
Earth magnetic field

along the orbit Satellite dynamical model

Figure 68: Detumbling scenario (Satellite model and environmental interactions)

Let’s describe each block in details:

Environmental perturbations: when a spacecraft is deployed in orbit and in general is
moving in the space, there are many sources of torques and forces that can affect its
dynamical behaviour, these forces/torques can be seen as additive disturbances acting
on the actuator control action. For the thesis purposes these disturbances have not been
deeply addressed, for example by modelling gravity gradient or including a residual
dipole moment. They are just uniformly distributed random signals with a maximum
magnitude of: |5 - 1077| Nm.

Earth magnetic field B_eci: this is simply the Earth magnetic field computed in 5.1 and fed
to the satellite model. Notice that at each time step the B_eci vector is expressed with
respect to the ECI frame, while the control algorithm needs all the signals expressed in
body frame. To this aim a conversion inside the satellite dynamical model is performed.

Satellite dynamical model: as said before this block implements the dynamics and
kinematics of the satellite, along with the B_eci = B_bodyf. As can be seen in the fig.X.X.
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below, we have the “Euler equation” and the “quat kinematics” blocks that implements
the relationships defined in 4.3. Then there is a coordinate transformation from ECI to
Body coordinates of the B_eci, by using the DCM retrieved from the quaternion for each
time instant. This B_bodyf signal will be used by the controller and for computing the
torque acting on the satellite due to magnetic interaction with the Earth magnetic field.

»{ 3
w
»(4)
wdot
»_ 5 )
H
w > qf—e »q nomaliq)———»( 2 )
- olu ot q_ecizbody
M Hf— ! quat kinematics

Euler equation

Interpreted T
MATLAB Fcn u

RO->Rt rotation RO->Rt
transformation

Matri
@ > Mualttlg)l(y @

B_bodyf

B_eci ECI2BODY
coordinates
transformation

Figure 69: Detumbling control: “Satellite dynamical model” insight

Is possible to see that in this scenario, all the state variables of the satellite and the other signals
used for the control purpose are defined with respect to the ECI frame.

For the Earth-pointing scenario the fundamental concept is quite the same, but in this case the
“Satellite dynamical model” will implement the dynamics and kinematics concerning the
quaternion error and the angular velocity error; the disturbances from the environment in this
case are not considered. The decision of representing the situation, and in particular the satellite
dynamical model, not strictly referring to our satellite but to its relative attitude and angular
velocity with respect to the desired ones, makes the problem easier to be studied and solved.
Indeed all the papers and researches studying the magnetic actuation of nanosatellites for Earth-
pointing are based on this setting. As said before here we don’t have environmental disturbances
so the only block present in Simulink related to the satellite is the one implementing dynamics
and kinematics of the error.

In Figure 70 the insight of the “Satellite dynamical model” is depicted and as expected the general
block diagram is very similar to the one in the detumbling scenario, but here we are focusing on
the error affecting the overall system involving the body frame and LVLH frame. To this aim the
outputs of the system are “w_tilde” and “q_tilde”. Notice that the “quat_kinematics” block, that is
exactly the same of the detumbling scenario, is used only for retrieving the Earth magnetic field
acting on the satellite, in body coordinates. The block “quat_error_kinematics” implementing the
kinematics is the classical one, but the quaternion variations are triggered by the angular
velocity error, so its output will be the quaternion representing the rotation required for passing
from body frame to LVLH frame, that is the error “q_tilde”.
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At this point the last part involving the satellite is the modelling of the sensor, in particular the
magnetometer. The Simulink model of our magnetometer (2.2.2) is really simple and is depicted
in Figure 71. In this model the sampling frequency of the real magnetometer is considered, and
it can be put ata maximum of 160Hz, that means a sampling time of 0.06s. Also the error affecting
the measurements is considered: from the datasheet it can be seen that the noise floor is
|2 -1072| G and so converted in Tesla: |2 - 10~7| T. The magnetometer noise is generated with
a uniformly distributed random signal ranging in the noise floor absolute value. Finaly the Earth
magnetic field measured from the sensor is retrieved and used by the controller.
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Figure 70: Earth-pointing control: “Satellite dynamical model” insight
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Figure 71: Magnetometer model
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5.3. Magnetorquers model

The magnetorquers Simulink model is just an implementation of the concepts and relations
described in the section 4.4.1, where magnetorquers were introduced and detailed.

—— B_bodyf_measured

—_—p |

Magnetorquers

g Matrix | )] uT >
| > Multiply v
NA mu=N*I"A Fu=muXB tau

B_bodyf_measured

Figure 72: Magnetorquers subsystem (top) and implementation (bottom)

As is possible to see from the picture above the modelization of magnetorquers can be really
simple if it is intended as a two inputs-one output system, where the current I is the control
action exerted by the controller and B_bodyf measeured is the magnetic flux density sensed
by the simulated magnetometer. The output is just the torque T produced by the interaction
between the magnetic dipole and the magnetic flux density. A peculiarity of the B-dot bang
bang controller is that we don’t need a saturation of the control signal, in this case the current,
because in the concept of the controller we want to exert always the max current whenever is
needed.

5.4. B-dot Bang controller model

The B-dot bang controller model is very simple since, just as for the magnetorquers, it is just an
implementation of the relations detailed in the section 4.4.1. The system is depicted in Figure 73
below:

—» B_bodyf_measured -

B-dot bang bang
controller

CO)——f Kb B Bdot w
B_bodyf d 1

Bdot dead band sign(Bdot)

Figure 73: B-dot bang bang subsystem (top) and implementation (bottom)
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The controller is a simple SISO (single input-single output) system where the data collected by
the magnetometer are the only data concerning the “state” of the satellite that are needed. As is
possible to see in the previous figure the B is computed by a discrete-derivative block that

Bi—B 4
Ts

implements the formula: B =k- ( ), with K=1 (unitary gain). Then a dead band is

needed:

Bdot1

» | >Do
.

interval test

Fb \ Bdot

Figure 74: B-dot bang bang dead band implementation

The concept is really simple: since the sign of B can directly determine the triggering of a null
current or a max current (in both verses), the controller is really sensitive to every variations

of sign of B . This can be a real problem for the hardware and the power consumption since
even a very small value different from zero will trigger the controller to send the max current,
resulting in a continuous switching on the current verse. For fixing this problem the dead band
technique is adopted, in particular an interval around zero is selected and whenever the signal
is within that interval, the output signal will be set to 0.

The “interval test” block checks if the components of the Bdot1 signal are within the interval,
which amplitude has been selected after a trial and error approach, and in this case the output
will be set to a Boolean TRUE (represented as 1) otherwise to FALSE. At this pointa NOT
operator is used because we want to set to “0” each component that is within the interval, with
a successive element-wise product. Let’s see how the dead band works and the results in
output:

Bdot_ original [ T
o

] 2000 4000 8000 8000 10000 12000 14000

and [ T]

m.mwwww MVMW J‘MWMWM" L I _M\W‘H]MWWMW‘% e

1
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Hdntl deadh:

Figure 75: original B-dot_x (top) and “filtered” B-dot_x (bottom)
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As we can see from the picture, the dead band is really useful to cut down these natural
oscillations that would trigger the currents continuously, especially at steady state where the
variation in the magnetic flux density cannot be exactly 0 due to the behaviour of the magnetic
field in orbit. The dead- band amplitude used for this test is 4.6 - 107>,

5.5. Earth-pointing controller model

Regarding to the Earth-pointing scenario let’s see how the control law, defined in 4.4.2, can be
implemented in Simulink:

—»Bb

—{q_tilde et f——

—w_tilde

Earth-pointing Controller
NA inv(A)
™ @x3) L
* | Multiply
+
mu_desired |_desirad >< —» u’ _/_ 1
|_ctrl
current -
"
W saturation

w_tilde

D,

B b

Matrix

Figure 76: Earth-pointing controller subsystem (top) and implementation (bottom)

From the Figure 76 above is clear that the left part of the controller implements the control law
for computing the desired dipole, starting from the errors related to the attitude and the angular
velocity. Then the correspondent current is computed and saturated according to the
magnetorquers capabilities.
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6. SIMULATIONS AND CODE AUTO-GENERATION

In this chapter the simulations steps and their results will be explained, in particular how the
simulation has been set. The simulation environment is made up by using MATLAB/Simulink
where all the data management and the initial conditions setting have been implemented in a
MATLAB script, while all the models presented in chapter 5 are used in Simulink for simulating
the satellite and the control actions applied to it. The Simulink solver is a fixed step Ode5
(Dormand-Prince) with a 0.01 fundamental sample time. Finally after the simulations the two
control algorithms will be translated into code by auto-generation using the ROS Toolbox.

6.1. B-dot detumbling simulations

The first scenario that has been simulated is the detumbling of the satellite; referring to the
Simulink model in Figure 82 .
At this point once the simulation environment is set and the satellite initial conditions regarding
initial attitude and angular velocities, have been defined in MATLAB, we can run the simulation
for testing the B-dot bang controller. These are the conditions used for testing the dead-band
action during the simulations:

Simulation woldeg/s] qo body ] inertia matrix dead_band
amplitude

Test 1 [16.53; 5.29; —16.09] [1;0;0;0] diag[0.0111; 0.0022; 0.0111] 46-107°

Test 2 [16.53; 5.29; —16.09] [1;0;0;0] diag[0.0111; 0.0022; 0.0111] 42-107°

Table 3:B-dot Dead-band tests settings

As is possible to see from the Table 3 these tests are performed for evaluating the B-dot bang
control performances when a different dead-bands are used, and how this difference reflects on
the control current signal sent to the magnetorquers. The initial angular velocities have been
randomly selected in MATLAB with the function “rand” in the interval [-20, 20] deg/s.

The obtained results for the test 1 are reported in Figure 77 Figure 78. below: as we can see the
B-dot bang controller is able to dampen the angular velocities of the satellite, starting with
relatively high values, since wy = [16.53; 5.29; —16.09] [deg/s] (randomly selected), till
reaching low values that are = 2.6 deg/s around the X and Z axes, while for the Y axis
(corresponding to the lowest inertia axis) the angular velocity is almost 0. The control currents
has a reasonable behaviour that becomes less pronounced when approaching to the “steady-
state” condition. Obviously since we have a varying magnetic flux density and high frequency
disturbances acting on the measurements and the dynamics of the system, we cannot expect a
null control action when the B-dot controller is activated. Indeed in real satellites a check is
performed for enabling and disabling the controller: for example when the angular velocities are
below a certain threshold the detumble can be considered achieved, otherwise the controller
must be activated. The obtained results are in line with those that can be verified in real systems.
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Figure 77: Detumbling test 1: angular velocities
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Figure 78: Detumbling test 1: control currents

From the obtained results of the test 2 (Figure 79 and Figure 80) we can see that decreasing
the dead-band amplitude increases the performances of the B-dot bang controller in terms of
time required for dampening the angular velocities and also for what concerns the amplitude
of the velocities, that can be further dampened since the control action is more frequent.
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Indeed the dampening action is faster and the “steady-state” angular velocities performances
around X and Z axe are improved, with respect to the test 1, in particular they are = 1.5 deg/s.
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Figure 79: Detumbling test 2: angular velocities
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Figure 80: Detumbling test 2: control currents

On the other hand the control currents exerted are switching more frequently with respect to
the test 1, this can be a real problem for the hardware. So a trade-off between performances and
control action must be done in order to obtain the best compromise. Notice that small changes
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in the dead-band amplitude can significantly affect the overall performances, since the variations
of the magnetic flux density are of very small order of magnitude.

At this point let’s perform some simulations for evaluating the robustness of the control
system. To this aim different initial conditions, randomly generated, have been selected and
used for testing the B-dot controller. The following simulations have been performed by
including environmental disturbances and magnetometer noise (both described in 5.2) and
with a dead-band amplitude of 4.2 - 10~° and inertia matrix /] = diag[0.0111; 0.0022; 0.0111]

Simulation

1 (blue)
2 (red)
3 (yellow)
4 (purple)
5 (green)

woldeg/s]
[16.68; -8.56; 10.28]
[-17.84; 1.23; 11.16]
[-19.52; -6.51; -13.51]
[4.07; -9.48; 6.16]
[-10.84; 16.53; -13.90]

qo body
[-0.1329; 0.9619; 0.1976;
[0.5679; -0.1657; 0.1467;
[0.9655; -0.2490; 0.0700;
[0.6261; -0.6616; 0.0746;
[0.2600; 0.6020; -0.0683;

0.1341]
-0.7928]
-0.0308]
-0.4057]
-0.7519]

Table 4: B-dot controller, 5 simulations random initial conditions (attitude and ang. vel.)

As we can see from the B-dot controller is able to detumble the satellite with good performances;
the angular velocities at steady state are always below |1.56| deg/s even with disturbances
affecting the dynamics of the satellite and the magnetometer measurements.

Wy [ degis ]

time [s]

Wz [degis ]

3 4 B}
time [s]

time [s]

Figure 81: B-dot controller simulations performance

The performances are good and they can be even improved by tuning the dead-band amplitude
in order to achieve lower residual angular velocities, even if the present results are acceptable
for a real application.
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6.2. Earth-pointing simulations

Finally the controller discussed in 5.5 has been tested and validated in Simulink by considering
different initial conditions of the satellite. This time the initial quaternion and angular velocities

are defined relatively to the LVLH ones, so now the errors q,, and a)f,’o between the body frame
and the LVLH frame are the initial conditions of the kinematics and dynamics of our system;
moreover the environmental disturbances have been not considered.

Recalling that M ¢ = (qu,, + Kda)go) X B, the first consideration that can be made is

relative to the (Kp, Kd) and how these parameters affects the performances of our control

system. In general the parameters of a PID or PID-like controller can be computed by solving an
optimization problem (LQR) in order to guarantee stability or performance requirements. In this
thesis, since the situation is really similar to the one already studied and analised in [6], a tuning
procedure by simulating the system with different values for the parameters has been adopted,
starting with values similar to the ones reported in the paper has optimal values.

So let’s consider a situation in which our satellite is not aligned with the desired LVLH frame, in
particular the attitude error is such that the body frame is rotated of 180° around the z axis of
the LVLH frame, and that the angular velocity error is about 2 deg/s around x,y and z axis of the
LVLH frame. In this situation let’s test how the parameters of the controller can affect the
performances of the control system. In particular, as is possible to see from the figure below, the
proportional term has been lowered in order to avoid unwanted oscillations.
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Figure 83: controller performances comparison between Kp=300 and Kp=100
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As we can see having the Kp term equal to 300 leads to a faster reaching of the steady state at

the beginning (around 10000s), with respect to the other case, but due to the future interactions
with the Earth magnetic field having the proportional term at 300 leads to high oscillations and

to a settling time that is longer than having the Kp=100. This is something that can be expected

since the proportional term in general leads to a quicker system but depending on the
disturbances and interactions with the environment, the performances can be easily degraded.

For what concerns the derivative term instead, K;=18000 was the best choice.

Now let’s analyse two cases in which this controller can be used. Obsiously a full magnetically
actuated ADCS mounted on a satellite is not the best choice due to the well known problem of
underactuation that in some situations can be critical. For this reason a full magnetic control
system can be equipped in couple with a principal ADCS, and used for these situations where a
contingent control system is needed: for example for the detumbling of the satellite, as seen
before, or in particular situations where the actuation through other actuators like reaction
wheels is not convenient or impossible (failure for example). So as first case a situation in which
the satellite has been aligned with the LVLH frame is considered, and then the impact with a
generic body is taken in consideration. The impact will trigger the rotations of the satellite, so

we'll take as initial conditions for the system: q,, = [0; 0; 0], wgo = [1.5;1.5; 1.5] deg/s.

q0,;,4=11:0:0:0], w":imf”j;ﬂ _52_5]

time [s] x10*
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Figure 84: Earth-pointing controller, impact scenario simulation

As is possible to see from the figure above, the controller is capable to counteract the angular
velocity error and to reach the desired configuration in about 40000s, that means in about 7.5
orbits considering the TLE of the Commtrail nanosatellite.

At this point a general evaluation of the performances of the controller, considering different
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initial conditions can be performed, just as has been done for the detumbling controller. To this
aim is possible to refer to the Table 5 below collecting the settings of the simulations that will be

carried out.

Simulation = w¢j4e oldeg/s] (wrt LVLH) Qtige o0 body (wrt LVLH)
1 (blue) [1.5; 1.5; 1.5] [0.7071; 0; -0.7071; 0] (90° around Y)
2 (red) [0.5; 0.5; 0.5] [0; O0; -1; O] (180°aroundY)
3 (yellow) [-0.2;-0.2; 0.7] [0.906; -0.422; 0; 0] (50°around X)
4 (purple) [-0.1; 0.1; -0.3] [0.5; 0; 0; -0.866] (120°around Z)
5 (green) [1; 0.5; 0] [0.866; -0.5; 0; 0] (60°around X)

Table 5: B-dot controller, 5 simulations various initial conditions (attitude and ang. vel.)

And the simulation results are analysed considering the angle error, expressed by the quaternion
error, and the angular velocity error. Indeed recalling that the quaternion express a rotation in
function of the angle of rotation 8 around an axis of rotation u, it is possible to retrieve the angle
error from the quaternion error in the following way:
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Figure 85: Earth-pointing controller, error angle evaluation for the 5 simulations

By checking the Figure 85 is possible to see that the designed controller, with the selected
parameters values, is able to accomplish the task. Indeed the angle error reported in the figure
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reaches the 0° at steady state, showing the alignment between the body frame and the LVLH
frame. Also the angular velocities are controlled and, from the Figure 86 below, is possible to see
that the angular velocity error is reduced to 0 rad/s.
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Figure 86: Earth-pointing controller, angular velocity error for the 5 simulations
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6.3. ROS Toolbox and code auto-generation

After the control algorithms have been tested in different scenarios and their performances have
been analysed, the last step is to transfer the Simulink model of the controller into a suitable
embedded system. This approach is known as “Model Based Design”, as introduced in the
introduction of this thesis, and is widely used in industry since all the effort that is needed for
implementing the desired control system is related to the modelling and simulation in
MATLAB/Simulink, while the coding part is done automatically. Also for this part ROS has its
advantages that would make it a good candidate framework for building a flight software; thanks
to the official support received by “MathWorks”, is possible to interface MATLAB/Simulink with
ROS/ROS2.

In order to integrate our ROS network with MATLAB/Simulink, the official "ROS Toolbox” must
be installed on the host machine (our PC with MATLAB/Simulink): the installation is very simple
as this toolbox can be downloaded and installed as any other MATLAB add-on and after this the
ROS Toolbox offers an interface able to create a node network running in part on the target
system (Raspberry Pi 3 B+ in this case) and in part on the host system. It offers also premade
functions and blocks for MATLAB and Simulink that allow to design and analyse the node
network. Finally the toolbox allows to connect the ROS network with external simulators like
Gazebo in order to visualize the correct behaviour of the overall system or a particular part of it,
and then, when all the simulations are concluded is possible to generate the code automatically
and to easily deploy the node in the network.

For deploying an automatically generated ROS node in the network we can follow two paths:
generate the code and run it directly on the network or generate the code and then build the
obtained package directly on the target with a manual procedure. Both ways have its own
peculiarities, for example the automatic build/run procedure can be useful for testing small
functionalities that must be implemented within a node and we don’t want to lose time by doing
the manual procedure.

9& Earth_paointing_controller - Simulink academic use

SIMULATION DEBUG MODELING FORMAT _
G =] (& ! )

Hardware Control ~ || StopTime | 120000 Monitor MATLAB M Build
Settings Panel & Tune v~  Workspace Moadel +

PREPARE RUN ON HARDWARE REVIEW RESULTS DEPLOY

Figure 88: ROS Toolbox activation in Simulink

In this case there is an additional step needed for integrating the ROS network and the MATLAB
system: an XML file must be included in both ROS and MATLAB workspace in order to make the
two systems (previously connected to the same internet network) seeing each other. An example
of this file can be seen in Figure 89 below, the structure is almost standard for every situation
and the only thing that you have to configure is related to the IP addresses of our target and host
systems.

For the thesis purposes this path is not the preferred one since only the procedure for bringing
a Simulink model in the ROS network is studied, the test of the node is not performed since the
provided hardware and facilities don’t allow this.
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The other procedure is very simple and intuitive: first of all the system that is wanted to be
converted in code must be isolated and then on Simulink, in the “Apps” section, the ROS Toolbox
must be launched. As is possible to see in the Figure 88 above, the “ROBOT” menu appears.

<?xml version="1.0" encoding="UTF-8" ?>
<profiles>
<transport_descriptors>
<transport descriptor>

<transport_id>veelpeers</transport_id> <!-- string -->
<type>UDPva</type> <!-- string -->
<maxInitialPeersRange»1@0</maxInitialPeersRange> <!-- uint32 -->

</transport_descriptor>
</transport_descriptors>
<participant profile_name="participant_somename" is_default_profile="true">
<rtps>
<builtin>
<initialPeersList>
<locator>
<udpva> TARGET IP ADDRESS ON THE NETWORK
l<address>192.168.10.1</address> |
</udpva>
</locator>
<locator>
<udpva> HOST IP ADDRESS ON THE NETWORK
|<address>192.168.10.2</address>|
</udpv4>
</locator>
</initialPeersList>
</builtin>
<userTransports>
<transport_id»>veelpeers</transport_id>
</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
</rtps>
</participant>
</profiles>

Figure 89: XML file for enstablishing the ROS/MATLAB connection

The last step that must be done is to enter in the “Hardware Settings” section and to set
everything is needed for performing the code auto-generation for our target system. In
particular the following settings have been set:

e Solver: set a fixed step solver and its step size, 0.01 (100 Hz) for the controller. This is
mandatory for auto-generating code.

e Hardware implementation: set ROS2 as hardware board and the ARM Cortes-A
microprocessor for the Raspberry. Set the “Build” in build options instead of build and
run.

e Simulation target: selected the C++ language because compatible with ROS2.

e Code generation: set the “Generate code only” and “Create code generation report” for
analysing the obtained result.

So once everything is suitably set, we just have to press the “Build model” button in the “ROBOT”
section and wait for the procedure to complete. Finally after the completion two windows will
pop up reporting the eventual errors and warnings encountered. If the procedure has gone
smoothly we would obtain something like in Figure 90, stating that the code has been
successfully generated from the Simulink model.

The “Code Generation Report” is a very helpful tool where are reported the generated interfaces
and variables and how the code has been organised: the main file, the files generated directly
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from the Simulink model and all the other files containing the constant values defined in the
workspace (“Data file”) along with the interfaces files.

%l cade Generation Report o %

& Fnd: & ¥ MatchCase

Contents Code Generation Report for
'Earth_pointing_controller'

= Build 3
+ Top Model Build @ 1

Meodel Infermation

Author Matteo Pascucci

Static Code Metrics ast Modified By Matteo Pascucci
Beport Model Version 1131
Code Replacemer Tasking Mode SingleTasking
Bepont
onfiguration settings at time of code generation
Coder Assumpiions
Generated Code Code Infermation
1) Main file
System  erttic
ertmain.con Target File
1] Madel files Hardware  ARM Compatible->ARM Cortex-A

Simulink 9.4 (R2020b) 29-Jul-2020
Coder

Version

Timestamp  Sun Mar 21 12:07:16 2021 Butld process conpleced successfully
of « Bulld Summary @ 1

Earth_pointing_con | Generated
Source Top model targets built:
-1 utility files (2) Code

Earth_pointing_con

[-] Data files

Hadel aceion Rebuild
[+] Interface files (1) Location of - C\Users\MatteoPascucci\Desktop\ros2_matlab\Earth_pointing_con

) Generated
“Otherfiles (1) * coeen n
, .

Figure 90: ROS Toolbox auto-generation of code final report

At the end of the procedure a “src” folder containing all the generated code is obtained. Inside
this folder there is the package that will be manually deployed on the target, it contains
everything needed by the ROS2 framework for enabling the generated node. The package must
be placed in the ROS2 workspace in the target system and then all the workspace must be built
(“colcon build” command from the workspace folder). Finally the ROS2 system is integrated with
the auto-generated node, for checking if everything went good let’s launch the node: since the
node is installed in the workspace we need to launch the executable generated in the
“install/package_name/lib/package_name/” folder for launching it. At this point, as is possible
to see from figure below, is easy to check if the node is in execution.

ubuntu@ubuntu: ~/ros2_ws - 0
File Edit WView Search Terminal Help
G $ ros2 node list

/B_dot_controller
/Earth_pointing controller
$

ubuntu@ubuntu:

Figure 91: ROS2 generated nodes in execution

Both the controllers have been generated and successfully executed as ROS2 node after auto-
generation.
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7. CONCLUSIONS

This thesis project is part of an R&D project devoted to build a new avionic system and the flight
software too. It is a smart choice to analyse and check if the ROS2 framework is suitable even for
this kind of applications among the others in which it is widely used. The first part of the work
is focused on setting up the system, both hardware and software, that can be used for developing
the ROS2 software and how to integrate it with the provided sensor module. After this the flight
software architecture has been addressed, in particular with the supervisor we spent time
thinking about the possible applications that could be implemented and tested among the ones
already present in the flight software normally used in the company. Due to my interests and
possibilities of practically testing them, this choice involved the sensors. So first of all a watchdog
node is analysed and implemented in order to have the other nodes correctly working, then the
drivers for interfacing with the sensors have been write in python using pre-existing libraries
for 12C and SPI protocols.

After this the project moved in MATLAB/Simulink for addressing the interesting problem of
attitude control with only magnetic actuators. This control system can be cheaper and lighter
with respect to other types but is affected by the problem of under actuation, and this has been
a big problem to overcome in the Earth-pointing control scenario. Fortunately there are many
papers and scientific researches on-line for addressing this problem under some assumptions.
Finally after the validation of the control algorithms, the auto-generation of the code from
Simulink models is performed and the generated node have been exported in the target system
and launched along with the other nodes.

Considering improvements and future developments related to this work, I would suggest to
bring all the present work into the custom board provided by the company since the Raspberry
is a good system for starting to develop but will not be used directly inside the nanosatellite for
performing its tasks in orbit. After this the work and the ROS2 network could be expanded by
adding other applications, whenever there is availability of hardware in the company. There are
many possibilities because a flight software, and in general the avionic system, is composed by
many parts: related to the communication system, the power production with solar panels and
etc... In my opinion it could be pretty interesting to implement a node devoted to manage the
actuators and to exert the control actions, because by adding other actuators like reaction wheels
the control system wouldn’t be underactuated anymore.

Another possible work could be to translated all the code from python into C++ for improving
the performances of the overall system.
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8. APPENDIX A: BUILDROOT

In section 2.2 it has been introduced the possibility of installing a custom version of Linux-
embedded for an embedded system.

Nowadays many companies, depending on their field of application, prefer to design their own
customized electronic boards instead of using standard ones. Even if it can be an hard process in
terms of R&D, it guarantees many advantages in terms of capabilities that are introduced right
for that particular application, since different combinations of devices can be mounted on it to
achieve better performances for the task. On the other hand from the software point of view, in
order to interface with the board it is necessary to realize a suitable custom image. For this
reason, different tools like Buildroot or Yocto have been realized to easily realize images for
embedded boards. In this Appendix the Buildroot tool is explained.

Buildroot is a tool that is used in order to generate embedded Linux images for different types
of boards and finally cross-compile the image for the specified board. It provides as outputs the
root filesystem, the kernel, the bootloader and all the files that are needed for a specific board to
correctly flash an embedded Linux image.

Moreover, Buildroot provides a lists of configurations files with a great number of boards and
processors that are available on the market (for examples Raspberry Pi and SAM processor) that
allow to build working images for that devices.

In order to produce an image containing all the necessary, Buildroot must be configure and
luckily it offers an intuitive user interface that can be summoned by typing the command
“menuconfig” in a Linux shell. The “menuconfig” window appears and is presented in Figure 92
below.

nicol icolo-PC: ~fD loads/buildroot-2020.02.7 -
File Edit vVview Search Terminal Help
/home/nicolo/Downloads/buildroot-2020.02.7/.config - Buildroot 2020.62.7 Configuration

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y> selects a feature, while <N> excludes a
feature. Press <Esc><Esc> to exit, <?= for Help, </> for Search. Legend: [*] feature is
selected [ ] feature is excluded

| || Target options --->
uild options --->
oolchain --->
ystem configuration ---
ernel --->
arget packages ---=
ilesystem images --->
ocotloaders --->
Host utilities ---»
egacy config options ---

< Exit > < Help > < Save > < Load >

Figure 92: Buildroot 2020 “menuconfig” menu
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Here the various sections of the menu are analysed:

e Target options: it allows to set the architecture of the target CPU by choosing from a list
of the most commonly used ones (like Intel or ARM architecture).

¢ Build options: it allows to configure the setting for the build like how many jobs to run
simultaneously, enable the compiler cache, set the location of the download and host
directory and optimization tools for the gcc compiler.

e Toolchain: it allows to choose between an internal Buildroot or an external toolchain
that will be used for the cross-compilation. Moreover, it is possible to configure the
kernel headers, the version of the gcc cross-compiler, the options for uClibc (C
libraries), activate the WCHAR support and enable the support to programming
languages like C++ or Fortran.

e System configuration: it allows to configure the whole system settings like the
hostname, the system banner, activate the login with password, set the root password,
set the path to the permission tables, activate time-zones info and run custom scripts
before or after the creation of the filesystem or inside the fakeroot environment.

e Kernel: it allows to configure the kernel options like its version, patches and eventually
a defconfig file, the output format of the kernel (the considered one is zImage), if a
compression of the kernel is necessary, if it is necessary a Device Tree Blob (DTB) or to
install the kernel in the “/boot” folder of the target.

e Target Packages: all the packages that are present in Buildroot and that can be installed
on the target like audio and video, compressors and decompressors for files, debug
tools, graphical libraries, support for programming languages (Python, C++, PHP ecc...),
tool for hardware support (i2c-detect, spidev ecc...) or text editors. In this section it is
also possible to insert custom packages just like ROS2 and other particular dedicated
applications.

e Filesystem Images: it allows to choose the output format of the generated filesystem
(cpio, tar, jffs2 ecc...) and, if it is necessary, a compression method. Moreover, it allows

to integrate it as initramfs inside the kernel.

e Bootloader: it allows to choose the desired bootloader (like U-boot) from a list and to
manage its configuration.

e Host utilities: it allows to configure support tools for the host that can be useful in the
building and cross-compiling processes.

e Legacy config options: packages that were present in older Buildroot versions that has
been reproposed.
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The original intention of this thesis project was to realize an image with Buildroot, that had ROS2
installed on it and to flash it on a custom board developed by Tyvak (called “EAB”) that mount
an AT91SAM9GZ20 microprocessor.

Tyvak provided a working image for the EAB realized with Buildroot 2012 to take it as starting
point to understand which components are necessary to realize the new image using Buildroot
2020.

The first attempt was to realize an embedded linux image using standard files that are already
present in Buildroot. In the list of the supported boards of Buildroot 2020 is natively present the
AT91SAM9G20-EK (that mounts an AT91SAM9GZ20 processor) board. By using the command
“make at91sam9g20dfc_defconfig”, the configuration described by this file is set in the options of
the menuconfig and it can be built to produce a standard embedded Linux image that is
compatible with this processor. To flash an image on the EAB, Tyvak uses a customized version
of a flashing tool named “Sam-ba” (SAM Boot Assistant), which is commonly used to flash images
on the SAM microprocessors. The main problem is that, using a standars image produced by
Buildroot, the flashing procedure is successful but the board does not boot up because some
parts are missing.

Analysing the image produced by Tyvak, it can be noted that all its component (kernel, filesystem
and bootstrap) and some features in the settings are customized. In order to boot up, the EAB
requires all those files and, if one or more of them are replaced with standard files produced by
Buildroot, like done by using the standard configuration for the booting procedure always fails.
For the reasons explained above and since the objective of this thesis was to demonstrate the
feasibility of the design of a flight software in ROSZ2, the realization of the framework was moved,
as explained in the related chapters, to a Raspberry Pi that mount Ubuntu 20.04 as operating
system.
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9. APPENDIX B: ROS2 CODE

WATCHDOG NODE PYTHON CODE:

HH#HFHHHH A A
#

# WATCHDOG NODE

#

B T R
import rclpy

import time

import os

import yaml

from rclpy.node import Node

from custom_msg.msg import Wdmsg

from ros2launch.api import * # for launch_a_launch_file function
from ros2node.api import * # for get_node_names function

from multiprocessing import Process # for relaunching nodes with
Process()

# WATCHDOG FUNCTIONALITIES

#

# The provided Watchdog checks if the nodes provided by the yaml
configuration file and stored in a suitable dictionary, are active.

# This is done through the API provided by R0S2 "get node names". If a
node of the guarded list is not present, a suitable R0S2 API

# "launch_a_launch_file" is called by using the node unique ID, in order
to re-launch the node.

class Watchdog(Node):

def init_  (self, guarded nodes):
super().__init__ ('watchdog')
watchdog_freq=5.0 # sec. Frequency of the watchdog callback
self.tmr_wd=self.create_timer(watchdog freq,
self.watchdog _callback)
self.guarded_nodes=guarded nodes # controlled by watchdog

def watchdog_launcher(self, launch path): # Launch the missing node
launch file

launch_a_launch_file(launch_file_path=launch path,launch_file_arguments="

")

def create_active_nodes names_list(self): # retrieving the list of
active nodes
self.active_node_names_list=[]
with NodeStrategy(self) as node:
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node_list = get _node_names(node=node,
include_hidden_nodes=False)
i=0
while(i<len(node list)):
self.active_node names_list.append(node_ list[i].name)
i+=1

def checking_missing_nodes(self): # missing nodes checking
for node in self.guarded nodes.values():
node_check=False
for j in range(@,len(self.active_node names_list)):
if(node[ 'name’ ]==self.active_node_names_list[j]):
print("Node ",node[ 'name']," present™)
node_check=True
if(not node_check):
print('Launching missing node:

, hode[ 'name'])

p=Process(target=self.watchdog_launcher,args=(node[ 'launch_path'],))
p.start()

def watchdog_callback(self): # Watchdog core
self.create_active_nodes names_list()
print('Active nodes: ', self.active_node names_list)
self.checking_missing nodes()

def main(args=None):
rclpy.init(args=args)
# collecting Bus informations from Yaml file

stream=open('/home/ubuntu/ros2 ws/src/watchdog/watchdog/watchdog cfg.yaml
|, lr\l)
cfg=yaml.load(stream, Loader=yaml.FulllLoader)

guarded_nodes=cfg[ 'guarded_nodes"']
watchdog = Watchdog(guarded_nodes) # initialize watchdog
rclpy.spin(watchdog)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
watchdog.destroy _node()

rclpy.shutdown()

if _name__ == ' main__ ':

main()
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SPI BUS SENSORS READER NODE PYTHON CODE:

HH#HHHHHH A
#

# SPI BUS SENSORS READER NODE

#
s R R R i
import rclpy

import os

import spidev

import math

import yaml

import sys

from . import Sensors

from rclpy.node import Node

from custom_msg.msg import SensorsMsg

from multiprocessing import Process # for launching nodes with
Process()

global requested_bus # to change node name corresponding to the specified
bus (n=busN)

# SPI SENSORS READER FUNCTIONALITIES

#

# The provided node is intended for reading sensors attached to a
specific SPI bus. Using the command "ros2 run sensors sensors_reader_spi
bus@/busl/.../busN" is possible to launch

# a node for each specified SPI bus to handle, using the associated YAML
configuration file. Each SPI bus node creates a sensor object for each
sensor and reads the collected data.

# These data are published on a specific topic called "spi_sensors_data".

class SPI bus(Node):

def init_ (self, bus, sensors info, n bus):
super().__init__ ('spi_'+4requested_bus)
self.bus=bus
self.sensors_info=sensors info
self.n_bus=n bus
self.sens=[] # for storing sensors objects

print("Reading data from SPI",sys.argv[1l],"...")

# creating objects for each sensor

for sensor in self.sensors_info.values():
if(sensor[ 'type']=="sun'):

# sensor E91086 object

self.sens.append(Sensors.E91086(self.bus,None,sensor['cs"']))
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self.publisher_ = self.create_publisher(SensorsMsg,
'spi_sensors_data_ '+requested bus, 10)

timer_period = 0.001

self.timer = self.create_timer(timer_period, self.sensor_reading)

def sensor_reading(self):
msg = SensorsMsg()
for i in range(len(self.sens)):
# reading sensors
if(self.sens[i].name=="E91086"): #Sun sensor
self.bus.open(self.n_bus,self.sens[i].cs)
self.sens[i].initialize()
msg.sun_raw=self.sens[i].read_sensor_raw()
msg.sun=self.sens[i].read_sensor()
# print(msg.sun) #just for debug
# print("MAG_X: ",msg.sun[@],"[G]"," MAG_Y:
",msg.sun[1],"[G]","MAG_Z: ",msg.sun[2],"[G]")
self.publisher_.publish(msg)
self.bus.close()

def main(args=None):
rclpy.init(args=args)
common_path="/home/ubuntu/ros2 ws/src/sensors/sensors/"'

global requested_bus
requested_bus=sys.argv[1]

# collecting Bus informations from Yaml file
stream=open(common_path+'spi '+requested bus+' cfg.yaml', 'r')
cfg=yaml.load(stream, Loader=yaml.FulllLoader)
sensors_info=cfg[ 'sensors']

# create and launch the node

spi = spidev.SpiDev() # initializing the bus with
spidev

spi_bus = SPI bus(spi,sensors_info,cfg['n_bus']) # creating bus node

rclpy.spin(spi_bus)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
spi_bus.destroy node()

rclpy.shutdown()

87



[2C BUS SENSORS READER NODE PYTHON CODE:

B R R e g

#

# I2C BUS SENSORS READER NODE

#
s R R R i
import rclpy

import os

import smbus2

import yaml

import sys

from . import Sensors

from rclpy.node import Node

from custom_msg.msg import SensorsMsg

from multiprocessing import Process # for launching nodes with
Process()

global requested_bus # to change node name corresponding to the specified
bus (n=busN)

# I2C SENSORS READER FUNCTIONALITIES

# The provided node is intended for reading sensors attached to a
specific i2c bus. Using the command "ros2 run sensors sensors_reader_i2c
busl/bus2/.../busN" is possible to launch

# a node for each specified i2c bus to handle, using the associated YAML
configuration file. Each I2C bus node creates a sensor object for each
sensor and reads the collected data.

# These data are published on a specific topic called "i2c_sensors_data".

class I2C bus(Node):

def init_ (self, bus, sensors info, n bus):
super().__init__ ('i2c_'+4requested_bus)
self.bus=bus
self.sensors_info=sensors_info
self.n_bus=n_bus
self.sens=[] # for storing sensors objects

print("Reading data from I2C",sys.argv[1l],"...")

# creating objects for each sensor
for sensor in self.sensors_info.values():
if(sensor[ 'type']=="temp'):
# sensor AD7415 object

self.sens.append(Sensors.AD7415(self.bus,sensor[ 'addr'],None))
if(sensor[ 'type']=="mag'):
# sensor HMC5883L object

self.sens.append(Sensors.HMC5883L(self.bus,sensor[ "addr'],None))
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self.sens[-1].initialize()
self.publisher_ = self.create_publisher(SensorsMsg,
'i2c_sensors_data_'+requested_bus, 10)
timer_period = 0.001 # seconds
self.timer = self.create_timer(timer_period, self.sensor_reading)

def sensor_reading(self):
msg = SensorsMsg()
for i in range(len(self.sens)):
# reading sensors

if(self.sens[i].name=="AD7415"): #Temperature
sensor
msg.temp_raw=self.sens[i].read_sensor_raw()
msg.temp=self.sens[i].read _sensor()
if(self.sens[i].name=="HMC5883L"): #Magnetometer
sensor

msg.mag_raw=self.sens[i].read_sensor_raw()
msg.mag=self.sens[i].read_sensor()
# print(msg.mag) #just for debug
self.publisher_.publish(msg)

def main(args=None):

rclpy.init(args=args)
common_path="/home/ubuntu/ros2_ws/src/sensors/sensors/"'
global requested_bus

requested_bus=sys.argv[1]

# collecting Bus informations from Yaml file

stream=open(common_path+'i2c_ '+requested bus+' cfg.yaml', 'r')

cfg=yaml.load(stream, Loader=yaml.FulllLoader)

sensors_info=cfg[ 'sensors']

# create and launch the node

bus_i2c=smbus2.SMBus(cfg['n_bus']) # initializing the bus with
smbus2

i2c_bus = I2C bus(bus_i2c,sensors_info,cfg['n_bus']) # creating bus
node

#p=Process(target=rclpy.spin, args=(i2c_bus,))

#p.start()

rclpy.spin(i2c_bus)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically

# when the garbage collector destroys the node object)

i2c_bus.destroy node()

rclpy.shutdown()
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SPI BUS SENSORS TELEMETRY NODE PYTHON CODE:

HH
#

# SPI SENSORS TELEMETRY NODE

#

HEHHHAH R

import rclpy
import os
import struct
import sys

from rclpy.node import Node
from custom_msg.msg import SensorsMsg
from datetime import datetime

global requested_bus

# SPI SENSORS TELEMETRY FUNCTIONALITIES

#

# The provided node is intended for logging the data coming from spi
sensors in a suitable binary file. It splits the log files

# whenever a predefined threshold for the max number of messages stored
is exceeded. So a new binary log file is created, if

# the threshold is exceeded or if the topic is not recorded yet, and
stored in a predefined directory within its timestamp

class SensorsTelemetrySPI(Node):

def init_  (self):
super().__init__ ('spi_sensors_telemetry_ '+requested_bus)
self.subscription_spi = self.create_subscription(
SensorsMsg,
'spi sensors _data '+requested bus,
self.sensors_telemetry callback,
10)
self.subscription_spi # prevent unused variable warning
self.recording=False # to check if the log file is already
created
self.ind=0 # to count the messages recorded

def create_binary(self): # Create the log file in the sensors_log
folder

path="/home/ubuntu/ros2_ws/src/telemetry/sensors_log/spi_"+requested_bus
if not os.path.exists(path): # If the folder is not present,
it'll be created
os.mkdir(path)
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name_db=path+"/spi_ "+requested_bus+" sensors_data-
"+str(datetime.now().strftime("%m-%d-%Y-%H:%M:%S"))+" .bin" # timestamp
log file creation

print('Logging data in: '+name_db)

self.recording=True # log file created flag

self.file=open(name_db, 'wb")

self.ind=0 # messages number reset

def insert_data(self, msg): # Insert the sensors data into the log
file created
if(self.ind< self.n_max):
tmp=struct.pack('fff",
msg.sun_raw,
msg.sun[@],msg.sun[1]
)
self.file.write(tmp)
self.ind+=1

def sensors_telemetry callback(self, msg):

self.n_max=1000

if(self.ind == self.n_max):
self.file.close()

if(not self.recording or self.ind > self.n_max-1):
self.create_binary()

self.insert_data(msg)

print("RECORDING...")

def main(args=None):

rclpy.init(args=args)

global requested_bus
requested_bus=sys.argv[1]

sensors_telemetry_spi = SensorsTelemetrySPI()
rclpy.spin(sensors_telemetry_spi)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)

sensors_telemetry_spi.destroy_node()
rclpy.shutdown()
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[2C BUS SENSORS TELEMETRY NODE PYTHON CODE

HH#HHHHHH A
#

# I2C SENSORS TELEMETRY NODE

#

B R
import rclpy

import os

import struct

import sys

from rclpy.node import Node

from custom_msg.msg import SensorsMsg

from datetime import datetime

global requested_bus

# I2C SENSORS TELEMETRY FUNCTIONALITIES

#

# The provided node is intended for logging the data coming from i2c
sensors in a suitable binary file. It splits the log files

# whenever a predefined threshold for the max number of messages stored
is exceeded. So a new binary log file is created, if

# the threshold is exceeded or if the topic is not recorded yet, and
stored in a predefined directory within its timestamp

class SensorsTelemetryI2C(Node):

def init_ (self):
super().__init__ ('i2c_sensors_telemetry_ '+requested_bus)
self.subscription_i2c = self.create_subscription(
SensorsMsg,
'i2c_sensors_data '+requested_bus,
self.sensors_telemetry callback,
10)
self.subscription_i2c # prevent unused variable warning
self.recording=False # to check if the log file is already
created
self.ind=0 # to count the messages recorded

def create_binary(self): # Create the log file in the sensors_log
folder

path="/home/ubuntu/ros2_ws/src/telemetry/sensors_log/i2c_"+requested_bus
if not os.path.exists(path): # If the folder is not present,
it'll be created
os.mkdir(path)
name_db=path+"/i2c_"+requested_bus+" sensors_data-
"+str(datetime.now().strftime("%m-%d-%Y-%H:%M:%S"))+" .bin" # timestamp
log file creation
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def

print('Logging data in: '+name_db)
self.recording=True # log file created flag
self.file=open(name_db, 'wb")

self.ind=0 # messages number reset

insert_data(self, msg): # Insert the sensors data into the log

file created

if(self.ind< self.n_max):
tmp=struct.pack('ffffffffffff’,
msg.temp_raw[@],msg.temp_raw[1],
msg.temp,

msg.mag_raw[0],msg.mag_raw[1l],msg.mag_raw[2],msg.mag_raw[3],msg.mag_raw[4
],msg.mag_raw[5],

def

msg.mag[@],msg.mag[1],msg.mag[2]
)
self.file.write(tmp)
self.ind+=1

sensors_telemetry_callback(self, msg):

self.n_max=1000

if(self.ind == self.n_max):
self.file.close()

if(not self.recording or self.ind > self.n_max-1):
self.create_binary()

self.insert_data(msg)

print ("RECORDING...")

def main(args=None):

rclpy.init(args=args)

global requested_bus
requested_bus=sys.argv[1]

sensors_telemetry_i2c = SensorsTelemetryI2C()

rclpy.spin(sensors_telemetry_i2c)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
sensors_telemetry_i2c.destroy_node()

rclpy.shutdown()
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ATTITUDE DETERMINATION NODE PYTHON CODE:

import
import
import
import
import
import
import

rclpy

0s

numpy
math
pyIGRF
datetime
navpy

from rclpy.node import Node

from custom_msg.msg import SensorsMsg

from custom _msg.msg import AttitudeQuaternion
from PyAstronomy import pyasl

from skyfield import framelib

from skyfield.api import load_file

from skyfield.api import load

class AttitudeDetermination(Node):

def __init_ (self):

super().__init__ ('attitude_determination’)
self.sun = None
# self.sun_safe b= 1.61927769490585 # 92.7° (or 1.522314958683943

for 87.3° )

# self.sun_safe_a= 1.61927769490585 # 92.7° (or 1.522314958683943

for 87.3° )

self.mag = None

self.subscription_i2c = self.create_subscription(
SensorsMsg,
'i2c_sensors_data busl',
self.i2c_mag_callback,
10)

self.subscription_spi = self.create_subscription(
SensorsMsg,
'spi_sensors_data_bus@',
self.spi_sun_callback,
10)

self.quat_publisher = self.create_publisher(AttitudeQuaternion,

'attitude', 10)

print("Starting Attitude Determination...")
self.subscription_i2c # prevent unused variable warning
self.subscription_spi # prevent unused variable warning
timer_period=0.01 # 10 Hz

self.AD_timer = self.create_timer(timer_period,

self.AD_timer_callback)

def i2c_mag_callback(self, msg): # callback collecting mag sensor

data

self.mag=msg.mag
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def spi_sun_callback(self, msg): # callback collecting sun sensor
data
self.sun=msg.sun

def sun_mag _vectors ECEF(self): # method computing ECEF frame

vectors

# Variables needed for M_ECEF vector computation

lat_deg=45.09221603086248

lon_deg=7.670356843569824

lat_rad=lat_deg*math.pi/180

lon_rad=lon_deg*math.pi/180

alt=0.239 #km

date=pyasl.decimalYear(datetime.datetime.now())

# Variables needed for S_ECEF vector computation

ts = load.timescale()

t = ts.now() # Julian date hour expressed in UT (-1h
wrt Italy)
planets =

load _file('/home/ubuntu/ros2_ws/src/attitude_determination/attitude_deter
mination/ephemeris/de421.bsp')

sun = planets['sun']

earth = planets['earth']

# M_NED, M_ECEF computation

mag_info=pyIGRF.igrf value(lat_deg, lon_deg, alt, date)

M_NED=numpy.array([mag_info[3],mag_info[4],mag_info[5]]) #nT
(North,East,Down coordinates)

M_NED=M_NED/(numpy.linalg.norm(M_NED)) #
normalization

a=lat_rad+math.pi/2

b=-lon_rad

Ry=numpy.array([[math.cos(a),0,-
math.sin(a)],[0,1,0],[math.sin(a),0,math.cos(a)]])

Rz=numpy.array([[math.cos(b),math.sin(b),0],[-
math.sin(b),math.cos(b),0],[0,0,1]])

R=numpy.dot(Rz,Ry)
# rotation matrix: NED FRAME -> ECEF FRAME

R=R.T #
transformation matrix from NED frame -> ECEF FRAME

M_ECEF=numpy.dot(R,M_NED)

# S _ECEF computation

apparent = earth.at(t).observe(sun).apparent()

sun_info = apparent.frame_xyz(framelib.itrs)

S_ECEF=numpy.array(sun_info.au)

S_ECEF=S_ECEF/(numpy.linalg.norm(S_ECEF))

ret=[M_ECEF,S_ECEF]

return ret
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def sun_mag_vectors_BODY(self): # method computing BODY frame
vectors
# Sb computation
b=self.sun[@]-math.pi/2 # angle XZ-plane
a=self.sun[1]-math.pi/2 # angle YZ-plane
# if (abs(b-math.pi/2)<0.047):
# b=self.sun_safe b
# self.sun_safe b=b
if (abs(a-math.pi/2)<0.047):
a=self.sun_safe_a
self.sun_safe_a=a
print("beta: ",b)
print("alpha: ",a)
_B=numpy.array([math.tan(b),math.tan(a),1]) # general
relation for 2-axis digital sun sensors
#print("S_B non normalizzato: ",S_B)
# Mb computation
R=numpy.array([[0,-1,0],[-1,0,0],[0,0,-1]]) # rotation matrix:
MAG sensor FRAME -> SUN sensor FRAME
R=R.T # transformation
matrix: MAG sensor FRAME -> SUN sensor FRAME
M_B=R.dot(numpy.array(self.mag))
# normalize vectors
S_B=S_B/(numpy.linalg.norm(S_B))
M_B=M_B/(numpy.linalg.norm(M_B))
ret=[M_B,S_B]
return ret

EEEE R

def TRIAD attitude_determination(self,S B,M B,S ECEF,M ECEF):

# creating the triads: USING S_B as "best" measure

# 1st components

tlb=S B

t1i=S_ECEF

# 2nd components

tmp=numpy.cross(S B, M B)

t2b=tmp/ (numpy.linalg.norm(tmp))

tmp=numpy.cross(S ECEF, M ECEF)

t2i=tmp/(numpy.linalg.norm(tmp))

# 3rd components

t3b=numpy.cross(tlb, t2b)

t3i=numpy.cross(tli, t2i)

# attitude matrix computation

Rbt=(numpy.array([tlb,t2b,t3b])).T # rotation matrix: BODY
FRAME -> TRIAD FRAME

Rti=numpy.array([t1li,t2i,t3i]) # rotation matrix: TRIAD FRAME
-> ECEF FRAME

DCM_attitude=numpy.dot(Rbt,Rti)

return DCM_attitude
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def AD_timer_callback(self): # Timed callback computing
attitude (refer to "timer_period") via TRIAD algorithm
if (self.sun is not None and self.mag is not None):
# store body frame vectors
v=self.sun_mag_vectors_BODY()
M B=v[0]
S _B=v[1]
# store ECEF frame vectors
v=self.sun_mag_vectors ECEF()
M_ECEF=v[0]
S_ECEF=v[1]
print("S_B: ",S B)
# print("\n")
# print("M_B: ",M B)
# print("S_ECEF: ",S_ECEF)
#
#

++

print("M_ECEF: ",M_ECEF)
TRIAD ALGORITHM

DCM_attitude=self.TRIAD attitude determination(S_B,M B,S ECEF,M ECEF)
g9, gvec=navpy.dcm2quat(DCM_attitude)
g_attitude=[q0@, qvec[@], qvec[l], qvec[2]]
# print("Attitude DCM Matrix: ")

# print(DCM_attitude)

# print("Attitude quaternion: ")
# print(qg_attitude)

# print("\n")

msg = AttitudeQuaternion()
msg.quat=q_attitude
msg.rl=DCM_attitude[0]
msg.r2=DCM_attitude[1]
msg.r3=DCM_attitude[2]
self.quat_publisher.publish(msg)

def main(args=None):
rclpy.init(args=args)

attitude_determination = AttitudeDetermination()
rclpy.spin(attitude_determination)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)

attitude_determination.destroy node()
rclpy.shutdown()
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10. APPENDIX C: MATLAB CODE

ATTITUDE CONTROL SETTINGS FILE:

clc; clear
format long;

%% Orbit propagation data and LVLH frames import

%$Storing altitude, latitude and longitude of the satellite in its

orbit

orbit data=importdata('log orbit.txt');

s=orbit data.data(:,7); $seconds (for timeseries
structure creation)

mu=orbit data.data(:,8); %latitude
l=orbit data.data(:,9); %longitude
h=orbit data.data(:,10); %altitude

orbit=timeseries([h, mu, 11,s);

%3Storing UTC time (year month day hours minutes seconds)
y=orbit data.data(:,1);

mon=orbit data.data(:,2);

d=orbit data.data(:,3);

h=orbit data.data(:,4)
min=orbit data.data(:,5);

sec=orbit data.data(:,6);

orbit date utc=timeseries([y, mon, d, h, min, sec],s);

4

% LVLH triads data

lvlh data=importdata ('LVLH orbit.txt'");

lvlh x=timeseries([lvlh data.data(:,2), 1lvlh data.data(:,3),
lvlh data.data(:,4)],s);

lvlh y=timeseries([lvlh data.data(:,5), 1lvlh data.data(:,0),
lvlh data.data(:,7)],s);

lvlh z=timeseries([lvlh data.data(:,8), 1lvlh data.data(:,9),
lvlh data.data(:,10)],s);

%$Simulation
sim('orbit data computation');
B eci=ans.B eci;

g _ref=ans.q eci2lvlh;

%B _eci plot
figure (1) ;

subplot (311); hold on; grid on; xlabel('time [ s ]'); ylabel ('Bx

T ]1'); x1im ([0 16*1074]);
plot (B eci.Time,B eci.Data(:,1));

subplot (312); hold on; grid on; xlabel('time [ s ]'); ylabel ('By

T ]1'); x1im ([0 16*1074]);
plot (B eci.Time,B eci.Data(:,2));
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subplot (313); hold on; grid on; xlabel('time [ s ]'); ylabel ('Bz [
T 1"); x1im ([0 16*107471);
plot (B eci.Time,B eci.Data(:,3));

o\

% Settings definition
% Magnetorquers

N=1000; Number of windings

D=0.03; %Coils diameter [m]

A coil=D"2*pi/4; %$Coils area [m"2]

Imax=0.7; $Max current [A] try 0.3 and 0.7

mu max=N*Imax*A coil; %max dipole [A*m" 2]

Ax=[A coil;0;0]; %¥Magnetorquer 1 area vector (aligned with
x—-axis of body frame)

Ay=[0;A coil;O0]; tMagnetorquer 2 area vector (aligned with
y—axis of body frame)

Az=[0;0;A coil]; tMagnetorquer 3 area vector (aligned with

z-axis of body frame)

A=[Ax,Ay,Az];

NA=N*A;

I=[Imax; Imax; Imax]; %Coils current matrix

% Satellite 3U with each U: mass 1.33Kg and length side 1dm
% Inertia components (Ix=0.0111 , Iy=0.0022 , Iz=0.0111)

g0=[1;0;0;01; $ECI TO BODY FRAME quat
J=diag ([0.0111; 0.0022; 0.01111); %$Inertia matrix
[Kg*m”™2]

IJ=inv (J) ;

o)

% Earth pointing control, reference angular velocity and Kp, Kd
matrices

mean motion=15.00050640; % revolutions per days
n=(2*pi*mean motion)/86400; % orbital rate, approximating to
circular orbit. 86400=seconds in a day

w ol o=[0; -n; 0]; % angular velocity of orbital frame
wrt inertial, written in orbital [rad/s]
g refO=q ref.Data(l,:)"'; % geciZorbit initial

Kp=diag ([1*10"2, 1*1072, 1*10721)

Kd=diag([1.8*1074, 1.8*10%4, 1.8*10"4]

% initial conditions

$ I want the body frame rotated of theta® wrt x/y/z axis of orbit
frame

th=deg2rad (60) ;

g o2b=[cos(th/2); sin(th/2); O; 0 1; Swrt x
$ g _o2b=[cos(th/2); 0; sin(th/2); O 17 swrt y
$ g _o2b=[cos(th/2); 0; 0; sin(th/2)1; swrt z
g0=quatprod (g refl0, g o2b); %geciZlbody initial

g0 _tilde=[g 02b(l); -g o2b(2:end)]; %initial g tilde (body to
orbit)

$ wO=deg2rad ([0; 0; 0]);
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w tildeO=deg2rad([1;0.5;0]);
% w_tilde0=[0.01; 0.01; 0.01];

o\©

w0 deg sim=[];

q0_sim=[];

figure (2);

subplot (311); hold on; grid on;
deg/s 1'");

subplot (312); hold on; grid on;
deg/s 1'");

subplot (313); hold on; grid on;
deg/s 1");

for i=1:5

gO0=randrot (1) .compact';

g0 sim=[g0 sim, gO0];

w0 deg=-20+40.*rand(3,1);
degrees [deqg]

(randonmly chosen in

%input in degrees
%input in radians

% Animations/plots after simulation
% random initial conditions simulations for detumbling

xlabel ('time
xlabel ('time

xlabel ('time

[

[

[

S

S

S

1)

1)

1)

ylabel ('Wx
ylabel ('Wy
ylabel ('Wz

%angular velocity in

w0 deg sim=[w0 deg sim, wO deg];

wO=deg2rad (w0 deqg);
radians [rad]

[-20,20]deq)

%angular velocity in

sim('Detumbling Bdot model');

w_deg=ans.w_deg;

subplot (311) ;

subplot (312);

subplot (313);
end
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EARTH-POINTING SATELLITE DYNAMICAL MODEL EULER EQUATION ERROR:
function w bo b dot = fcn(M, g tilde, w bo b)
mean motion=15.00050640; % revolutions per days

n=(2*pi*mean motion)/86400; orbital rate, approximating to
circular orbit. 86400=seconds in a day

o\

w ol o=[0; -n; 0]; % angular velocity of orbital frame
wrt inertial, written in orbital [rad/s]

J=diag ([0.0111; 0.0022; 0.01111); $Inertia matrix
[Kg*m”2]

IJ=inv (J);

C=quazdcm(g_tilde);

tmp=C*w o1 ©o;

s1=[0 -tmp(3) tmp(2); tmp(3) 0 -tmp(l); -tmp(2) tmp(l) O0];
tmp=w bo b;

s2=[0 -tmp(3) tmp(2); tmp(3) 0 —-tmp(l); -tmp(2) tmp(l) O],
tmp=J*C*w_oi o;

s3=[0 -tmp (3) tmp(2); tmp(3) 0 -tmp(l); -tmp(2) tmp(l) O0];

sum=(-J*sl-s2*J+s3-s1*J) *w_bo b-s1l*J*C*w_oi o+M;
w bo b dot=IJ*sum;

EARTH-POINTING SATELLITE DYNAMICAL MODEL QUATERNION KINEMATICS:

function w bi b = fcn(g bo, w _bo b)

mean motion=15.00050640; % revolutions per days

n=(2*pi*mean motion)/86400; % orbital rate, approximating to
circular orbit. 86400=seconds in a day

w oi o=[0; -n; 0]; % angular velocity of orbital frame

wrt inertial, written in orbital

C=quaz2dcm (g _bo) ;
w o1 b=C*w ol 0o;
w _bi b=w bo bt+w oi b;
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