
Politecnico di Torino

Master’s degree course in “Mechatronic Engineering”

Master’s Degree Thesis:

“Development of a ROS2 flight software framework &

Attitude Control application for nanosatellites”

Candidate: Supervisor:

Pascucci Matteo Prof. Corpino Sabrina

 Tutor:

 Eng. Zanotti Andrea

Academic year 2020/2021

1

TABLE OF CONTENTS

1. INTRODUCTION ..7

1.1. Nanosatellites overview ..7

1.2. Thesis objective and context ...8

1.3. Structure of the thesis ... 10

2. SYSTEM ARCHITECTURE ... 12

2.1. Project overview ... 12

2.2. Hardware configuration ... 12

2.2.1. Temperature sensor AD7415 .. 13

2.2.1.1. AD7415 test .. 15

2.2.2. Magnetometer HMC5883L .. 16

2.2.2.1. HMC5883L test .. 17

2.1.1. Sun sensor E910.86 ... 18

2.1.1.1. E910.86 test .. 21

2.1.2. Raspberry PI 3 B+ ... 23

2.2. Software configuration ... 24

2.2.1. ROS2 overview and advantages .. 25

3. ROS2 FLIGHT SOFTWARE FRAMEWORK .. 29

3.1. Watchdog node .. 29

3.1.1. Watchdog node test ... 32

3.2. Sensors Bus node .. 33

3.2.1. I2C bus node ... 35

3.2.2. SPI bus node ... 37

3.3. Sensors Telemetry node ... 39

3.3.1. Telemetry node test ... 41

4. ATTITUDE CONTROL ... 43

4.1. Rotation matrices and quaternions ... 43

4.2. Reference Frames ... 46

4.3. Satellite dynamical model .. 48

4.4. General overview of AC systems ... 50

4.4.1. Magnetorquers .. 51

4.4. Attitude control scenarios ... 52

4.4.1. B-dot control for detumbling phase .. 53

2

4.4.2. Earth-pointing control .. 54

5. MATLAB/SIMULINK MODELS ... 57

5.1. Orbit and Earth magnetic field propagator ... 58

5.2. Satellite model .. 61

5.3. Magnetorquers model ... 64

5.4. B-dot Bang controller model .. 64

5.5. Earth-pointing controller model ... 66

6. SIMULATIONS AND CODE AUTO-GENERATION ... 67

6.1. B-dot detumbling simulations ... 67

6.2. Earth-pointing simulations ... 72

6.3. ROS Toolbox and code auto-generation ... 77

7. CONCLUSIONS ... 80

8. APPENDIX A: BUILDROOT .. 81

9. APPENDIX B: ROS2 CODE .. 84

10. APPENDIX C: MATLAB CODE ... 98

REFERENCES .. 102

3

LIST OF FIGURES:

Figure 1: Tyvak’s Commtrail nanosatellite (3U) ...7

Figure 2: V-shape process flow of software design ...8

Figure 3: E91086 MISO output voltages. Vdd=4.5V to 5.5V .. 13

Figure 4: Components connections circuit diagram ... 13

Figure 5: AD7415 Register structure ... 14

Figure 6: AD7415 Configuration register bits definition .. 14

Figure 7: AD7415 Temperature value register readings output ... 14

Figure 8: AD7415 circuit diagram ... 15

Figure 9: AD7415 sensor test .. 15

Figure 10: AD7415 sensor heated test .. 16

Figure 11: HMC5883L channel X data output registers A and B ... 17

Figure 12: HMC5883L circuit diagram .. 17

Figure 13: HMC5883L sensor test ... 18

Figure 14: physical model of Xn angle .. 18

Figure 15: digital output – angles relation ... 19

Figure 16: sun vector model .. 20

Figure 17: E910.86 circuit diagram .. 21

Figure 18: E910.86 testing setup ... 21

Figure 19: E910.86 Xn, Yn angles at 90° ... 22

Figure 20: E910.86 Xn changing test .. 22

Figure 21: E910.86 Xn changing test .. 23

Figure 22: Raspberry Pi 3 B+ board and GPIO scheme. .. 23

Figure 23: final circuit with: Raspberry PI, logic level converter and sensor module 24

Figure 24: ROS2 latest distributions and EOL dates... 26

Figure 25: Publisher “Node” sends a message over the topic “Topic” ... 27

Figure 26: Call-and-response method implemented by the service .. 27

Figure 27: rqt_graph of the official teleop turtle tutorial ... 28

Figure 28: Mark-1 watchdog flow chart .. 29

Figure 29: Watchdog(Node) class ... 30

Figure 30: ROS2 based watchdog flow chart ... 31

Figure 31: watchdog config YAML ... 31

Figure 32: Watchdog node test: all the guarderd nodes are running .. 32

Figure 33: Watchdog node test: SPI sensors reader node is missing .. 32

Figure 34: Watchdog node test: all the guarderd nodes are missing... 33

Figure 35: SPI bus example with several identical sensors ... 34

Figure 36: Realistic situation with many sensors on two different buses ... 35

Figure 37: I2C protocol representation ... 35

Figure 38: Sensors custom message structure ... 36

Figure 39: I2C bus node flow chart ... 36

Figure 40: I2C bus node class .. 37

Figure 41: I2C bus node YAML configuration file .. 37

Figure 42: SPI communication protocol example with a Master and three slaves 38

4

Figure 43: SPI_bus node class diagram .. 38

Figure 44: SPI_bus node execution flowchart ... 39

Figure 45: SPI_bus node configuration file ... 39

Figure 46: I2C/SPI bus sensors telemetry class ... 40

Figure 47: I2C/SPI bus sensors telemetry class ... 40

Figure 48: Telemetry node test: creation of a new file .. 41

Figure 49: Telemetry node test: reading stored data .. 42

Figure 50: F1, F2 reference frames and a generic particle... 43

Figure 51: position of the particle with respect to F1, F2 .. 43

Figure 52: R written in matrix form in function of (x,y,z) .. 44

Figure 53: quaternion equivalent notations .. 45

Figure 54: Algebra of quaternions ... 45

Figure 55: DCM ↔ Quaternions formulas ... 46

Figure 56: representation of ECEF frame ... 46

Figure 57: ENU frame with respect to ECEF .. 47

Figure 58: body frame used representation .. 48

Figure 59: spacecraft dynamical model block diagram... 48

Figure 60: Attitude Control block scheme .. 50

Figure 61: Earth magnetic field dipole representation .. 51

Figure 62: ECI, Body and LVLH reference frames ... 54

Figure 63: Tyvak-0092/Commtrail nanosatellite TLE .. 57

Figure 64: Orbit propagation log_orbit.txt file snippet.. 58

Figure 65: Orbit propagation LVLH_orbit.txt file snippet .. 58

Figure 66: Magnetic flux density components: Bx, By and Bz (top to bottom) 59

Figure 67: Orbit propagator Simulink model .. 60

Figure 68: Detumbling scenario (Satellite model and environmental interactions) 61

Figure 69: Detumbling control: “Satellite dynamical model” insight .. 62

Figure 70: Earth-pointing control: “Satellite dynamical model” insight .. 63

Figure 71: Magnetometer model .. 63

Figure 72: Magnetorquers subsystem (top) and implementation (bottom) 64

Figure 73: B-dot bang bang subsystem (top) and implementation (bottom) 64

Figure 74: B-dot bang bang dead band implementation .. 65

Figure 75: original B-dot_x (top) and “filtered” B-dot_x (bottom).. 65

Figure 76: Earth-pointing controller subsystem (top) and implementation (bottom) 66

Figure 77: Detumbling test 1: angular velocities ... 68

Figure 78: Detumbling test 1: control currents .. 68

Figure 79: Detumbling test 2: angular velocities ... 69

Figure 80: Detumbling test 2: control currents .. 69

Figure 81: B-dot controller simulations performance ... 70

Figure 82: Simulink detumbling model ... 71

Figure 83: controller performances comparison between Kp=300 and Kp=100 72

Figure 84: Earth-pointing controller, impact scenario simulation ... 73

Figure 85: Earth-pointing controller, error angle evaluation for the 5 simulations 74

Figure 86: Earth-pointing controller, angular velocity error for the 5 simulations......................... 75

Figure 87: Simulink Earth-pointing model .. 76

Figure 88: ROS Toolbox activation in Simulink .. 77

5

Figure 89: XML file for enstablishing the ROS/MATLAB connection .. 78

Figure 90: ROS Toolbox auto-generation of code final report .. 79

Figure 91: ROS2 generated nodes in execution.. 79

Figure 92: Buildroot 2020 “menuconfig” menu ... 81

6

LIST OF TABLES:

Table 1: HMC5883L register list .. 16

Table 2: E910.86 write and read commands used .. 19

Table 3:B-dot Dead-band tests settings... 67

Table 4: B-dot controller, 5 simulations random initial conditions (attitude and ang. vel.) 70

Table 5: B-dot controller, 5 simulations various initial conditions (attitude and ang. vel.) 74

7

1. INTRODUCTION

1.1. Nanosatellites overview

In the recent years the space sector has attracted a lot of social interest and economic

investments by both public and private entities. The development of new technologies, that can

be useful and applied in many fields, has allowed the foundation of different realities that are

now leaders of the space industry. In this context a particular implementation of these new

technologies, that is becoming a very important part of the space exploration sector, is made up

by the CubeSats.

The first CubeSat was developed in the “California Polytechnic State University” and “Stanford

University” in 1999 for educational purposes, then due to their low costs they have been adopted

in space industry for many types of missions. These artificial satellites can be very small and

light, normally with a mass below 500 kg, and they are instrumented with particular devices

called payloads used for collecting data and in general for performing an assigned mission (data

collection, science experiments, …). Depending on their masses, they can be classified in

minisatellites (100~500Kg), microsatellites (10~100Kg) or nanosatellites (1~10Kg). In general

the fundamental standard for CubeSats is the 1U (one unit) that has dimensions 10x10x10 cm,

1 𝑑𝑚3 volume and a weight not more than 1.33 Kg; is also possible to have bigger ones with

other configurations like 3U CubeSat with dimensions of 10x10x30 cm or 6U CubeSat
10x20x30cm and so on.

Figure 1: Tyvak’s Commtrail nanosatellite (3U)

They are widely employed because their production and launch costs are cheaper compared to

a bigger standard satellite: in general the bigger is the satellite the bigger the rocket must be for

reaching the desired orbit and, in addition, it is also possible to deploy more satellites with a

single launch. Nowadays nanosatellites can be applied in many different fields that range from

8

earth observation to space exploration and, in the near future, in planetary defence too with the

ESA’s “Hera” mission. Due to their small dimensions they can be easily employed in swarm for

performing missions that could not be possible for single satellites: data collection about the

same phenomenon from different positions, in-orbit inspection of bigger satellites and many

others. Even if their concept is very simple since the body of these satellite is made up by cubes,

they involve very complex technologies from both electronic/mechatronics (sensors, actuators,

…) and software side for implementing all the required subsystems that the satellite needs.

Among these subsystems there is the ADCS (attitude, determination and control system),

intended for monitoring the attitude of the satellite and to autonomously perform control

actions on the actuators for accomplishing several duties, for example the “detumbling” of the

satellite when it is deployed in the orbit. This system in particular requires a software

framework able to collect data from several sensors and to send the right control action to the

mounted actuators, at a fixed rate (that can be very high). In order to simplify the software

implementation and management, a framework like ROS2 (second version of the Robot

Operating System) can take advantage for its simplicity and modularity. It’s strongly supported

by the community and provides native functions that ranges from navigation services to

graphical visualization for simulation and debugging. ROS2 it’s widely used in the robotic

industry, but it can be easily applied to different fields due to the advantages listed before.

1.2. Thesis objective and context

This thesis work is an R&D (research and design) project which context takes place in the

aerospace industry, particularly in the field of software engineering for nanosatellites. The

design and the validation of a software framework is one of the most critical phases in the

realization of a complex system like nanosatellites and it must follow a precise life cycle dictated

by software engineering rules. The steps to achieve a good software realization can be described

with a V-shaped process flow, presented in Figure 2:

Figure 2: V-shape process flow of software design

9

The left part of the V-shaped flow includes the verification and design process of the system

while the right part includes the validation process:

• The first phase is the analysis of the system in terms of requirements. Based on the

functionality of the system, the requirements can be classified in functional requirements

(to describe how the system must respond to specific input and the list of the operations

that the system must perform) and domain requirements (to specify the domain of

interest of the system). This phase also incorporates the prediction of the cost of the

system.

• The second phase is the system design and it includes a first part concerning the

architectural design, which defines which are the applications that must be implemented

and how they communicate with each other. The second part is the detailed design and

program specification, to define the deadlines for the development of the applications

and how to implement them.

• After that, the drawing up of the code can start and it results to be the core phase of the

software development.

• Once all the applications of the software are developed, the software needs to be

validated. To do this, different kind of tests are performed to check that the system works

properly. The first test to be performed is the unit testing which consists to test the single

applications developed to check if bugs are present and if they realize the proper

functionality. After that, the applications modules are integrated into subsystems and

they are tested together as a group (integration testing). If in these two phases, all the

functionalities are satisfied and the subsystems work properly, the whole system is

integrated and tested (system testing) to check that all the functionalities are

implemented and cooperate properly.

• Finally, the software framework design can be considered completed and it is delivered

to the clients, but it always needs to be maintained.

The maintaining phase includes also the so-called “evolution” of the system, which incorporate

bugs to be fixed, changes in the requirements, new updates and releases or new features to be

added. All these operations are considered critical since they increase the cost of the

development.

To simplify these processes, new approaches to software engineering are considered. A first and

widely adopted solution is MBSD (Model Based Software Design) which consists in realizing a

model of the system in a simulation environment like Matlab/Simulink and auto-generate the

C/C++ code, with provided toolboxes, for implementing control systems in suitable embedded

systems. Considering nanosatellites as example, this solution can be a good choice for the

development of the ADCS since the control laws are designed in Simulink and, once the

simulations results are evaluated, the code can be directly obtained from these models.

Another possible solution is to design the software framework with tools and libraries like ROS

10

(Robot operating system) or ROS2. These have taken hold mainly in robotics applications but

they can be easily employed in the design of any kind of complex system, even nanosatellites, by

providing a lot of APIs (Application programming interfaces) to implement common features for

mechatronic systems.

In this scenario takes place this thesis work, linked to a new R&D project started by “Tyvak

International” and intended to demonstrate and realize a first implementation of a personal

flight software framework for nanosatellites using ROS2 and to study the problem of Attitude

Control and the auto-generation of code.

The main reason that convinced the software team of “Tyvak International” to start this new

R&D project (named Phoenix) is related to the fact that it is a start-up born by the American

counterpart called “Tyvak Nanosatellites” that provides technologies for the their satellites,

including the software framework.

For this reason “Tyvak International” does not hold its own flight software framework, and that

could cause problems in managing the software, find bugs and realize patches to correct them.

This means that, if there is an intention of implementing a new feature, a reverse engineering

process has to be done to understand how to integrate that feature on the provided framework

realized by “Tyvak Nanosatellites”. The flight software framework developed by “Tyvak

Nanosatellites” (MK-2) has been taken as starting point to understand what are the main

applications that are needed for a real satellite to allow it to perform in-orbit operations. After

that, the fundamental applications to realize a first implementation of the system to achieve an

attitude determination (watchdog, reading sensors and telemetry) are implemented into ROS2

nodes and their structure will be described in the following chapters of the thesis.

1.3. Structure of the thesis

The thesis is intended to explain the development process of some applications enabling the

ROS2 flight software framework, by explaining the concept of each node and why the selected

solution can be better compared to another one. Finally, an application related to the Attitude

Control system is studied and tested in MATLAB/Simulink. The thesis is structured as following:

• Chapter 2: a brief explanation of both the hardware and software used for the project,

starting from the sensor module to the Raspberry Pi 3 B+ embedded system, describing

their usage and reporting the circuit diagram used as reference for building the final

electronic circuit. Finally, an overview of ROS2 is presented, listing some peculiarities and

advantages.

• Chapter 3: description of the implemented nodes in ROS2, explaining the concept of each

one and some architectural choices. Finally their functioning and the practical

implementation in python are reported

• Chapter 4: the mathematical tools and the actuators used for the attitude control are

presented and explained. Then the scenarios of “detumbling” phase and “Earth-pointing”

11

task performed with a suitable control system are addressed.

• Chapter 5: the MATLAB/Simulink simulations for testing the desired control algorithms

are described and the obtained results presented. Finally, the auto generation of the code

for the control system is performed.

• Chapter 6: some personal conclusions about the project and suggestions for future

improvements and developments.

12

2. SYSTEM ARCHITECTURE

2.1. Project overview

The main objective of the thesis is to realize a first version of a new flight software framework,

based on ROS2, and in order to study in detail a possible application, a preliminary selection of

fundamentals applications needed in a flight software is performed. To this aim the MK-2 flight

software developed by “Tyvak Nanosatellites” is taken as example, for understanding how a

flight software is designed and which applications are needed for realizing a first

implementation.

Among the applications implemented in the MK-2 flight software, this combination of them has

been preferred:

• Watchdog: to check the status of other important applications.

• Sensors reader: for enabling the sensor data reading over I2C/SPI buses.

• Sensors telemetry: to store the collected data.

The selection of these applications (detailed in the following sections) is not casual: indeed they

can ensure the enabling of a first draft of a flight software framework, that will be able to collect

data from sensors, store them and to autonomously react to sudden crashes affecting its

processes. Moreover this first version of flight software can be used for a simple ADCS

application.

In order to test the developed flight software the reference embedded system selected is the

Raspberry Pi 3 B+.

2.2. Hardware configuration

This section is devoted to broadly introduce all the hardware needed for the thesis project,

paying attention to the connections between all the components rather than describing in detail

each one of them; this job will be performed in the following sections.

The components used are:

• Raspberry Pi 3 B+ as embedded system, used for managing the collected sensors data and

executing all the ROS2 processes.

• A custom sensor module, provided by “Tyvak International”, generally used for attitude

determination purposes. It mounts an AD7415 temperature sensor, an HMC5883L

magnetometer and a E910.86 sun sensor.

• A custom connector for interfacing with the sensor module.

• A TXB0108 level shifter for properly connecting the sun sensor to the Raspberry.

13

A level shifter is a very simple device that rescales a certain voltage, in this case the 5V voltage

coming from the MISO output line of E910.86, to another desired voltage, in this case the 3.3V

accepted by the Raspberry GPIO pins.

The TXB0108 level shifter is mandatory for connecting the E910.86 sun sensor to the Raspberry

Pi 3 B+ without damaging the board because, as can be seen in Figure 3, the MISO output signal

that would go from the sun sensor to the Raspberry pins works at voltages that are greater than
the voltage tolerated by the Raspberry GPIO pins, that is 3.3V.

Figure 3: E91086 MISO output voltages. Vdd=4.5V to 5.5V

The connections between all the components are schematized in this circuit diagram:

Figure 4: Components connections circuit diagram

This is the reference used for performing all the connections between the components and the
real implementation is reported in Figure 23.

2.2.1. Temperature sensor AD7415

The AD7415 sensor is a standalone digital temperature sensor, widely used in several fields of

applications, from automotive to aerospace, that is mounted in the provided sensor module. The

serial interface is I2C and SMBus compatible, due to this the sensor can be easily interfaced with

“smbus2” python library. The sensor requires a 2.7V to 5.5V power supply and so it can be used

without any problems with a Raspberry PI 3 B+. A schematic representation of the sensor

14

register structure is portrayed in the following figure:

Figure 5: AD7415 Register structure

To correctly initialize the AD7415 we must configure it by writing a particular byte in its

configuration register at “0x01” address.

Figure 6: AD7415 Configuration register bits definition

For the thesis purposes a very simple configuration has been selected by writing a “1” in the ONE

SHOT bit of the configuration register. In this way the AD7415 is expected to power-up, perform

a single conversion and then power down again automatically.

Finally, the sensor is able to perform the temperature sensing and to store the result on the

temperature register at “0x00” address. The temperature value register is a 10-bit, read-only

register that stores the temperature reading from the ADC in twos complement format.

Two “read” operations are necessary to read the actual data from this register:

Figure 7: AD7415 Temperature value register readings output

15

As written in Figure 7 above, by reading the temperature value register twice, we will obtain two

bytes containing the actual 10-bit data needed and other N/A bites that are neglectable. After

extracting the raw digital value of the temperature in the 10-bit form from this row of bits (from

D6 bit to D15 bit), is easy to retrieve the actual value of the temperature in °C: since the

temperature resolution of the ADC is 0.25 °C, which corresponds to 1 LSB of the ADC, the

following function can be used:

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒[°𝐶] =
𝑅𝑎𝑤_𝑑𝑖𝑔𝑖𝑡𝑎𝑙_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [𝑑𝑒𝑐𝑖𝑚𝑎𝑙]

4

the value of the temperature in °C is obtained.
The circuit diagram of the sensor is reported in Figure 8.

Figure 8: AD7415 circuit diagram

2.2.1.1. AD7415 test

In this section some tests are performed in order to check the correct behaviour of the sensor

and the software drivers used for interfacing with it.

The first test consists in an easy “read” operation and to display the sensed temperature in

degrees [°C]. The sensor is left still on the table in the company office, so we expect to read a
value around 20~23 °C.

Figure 9: AD7415 sensor test

16

As we can see from the picture above the temperature has been properly read (with a frequency

of 0.5 Hz), and its values are the expected ones. Obviously the sensor is affected by noise and so

the outputs are oscillating around 23.25 °C. Let’s now see what happens if the sensor module is

heated, for example by holding it in an hand.

Figure 10: AD7415 sensor heated test

As expected the temperature is increased, till reaching 30 °C, due to the heating of the sensor

module at contact with an higher temperature “object”.

2.2.2. Magnetometer HMC5883L

The HMC5883L sensor is a 3-axis magnetometer supported by a 12-bit ADC coupled with a Low

noise AMR sensor that achieves a 5 milli-Gauss resolution in ± 8 Gauss fields. This enables a 1°

to 2° compass heading accuracy that makes this sensor suitable for mobile phones and auto-

navigation systems. This magnetometer provides an I2C serial bus interface, just like the

AD7415, and can be supplied with a voltage up to 3.6V.

The device is controlled and configured via several on-chip registers, described in the table

below:

Table 1: HMC5883L register list

17

So in order to use the sensor we need to properly set the bits of the configuration register A and

B, and the mode register. This can be easily done with a “write” operation on the proper address

location. For our purposes a “continuous-measurement” mode is selected by writing all zeroes

in the mode register: in this mode the device is expected to continuously perform measurements

and to place the result in the data register at each iteration.

The result is stored in 3 channels (one for each axis): X, Y and Z channels and each one of them
is made up by two 8-bit output registers (A and B) where we can find the desired measurement.

Figure 11: HMC5883L channel X data output registers A and B

Taking for example the A and B output registers of the X channel (in the figure above) is possible

to see that each register contains 8-bit (the number in the parenthesis indicates the default value

of that bit), and in the specific: the A output register will contain the MSB of the measurement

result while the B output register will contain the LSB.

The value stored in these two registers is a 16-bit value in 2’s complement form, whose range is

from “0xF800” address to “0x07FF” address.

The circuit diagram of the sensor is reported below.

Figure 12: HMC5883L circuit diagram

2.2.2.1. HMC5883L test

To test the sensor, the values measured on the three axes are printed with a frequency of 0.5 Hz
and the results are shown in. The output values of the magnetic field measured by the
magnetometer are expressed in Gauss (G) and these values are expressed in the reference frame
provided by the magnetometer with X axis pointing down, Z axis pointing out of the sensor and
Y axis to complete a right-handed reference frame.
Obviously is difficult to say if this values are the correct ones since the magnetometer is

18

measuring the magnetic field present in the desk of the company office, so there may be various
noises affecting the measurements. The shell in which the results are printed is reported in
Figure 13.

Figure 13: HMC5883L sensor test

2.1.1. Sun sensor E910.86

The E910.86 is a two-axis digital sun sensor, manufactured by “Elmos”, that provides three

sensing possible functions:

• The angle of light incidence in both XZ (Xn) and YZ (Yn) plane

• The light intensity for each of two different spectral range

• The chip temperature

The only output used for the purpose of this thesis is the first one. The physical representation

of the Xn angle, with respect to the magnetometer reference frame, can be seen in Figure 14:

Figure 14: physical model of Xn angle

19

Obviously the same model can be used for the Yn angle by considering the YZ plane.

These output values are accessible through the SPI protocol that uses a 16 bit word to

communicate, composed by an address and a data section. The datasheet of the sensor states

that “Read” commands start with a “00” and “write” commands start with “10” while the SPI

response word always starts with “01”. According to the sensor datasheet, the commands used

in order to initialize the sensor and to perform a “read” operation are:

Command Operation SPI response Data
10x100XXYYPSZDDD Write E910.86 and

analog output
status

011100XXYYPSZDDD E910.86 and analog
output status

X0x000xxxxxxxxxx Read Xn and Yn
sensor angle data

0100X5X4X3X2X1X0Y5Y4Y3Y2Y1Y0 X and Y sensor data
Yn= angle yz-plane
Xn=angle xz-plane

Table 2: E910.86 write and read commands used

The data section of the word is used to configure the pull diodes (XX and YY operating mode (Z

and DDD bits).

In order to communicate with the sensor using the SPI protocol, the python “SPIdev” library is

used. Once the initialization command is sent through the “xfer2” SPIdev function, and the SPI

mode and frequency are set, the sensor is ready to be read.

Once the byte word (16 bits) is read, we can extract the bits referred to Xn and Yn data obtaining

the following digital value: X5X4X3X2X1X0Y5Y4Y3Y2Y1Y0.

The float value of the angles can be easily retrieved by using the following linear relation

contained in the sensor datasheet and represented in Figure 15.

𝑋𝑛𝑑𝑒𝑔
=

75∗𝑋𝑛𝑏𝑦𝑡𝑒 𝑤𝑜𝑟𝑑

27
+ 15 𝑌𝑛𝑑𝑒𝑔

=
75∗𝑌𝑛𝑏𝑦𝑡𝑒 𝑤𝑜𝑟𝑑

27
+ 15

Is important to note that the angles value can span from a minimum of 15° to a maximum of 165°

with a resolution of 2.7°.

Figure 15: digital output – angles relation

20

Once the conversions are computed, the resulting values are the Xn and Yn angles (in radians).

Now that these angles are known is possible to compute the sun vector referring to the model

depicted in the figure below.

Figure 16: sun vector model

Referring to the Figure 14, the angle β can be computed as: β = 𝑋𝑛 − 90°. In this way, when Xn

is ranging from 15° (the minimum value that can be obtained from the sensor) to 90°, the value

of β is negative; instead, when Xn is ranging from 90° to 165° (the maximum value that can be

obtained from the sensor), β is positive. In this way we are setting as our “0°” angle the output

value of 90°, that is sensed when the light is positioned right in front of the sensor as is possible

to see in the following tests. Obviously the same model can be used for the angle Yn, using angle

α instead of β.

In this way, using the values of α and β, and referring to the picture in Figure 16, we can easily

compute X, Y, Z coordinates of the sun vector, expressed in the sensor frame, by applying the

following formula:

[

𝑋𝑆𝑏

𝑌𝑆𝑏

𝑍𝑆𝑏

] = [
𝑡𝑎𝑛𝛽
𝑡𝑎𝑛𝛼

1
]

The resulting vector is not normalized because the third component is always set to “1”. Since

only the direction of the vector is in general required for several purposes, for example the

“Attitude determination” based on the information of the position of the sun with respect to the

spacecraft, the vector obtained from the previous formula can must be normalized. Finally the

circuit diagram of the sensor, used for performing all the connection with the rest of the

hardware, is reported in Figure 17.

21

Figure 17: E910.86 circuit diagram

2.1.1.1. E910.86 test

As stated in the previous section, the output values provided by the Sun sensor are the angles

described by the incident light in the XZ and YZ planes (respectively named Xn and Yn) of the

sensor reference frame. Knowing this information a first test has been performed in order to

check if the sensor correctly measures these angles. A simple situation is selected in order to

easily verify if the output values are correct or not, indeed the sensor is needed to sense an angle
of 90° on both XZ and YZ plane when a light is positioned in front of it, as it is shown below:

Figure 18: E910.86 testing setup

Knowing that the measured angle when the light is right in front of the sensor should be 90°, the

22

outputs obtained from this experiment, presented in Figure 19, are compared with the expected
ones.

Figure 19: E910.86 Xn, Yn angles at 90°

As it can be seen, the output angles are correct and this proves the proper behaviour of the

sensor, but there is an error of 2.7° affecting the measurements and this is due to the resolution

of the sensor. Now a second test is performed by moving the light along the X axis of the Sun

sensor reference frame, in particular from the left side of the sensor to the right side, and

checking if the Xn angle changes accordingly. The results are presented in Figure 20:

Figure 20: E910.86 Xn changing test

The obtained results are correct since the Xn values are changing going from lower values to

higher ones (due to the movement of the light). The Yn angle is correctly maintained to a value

of approximately 90° but the precision is about 10° since the light is moved by hand and some

changes also on the YZ planes are encountered due to the movement that is not perfectly fixed

to the Y axis.

Finally the very same test is performed by moving the light along the Y axis to check if the Yn

values are correctly changing during the movements of the light. The results are presented in

Figure 21:

23

Figure 21: E910.86 Xn changing test

Also for this test the results are the expected ones and so the sensor is working properly even if

the light source is fixed or moving along the axis of the sensor reference frame.

2.1.2. Raspberry PI 3 B+

The Raspberry Pi 3 B+ is a widely used single-board computer of small dimensions that can be
equipped with different Linux based operating systems (mainly Raspbian and Ubuntu). The
board doesn’t have an integrated hard disk, so the installation of the operating system is done
with the flashing from an SD card.
Raspberry is often used for academic usage but also in companies for rapid prototyping as
control unit, in projects of all size and application fields, mainly because is a low-cost board, is
simple to configure and to use and has an high efficiency in terms of CPU consumption.
Considering the older models, Raspberry Pi 3 B+ has an extended GPIO (General Purpose
Input/Output) with 40 pins. The board and its GPIO scheme can be seen in Figure 22 .

Figure 22: Raspberry Pi 3 B+ board and GPIO scheme.

24

For the aim of this thesis work, the connection of the following pins is necessary:

• Supply: Pins “1, 17” for the 3.3 V and pins “2, 4” for 5 V supply

• SPI communication: Pins “19, 21, 23, 24” in order to communicate through SPI protocol

with the sun sensor mounted on the sensor module

• I2C communication: Pins “3, 5” in order to communicate through I2C protocol with the

magnetometer and the temperature sensor mounted on the sensor module

• GND: Pins “14, 30, 34” are used for ground connection

These connections must be done as proposed in the schematic of Figure 4, resulting in this real

circuit:

Figure 23: final circuit with: Raspberry PI, logic level converter and sensor module

2.2. Software configuration

In the following section is presented the software configuration used for developing the thesis

work.

As presented in section 2.1.2, the used board for testing the ROS2 software is the Raspberry Pi

3 B+. The first step for starting to develop with an embedded system is to install an OS (operating

system) suitable for the aim of the work. Generally, for what concerns embedded systems, there

are two different possibilities for installing an OS:

• The first one is realizing an image, generally composed by bootloader, kernel and rootFS,

with an automatized toolbox, like Buildroot or YOCTO, that generates embedded linux

images and then flash it on the system following a certain procedure that may be different

25

from board to board .Buildroot provides a graphical user interface which allows to select

on a menu the bootloader, kernel, rootFS, predefined or custom packages and everything

that we would need on our board . It may be a hard procedure to obtain a working image

(specially for customized boards), but some boards may need this solution because of

their strong customization. This approach is explained in the Appendix A [8].

• The second solution is to download an existing operating system (like Debian or Ubuntu)

and then flash it on the board following the proper procedure. For example, with

Raspberry is very easy since you can just upload the OS image on the SD and then insert

it in the SD slot.

Since the purpose of this thesis is to develop a software framework based on ROS2, an OS image

that has ROS2 installed is necessary.

To obtain this result, the first solution is not the preferred one since in order to have ROS2 on

the image, according to ROS official installation page, the only available method is following the

“build from source” procedure which means to download the ROS2 source code and then cross-

compile it for the Raspberry Pi processor, which can be a difficult procedure to do (and not so

intuitive).

Proceeding with the second solution because of its immediacy, once the operating system is

downloaded and mounted on the SD card, is just a matter of following the procedure “Installing

ROS2 via Debian Packages” described in the ROS official installation page. The only existing

operating system that can support the last version of ROS2 (Foxy) is Ubuntu 20.04, so it’s the

one used for this thesis work.

2.2.1. ROS2 overview and advantages

The Robot Operating System (ROS) is not a real operating system as the name may suggest, but
a set of software libraries and tools, generally also called “middleware”, for building robot
applications. Since ROS was started in 2007, a lot has changed in the robotics and ROS
community and the goal of the ROS2 project is to adapt to these changes leveraging what is great
about ROS1 and improving what isn’t; the most interesting part of this updating procedure is
that you can always connect the latest version of ROS2 in use with ROS1, with a mechanism
called bridge, in order to not lose any functionality neither of one nor the other.
ROS is heavily used in robotics, but it can be used in general for autonomous/semi-autonomous
systems that may need to read sensors, have perception of their position and attitude in space
and to control actuators. For these reasons it is a very good choice for developing a software
framework also for aerospace applications, like drones or in this case nanosatellites.
In this thesis project the latest version of ROS2 is used and it is called “ROS2 Foxy Fitzroy”. There

26

are many versions of ROS2 and most of them are constantly updated and supported until their
EOL date (End of life); the actual situation is portrayed in Figure 24 :

Figure 24: ROS2 latest distributions and EOL dates

Beyond the reasons explained above there are other benefits for using ROS:

• It is totally open-source and constantly updated by developers all around the world for

many application fields.

• Creating truly robust, modular and efficient robot/mechatronics software is in general an

hard job, so ROS provides plug-and-play solutions to common problems in developing

software frameworks.

• Is based on the DDS standard for the managing of data distribution for real-time systems,

that provides an easy publish-subscribe paradigm.

• Comes with many ready-to-use tools for debugging, data visualization and simulation.

• Possibility to develop software in python and C++ and to get connected with

Matlab/Simulink for testing and code auto-generation.

Another great advantage of using ROS/ROS2 is the possibility to integrate a generic ROS system

with MATLAB and Simulink by using the official ROS Toolbox. This feature is fundamental for

the MBSD approach, addressed in the introduction, since the toolbox natively provides a function

for autogenerating C++ code (with Simulink Coder), from Simulink models, for ROS/ROS2 nodes.

The ROS Toolbox provides an interface able to connect MATLAB and Simulink with ROS and

ROS2 enabling the creation of a distributed network of ROS/ROS2 nodes among the target

embedded system, running the ROS software, and the local PC with MATLAB/Simulink.

The toolbox includes MATLAB functions and Simulink blocks to import and analyze ROS/ROS2

27

messages sent and received from specific topics.

At the heart of any ROS 2 system is the ROS graph. The ROS graph refers to the network of nodes

in a ROS system and the connections between them by which they are able communicate. This

graph is made up by the elementary concepts of ROS that are:

• Nodes: are the smallest entities constituting every complex system. They can be seen as

processes, intended for few and elementary operations, that can communicate with other

nodes over topics. Each node can be a subscriber or a publisher of a certain topic.

Obviously the core concept at the basis of the nodes is the modularity of the system,

indeed using nodes is very simple to add functionalities just by integrating it in the

already present ROS network.

• Topics: each topic has a name and a specific kind of message that it can handle. They are

the principal and simplest “hubs” where messages are collected, when sent by publisher

nodes, and sent to subscriber nodes.

Figure 25: Publisher “Node” sends a message over the topic “Topic”

• Services: another method of communication for nodes based on a call-and-response

model. While topics allow nodes to subscribe to data streams and get continual updates,

services only provide data when they are specifically called by a client. A representation

of this system is presented here:

Figure 26: Call-and-response method implemented by the service

28

By means of these simple components we can establish really complex systems like robots or

even nanosatellites. At the end of our development , including sensors reading, control of

actuators and storing of useful data, it is really helpful for debugging and analysis to represent

the overall system in its nodes and topics using the rqt_graph. A simple but clear example of this
functionality is represented in Figure 27 extracted from the official ROS2 tutorial.

Figure 27: rqt_graph of the official teleop turtle tutorial

29

3. ROS2 FLIGHT SOFTWARE FRAMEWORK

In this chapter is described the proposed solution for the fundamental nodes implemented for a

draft of the ROS2 based flight software framework. As stated in the introduction the applications

selected are related to the sensor data reading and storing and to a Watchdog for monitoring the

overall system status. These applications will be implemented as ROS2 nodes; all the details are

reported in the following sections.

3.1. Watchdog node

The watchdog is an electronic or software timer that is used to detect and recover from system

malfunctions, in order to make the whole system running properly. Particularly, its main duty is

to check if the applications that it has to monitor are active and properly running or not and, in

case they are not, to re-start them again.

In general a software watchdog is a process that perform these operations after being configured

by reading the needed informations, contained in a specific configuration file (written in YAML,

JSON or other data-serialization language), that watchdog reads when it is launched.

Is always a good safety precaution to have a software watchdog in an automatic system, but it is

necessary in critical systems that must be active for a long period like nanosatellites since if a

process crashes it’s necessary to immediately re-start it, to not compromise all the system.

An example of watchdog application in a complex software framework is the one used on the

MK-1 framework produced by Tyvak International. Its working flow is presented in Figure 28.

Figure 28: Mark-1 watchdog flow chart

When the watchdog application is started, it reads a configuration file (written in YAML) and

stores informations about the applications that it has to control, among other settings regarding

the timer period and so on. These executables are then launched by the watchdog itself. Each

application then is intended to send an heartbeat/keep alive message with a specified frequency

30

in order to signal to the watchdog that is running correctly. To check this, an infinite loop with

the operations described below is performed:

• A watchdog timer with a specified frequency is set.

• If the timer is greater than zero, the watchdog checks if all the “keep alive” messages has

been collected from the applications to be guarded. If this doesn’t happen it decreases its

timer, otherwise the timer is reset and the loop restarts.

• If the watchdog timer is equal to zero, it means that one or more applications did not send

the “keep alive” message. This could happen for many reasons, for example the

applications could be stuck in an infinite loop or it could be crashed.

The watchdog checks the missing applications and it sends a kill signal to those processes

for safety reasons. After that, it restarts the missing applications and resets the watchdog

timer.

In the ROS2 developed framework, the working principle of the watchdog node is different since

the desired application works mainly with pre-existent ROS2 API (Application programming

interface). Since an API called “get_nodes_names”, which returns a list with the names of the

active nodes, is already existent in ROS2, the usage of the “keep alive” messages became useless

for detecting which nodes are alive or not.

This gives an important advantage for the system communications because it reduces the

amount of messages that a node has to send through topics. Moreover, in order to re-start the

nodes that are not alive, the ROS2 launch file service is used.

ROS2 launch files are Python scripts that allow to start up and configure a number of executables

containing ROS2 nodes simultaneously. These files include the package name and the executable

name of the node to be launched, and other parameters like the arguments to pass at the launch

command. They must be contained in a suitable “launch” folder and they can be executed through

the “ros2 launch” command from a shell, but there is also a provided API called

“launch_a_launch_file” that allows to launch other nodes programmatically, by passing as

argument the path to the correspondent launch file of the desired node.

Attributes and methods of the Watchdog class are presented in Figure 29:

Figure 29: Watchdog(Node) class

31

The flow chart of the developed ROS2 based watchdog is presented in the figure below:

Figure 30: ROS2 based watchdog flow chart

When the watchdog node is started, it reads the configuration file (written in YAML) in which

are stored the names of the nodes to be guarded and the path to their launch file, and it stores

the names in “self.guarded_nodes” field of the class. An example of the YAML file is presented

here:

Figure 31: watchdog config YAML

The YAML file is organized as a dictionary with a key called “guarded_nodes”, which value is the

list of the nodes to be guarded. Each node is a list itself that contains two keys: the name of the

node and the path to its launch file.

The core function of the watchdog node is the “watchdog callback” which is called with a

frequency of 5 seconds. When the callback is called, the Watchdog stores the list of the active

nodes into the specific list, using the method “create_active_nodes_name_list” and the API

“get_nodes_name” presented above. Then, a method called “checking missing nodes” is executed

in order to compare the guarded nodes list and the active nodes one. If one or more nodes are

not present, the “watchdog_launcher” method is executed through a subprocess call (present in

the multiprocessing Python library).

This method executes the launch file of the missing nodes using the API “launch_a_launch_file”

presented above. Once these operations are done, the callback is called again after 5 s.

The Watchdog node can be executed through the “ros2 run” command via shell.

For the purpose of this thesis work, the nodes that are guarded by the watchdog are the sensors

nodes presented in the following paragraphs.

Considering its implementation, the realized watchdog node does not acts like a publisher or a

subscriber node but it is like a stand-alone node which autonomously controls the status of other
important nodes, needed for the correct working of the whole system.

32

3.1.1. Watchdog node test

In order to check the correct performances of the designed Watchdog node, some tests are

performed. The first situation is the one in which all the node that must be guarded from the

Watchdog are already running, and the Watchdog just needs to acknowledge this and to print a

message with the list of the active nodes. The results obtained from this scenario are presented
in Figure 32:

Figure 32: Watchdog node test: all the guarderd nodes are running

The Watchdog correctly print a list of the active nodes (including itself) and a message that

shows that the sensors nodes are correctly running, so additional operations are not required.

The second situation is the one in which one of the two guarded nodes (for example the one that

read data from the SPI bus) is not running. The Watchdog is in charge of recognize the missing

node and to start this node up. The results are presented below:

Figure 33: Watchdog node test: SPI sensors reader node is missing

33

As it can be seen, when the Watchdog callback is called for the first time, the only node present

in the active nodes list, except the Watchdog, is the one that read data from the I2C bus. For this

reason, the Watchdog launches the SPI node and print an info message that contains the PID of

the process started. After that, when the callback is called for the second time, all the nodes are

present in the list of active nodes and the execution process proceeds normally.

The last scenario is the one in which both nodes are not running and Watchdog needs to start

them up. This test is performed in order to check that the Watchdog can start more nodes

simultaneously when requested. The results are presented in Figure 34:

Figure 34: Watchdog node test: all the guarderd nodes are missing

The obtained results are pretty similar to the ones of the previous test. Firstly only the Watchdog

node is present and the sensors nodes are missing. So, the Watchdog start them up and print two

messages with their PIDs. When the callback is called for the second time, all the nodes are
correctly present and the execution process proceed normally.

3.2. Sensors Bus node

When we have different digital devices that need to communicate one with another, there is

always a communication system that enables this data exchange.

In the case presented in this thesis there is a sensor module, instrumented with several sensors,

that can communicate with an external device by means of dedicated buses, and in particular:

the AD7415 temperature sensor and the HMC5883L magnetometer can be interfaced through

an I2C bus, while the E910.86 sun sensor with an SPI bus.

The detailed description of these two communication systems is reported in the successive

sections while here only the architectural choice of how the ROS2 framework will handle the

sensors, and why, is discussed.

34

The first possible implementation that has been examined is also the most intuitive one: one

ROS2 node for each sensor.

In this way is possible to obtain a very easy to visualize system where each node is referred to

one single sensor and so it can be also easy to handle each sensor in different ways. But there

are also two significant problems with this implementation, that made the second solution to be

the best one.
Imagining a very usual situation like the one depicted in the following figure:

Figure 35: SPI bus example with several identical sensors

where there are many identical sensors that have to perform exactly the same type of

measurement and in the same manner, for example on a satellite we may have many sun sensors

(such as in Figure 35) or magnetometers collecting data for attitude determination. In cases like

these the solution “one node one sensor” is not so optimal form the software engineer point of

view because there will be many identical nodes performing exactly the same tasks and each one

of them is implemented exactly in the same way.

This totally goes against the efficiency and reusability philosophy of ROS2 and object

programming in general.

The second significant problem is related to the message traffic that our system would bear

whenever each node, representing each sensor, have to send messages over topic at very high

frequencies, containing the collected data.

The second implementation analysed solves these two issues in this way: each node represents

a particular bus used by many sensors.

Referring to the Figure 35 , in this implementation the node will represent the SPI bus and not

each sensor attached to it, drastically reducing the redundancy of exactly the same piece of code.

From the message traffic point of view the situation in improved because now the node

representing the bus collects all the data from each sensor and then it works as an hub for sorting

the messages and send them to the right topic, instead of having many nodes continuously

sending messages at each collection of data.

For fully understand the differences between the two approaches we can consider a more

realistic situation, as the one presented in Figure 36:

35

Figure 36: Realistic situation with many sensors on two different buses

The first presented method for handling sensors with ROS2 node, would lead to have 5 nodes

for collecting data coming from the sensors connected to different buses, while with the second

solution only two nodes will be created.

3.2.1. I2C bus node

I2C (Inter Integrated Circuit) is a serial communication system used in embedded systems. It’s a

master/slave communication that normally have one master and one or more slaves. Each of

them is recognizable by a unique hexadecimal address. The hardware protocol needs two serial

lines for the communication: SDA (Serial data) for data and SCL (Serial Clock) for the clock

(mandatory since I2C is a synchronous bus). Two other lines are used: one for the reference

connection (called GND) and one for the voltage supply (typically 5 or 3.3 V). The hardware

representation of the I2C protocol can be found in :

Figure 37: I2C protocol representation

Considering the ROS2 based framework developed, one node for each I2C bus present on the

used board is created. The node can be created with the command “ros2 run sensors

sensors_reader_i2c busN” where N is the number of the bus that is wanted to be read. Raspberry

Pi, used for this work, has only one I2C bus (bus 1) but other boards could have more than one

bus so it’s necessary to specify which bus is wanted to be read.

To handle the i2c communication, smbus2 python library is used. It is the commonly used library

for this kind of communication and it provides several useful functions to open/close the

36

communication with a specified bus and read/write data to a specific slave address.

For what regard the purposes of this thesis work, two sensors communicate through I2C bus: an

AD7415 temperature sensor and a HMC5883L magnetometer, both described in the previous

paragraphers.

Since the I2C bus node must acts like a publisher and send a message that contains the sensors

data read on a dedicated topic, a custom message that can contain these informations must be

created. All the custom messages created for this thesis work are contained in a suitable folder.

The structure of sensors message is presented in Figure 38.

Figure 38: Sensors custom message structure

In the “raw” fields of the message are contained the raw values returned by the related sensor

without any kind of conversions (binary value). The other fields of the message contain the data

values of the related sensors that can be used for computation for other nodes of the system.

Since all the possible kinds of sensors are present in the message and some of them may

communicate through SPI protocol (they will be present in the following paragraph), their fields

will always be empty when considering an I2C bus node. Otherwise, the I2C bus sensors fields

will be empty when an SPI node is created.

Considering I2C bus node software, its flow chart is presented in Figure 39:

Figure 39: I2C bus node flow chart

37

Its attributes and methods are then presented in Figure 40:

Figure 40: I2C bus node class

After the node is launched, it reads the configuration file (written in YAML) presented below:

Figure 41: I2C bus node YAML configuration file

Each bus is characterized by two keys: its number and a list of the sensors present on the bus.

Each element of the list has two keys: the type of the sensor and its address on the I2C bus. The

number of the bus and the list of sensors are stored in suitable python variables by scrolling the

YAML file as a dictionary structure. The I2C bus is then initialized using the dedicated smbus2

function and after that the node is created.

In the constructor of the I2C bus node, an object list of sensors is created by scrolling the list

retrieved from the YAML file and creating an object for each of them.

The core function of the I2C bus node is the “sensor_reading” callback, called with a frequency of

0.05 seconds. Every time that this function is called, a new sensors message is initialized. A for

loop is performed by scrolling on the list of sensors objects created in the constructor. The raw

and data values are read and stored into the message related fields for each sensors.

The message is then published on the topic and the callback is called again after 0.05 seconds.

3.2.2. SPI bus node

The SPI protocol (Serial peripheral interface) is a serial communication protocol used for

establishing a connection between microcontrollers or in general digital devices and, just like

the I2C system, it uses a master-slave paradigm. In this communication system we don’t have an

address for each slave, instead there is the chip/slave select signal that is used for identifying a

38

slave among the others.

The SPI protocol connection between master and slaves is performed by four signal lines:

• SCLK: serial clock emitted by the master

• MISO: Master input slave output, that is the signal collecting data by the master

• MOSI: Master output slave input, like the MISO but in the inverse direction

• SS: Slave select, that is the signal emitted by the master for selecting the slave it wants to

communicate with

The hardware representation of the SPI protocol is depicted in the following figure:

Figure 42: SPI communication protocol example with a Master and three slaves

Just like the I2C bus node, the ROS2 framework can create a node representing a specific SPI bus.

The node can be created with the command “ ros2 run sensors sensors_reader_spi busN ” where

N is the number of the bus where there are sensors wanted to be read. For the Raspberry used

in this project the SPI bus where the sun sensor is connected, is the number 0.

In order to access via software the SPI interface, the spidev python library is used.

For what concerns the message definition of the SPI bus node and the functional concept of the

implementation, is possible to refer to the previous section (3.2.1 section) where all these details

are presented and explained.

Considering the SPI bus node implementation, its class diagram and flow chart are presented in

Figure 43 Figure 44. As is possible to see the class diagram is the same as the I2C bus node and

also the flowchart is actually very similar. The main difference between an I2c bus node and an

SPI bus node is in its config file, where instead of having an “addr” section now there is a “cs”

section representing the chip select signal of the slave:

Figure 43: SPI_bus node class diagram

39

Figure 44: SPI_bus node execution flowchart

Figure 45: SPI_bus node configuration file

3.3. Sensors Telemetry node

The Telemetry is a technology that allows to measure and store informations of interest for the

designer or operators who want to know relevant data of the system. Telemetry data can be sent

in real-time, but they can also be collected in a suitable file (for example a binary file) and sent

once the file has reached a defined size of after a certain amount of time. Telemetry is widely

used in complex systems like nanosatellites for monitoring the status of its subsystems. In this

way, they can send the most critical data (downlink) to ground operators who know how to

interpret them.

For what concerns the ROS2-based software developed, the data that must be stored using

telemetry are those that come from the sensors nodes described in the previous paragraphs.

A Telemetry node is created for each I2C or SPI bus to store all the sensors data that are present

in that bus both in raw and interpreted form. When a predefined number of messages has been

collected, a new telemetry file is created. All the sensors telemetry files are collected inside a

folder called “sensors_log” inside the “src” folder of the telemetry package.

The files in which the data are stored can be created with different extensions. For what concerns

this thesis work, two different approaches were implemented. The results are compared by

40

means of the size of the produced files and then the smaller one is selected as the suitable one.

The first attempt was done by using database (db3) files that can be easily read by using a

software that supports SQL files. The advantage of this kind of files is that they can be easily read

by an operator since the data are organized in database tables. On the other hand, the produced

files have a big size and, if the amount of data is large, the folder in which those files are contained

can became very large.

The second attempt was done by writing the data on binary (bin) files. These files are not easy

to read and the structure of the written data must be known a-priori, but they are compact and

their size is almost the half of a db3 file so this choice was the used one. The name of the binary

files is composed by the type of the bus (I2C or SPI), the number of the bus and a timestamp with

date and creation time. The structure of an I2C or SPI bus telemetry node is the same; the only

thing that changes are the sensors that are present on the bus and so the kind of data stored. The

attributes and methods of an I2C or SPI bus telemetry node are presented in Figure 46:

Figure 46: I2C/SPI bus sensors telemetry class

The flow chart of an I2C/SPI bus telemetry node is shown in Figure 47:

Figure 47: I2C/SPI bus sensors telemetry class

41

A telemetry node can be created by using the shell command “ros2 run telemetry

sensors_telemetry_i2c/spi busN” to start recording data of the sensors present on the I2C or SPI

specified bus.

The created node acts like a subscriber on the topic where the specified bus publishes its data.

Once the node is created and the subscription to the topic has been done, a boolean variable

“recording” is initialized to check if the desired topic is already recorded. Particularly, if the

variable is set to False the topic is not recorded, otherwise it is recorded. Another variable “ind”

is initialized to zero and it is used to count the number of messages arrived.

The “sensors_telemetry_callback” is called every time a new message is published on the desired

topic by the related sensors node. When the callback is called, a variable “N_max” is set to define

the maximum number of messages to collect inside a binary file and, once this number of

messages is reached, a new binary file is created.

The operations performed when the callback is called are:

• Checking if the actual value of “ind” is equal to “N_max”. If yes, it means that the maximum

number for a binary file is reached so the binary file is closed.

• Checking if “ind” is greater than “N_max” -1 or if the topic is already recorded by using the

variable “recording”. If yes is necessary to: create a new binary file, set the recording value

to true and reset “ind” to zero

• The message received is then written inside the binary file using the Python library

“struct”.

After that, the “ind” variable is increased by 1 and the callback is called again when a new

message arrives on the topic.

3.3.1. Telemetry node test

Since the behaviour is the same for both I2C and SPI nodes, only the I2C telemetry node is

considered for testing. In order to check that a new file is created every time that the maximum

number of messages is reached, the “N_MAX” variable is set to 5 in order to rapidly check the

correct behaviour. The output obtained is presented below:

Figure 48: Telemetry node test: creation of a new file

42

The first line shows the creation of the first file in which the data of the I2C sensors are stored.

After that, a “Recording…” message is printed every time a new message is stored in the file. Once

the “N_MAX” number of messages is reached, 5 as we can see from the picture, a new file is

correctly created and filled with the new messages.

In order to demonstrate that the data are stored correctly, a Python file is prepared to read the

created binary files. This script uses the “unpack” function of the “Struct” Python library.

The data read from the script are presented in :

Figure 49: Telemetry node test: reading stored data

43

4. ATTITUDE CONTROL

When a spacecraft, or in general an autonomous system, is asked to perform some actions and

interact with an environment, there is always the problem of determining its position (in the

orbit) in the space and its attitude (orientation with respect to a ref. frame). These two

informations are fundamental and needed to be mathematically defined with respect to a well-

defined reference frame.

In this thesis only the attitude information is needed for performing the attitude determination,

so the position in the orbit of our system is neglected.

In the following sections the mathematical tools for determining the attitude of our spacecraft

are presented.

4.1. Rotation matrices and quaternions

Let’s suppose that we are in a situation like the one depicted in Figure 50:

Figure 50: F1, F2 reference frames and a generic particle

There is a generic particle (red dot in the figure) and two reference frames (F1 green, F2 blue)

that are translated and not aligned, so a mathematical tool for representing the relative position

and attitude between them is needed.

To this aim is possible to analyze the situation by representing the position of the particle with

respect to the two reference frames:

Figure 51: position of the particle with respect to F1, F2

44

The mathematical tool needed is such that it can represent the relationship between the

coordinates (X,Y,Z) and (x,y,z). To this aim is possible to rewrite each coordinate of R in this way:

Figure 52: R written in matrix form in function of (x,y,z)

As is possible to see from the relation above (Figure 52), each element of the T matrix is a dot

product between the F1 and F2 versors, that are called the direction cosines. These elements

represent the orientation of each axis of one frame with respect to each axis of the other one,

and due to this the T matrix is usually called Direction Cosine Matrix (DCM). An interesting

feature deriving from this analysis is that is possible to split the problems of translation and

rotation and to treat them independently, since the T matrix is referred only to the rotation while

the 𝑅0 vector is only referred to the translation between the reference frames.

The DCM T can be interpreted in two ways, and is fundamental to always understand which

interpretation is being used:

• Alias: is referred to the transformation of coordinates. For example T can be interpreted

as a coordinate transformation 𝐹2 → 𝐹1.
• Alibi: is referred to the rotations. For example T can be interpreted as the rotation matrix

such that 𝐹1 → 𝐹2.

The rotation matrices are a minimal and useful mathematical tool that can be easily employed

for representing the attitude of a spacecraft, but their affected by a well known and dangerous

limitation. Since matrices are used for representing the actual attitude of a generic system, it

happens that in certain configurations the matrix loses a degree of freedom. In these situations,

there is a singularity corresponding to the loss of an information, and that’s exactly what happens

when the so called “Gimbal-lock” occurs. This problem can be overcome by using non-minimal

representations of the attitude.

A possible alternative to the DCM are the “quaternions”. They are mathematical objects used as

a generalization of complex numbers to a 3D space, but they can also be used for representing

rotations. They’re based on the Euler’s theorem and the elements of the quaternion are four

variables called Euler parameters, that are used for describing a rotation around a specific axis.

The advantages with respect to other representations are:

• Efficiency from a computational point of view

45

• Less sensitive to rounding errors

• Gimbal-lock avoided since it is a non-minimal representation

A quaternion can be written using these notations that are equivalent:

Figure 53: quaternion equivalent notations

The 𝑞0 is the real part of the quaternion while the q is its imaginary part, when the real part is

null the quaternion is said to be pure. The u and β are respectively the axis of rotation and the

angle around the body is rotating, that can be found by applying the Euler’s theorem computing

the eigenvalues and eigenvectors of the rotation matrix describing the rotation.

Let’s now introduce some properties and algebra related to quaternions:

• The null quaternion is such that its real and imaginary parts are null

The identity quaternion is such that the real part is 𝑞0 = 1 while the imaginary part

is null.

• The complex conjugate of a quaternion is just like the quaternion but with the

imaginary part sign inverted: 𝐪𝑐𝑜𝑛𝑗 = −𝐪𝑖𝑛𝑖𝑡 .
• The products involving quaternions are the following:

Figure 54: Algebra of quaternions

46

• Given a rotation defined by a quaternion, is possible to represent the inverse of the

rotation by computing the conjugate of the quaternion.

With the properties listed above, quaternions are a suitable non-minimal representation of

rotations that are widely adopted nowadays for defining the attitude of complex systems like

robots, spacecrafts and so on.

Is also possible to pass from a representation to the other by using the proper formulas:

Figure 55: DCM ↔ Quaternions formulas

4.2. Reference Frames

A reference frame is specified by an ordered set of three mutually orthogonal, possibly time

dependent, unit-length direction vectors. In order to describe the orbital motion of satellites

around the Earth, there exists a set of standardized coordinate reference frames that can be used.

The most relevant ones are:

• ECEF (Earth Centred Earth Fixed): also known as conventional terrestrial system, the

point (0, 0, 0) denotes the centre of the Earth. X-Y plane is coincident with the equatorial

plane and its versors point in the directions of longitude 0° (passing through Greenwich

meridian) and 90°, while the Z-axis is orthogonal to them and points in direction of the

true North Pole. The ECEF frame is presented in the figure below:

Figure 56: representation of ECEF frame

47

This frame rotates with respect to the stars because it is tied with the Earth and so it is a

non inertial frame (with respect to the stars). ECEF reference frame is in general used for

its simplicity in describing the motion of objects that are moving on the Earth’s surface.

• ECI (Earth Centred Inertial) frame: has its origin at the centre of mass of the Earth, like

the ECEF frame, and its axes lay on the same planes of the ECEF frame but it is fixed with

respect to the stars and so it is considered inertial (with respect to the stars). An equinox

occurs when the earth is at a position in its orbit such that a vector from the earth toward

the sun points to where the ecliptic intersects the celestial equator. The equinox that

occurs near the first day of spring is called the vernal equinox. It can be used as a principal

direction for ECI frame. It is useful to describe the motion of celestial bodies and

spacecraft. The location of an object can be defined by using right ascension and

declination (spherical coordinates like longitude and latitude) or using Cartesian

coordinates. One commonly used ECI frame is defined with the Earth’s Mean Equator and

Equinox at 12:00 Terrestrial time on 1 January 2000 and is called J2000. The x-axis is

aligned with the mean equinox and z-axis is aligned with the Earth’s rotation axis, the y

axis completes the right-handed triad.

• LVLH (Local vertical, local horizontal coordinates): is a geographical coordinate system

based on the tangent plane defined by the local vertical direction and Earth’s axis of

rotation. The axes are positioned as follows: one axis is pointed towards the northern

pole, one along the local eastern axis and on represents the vertical position. If the third

axis is positive when it points up the frame is called ENU (East North Up), otherwise is

called NED (North East Down). These frames are used to represent state vectors (set of

data that describe where an object is located in space). A representation of an ENU frame

with respect to the ECEF is presented in Figure 57:

Figure 57: ENU frame with respect to ECEF

• Body-fixed frames: these frames are tied to a predefined body and move/rotate with it.

The axes can be placed as wanted accordingly to the semplifications that may occur in

orienting the frame in a certain manner or another, and it is centered in the center of mass

48

of the body. Considering the system of this thesis work, the body frame considered is the

one coincident with the sun sensor E910.86 frame, used to provide the sun coordinates

and it is presented in Figure 58.

Figure 58: body frame used representation

The z-axis is pointing out of the sensor body, the y-axis points up with respect to it and x-axis is

orthogonal to them.

4.3. Satellite dynamical model

In this paragraph the derivation of a suitable dynamical model for representing a nanosatellite

is presented. Generally a spacecraft can be approximately described as a rigid body moving with

respect to an inertial frame (in general an ECI frame), and its motion can be decomposed into

two independent blocks:

Figure 59: spacecraft dynamical model block diagram

Referring to Figure 59 the first block is related to the dynamics of the rigid body, so it relates the

angular velocities to the forces/torques applied to it, while the second block represents the

changing of the attitude of the body when certain angular velocities are present.

The kinematic equations of an approximated model of a spacecraft can be easily computed with

respect to different attitude representations (DMC, euler angles, quaternions…) and for this

thesis the quaternion represention is chosen since it ensures the avoidance of singularities. So

the goal here is to describe the time evolution of the attitude quaternion 𝒒 in function of the

angular velocities around each axis of the body frame. Both the quaternion and the angular

velocities are depending on time, so si possible to represent the quaternion at a generic time

49

instant 𝑞(𝑡 + ∆𝑡), with respect to the quaternion 𝑞(𝑡), by using the quaternion properties

described in 4.1:

𝑞(𝑡 + ∆𝑡) = 𝑞(𝑡) ⊗ ∆𝑞(𝑡)

Where ∆𝑞(𝑡) represents the variation of the quaternion along the time interval ∆𝑡. Under the

assumption of very small ∆𝑡 the rotation angle performed is 𝜔∆𝑡 and considering 𝒖 as the

rotation axis it follows that 𝜔 = 𝜔𝒖. And so for small ∆𝑡, the incremental quaternion ∆𝑞(𝑡)
can be written as:

∆𝑞(𝑡) = [

1
𝜔∆𝑡

2

]

Now is possible to derive the quaternion derivative:

q̇ = lim
∆𝑡→0

𝑞(𝑡+∆𝑡)−𝑞(𝑡)

∆𝑡
= lim

∆𝑡→0

𝑞⊗∆𝑞−𝑞

∆𝑡
= lim

∆𝑡→0

𝑞⊗((1,
𝜔∆𝑡

2
)−(1,0))

∆𝑡
=

1

2
𝑞 ⊗ 𝜔𝑞 , 𝜔𝑞 = [

0
𝜔

]

Finally is possible to rewrite everything in the following form:

q̇ =
1

2
 𝐐 𝝎, 𝐐 = [

−𝑞1 −𝑞2 −𝑞3

 𝑞0 −𝑞3 𝑞2

 𝑞3 𝑞0 −𝑞1

−𝑞2 𝑞1 𝑞0

]

This form is widely used when representing the kinematics of nanosatellites, and this is general

in the sense that it can represents the satellite attitude variation related to the nanosatellite

angular velocity (this interpretation will be used for the detumbling control scenario) but also

the variation of the quaternion error related to the angular velocity error (this interpretation
will be used in the Earth-pointing control scenario).

The second block of the block diagram proposed in Figure 59 has been defined, let’s now define

the dynamic equations. The most important aspect of the dynamics of the nanosatellite is that

the input M, that can represent the actuators torque or even disturbances torques, can be easily

related to angular velocities triggered of the nanosatellites. This allows to close the chain that

connects the actuators action to the outcome in terms of quaternions, and so the attitude of the

spacecraft. The dynamics derivation is based on the second law of dynamics for a rotating body

which states that:

�̇� = 𝐌

Where H is the angular momentum (moment of momentum) and M is the generic torque applied
to the body. Recalling that:

50

�̇� = 𝐇�̇� + 𝛚 x 𝐇, 𝐇 = 𝐉𝛚, 𝐇�̇� = 𝐉�̇�

We obtain the Euler moment equation:

𝐉�̇� + 𝛚 x 𝐉𝛚 = 𝐌

This equation is nonlinear and in general no analytical solution is available. With this

relationship the nanosatellite dynamical model can be easily implemented in Simulink, along

with the kinematics block defined before.

4.4. General overview of AC systems

One of the most important subsystems for a nanosatellite, but in general for any spacecraft, is

the GNC subsystem. GNC stands for “ Guidance Navigation & Control “ and is intended for sensing

the actual state of the spacecraft and, eventually, to perform control actions in order to

manipulate it for accomplishing a given task. In general the GNC subsystem can be represented

as the combination of two subsystems that are the ADCS (attitude determination & control) and

the ODCS (orbit determination & control). As the names can suggest, the ADCS is in charge to

perform the determination of the spacecraft attitude and to change it whenever is needed. In this

thesis only the Attitude control part is deepened.

In order to accomplish the attitude control, the following classical control scheme is taken as
reference:

Figure 60: Attitude Control block scheme

But for the thesis purposes the attitude estimation part is not represented and the spacecraft

state are supposed to be all measured at each time instant.

The ACS (attitude control system) objectives can be the spacecraft attitude stabilization about

a reference attitude or the reference tracking in attitude manoeuvres; we can classify the

attitude control system as:

51

• Passive: based on the body dynamics and/or environmental forces.

• Semi-active (semi-passive): based on reaction wheels and/or interactions with the

Earth Magnetic Field.

• Active: based on thrusters.

The selection of the right set of actuators for a nanosatellites is crucial, since it defines which

manoeuvres, and their accuracy, can be performed once in orbit. For this thesis the only kind of

actuators mounted on the simulated nanosatellites are the magnetorquers.

4.4.1. Magnetorquers

Magnetic control actuators are actuators capable of exerting a torque on the nanosatellite by

interacting with the Earth Magnetic Field. As is well known the magnetic field of the earth can

be represented as a magnetic dipole whose dipoles are located at the magnetic poles of the earth.

Figure 61: Earth magnetic field dipole representation

The interaction between the nanosatellite and the earth magnetic field follows a really simple

physical phenomenon that also makes the compass needle to point the magnetic North. Indeed

when there is a magnetic dipole immersed in a magnetic field, a torque is produced by the

interaction between the magnetic moment of the immersed dipole 𝐦 and the magnetic flux

density 𝐁; the mathematical relation is the following:

𝛕 = 𝐦 x 𝐁

By exploiting this relation, magnetic actuators find their place in actuation systems because

they are lightweight, very cheap and require low power for actuating a control action.

Compared to other actuators, like thrusters, that can be used by consuming a power source

that is fixed and that cannot be produced once in orbit (like propellant), magnetorquers are

more reliable from this point of view since they need only electrical energy that can be stored

52

and reproduced by solar panels. A further advantage that increases their reliability over other

actuators, like reaction wheels, is the absence of moving parts.
The main drawbacks of these actuators are:

• strong dependence on the Earth magnetic field (or in general a persistent magnetic

field) so they are not suitable for deep space missions but ideal for LEO missions.

• the actuation system composed only by magnetorquers is underactuated since the

vectorial product between 𝐦 and 𝐁 produces torques that can act only on a plane

perpendicular to 𝐁.

The magnetorquer construction design is really simple and it consists on a coil with a defined

area and number of turns depending on the required performances. There are three types of

magnetorquers, different from each other but based on the same concept:

• Air-core magnetorquer: this is the very basic concept of magnetorquer, a conductive wire

wrapped around a non-conductive support anchored to the satellite. This kind

of magnetorquer can provide a consistent magnetic dipole with an acceptable mass and

encumbrance.

• Embedded coil: constructed creating a spiral trace inside the PCBs of solar panels which

generates the effect of the coil. In this way is possible to minimize the impact on the

satellite as it is entirely contained within the solar panels. By the way this implementation

it is not able to produce an high value of the magnetic dipole, and so produced torques

will be smaller.

• Torquerod: this is the most efficient solution in terms of produced dipole moments. Is

made by conductive wire wrapped around a ferromagnetic core which is magnetized

when excited by the coil. The drawback is the presence of a residual magnetic dipole that

remains even when the coil is turned off because of the hysteresis in the magnetization

curve of the core. It is therefore necessary to demagnetize the core with a proper
demagnetizing procedure.

Independently to their construction, magnetorquers can produce a magnetic dipole:

𝐦 = N ∙ I ∙ 𝐀

Where N is the number of windings of the coil, I is the current flowing on the coil and A is the
area vector of the coil.

4.4. Attitude control scenarios

As stated in previous chapters the simulated control system only comprises a set of

magnetorquers as actuators, so the right selection of the control scenarios to simulate must be

performed, taking into account the under actuation of the control system.

53

Considering the type of system available and which control actions can be implemented, the

choice was made on two important applications for magnetic actuators: satellite detumbling and

earth-pointing.

In this chapter only the theoretical treatment of the control problems is detailed, while on

chapter 5 we will see the MATLAB/Simulink implementation and finally in chapter 6 the

simulation results and the code generation of the control system.

4.4.1. B-dot control for detumbling phase

Generally when a nanosatellite is deployed from the launcher, it is pushed out by a deployer and

this procedure causes unwanted rotations of the nanosatellite that would result in an unstable

system; in these situations the nanosatellite is said to be “tumbling”.

So the first task that the attitude control system must perform is to detumble the spacecraft, in

other words it must mitigate these rotations until reaching a condition where the satellite has a

little (ideally zero) angular momentum. Finally when the nanosatellite is detumbled, the ACS can

start its nominal work.

The most reliable, and used, way to detumble a satellite in those orbits where the magnetic flux

density of earth magnetic field is not neglectable, is by using magnetic actuators.

The main idea behind the concept of detumbling a satellite by means of magnetorquers is that

the magnetometers mounted on the satellite, in tumbling phase, will measure at each time

instant a different magnetic flux density 𝐁 and depending on the angular velocities is possible

to obtain a derivative of the magnetic flux density �̇�. The concept of the B-dot control algorithm

is to actuate a torque of opposite sign with respect to the magnetic flux density variation, in order

to dampen the rotations. There are several possible implementations of a B-dot control involving

proportional terms or current control, but since in Tyvak International the detumble of

nanosatellites is performed by using a B-dot bang controller, only this variant will be detailed.

The B-dot bang controller is characterized by the fact that the magnetic dipole produced will not

be proportional to variation of the magnetic flux density �̇�, indeed the control system will

always produce the maximum absolute value of the magnetic dipole. One advantage of this

controller is the faster spin decay compared to other approaches since the highest control action
is always used for counteracting the angular rotations.

As previously stated the torque produced by the magnetorquers is given by the vectorial product

between the magnetic dipole and the magnetic flux density, this relation obviously holds also for

a B-dot bang bang controller but let’s check how the B-dot bang bang magnetic dipole can be

defined mathematically:

𝑚𝑖 𝑐𝑡𝑟𝑙
= −𝑚𝑖 𝑚𝑎𝑥

∙ 𝑠𝑖𝑔𝑛(𝐵𝑖
̇) = {

 𝑚𝑖 𝑚𝑎𝑥
 𝑓𝑜𝑟 B𝑖

̇ < 0

−𝑚𝑖 𝑚𝑎𝑥
 𝑓𝑜𝑟 B𝑖

̇ > 0
 , 𝑓𝑜𝑟 𝑖 = 1,2,3

54

As we can see each component of the magnetic dipole will be set at the maximum value with a

sign discordant with the variation of each component of the magnetic flux density. Recalling that

the magnetic dipole is related to the number of windings N, the current flowing on the coil I and

the area vector of the coil A; is possible to write the previous relation in function of the current,
that will be our control signal on the actuators:

𝑚𝑖 𝑐𝑡𝑟𝑙
= (𝑁 ∙ 𝐼𝑖 𝑐𝑡𝑟𝑙

∙ 𝐴𝑖) = −(𝑁 ∙ 𝐼𝑖 𝑚𝑎𝑥
∙ 𝐴𝑖) ∙ 𝑠𝑖𝑔𝑛(𝐵𝑖

̇)

↓

𝐼𝑖 𝑐𝑡𝑟𝑙
= −𝐼𝑖 𝑚𝑎𝑥

∙ 𝑠𝑖𝑔𝑛(𝐵𝑖
̇) = {

 𝐼𝑖 𝑚𝑎𝑥
 𝑓𝑜𝑟 B𝑖

̇ < 0

−𝐼𝑖 𝑚𝑎𝑥
 𝑓𝑜𝑟 B𝑖

̇ > 0

Since the Bang-Bang controller already involves only the usage of maximum current there is no

need of saturators in the Simulink model.

4.4.2. Earth-pointing control

When a satellite is designed, the type of mission that it will have to carry out is always kept in

mind: for example the payload that is mounted on it that can be a camera or a particular sensor

that must be pointed towards the earth for performing the right task. To this aim the control

system design is very important for orienting the attitude of the satellite in the proper manner.

After the deploying in orbit, as we have already discussed in previous paragraph, the satellite

needs to be detumbled in order to achieve a “stable” state from which the ADCS can start to

perform the required tasks. For some applications the “Earth-pointing” control (or Nadir

pointing) is the nominal operational situation for the spacecraft, for example if it is needed to

take photos of the Earth all along the orbit. For visualizing the kind of the desired attitude of the

spacecraft for the Earth-pointing control we can refer to the following figure:

Figure 62: ECI, Body and LVLH reference frames

55

As is possible to notice, in the simplest Earth-pointing control scenario only three different

reference frames are involved: the standard ECI frame which components are denoted with the

I subscript (used as “fundamental” reference frame), the body frame denoted with the B

subscript (representing the attitude of the spacecraft) and finally the LVLH frame denoted with

the LVLH subscript. The LVLH frame (already discussed in 4.2) can be detailed in this way for

the Earth-pointing control scenario:

• Origin: coincident with the origin of the body frame, in the centre of the spacecraft.

• Z axis: along the direction of the vector connecting the origin of the ECI frame with the

origin of the Body frame, with verse pointing towards the Earth.

• Y axis: perpendicular to the orbital path, with opposite verse with respect to the orbit

normal.

• X axis: perpendicular to the Z/Y axes in order to form a right-handed triad.

The Earth-pointing control action is required to stabilize the nanosatellite attitude, represented

with the body frame orientation with respect to the ECI frame, around the LVLH frame for having

the 𝒁𝑩 axis pointing towards the Earth. This control problem can be easily performed with a

fully actuated control system, for example by using reaction wheels, without encountering

strange problems since in that case the actuators can exert the needed torque, computed by the

controller, to the satellite.

In our case this can’t be done, because the system is underactuated and, moreover, the control

torques that can be applied are strictly related to the environment, in particular to the Earth

mangetic field acting on the nanosatellite. Due to these two problems the challenge of controlling

a spacecraft with only magnetic actuators for accomplishing the Earth-pointing task has been

addressed by the scientific community and many papers have been published proposing

effective and mathematically supported control algorithms. For this thesis the theoretical work

presented in the [6] is used as reference for setting the control problem.

The fundamental idea of this control law, and its capability to achieve the task, is based on the

particularity of the Earth magnetic field, along a LEO orbit, to be periodic and so even if the

control system is underactuated, it can be able to decrease the error between the desired and

the actual attitude of the spacecraft to zero (ideally). The first assumption that must be taken

into account is that the LEO orbit of the satellite can be approximated to a circular one, and this

is our case since the eccentricity of our orbit is very small. This assumption is very important for

the problem setting since it allows to easily compute the angular velocity error between the body
frame angular velocity and the LVLH one. Let’s now present the control law and its terms:

𝑚𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = (𝐾𝑝𝑞𝑣 + 𝐾𝑑𝜔𝑏𝑜
𝑏)

Where:

• 𝑞𝑣: vectorial part of the quaternion representing the attitude error between the body

and the LVLH frame.

56

• 𝜔𝑏𝑜
𝑏 : angular velocity error between the body and the LVLH frame.

• 𝐾𝑝: 3x3 matrix containing the coefficients proportional to the 𝑞𝑣 error.

• 𝐾𝑑: 3x3 matrix containing the coefficients proportional to the 𝜔𝑏𝑜
𝑏 error.

The control law is very simple since it is a PD (proportional-derivative) control action, where

the proportional action 𝐾𝑝 is related to the quaternion error 𝑞𝑣, while the derivative term 𝐾𝑑

to the angular velocity error 𝜔𝑏𝑜
𝑏 , that defines the changing rate of 𝑞𝑣. This particularity of

having matrices instead of coefficients allows to improve the performances of the control action

since there are more degree of freedom for designing the control algorithm and is also possible

to mitigate the coupling dynamics involving different axis, but for simplicity in this thesis the 𝐾𝑝

and 𝐾𝑑 matrices are considered diagonal and each element of them is equal to the other. The

relationship above for computing the 𝑚𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is not directly used in control algorithms since

we know that the control system is intrinsically underactuated and in particular that the control

torque available in the end will be perpendicular to the magnetic field. Is possible to exploit this

information in order to avoid useless power consumption for producing the dipole: since we

know that only perpendicular torques can be produced, with respect to the magnetic field, we

can compute the actual 𝑚𝑐𝑡𝑟𝑙 by projecting 𝑚𝑑𝑒𝑠𝑖𝑟𝑒𝑑 on the plane perpendicular to the

magnetic field B. This is done because in general only the part of 𝑚𝑑𝑒𝑠𝑖𝑟𝑒𝑑 that is perpendicular

to the magnetic field, is responsible for the production of a torque on the spacecraft and so the

magnetic dipole 𝑚𝑐𝑡𝑟𝑙 and the correspondant produced torque can be computed as follows:

𝑚𝑐𝑡𝑟𝑙 = (𝐾𝑝𝑞𝑣 + 𝐾𝑑𝜔𝑏𝑜
𝑏) 𝒙 B

 𝛕 = 𝑚𝑐𝑡𝑟𝑙 𝒙 B

And this will be the final relationships that will be implemented in Simulink for representing the
controller.

57

5. MATLAB/SIMULINK MODELS

In order to simulate and test the control algorithms, a simulation environment is needed for

representing the satellite in its orbit and its interactions with the Earth magnetic field. To this

aim an orbit propagator is designed for collecting the useful data needed for reconstruct the

magnetic flux density along the orbit and the position of the satellite.

Since the Skyfield python library is widely used for this purposes, even in Tyvak International, a

python script implementing its functions is used for the propagation of the orbit. First of all we

have to select a desired orbit: for this thesis a LEO is preferred and in particular the one of the

Tyvak International nanosatellite “ Tyvak-0092 ” (Commtrail), that has been in orbit for over a

year now. The informations and characteristics about a certain orbit can be collected and

represented by means of the so called TLE: the two-line element set is a data format encoding a

list of orbital elements of an Earth-orbiting object for a given point in time; TLEs are used for

describing trajectories only of Earth-orbiting objects like satellites and debris. The TLE

representing Commtrail orbit is the following:

Figure 63: Tyvak-0092/Commtrail nanosatellite TLE

A TLE contains all the informations needed for identifying an object orbiting around the Earth

in only two coded lines, the informations are organised in this way:

• Line 1: contains informations about the Satellite catalog number (used for univocally

identify an artificial object), informations about the launch that brought the satellite in its

orbit and on the mean motion about that orbit.

• Line 2: contains the classical orbital elements for identifying the orbit like the

eccentricity, inclination, argument of Perigee etc…

By using Skyfield functions for computing the position along the desired orbit, is possible to

obtain and store the desired geocentric coordinates (latitude, longitude and elevation) based on

the WGS84 (World Geodetic System 84) used for representing an ellipsoid approximating the

Earth geometry. In particular the WGS84 is defined as follows:

• Center : in the Earth mass center.

• Z axis: passing in the North pole.

• X axis: chosen in order to have the Greenwich meridian laying on the XZ plane.

• Y axis: for completing the right-handed triad.

As is possible to imagine, this triad can be interpreted as an ECEF reference frame.

58

Finally by running the script, a ”log_orbit.txt“ file is produced containing all the informations

required, as is possible to see in the following picture:

Figure 64: Orbit propagation log_orbit.txt file snippet

Is important to notice that the file contains all the data stored as columns, where we can find

the UTC date along with the latitude, longitude and elevation. This kind of structure is crucial

for using the log_orbit.txt file as a data file to import in MATLAB, in this way we can easily

obtain all the required data in MATLAB and to store them in suitable variables. Along with the

previously detailed file, another one is needed for computing the quaternion representing the

attitude of the LVLH frame with respect to the ECI. The same script also produces another log

file that is the following:

Figure 65: Orbit propagation LVLH_orbit.txt file snippet

This file includes the components, expressed with respect to ECI frame, of the LVLH frame at

each time step.

In the following paragraphers we will see how these data are used and how to model in Simulink

all the subsystems needed for the simulation and the design of the control system.

5.1. Orbit and Earth magnetic field propagator

Once all the data have been imported in MATLAB and saved in suitable timeseries variables, we

can use the following (Figure 67) Simulink model for computing the Earth magnetic field flux

density “B_eci”, expressed in ECI frame, and the quaternion “q_eci2lvlh” describing the

orientation of the LVLH frame (local orbital frame) with respect to the ECI frame. As is possible

to see in Figure 67, the Simulink model is made up by two branches: the upper branch devoted

to the computation of the Earth magnetic flux density and the lower one designed for computing

59

the orientation of the local orbital frame with respect to ECI frame. Let’s deepen each branch and

see how the computations are performed:

• Magnetic flux density computation: the geocentric coordinates describing the orbit are

taken as input by the International Geomagnetic Reference Field model IGRF-13 (Simulink

Aerospace Blockset), that computes in output the magnetic flux density vector expressed

in NED coordinates. Since we want it expressed in ECI frame, two coordinate

transformations are performed: the NED to ECEF coordinate transformation is done by

using a suitable transformation matrix 𝑅𝑛𝑒𝑑
𝑒𝑐𝑒𝑓

 and then the ECEF to ECI coordinate

transformation by means of the “ecef2eci()” function contained in the Aerospace Blockset.

• LVLH quaternion with respect to ECI: The computation of the LVLH quaternion is really

simple once the components of the LVLH axis, with respect to the ECI frame, are stored.

This is because in general the 𝑅𝑙𝑣𝑙ℎ
𝑒𝑐𝑖 rotation matrix, that represents the attitude of the

LVLH frame with respect to the ECI frame, has for columns the components of each axis

computed with respect to the ECI frame. So as is possible to see from the Simulink model

we just need to concatenate these vectors for obtaining 𝑅𝑙𝑣𝑙ℎ
𝑒𝑐𝑖 . The obtained matrix can

be easily converted in quaternions with the “dcm2qua()” function, obtaining the desired

quaternion that will be used as reference in Earth-pointing control. Notice that this

quaternion will be used only for the computation of the initial condition of the quaternion

error in Earth-pointing scenario.

After the simulation the propagated magnetic flux density 𝐁 expressed in ECI coordinates, that

the nanosatellite will experience in its orbit has the following behaviour:

Figure 66: Magnetic flux density components: Bx, By and Bz (top to bottom)

60

Figure 67: Orbit propagator Simulink model

61

5.2. Satellite model

In this section the “Satellite dynamical model” implementation in Simulink is presented and

discussed. As anticipated in 4.3 a spacecraft can be represented by means of two input-output
blocks, one describing the dynamics of the rigid body and the other one the kinematics.

For the detumbling scenario the setting is very simple, indeed the dynamics and kinematics

described before have been just implemented as they are. In this scenario also environmental

disturbances have been included. This is the overall block diagram representing our satellite and

environmental interactions:

Figure 68: Detumbling scenario (Satellite model and environmental interactions)

Let’s describe each block in details:

• Environmental perturbations: when a spacecraft is deployed in orbit and in general is

moving in the space, there are many sources of torques and forces that can affect its

dynamical behaviour, these forces/torques can be seen as additive disturbances acting

on the actuator control action. For the thesis purposes these disturbances have not been

deeply addressed, for example by modelling gravity gradient or including a residual

dipole moment. They are just uniformly distributed random signals with a maximum

magnitude of: |5 ∙ 10−7| 𝑁𝑚.

• Earth magnetic field B_eci: this is simply the Earth magnetic field computed in 5.1 and fed

to the satellite model. Notice that at each time step the B_eci vector is expressed with

respect to the ECI frame, while the control algorithm needs all the signals expressed in

body frame. To this aim a conversion inside the satellite dynamical model is performed.

• Satellite dynamical model: as said before this block implements the dynamics and

kinematics of the satellite, along with the B_eci → B_bodyf. As can be seen in the fig.X.X.

62

below, we have the “Euler equation” and the “quat kinematics” blocks that implements

the relationships defined in 4.3. Then there is a coordinate transformation from ECI to

Body coordinates of the B_eci, by using the DCM retrieved from the quaternion for each

time instant. This B_bodyf signal will be used by the controller and for computing the

torque acting on the satellite due to magnetic interaction with the Earth magnetic field.

Figure 69: Detumbling control: “Satellite dynamical model” insight

Is possible to see that in this scenario, all the state variables of the satellite and the other signals

used for the control purpose are defined with respect to the ECI frame.

For the Earth-pointing scenario the fundamental concept is quite the same, but in this case the

“Satellite dynamical model” will implement the dynamics and kinematics concerning the

quaternion error and the angular velocity error; the disturbances from the environment in this

case are not considered. The decision of representing the situation, and in particular the satellite

dynamical model, not strictly referring to our satellite but to its relative attitude and angular

velocity with respect to the desired ones, makes the problem easier to be studied and solved.

Indeed all the papers and researches studying the magnetic actuation of nanosatellites for Earth-

pointing are based on this setting. As said before here we don’t have environmental disturbances

so the only block present in Simulink related to the satellite is the one implementing dynamics

and kinematics of the error.

In Figure 70 the insight of the “Satellite dynamical model” is depicted and as expected the general

block diagram is very similar to the one in the detumbling scenario, but here we are focusing on

the error affecting the overall system involving the body frame and LVLH frame. To this aim the

outputs of the system are “w_tilde” and “q_tilde”. Notice that the “quat_kinematics” block, that is

exactly the same of the detumbling scenario, is used only for retrieving the Earth magnetic field

acting on the satellite, in body coordinates. The block “quat_error_kinematics” implementing the

kinematics is the classical one, but the quaternion variations are triggered by the angular

velocity error, so its output will be the quaternion representing the rotation required for passing

from body frame to LVLH frame, that is the error “q_tilde”.

63

At this point the last part involving the satellite is the modelling of the sensor, in particular the

magnetometer. The Simulink model of our magnetometer (2.2.2) is really simple and is depicted

in Figure 71. In this model the sampling frequency of the real magnetometer is considered, and

it can be put at a maximum of 160Hz, that means a sampling time of 0.06s. Also the error affecting

the measurements is considered: from the datasheet it can be seen that the noise floor is

|2 ∙ 10−2| 𝐺 and so converted in Tesla: |2 ∙ 10−7| 𝑇. The magnetometer noise is generated with

a uniformly distributed random signal ranging in the noise floor absolute value. Finaly the Earth

magnetic field measured from the sensor is retrieved and used by the controller.

Figure 70: Earth-pointing control: “Satellite dynamical model” insight

Figure 71: Magnetometer model

64

5.3. Magnetorquers model

The magnetorquers Simulink model is just an implementation of the concepts and relations

described in the section 4.4.1, where magnetorquers were introduced and detailed.

Figure 72: Magnetorquers subsystem (top) and implementation (bottom)

As is possible to see from the picture above the modelization of magnetorquers can be really

simple if it is intended as a two inputs-one output system, where the current I is the control

action exerted by the controller and B_bodyf_measeured is the magnetic flux density sensed

by the simulated magnetometer. The output is just the torque 𝛕 produced by the interaction

between the magnetic dipole and the magnetic flux density. A peculiarity of the B-dot bang

bang controller is that we don’t need a saturation of the control signal, in this case the current,

because in the concept of the controller we want to exert always the max current whenever is

needed.

5.4. B-dot Bang controller model

The B-dot bang controller model is very simple since, just as for the magnetorquers, it is just an

implementation of the relations detailed in the section 4.4.1. The system is depicted in Figure 73

below:

Figure 73: B-dot bang bang subsystem (top) and implementation (bottom)

65

The controller is a simple SISO (single input-single output) system where the data collected by

the magnetometer are the only data concerning the “state” of the satellite that are needed. As is

possible to see in the previous figure the 𝐁 ̇ is computed by a discrete-derivative block that

implements the formula: 𝐁 ̇ = 𝑲 ∙ (
𝑩𝒕−𝑩𝒕−𝟏

𝑻𝒔
), with K=1 (unitary gain). Then a dead band is

needed:

Figure 74: B-dot bang bang dead band implementation

The concept is really simple: since the sign of 𝐁 ̇ can directly determine the triggering of a null

current or a max current (in both verses), the controller is really sensitive to every variations

of sign of 𝐁 ̇ . This can be a real problem for the hardware and the power consumption since

even a very small value different from zero will trigger the controller to send the max current,

resulting in a continuous switching on the current verse. For fixing this problem the dead band

technique is adopted, in particular an interval around zero is selected and whenever the signal

is within that interval, the output signal will be set to 0.

The “interval test” block checks if the components of the Bdot1 signal are within the interval,

which amplitude has been selected after a trial and error approach, and in this case the output

will be set to a Boolean TRUE (represented as 1) otherwise to FALSE. At this point a NOT

operator is used because we want to set to “0” each component that is within the interval, with

a successive element-wise product. Let’s see how the dead band works and the results in

output:

Figure 75: original B-dot_x (top) and “filtered” B-dot_x (bottom)

66

As we can see from the picture, the dead band is really useful to cut down these natural

oscillations that would trigger the currents continuously, especially at steady state where the

variation in the magnetic flux density cannot be exactly 0 due to the behaviour of the magnetic

field in orbit. The dead- band amplitude used for this test is 4.6 ∙ 10−5.

5.5. Earth-pointing controller model

Regarding to the Earth-pointing scenario let’s see how the control law, defined in 4.4.2, can be

implemented in Simulink:

Figure 76: Earth-pointing controller subsystem (top) and implementation (bottom)

From the Figure 76 above is clear that the left part of the controller implements the control law

for computing the desired dipole, starting from the errors related to the attitude and the angular

velocity. Then the correspondent current is computed and saturated according to the

magnetorquers capabilities.

67

6. SIMULATIONS AND CODE AUTO-GENERATION

In this chapter the simulations steps and their results will be explained, in particular how the

simulation has been set. The simulation environment is made up by using MATLAB/Simulink

where all the data management and the initial conditions setting have been implemented in a

MATLAB script, while all the models presented in chapter 5 are used in Simulink for simulating

the satellite and the control actions applied to it. The Simulink solver is a fixed step Ode5

(Dormand-Prince) with a 0.01 fundamental sample time. Finally after the simulations the two

control algorithms will be translated into code by auto-generation using the ROS Toolbox.

6.1. B-dot detumbling simulations

The first scenario that has been simulated is the detumbling of the satellite; referring to the
Simulink model in Figure 82 .
At this point once the simulation environment is set and the satellite initial conditions regarding
initial attitude and angular velocities, have been defined in MATLAB, we can run the simulation
for testing the B-dot bang controller. These are the conditions used for testing the dead-band
action during the simulations:

Simulation ω0[𝑑𝑒𝑔/𝑠] 𝑞0 𝑏𝑜𝑑𝑦 𝐽 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑒𝑎𝑑_𝑏𝑎𝑛𝑑
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

Test 1 [16.53; 5.29; −16.09] [1; 0; 0; 0] 𝑑𝑖𝑎𝑔[0.0111; 0.0022; 0.0111] 4.6 ∙ 10−5
Test 2 [16.53; 5.29; −16.09] [1; 0; 0; 0] 𝑑𝑖𝑎𝑔[0.0111; 0.0022; 0.0111] 4.2 ∙ 10−5

Table 3:B-dot Dead-band tests settings

As is possible to see from the Table 3 these tests are performed for evaluating the B-dot bang

control performances when a different dead-bands are used, and how this difference reflects on

the control current signal sent to the magnetorquers. The initial angular velocities have been

randomly selected in MATLAB with the function “rand” in the interval [-20, 20] deg/s.

The obtained results for the test 1 are reported in Figure 77 Figure 78. below: as we can see the

B-dot bang controller is able to dampen the angular velocities of the satellite, starting with

relatively high values, since 𝜔0 = [16.53; 5.29; −16.09] [𝑑𝑒𝑔/𝑠] (randomly selected), till

reaching low values that are ≈ 2.6 𝑑𝑒𝑔/𝑠 around the X and Z axes, while for the Y axis

(corresponding to the lowest inertia axis) the angular velocity is almost 0. The control currents

has a reasonable behaviour that becomes less pronounced when approaching to the “steady-

state” condition. Obviously since we have a varying magnetic flux density and high frequency

disturbances acting on the measurements and the dynamics of the system, we cannot expect a

null control action when the B-dot controller is activated. Indeed in real satellites a check is

performed for enabling and disabling the controller: for example when the angular velocities are

below a certain threshold the detumble can be considered achieved, otherwise the controller
must be activated. The obtained results are in line with those that can be verified in real systems.

68

Figure 77: Detumbling test 1: angular velocities

Figure 78: Detumbling test 1: control currents

From the obtained results of the test 2 (Figure 79 and Figure 80) we can see that decreasing

the dead-band amplitude increases the performances of the B-dot bang controller in terms of

time required for dampening the angular velocities and also for what concerns the amplitude

of the velocities, that can be further dampened since the control action is more frequent.

69

Indeed the dampening action is faster and the “steady-state” angular velocities performances

around X and Z axe are improved, with respect to the test 1, in particular they are ≈ 1.5 𝑑𝑒𝑔/𝑠.

Figure 79: Detumbling test 2: angular velocities

Figure 80: Detumbling test 2: control currents

On the other hand the control currents exerted are switching more frequently with respect to

the test 1, this can be a real problem for the hardware. So a trade-off between performances and

control action must be done in order to obtain the best compromise. Notice that small changes

70

in the dead-band amplitude can significantly affect the overall performances, since the variations

of the magnetic flux density are of very small order of magnitude.

At this point let’s perform some simulations for evaluating the robustness of the control

system. To this aim different initial conditions, randomly generated, have been selected and

used for testing the B-dot controller. The following simulations have been performed by

including environmental disturbances and magnetometer noise (both described in 5.2) and

with a dead-band amplitude of 4.2 ∙ 10−5 and inertia matrix 𝐽 = 𝑑𝑖𝑎𝑔[0.0111; 0.0022; 0.0111]

Simulation ω0[𝑑𝑒𝑔/𝑠] 𝑞0 𝑏𝑜𝑑𝑦
1 (blue) [16.68; -8.56; 10.28] [-0.1329; 0.9619; 0.1976; 0.1341]
2 (red) [-17.84; 1.23; 11.16] [0.5679; -0.1657; 0.1467; -0.7928]

3 (yellow) [-19.52; -6.51; -13.51] [0.9655; -0.2490; 0.0700; -0.0308]
4 (purple) [4.07; -9.48; 6.16] [0.6261; -0.6616; 0.0746; -0.4057]
5 (green) [-10.84; 16.53; -13.90] [0.2600; 0.6020; -0.0683; -0.7519]

Table 4: B-dot controller, 5 simulations random initial conditions (attitude and ang. vel.)

As we can see from the B-dot controller is able to detumble the satellite with good performances;

the angular velocities at steady state are always below |1.56| deg/s even with disturbances

affecting the dynamics of the satellite and the magnetometer measurements.

Figure 81: B-dot controller simulations performance

The performances are good and they can be even improved by tuning the dead-band amplitude

in order to achieve lower residual angular velocities, even if the present results are acceptable

for a real application.

71

Figure 82: Simulink detumbling model

72

6.2. Earth-pointing simulations

Finally the controller discussed in 5.5 has been tested and validated in Simulink by considering

different initial conditions of the satellite. This time the initial quaternion and angular velocities

are defined relatively to the LVLH ones, so now the errors 𝑞𝑣 and 𝜔𝑏𝑜
𝑏 between the body frame

and the LVLH frame are the initial conditions of the kinematics and dynamics of our system;

moreover the environmental disturbances have been not considered.

Recalling that 𝑚𝑐𝑡𝑟𝑙 = (𝐾𝑝𝑞𝑣 + 𝐾𝑑𝜔𝑏𝑜
𝑏) 𝒙 B, the first consideration that can be made is

relative to the (𝐾𝑝, 𝐾𝑑) and how these parameters affects the performances of our control

system. In general the parameters of a PID or PID-like controller can be computed by solving an

optimization problem (LQR) in order to guarantee stability or performance requirements. In this

thesis, since the situation is really similar to the one already studied and analised in [6], a tuning

procedure by simulating the system with different values for the parameters has been adopted,
starting with values similar to the ones reported in the paper has optimal values.

So let’s consider a situation in which our satellite is not aligned with the desired LVLH frame, in

particular the attitude error is such that the body frame is rotated of 180° around the z axis of

the LVLH frame, and that the angular velocity error is about 2 deg/s around x,y and z axis of the

LVLH frame. In this situation let’s test how the parameters of the controller can affect the

performances of the control system. In particular, as is possible to see from the figure below, the
proportional term has been lowered in order to avoid unwanted oscillations.

Figure 83: controller performances comparison between Kp=300 and Kp=100

73

As we can see having the 𝐾𝑝 term equal to 300 leads to a faster reaching of the steady state at

the beginning (around 10000s), with respect to the other case, but due to the future interactions

with the Earth magnetic field having the proportional term at 300 leads to high oscillations and

to a settling time that is longer than having the 𝐾𝑝=100. This is something that can be expected

since the proportional term in general leads to a quicker system but depending on the

disturbances and interactions with the environment, the performances can be easily degraded.

For what concerns the derivative term instead, 𝐾𝑑=18000 was the best choice.

Now let’s analyse two cases in which this controller can be used. Obsiously a full magnetically

actuated ADCS mounted on a satellite is not the best choice due to the well known problem of

underactuation that in some situations can be critical. For this reason a full magnetic control

system can be equipped in couple with a principal ADCS, and used for these situations where a

contingent control system is needed: for example for the detumbling of the satellite, as seen

before, or in particular situations where the actuation through other actuators like reaction

wheels is not convenient or impossible (failure for example). So as first case a situation in which

the satellite has been aligned with the LVLH frame is considered, and then the impact with a

generic body is taken in consideration. The impact will trigger the rotations of the satellite, so

we’ll take as initial conditions for the system: 𝑞𝑣 = [0; 0; 0], 𝜔𝑏𝑜
𝑏 = [1.5; 1.5; 1.5] 𝑑𝑒𝑔/𝑠.

Figure 84: Earth-pointing controller, impact scenario simulation

As is possible to see from the figure above, the controller is capable to counteract the angular

velocity error and to reach the desired configuration in about 40000s, that means in about 7.5

orbits considering the TLE of the Commtrail nanosatellite.

At this point a general evaluation of the performances of the controller, considering different

74

initial conditions can be performed, just as has been done for the detumbling controller. To this

aim is possible to refer to the Table 5 below collecting the settings of the simulations that will be

carried out.

Simulation ω𝑡𝑖𝑙𝑑𝑒_0[𝑑𝑒𝑔/𝑠] (wrt LVLH) 𝑞𝑡𝑖𝑙𝑑𝑒_0 𝑏𝑜𝑑𝑦 (wrt LVLH)

1 (blue) [1.5; 1.5; 1.5] [0.7071; 0; -0.7071; 0] (90° around Y)
2 (red) [0.5; 0.5; 0.5] [0; 0; -1; 0] (180° around Y)

3 (yellow) [-0.2; -0.2; 0.7] [0.906; - 0.422; 0; 0] (50° around X)
4 (purple) [-0.1; 0.1; -0.3] [0.5; 0; 0; -0.866] (120° around Z)
5 (green) [1; 0.5; 0] [0.866; -0.5; 0; 0] (60° around X)

Table 5: B-dot controller, 5 simulations various initial conditions (attitude and ang. vel.)

And the simulation results are analysed considering the angle error, expressed by the quaternion

error, and the angular velocity error. Indeed recalling that the quaternion express a rotation in

function of the angle of rotation β around an axis of rotation u, it is possible to retrieve the angle
error from the quaternion error in the following way:

𝒒𝒕𝒊𝒍𝒅𝒆 = [
𝑞0_𝑡𝑖𝑙𝑑𝑒

𝒒𝒗_𝒕𝒊𝒍𝒅𝒆
] = [

cos (
β

2
)

𝒖 ∙ sin (
β

2
)

] → 𝛃 = 2 ∙ acos(|𝑞0_𝑡𝑖𝑙𝑑𝑒|)

Figure 85: Earth-pointing controller, error angle evaluation for the 5 simulations

By checking the Figure 85 is possible to see that the designed controller, with the selected

parameters values, is able to accomplish the task. Indeed the angle error reported in the figure

75

reaches the 0° at steady state, showing the alignment between the body frame and the LVLH

frame. Also the angular velocities are controlled and, from the Figure 86 below, is possible to see
that the angular velocity error is reduced to 0 rad/s.

Figure 86: Earth-pointing controller, angular velocity error for the 5 simulations

76

Figure 87: Simulink Earth-pointing model

77

6.3. ROS Toolbox and code auto-generation

After the control algorithms have been tested in different scenarios and their performances have

been analysed, the last step is to transfer the Simulink model of the controller into a suitable

embedded system. This approach is known as “Model Based Design”, as introduced in the

introduction of this thesis, and is widely used in industry since all the effort that is needed for

implementing the desired control system is related to the modelling and simulation in

MATLAB/Simulink, while the coding part is done automatically. Also for this part ROS has its

advantages that would make it a good candidate framework for building a flight software; thanks

to the official support received by “MathWorks”, is possible to interface MATLAB/Simulink with

ROS/ROS2.

 In order to integrate our ROS network with MATLAB/Simulink, the official ”ROS Toolbox” must

be installed on the host machine (our PC with MATLAB/Simulink): the installation is very simple

as this toolbox can be downloaded and installed as any other MATLAB add-on and after this the

ROS Toolbox offers an interface able to create a node network running in part on the target

system (Raspberry Pi 3 B+ in this case) and in part on the host system. It offers also premade

functions and blocks for MATLAB and Simulink that allow to design and analyse the node

network. Finally the toolbox allows to connect the ROS network with external simulators like

Gazebo in order to visualize the correct behaviour of the overall system or a particular part of it,

and then, when all the simulations are concluded is possible to generate the code automatically

and to easily deploy the node in the network.

For deploying an automatically generated ROS node in the network we can follow two paths:

generate the code and run it directly on the network or generate the code and then build the

obtained package directly on the target with a manual procedure. Both ways have its own

peculiarities, for example the automatic build/run procedure can be useful for testing small

functionalities that must be implemented within a node and we don’t want to lose time by doing

the manual procedure.

Figure 88: ROS Toolbox activation in Simulink

In this case there is an additional step needed for integrating the ROS network and the MATLAB

system: an XML file must be included in both ROS and MATLAB workspace in order to make the

two systems (previously connected to the same internet network) seeing each other. An example

of this file can be seen in Figure 89 below, the structure is almost standard for every situation

and the only thing that you have to configure is related to the IP addresses of our target and host

systems.

For the thesis purposes this path is not the preferred one since only the procedure for bringing

a Simulink model in the ROS network is studied, the test of the node is not performed since the

provided hardware and facilities don’t allow this.

78

The other procedure is very simple and intuitive: first of all the system that is wanted to be

converted in code must be isolated and then on Simulink, in the “Apps” section, the ROS Toolbox
must be launched. As is possible to see in the Figure 88 above, the “ROBOT” menu appears.

Figure 89: XML file for enstablishing the ROS/MATLAB connection

The last step that must be done is to enter in the “Hardware Settings” section and to set

everything is needed for performing the code auto-generation for our target system. In

particular the following settings have been set:

• Solver: set a fixed step solver and its step size, 0.01 (100 Hz) for the controller. This is

mandatory for auto-generating code.

• Hardware implementation: set ROS2 as hardware board and the ARM Cortes-A

microprocessor for the Raspberry. Set the “Build” in build options instead of build and

run.

• Simulation target: selected the C++ language because compatible with ROS2.

• Code generation: set the “Generate code only” and “Create code generation report” for

analysing the obtained result.

So once everything is suitably set, we just have to press the “Build model” button in the “ROBOT”
section and wait for the procedure to complete. Finally after the completion two windows will
pop up reporting the eventual errors and warnings encountered. If the procedure has gone
smoothly we would obtain something like in Figure 90, stating that the code has been
successfully generated from the Simulink model.
The “Code Generation Report” is a very helpful tool where are reported the generated interfaces
and variables and how the code has been organised: the main file, the files generated directly

79

from the Simulink model and all the other files containing the constant values defined in the
workspace (“Data file”) along with the interfaces files.

Figure 90: ROS Toolbox auto-generation of code final report

At the end of the procedure a “src” folder containing all the generated code is obtained. Inside

this folder there is the package that will be manually deployed on the target, it contains

everything needed by the ROS2 framework for enabling the generated node. The package must

be placed in the ROS2 workspace in the target system and then all the workspace must be built

(“colcon build” command from the workspace folder). Finally the ROS2 system is integrated with

the auto-generated node, for checking if everything went good let’s launch the node: since the

node is installed in the workspace we need to launch the executable generated in the

“install/package_name/lib/package_name/” folder for launching it. At this point, as is possible
to see from figure below, is easy to check if the node is in execution.

Figure 91: ROS2 generated nodes in execution

Both the controllers have been generated and successfully executed as ROS2 node after auto-
generation.

80

7. CONCLUSIONS

This thesis project is part of an R&D project devoted to build a new avionic system and the flight

software too. It is a smart choice to analyse and check if the ROS2 framework is suitable even for

this kind of applications among the others in which it is widely used. The first part of the work

is focused on setting up the system, both hardware and software, that can be used for developing

the ROS2 software and how to integrate it with the provided sensor module. After this the flight

software architecture has been addressed, in particular with the supervisor we spent time

thinking about the possible applications that could be implemented and tested among the ones

already present in the flight software normally used in the company. Due to my interests and

possibilities of practically testing them, this choice involved the sensors. So first of all a watchdog

node is analysed and implemented in order to have the other nodes correctly working, then the

drivers for interfacing with the sensors have been write in python using pre-existing libraries

for I2C and SPI protocols.

After this the project moved in MATLAB/Simulink for addressing the interesting problem of

attitude control with only magnetic actuators. This control system can be cheaper and lighter

with respect to other types but is affected by the problem of under actuation, and this has been

a big problem to overcome in the Earth-pointing control scenario. Fortunately there are many

papers and scientific researches on-line for addressing this problem under some assumptions.

Finally after the validation of the control algorithms, the auto-generation of the code from

Simulink models is performed and the generated node have been exported in the target system

and launched along with the other nodes.

Considering improvements and future developments related to this work, I would suggest to

bring all the present work into the custom board provided by the company since the Raspberry

is a good system for starting to develop but will not be used directly inside the nanosatellite for

performing its tasks in orbit. After this the work and the ROS2 network could be expanded by

adding other applications, whenever there is availability of hardware in the company. There are

many possibilities because a flight software, and in general the avionic system, is composed by

many parts: related to the communication system, the power production with solar panels and

etc… In my opinion it could be pretty interesting to implement a node devoted to manage the

actuators and to exert the control actions, because by adding other actuators like reaction wheels

the control system wouldn’t be underactuated anymore.

Another possible work could be to translated all the code from python into C++ for improving

the performances of the overall system.

81

8. APPENDIX A: BUILDROOT

In section 2.2 it has been introduced the possibility of installing a custom version of Linux-
embedded for an embedded system.
Nowadays many companies, depending on their field of application, prefer to design their own
customized electronic boards instead of using standard ones. Even if it can be an hard process in
terms of R&D, it guarantees many advantages in terms of capabilities that are introduced right
for that particular application, since different combinations of devices can be mounted on it to
achieve better performances for the task. On the other hand from the software point of view, in
order to interface with the board it is necessary to realize a suitable custom image. For this
reason, different tools like Buildroot or Yocto have been realized to easily realize images for
embedded boards. In this Appendix the Buildroot tool is explained.
Buildroot is a tool that is used in order to generate embedded Linux images for different types
of boards and finally cross-compile the image for the specified board. It provides as outputs the
root filesystem, the kernel, the bootloader and all the files that are needed for a specific board to
correctly flash an embedded Linux image.
 Moreover, Buildroot provides a lists of configurations files with a great number of boards and
processors that are available on the market (for examples Raspberry Pi and SAM processor) that
allow to build working images for that devices.
In order to produce an image containing all the necessary, Buildroot must be configure and
luckily it offers an intuitive user interface that can be summoned by typing the command
“menuconfig” in a Linux shell. The “menuconfig” window appears and is presented in Figure 92
below.

Figure 92: Buildroot 2020 “menuconfig” menu

82

Here the various sections of the menu are analysed:

• Target options: it allows to set the architecture of the target CPU by choosing from a list
of the most commonly used ones (like Intel or ARM architecture).

• Build options: it allows to configure the setting for the build like how many jobs to run
simultaneously, enable the compiler cache, set the location of the download and host
directory and optimization tools for the gcc compiler.

• Toolchain: it allows to choose between an internal Buildroot or an external toolchain
that will be used for the cross-compilation. Moreover, it is possible to configure the
kernel headers, the version of the gcc cross-compiler, the options for uClibc (C
libraries), activate the WCHAR support and enable the support to programming

languages like C++ or Fortran.

• System configuration: it allows to configure the whole system settings like the
hostname, the system banner, activate the login with password, set the root password,
set the path to the permission tables, activate time-zones info and run custom scripts
before or after the creation of the filesystem or inside the fakeroot environment.

• Kernel: it allows to configure the kernel options like its version, patches and eventually
a defconfig file, the output format of the kernel (the considered one is zImage), if a
compression of the kernel is necessary, if it is necessary a Device Tree Blob (DTB) or to
install the kernel in the “/boot” folder of the target.

• Target Packages: all the packages that are present in Buildroot and that can be installed
on the target like audio and video, compressors and decompressors for files, debug
tools, graphical libraries, support for programming languages (Python, C++, PHP ecc…),
tool for hardware support (i2c-detect, spidev ecc…) or text editors. In this section it is
also possible to insert custom packages just like ROS2 and other particular dedicated
applications.

• Filesystem Images: it allows to choose the output format of the generated filesystem
(cpio, tar, jffs2 ecc…) and, if it is necessary, a compression method. Moreover, it allows
to integrate it as initramfs inside the kernel.

• Bootloader: it allows to choose the desired bootloader (like U-boot) from a list and to
manage its configuration.

• Host utilities: it allows to configure support tools for the host that can be useful in the
building and cross-compiling processes.

• Legacy config options: packages that were present in older Buildroot versions that has
been reproposed.

83

The original intention of this thesis project was to realize an image with Buildroot, that had ROS2

installed on it and to flash it on a custom board developed by Tyvak (called “EAB”) that mount

an AT91SAM9G20 microprocessor.

Tyvak provided a working image for the EAB realized with Buildroot 2012 to take it as starting

point to understand which components are necessary to realize the new image using Buildroot

2020.

The first attempt was to realize an embedded linux image using standard files that are already

present in Buildroot. In the list of the supported boards of Buildroot 2020 is natively present the

AT91SAM9G20-EK (that mounts an AT91SAM9G20 processor) board. By using the command

“make at91sam9g20dfc_defconfig”, the configuration described by this file is set in the options of

the menuconfig and it can be built to produce a standard embedded Linux image that is

compatible with this processor. To flash an image on the EAB, Tyvak uses a customized version

of a flashing tool named “Sam-ba” (SAM Boot Assistant), which is commonly used to flash images

on the SAM microprocessors. The main problem is that, using a standars image produced by

Buildroot, the flashing procedure is successful but the board does not boot up because some

parts are missing.

Analysing the image produced by Tyvak, it can be noted that all its component (kernel, filesystem

and bootstrap) and some features in the settings are customized. In order to boot up, the EAB

requires all those files and, if one or more of them are replaced with standard files produced by

Buildroot, like done by using the standard configuration for the booting procedure always fails.

For the reasons explained above and since the objective of this thesis was to demonstrate the

feasibility of the design of a flight software in ROS2, the realization of the framework was moved,

as explained in the related chapters, to a Raspberry Pi that mount Ubuntu 20.04 as operating

system.

84

9. APPENDIX B: ROS2 CODE

WATCHDOG NODE PYTHON CODE:

WATCHDOG NODE

import rclpy
import time
import os
import yaml
from rclpy.node import Node
from custom_msg.msg import Wdmsg
from ros2launch.api import * # for launch_a_launch_file function
from ros2node.api import * # for get_node_names function
from multiprocessing import Process # for relaunching nodes with
Process()
WATCHDOG FUNCTIONALITIES

The provided Watchdog checks if the nodes provided by the yaml
configuration file and stored in a suitable dictionary, are active.
This is done through the API provided by ROS2 "get_node_names". If a
node of the guarded list is not present, a suitable ROS2 API
"launch_a_launch_file" is called by using the node unique ID, in order
to re-launch the node.

class Watchdog(Node):

 def __init__(self, guarded_nodes):
 super().__init__('watchdog')
 watchdog_freq=5.0 # sec. Frequency of the watchdog callback
 self.tmr_wd=self.create_timer(watchdog_freq,
self.watchdog_callback)
 self.guarded_nodes=guarded_nodes # controlled by watchdog

 def watchdog_launcher(self, launch_path): # Launch the missing node
launch file

launch_a_launch_file(launch_file_path=launch_path,launch_file_arguments="
")

 def create_active_nodes_names_list(self): # retrieving the list of
active nodes
 self.active_node_names_list=[]
 with NodeStrategy(self) as node:

85

 node_list = get_node_names(node=node,
include_hidden_nodes=False)
 i=0
 while(i<len(node_list)):
 self.active_node_names_list.append(node_list[i].name)
 i+=1

 def checking_missing_nodes(self): # missing nodes checking
 for node in self.guarded_nodes.values():
 node_check=False
 for j in range(0,len(self.active_node_names_list)):
 if(node['name']==self.active_node_names_list[j]):
 print("Node ",node['name']," present")
 node_check=True
 if(not node_check):
 print('Launching missing node: ', node['name'])

p=Process(target=self.watchdog_launcher,args=(node['launch_path'],))
 p.start()

 def watchdog_callback(self): # Watchdog core
 self.create_active_nodes_names_list()
 print('Active nodes: ', self.active_node_names_list)
 self.checking_missing_nodes()

def main(args=None):

 rclpy.init(args=args)

 # collecting Bus informations from Yaml file

stream=open('/home/ubuntu/ros2_ws/src/watchdog/watchdog/watchdog_cfg.yaml
', 'r')
 cfg=yaml.load(stream, Loader=yaml.FullLoader)

 guarded_nodes=cfg['guarded_nodes']

 watchdog = Watchdog(guarded_nodes) # initialize watchdog

 rclpy.spin(watchdog)

 # Destroy the node explicitly
 # (optional - otherwise it will be done automatically
 # when the garbage collector destroys the node object)
 watchdog.destroy_node()
 rclpy.shutdown()

if __name__ == '__main__':
 main()

86

SPI BUS SENSORS READER NODE PYTHON CODE:

SPI BUS SENSORS READER NODE

import rclpy
import os
import spidev
import math
import yaml
import sys
from . import Sensors
from rclpy.node import Node
from custom_msg.msg import SensorsMsg
from multiprocessing import Process # for launching nodes with
Process()

global requested_bus # to change node name corresponding to the specified
bus (n=busN)

SPI SENSORS READER FUNCTIONALITIES

The provided node is intended for reading sensors attached to a
specific SPI bus. Using the command "ros2 run sensors sensors_reader_spi
bus0/bus1/.../busN" is possible to launch
a node for each specified SPI bus to handle, using the associated YAML
configuration file. Each SPI bus node creates a sensor object for each
sensor and reads the collected data.
These data are published on a specific topic called "spi_sensors_data".

class SPI_bus(Node):

 def __init__(self, bus, sensors_info, n_bus):
 super().__init__('spi_'+requested_bus)
 self.bus=bus
 self.sensors_info=sensors_info
 self.n_bus=n_bus
 self.sens=[] # for storing sensors objects

 print("Reading data from SPI",sys.argv[1],"...")

 # creating objects for each sensor
 for sensor in self.sensors_info.values():
 if(sensor['type']=='sun'):
 # sensor E91086 object

self.sens.append(Sensors.E91086(self.bus,None,sensor['cs']))

87

 self.publisher_ = self.create_publisher(SensorsMsg,
'spi_sensors_data_'+requested_bus, 10)
 timer_period = 0.001
 self.timer = self.create_timer(timer_period, self.sensor_reading)

 def sensor_reading(self):
 msg = SensorsMsg()
 for i in range(len(self.sens)):
 # reading sensors
 if(self.sens[i].name=='E91086'): #Sun sensor
 self.bus.open(self.n_bus,self.sens[i].cs)
 self.sens[i].initialize()
 msg.sun_raw=self.sens[i].read_sensor_raw()
 msg.sun=self.sens[i].read_sensor()
 # print(msg.sun) #just for debug
 # print("MAG_X: ",msg.sun[0],"[G]"," MAG_Y:
",msg.sun[1],"[G]","MAG_Z: ",msg.sun[2],"[G]")
 self.publisher_.publish(msg)
 self.bus.close()

def main(args=None):

 rclpy.init(args=args)

 common_path='/home/ubuntu/ros2_ws/src/sensors/sensors/'

 global requested_bus
 requested_bus=sys.argv[1]

 # collecting Bus informations from Yaml file
 stream=open(common_path+'spi_'+requested_bus+'_cfg.yaml', 'r')
 cfg=yaml.load(stream, Loader=yaml.FullLoader)
 sensors_info=cfg['sensors']

 # create and launch the node
 spi = spidev.SpiDev() # initializing the bus with
spidev
 spi_bus = SPI_bus(spi,sensors_info,cfg['n_bus']) # creating bus node
 rclpy.spin(spi_bus)

 # Destroy the node explicitly
 # (optional - otherwise it will be done automatically
 # when the garbage collector destroys the node object)
 spi_bus.destroy_node()
 rclpy.shutdown()

if __name__ == '__main__':
 main()

88

I2C BUS SENSORS READER NODE PYTHON CODE:

I2C BUS SENSORS READER NODE

import rclpy
import os
import smbus2
import yaml
import sys
from . import Sensors
from rclpy.node import Node
from custom_msg.msg import SensorsMsg
from multiprocessing import Process # for launching nodes with
Process()
global requested_bus # to change node name corresponding to the specified
bus (n=busN)
I2C SENSORS READER FUNCTIONALITIES
The provided node is intended for reading sensors attached to a
specific i2c bus. Using the command "ros2 run sensors sensors_reader_i2c
bus1/bus2/.../busN" is possible to launch
a node for each specified i2c bus to handle, using the associated YAML
configuration file. Each I2C bus node creates a sensor object for each
sensor and reads the collected data.
These data are published on a specific topic called "i2c_sensors_data".

class I2C_bus(Node):

 def __init__(self, bus, sensors_info, n_bus):
 super().__init__('i2c_'+requested_bus)
 self.bus=bus
 self.sensors_info=sensors_info
 self.n_bus=n_bus
 self.sens=[] # for storing sensors objects

 print("Reading data from I2C",sys.argv[1],"...")

 # creating objects for each sensor
 for sensor in self.sensors_info.values():
 if(sensor['type']=='temp'):
 # sensor AD7415 object

self.sens.append(Sensors.AD7415(self.bus,sensor['addr'],None))
 if(sensor['type']=='mag'):
 # sensor HMC5883L object

self.sens.append(Sensors.HMC5883L(self.bus,sensor['addr'],None))

89

 self.sens[-1].initialize()
 self.publisher_ = self.create_publisher(SensorsMsg,
'i2c_sensors_data_'+requested_bus, 10)
 timer_period = 0.001 # seconds
 self.timer = self.create_timer(timer_period, self.sensor_reading)

 def sensor_reading(self):
 msg = SensorsMsg()
 for i in range(len(self.sens)):
 # reading sensors
 if(self.sens[i].name=='AD7415'): #Temperature
sensor
 msg.temp_raw=self.sens[i].read_sensor_raw()
 msg.temp=self.sens[i].read_sensor()
 if(self.sens[i].name=='HMC5883L'): #Magnetometer
sensor
 msg.mag_raw=self.sens[i].read_sensor_raw()
 msg.mag=self.sens[i].read_sensor()
 # print(msg.mag) #just for debug
 self.publisher_.publish(msg)

def main(args=None):

 rclpy.init(args=args)
 common_path='/home/ubuntu/ros2_ws/src/sensors/sensors/'
 global requested_bus
 requested_bus=sys.argv[1]

 # collecting Bus informations from Yaml file
 stream=open(common_path+'i2c_'+requested_bus+'_cfg.yaml', 'r')
 cfg=yaml.load(stream, Loader=yaml.FullLoader)
 sensors_info=cfg['sensors']
 # create and launch the node
 bus_i2c=smbus2.SMBus(cfg['n_bus']) # initializing the bus with
smbus2
 i2c_bus = I2C_bus(bus_i2c,sensors_info,cfg['n_bus']) # creating bus
node
 #p=Process(target=rclpy.spin, args=(i2c_bus,))
 #p.start()
 rclpy.spin(i2c_bus)
 # Destroy the node explicitly
 # (optional - otherwise it will be done automatically
 # when the garbage collector destroys the node object)
 i2c_bus.destroy_node()
 rclpy.shutdown()

if __name__ == '__main__':
 main()

90

SPI BUS SENSORS TELEMETRY NODE PYTHON CODE:

SPI SENSORS TELEMETRY NODE

import rclpy
import os
import struct
import sys

from rclpy.node import Node
from custom_msg.msg import SensorsMsg
from datetime import datetime

global requested_bus

SPI SENSORS TELEMETRY FUNCTIONALITIES

The provided node is intended for logging the data coming from spi
sensors in a suitable binary file. It splits the log files
whenever a predefined threshold for the max number of messages stored
is exceeded. So a new binary log file is created, if
the threshold is exceeded or if the topic is not recorded yet, and
stored in a predefined directory within its timestamp

class SensorsTelemetrySPI(Node):

 def __init__(self):
 super().__init__('spi_sensors_telemetry_'+requested_bus)
 self.subscription_spi = self.create_subscription(
 SensorsMsg,
 'spi_sensors_data_'+requested_bus,
 self.sensors_telemetry_callback,
 10)
 self.subscription_spi # prevent unused variable warning
 self.recording=False # to check if the log file is already
created
 self.ind=0 # to count the messages recorded

 def create_binary(self): # Create the log file in the sensors_log
folder

path="/home/ubuntu/ros2_ws/src/telemetry/sensors_log/spi_"+requested_bus
 if not os.path.exists(path): # If the folder is not present,
it'll be created
 os.mkdir(path)

91

 name_db=path+"/spi_"+requested_bus+"_sensors_data-
"+str(datetime.now().strftime("%m-%d-%Y-%H:%M:%S"))+".bin" # timestamp
log file creation
 print('Logging data in: '+name_db)
 self.recording=True # log file created flag
 self.file=open(name_db,'wb')
 self.ind=0 # messages number reset

 def insert_data(self, msg): # Insert the sensors data into the log
file created
 if(self.ind< self.n_max):
 tmp=struct.pack('fff',
 msg.sun_raw,
 msg.sun[0],msg.sun[1]
)
 self.file.write(tmp)
 self.ind+=1

 def sensors_telemetry_callback(self, msg):
 self.n_max=1000
 if(self.ind == self.n_max):
 self.file.close()
 if(not self.recording or self.ind > self.n_max-1):
 self.create_binary()
 self.insert_data(msg)
 print("RECORDING...")

def main(args=None):

 rclpy.init(args=args)

 global requested_bus
 requested_bus=sys.argv[1]

 sensors_telemetry_spi = SensorsTelemetrySPI()

 rclpy.spin(sensors_telemetry_spi)

 # Destroy the node explicitly
 # (optional - otherwise it will be done automatically
 # when the garbage collector destroys the node object)
 sensors_telemetry_spi.destroy_node()
 rclpy.shutdown()

if __name__ == '__main__':
 main()

92

I2C BUS SENSORS TELEMETRY NODE PYTHON CODE:

I2C SENSORS TELEMETRY NODE

import rclpy
import os
import struct
import sys
from rclpy.node import Node
from custom_msg.msg import SensorsMsg
from datetime import datetime

global requested_bus

I2C SENSORS TELEMETRY FUNCTIONALITIES

The provided node is intended for logging the data coming from i2c
sensors in a suitable binary file. It splits the log files
whenever a predefined threshold for the max number of messages stored
is exceeded. So a new binary log file is created, if
the threshold is exceeded or if the topic is not recorded yet, and
stored in a predefined directory within its timestamp

class SensorsTelemetryI2C(Node):

 def __init__(self):
 super().__init__('i2c_sensors_telemetry_'+requested_bus)
 self.subscription_i2c = self.create_subscription(
 SensorsMsg,
 'i2c_sensors_data_'+requested_bus,
 self.sensors_telemetry_callback,
 10)
 self.subscription_i2c # prevent unused variable warning
 self.recording=False # to check if the log file is already
created
 self.ind=0 # to count the messages recorded

 def create_binary(self): # Create the log file in the sensors_log
folder

path="/home/ubuntu/ros2_ws/src/telemetry/sensors_log/i2c_"+requested_bus
 if not os.path.exists(path): # If the folder is not present,
it'll be created
 os.mkdir(path)
 name_db=path+"/i2c_"+requested_bus+"_sensors_data-
"+str(datetime.now().strftime("%m-%d-%Y-%H:%M:%S"))+".bin" # timestamp
log file creation

93

 print('Logging data in: '+name_db)
 self.recording=True # log file created flag
 self.file=open(name_db,'wb')
 self.ind=0 # messages number reset

 def insert_data(self, msg): # Insert the sensors data into the log
file created
 if(self.ind< self.n_max):
 tmp=struct.pack('ffffffffffff',
 msg.temp_raw[0],msg.temp_raw[1],
 msg.temp,

msg.mag_raw[0],msg.mag_raw[1],msg.mag_raw[2],msg.mag_raw[3],msg.mag_raw[4
],msg.mag_raw[5],
 msg.mag[0],msg.mag[1],msg.mag[2]
)
 self.file.write(tmp)
 self.ind+=1

 def sensors_telemetry_callback(self, msg):
 self.n_max=1000
 if(self.ind == self.n_max):
 self.file.close()
 if(not self.recording or self.ind > self.n_max-1):
 self.create_binary()
 self.insert_data(msg)
 print("RECORDING...")

def main(args=None):

 rclpy.init(args=args)

 global requested_bus
 requested_bus=sys.argv[1]

 sensors_telemetry_i2c = SensorsTelemetryI2C()

 rclpy.spin(sensors_telemetry_i2c)

 # Destroy the node explicitly
 # (optional - otherwise it will be done automatically
 # when the garbage collector destroys the node object)
 sensors_telemetry_i2c.destroy_node()
 rclpy.shutdown()

if __name__ == '__main__':
 main()

94

ATTITUDE DETERMINATION NODE PYTHON CODE:

import rclpy
import os
import numpy
import math
import pyIGRF
import datetime
import navpy

from rclpy.node import Node
from custom_msg.msg import SensorsMsg
from custom_msg.msg import AttitudeQuaternion
from PyAstronomy import pyasl
from skyfield import framelib
from skyfield.api import load_file
from skyfield.api import load

class AttitudeDetermination(Node):

 def __init__(self):
 super().__init__('attitude_determination')
 self.sun = None
 # self.sun_safe_b= 1.61927769490585 # 92.7° (or 1.522314958683943
for 87.3°)
 # self.sun_safe_a= 1.61927769490585 # 92.7° (or 1.522314958683943
for 87.3°)
 self.mag = None
 self.subscription_i2c = self.create_subscription(
 SensorsMsg,
 'i2c_sensors_data_bus1',
 self.i2c_mag_callback,
 10)
 self.subscription_spi = self.create_subscription(
 SensorsMsg,
 'spi_sensors_data_bus0',
 self.spi_sun_callback,
 10)
 self.quat_publisher = self.create_publisher(AttitudeQuaternion,
'attitude', 10)
 print("Starting Attitude Determination...")
 self.subscription_i2c # prevent unused variable warning
 self.subscription_spi # prevent unused variable warning
 timer_period=0.01 # 10 Hz
 self.AD_timer = self.create_timer(timer_period,
self.AD_timer_callback)

 def i2c_mag_callback(self, msg): # callback collecting mag sensor
data
 self.mag=msg.mag

95

 def spi_sun_callback(self, msg): # callback collecting sun sensor
data
 self.sun=msg.sun

 def sun_mag_vectors_ECEF(self): # method computing ECEF frame
vectors
 # Variables needed for M_ECEF vector computation
 lat_deg=45.09221603086248
 lon_deg=7.670356843569824
 lat_rad=lat_deg*math.pi/180
 lon_rad=lon_deg*math.pi/180
 alt=0.239 #km
 date=pyasl.decimalYear(datetime.datetime.now())
 # Variables needed for S_ECEF vector computation
 ts = load.timescale()
 t = ts.now() # Julian date hour expressed in UT (-1h
wrt Italy)
 planets =
load_file('/home/ubuntu/ros2_ws/src/attitude_determination/attitude_deter
mination/ephemeris/de421.bsp')
 sun = planets['sun']
 earth = planets['earth']
 # M_NED, M_ECEF computation
 mag_info=pyIGRF.igrf_value(lat_deg, lon_deg, alt, date)
 M_NED=numpy.array([mag_info[3],mag_info[4],mag_info[5]]) #nT
(North,East,Down coordinates)
 M_NED=M_NED/(numpy.linalg.norm(M_NED)) #
normalization
 a=lat_rad+math.pi/2
 b=-lon_rad
 Ry=numpy.array([[math.cos(a),0,-
math.sin(a)],[0,1,0],[math.sin(a),0,math.cos(a)]])
 Rz=numpy.array([[math.cos(b),math.sin(b),0],[-
math.sin(b),math.cos(b),0],[0,0,1]])
 R=numpy.dot(Rz,Ry)
rotation matrix: NED FRAME -> ECEF FRAME
 R=R.T #
transformation matrix from NED frame -> ECEF FRAME
 M_ECEF=numpy.dot(R,M_NED)
 # S_ECEF computation
 apparent = earth.at(t).observe(sun).apparent()
 sun_info = apparent.frame_xyz(framelib.itrs)
 S_ECEF=numpy.array(sun_info.au)
 S_ECEF=S_ECEF/(numpy.linalg.norm(S_ECEF))
 ret=[M_ECEF,S_ECEF]
 return ret

96

 def sun_mag_vectors_BODY(self): # method computing BODY frame
vectors
 # Sb computation
 b=self.sun[0]-math.pi/2 # angle XZ-plane
 a=self.sun[1]-math.pi/2 # angle YZ-plane
 # if (abs(b-math.pi/2)<0.047):
 # b=self.sun_safe_b
 # self.sun_safe_b=b
 # if (abs(a-math.pi/2)<0.047):
 # a=self.sun_safe_a
 # self.sun_safe_a=a
 # print("beta: ",b)
 # print("alpha: ",a)
 S_B=numpy.array([math.tan(b),math.tan(a),1]) # general
relation for 2-axis digital sun sensors
 #print("S_B non normalizzato: ",S_B)
 # Mb computation
 R=numpy.array([[0,-1,0],[-1,0,0],[0,0,-1]]) # rotation matrix:
MAG sensor FRAME -> SUN sensor FRAME
 R=R.T # transformation
matrix: MAG sensor FRAME -> SUN sensor FRAME
 M_B=R.dot(numpy.array(self.mag))
 # normalize vectors
 S_B=S_B/(numpy.linalg.norm(S_B))
 M_B=M_B/(numpy.linalg.norm(M_B))
 ret=[M_B,S_B]
 return ret

 def TRIAD_attitude_determination(self,S_B,M_B,S_ECEF,M_ECEF):
 # creating the triads: USING S_B as "best" measure
 # 1st components
 t1b=S_B
 t1i=S_ECEF
 # 2nd components
 tmp=numpy.cross(S_B, M_B)
 t2b=tmp/(numpy.linalg.norm(tmp))
 tmp=numpy.cross(S_ECEF, M_ECEF)
 t2i=tmp/(numpy.linalg.norm(tmp))
 # 3rd components
 t3b=numpy.cross(t1b, t2b)
 t3i=numpy.cross(t1i, t2i)
 # attitude matrix computation
 Rbt=(numpy.array([t1b,t2b,t3b])).T # rotation matrix: BODY
FRAME -> TRIAD FRAME
 Rti=numpy.array([t1i,t2i,t3i]) # rotation matrix: TRIAD FRAME
-> ECEF FRAME
 DCM_attitude=numpy.dot(Rbt,Rti)
 return DCM_attitude

97

 def AD_timer_callback(self): # Timed callback computing
attitude (refer to "timer_period") via TRIAD algorithm
 if (self.sun is not None and self.mag is not None):
 # store body frame vectors
 v=self.sun_mag_vectors_BODY()
 M_B=v[0]
 S_B=v[1]
 # store ECEF frame vectors
 v=self.sun_mag_vectors_ECEF()
 M_ECEF=v[0]
 S_ECEF=v[1]
 # print("S_B: ",S_B)
 # print("\n")
 # print("M_B: ",M_B)
 # print("S_ECEF: ",S_ECEF)
 # print("M_ECEF: ",M_ECEF)
 # TRIAD ALGORITHM

DCM_attitude=self.TRIAD_attitude_determination(S_B,M_B,S_ECEF,M_ECEF)
 q0,qvec=navpy.dcm2quat(DCM_attitude)
 q_attitude=[q0, qvec[0], qvec[1], qvec[2]]
 # print("Attitude DCM Matrix: ")
 # print(DCM_attitude)
 # print("Attitude quaternion: ")
 # print(q_attitude)
 # print("\n")
 msg = AttitudeQuaternion()
 msg.quat=q_attitude
 msg.r1=DCM_attitude[0]
 msg.r2=DCM_attitude[1]
 msg.r3=DCM_attitude[2]
 self.quat_publisher.publish(msg)

def main(args=None):
 rclpy.init(args=args)

 attitude_determination = AttitudeDetermination()

 rclpy.spin(attitude_determination)

 # Destroy the node explicitly
 # (optional - otherwise it will be done automatically
 # when the garbage collector destroys the node object)
 attitude_determination.destroy_node()
 rclpy.shutdown()

if __name__ == '__main__':
 main()

98

10. APPENDIX C: MATLAB CODE

ATTITUDE CONTROL SETTINGS FILE:

clc; clear

format long;

%% Orbit propagation data and LVLH frames import

%Storing altitude, latitude and longitude of the satellite in its

orbit

orbit_data=importdata('log_orbit.txt');

s=orbit_data.data(:,7); %seconds (for timeseries

structure creation)

mu=orbit_data.data(:,8); %latitude

l=orbit_data.data(:,9); %longitude

h=orbit_data.data(:,10); %altitude

orbit=timeseries([h, mu, l],s);

%Storing UTC time (year month day hours minutes seconds)

y=orbit_data.data(:,1);

mon=orbit_data.data(:,2);

d=orbit_data.data(:,3);

h=orbit_data.data(:,4);

min=orbit_data.data(:,5);

sec=orbit_data.data(:,6);

orbit_date_utc=timeseries([y, mon, d, h, min, sec],s);

% LVLH triads data

lvlh_data=importdata('LVLH_orbit.txt');

lvlh_x=timeseries([lvlh_data.data(:,2), lvlh_data.data(:,3),

lvlh_data.data(:,4)],s);

lvlh_y=timeseries([lvlh_data.data(:,5), lvlh_data.data(:,6),

lvlh_data.data(:,7)],s);

lvlh_z=timeseries([lvlh_data.data(:,8), lvlh_data.data(:,9),

lvlh_data.data(:,10)],s);

%Simulation

sim('orbit_data_computation');

B_eci=ans.B_eci;

q_ref=ans.q_eci2lvlh;

%B_eci plot

figure(1);

subplot(311); hold on; grid on; xlabel('time [s]'); ylabel('Bx [

T]'); xlim([0 16*10^4]);

plot(B_eci.Time,B_eci.Data(:,1));

subplot(312); hold on; grid on; xlabel('time [s]'); ylabel('By [

T]'); xlim([0 16*10^4]);

plot(B_eci.Time,B_eci.Data(:,2));

99

subplot(313); hold on; grid on; xlabel('time [s]'); ylabel('Bz [

T]'); xlim([0 16*10^4]);

plot(B_eci.Time,B_eci.Data(:,3));

%% Settings definition

% Magnetorquers

N=1000; %Number of windings

D=0.03; %Coils diameter [m]

A_coil=D^2*pi/4; %Coils area [m^2]

Imax=0.7; %Max current [A] try 0.3 and 0.7

mu_max=N*Imax*A_coil; %max dipole [A*m^2]

Ax=[A_coil;0;0]; %Magnetorquer 1 area vector (aligned with

x-axis of body frame)

Ay=[0;A_coil;0]; %Magnetorquer 2 area vector (aligned with

y-axis of body frame)

Az=[0;0;A_coil]; %Magnetorquer 3 area vector (aligned with

z-axis of body frame)

A=[Ax,Ay,Az];

NA=N*A;

I=[Imax; Imax; Imax]; %Coils current matrix

% Satellite 3U with each U: mass 1.33Kg and length side 1dm

% Inertia components (Ix=0.0111 , Iy=0.0022 , Iz=0.0111)

q0=[1;0;0;0]; %ECI TO BODY FRAME quat

J=diag([0.0111; 0.0022; 0.0111]); %Inertia matrix

[Kg*m^2]

IJ=inv(J);

% Earth pointing control, reference angular velocity and Kp, Kd

matrices

mean_motion=15.00050640; % revolutions per days

n=(2*pi*mean_motion)/86400; % orbital rate, approximating to

circular orbit. 86400=seconds in a day

w_oi_o=[0; -n; 0]; % angular velocity of orbital frame

wrt inertial, written in orbital [rad/s]

q_ref0=q_ref.Data(1,:)'; % qeci2orbit initial

Kp=diag([1*10^2, 1*10^2, 1*10^2])

Kd=diag([1.8*10^4, 1.8*10^4, 1.8*10^4]

% initial conditions

% I want the body frame rotated of theta° wrt x/y/z axis of orbit

frame

th=deg2rad(60);

q_o2b=[cos(th/2); sin(th/2); 0; 0]; %wrt x

% q_o2b=[cos(th/2); 0; sin(th/2); 0]; %wrt y

% q_o2b=[cos(th/2); 0; 0; sin(th/2)]; %wrt z

q0=quatprod(q_ref0, q_o2b); %qeci2body initial

q0_tilde=[q_o2b(1); -q_o2b(2:end)]; %initial q_tilde (body to

orbit)

% w0=deg2rad([0; 0; 0]);

100

w_tilde0=deg2rad([1;0.5;0]); %input in degrees

% w_tilde0=[0.01; 0.01; 0.01]; %input in radians

%% Animations/plots after simulation

% random initial conditions simulations for detumbling

w0_deg_sim=[];

q0_sim=[];

figure(2);

subplot(311); hold on; grid on; xlabel('time [s]'); ylabel('Wx [

deg/s]');

subplot(312); hold on; grid on; xlabel('time [s]'); ylabel('Wy [

deg/s]');

subplot(313); hold on; grid on; xlabel('time [s]'); ylabel('Wz [

deg/s]');

for i=1:5

 q0=randrot(1).compact';

 q0_sim=[q0_sim, q0];

 w0_deg=-20+40.*rand(3,1); %angular velocity in

degrees [deg] (randonmly chosen in [-20,20]deg)

 w0_deg_sim=[w0_deg_sim, w0_deg];

 w0=deg2rad(w0_deg); %angular velocity in

radians [rad]

 sim('Detumbling_Bdot_model');

 w_deg=ans.w_deg;

 subplot(311); plot(w_deg.Time,squeeze(w_deg.Data(1,:)));

 subplot(312); plot(w_deg.Time,squeeze(w_deg.Data(2,:)));

 subplot(313); plot(w_deg.Time,squeeze(w_deg.Data(3,:)));

end

101

EARTH-POINTING SATELLITE DYNAMICAL MODEL EULER EQUATION ERROR:

function w_bo_b_dot = fcn(M, q_tilde, w_bo_b)

mean_motion=15.00050640; % revolutions per days

n=(2*pi*mean_motion)/86400; % orbital rate, approximating to

circular orbit. 86400=seconds in a day

w_oi_o=[0; -n; 0]; % angular velocity of orbital frame

wrt inertial, written in orbital [rad/s]

J=diag([0.0111; 0.0022; 0.0111]); %Inertia matrix

[Kg*m^2]

IJ=inv(J);

C=qua2dcm(q_tilde);

tmp=C*w_oi_o;

s1=[0 -tmp(3) tmp(2); tmp(3) 0 -tmp(1); -tmp(2) tmp(1) 0];

tmp=w_bo_b;

s2=[0 -tmp(3) tmp(2); tmp(3) 0 -tmp(1); -tmp(2) tmp(1) 0];

tmp=J*C*w_oi_o;

s3=[0 -tmp(3) tmp(2); tmp(3) 0 -tmp(1); -tmp(2) tmp(1) 0];

sum=(-J*s1-s2*J+s3-s1*J)*w_bo_b-s1*J*C*w_oi_o+M;

w_bo_b_dot=IJ*sum;

EARTH-POINTING SATELLITE DYNAMICAL MODEL QUATERNION KINEMATICS:

function w_bi_b = fcn(q_bo, w_bo_b)

mean_motion=15.00050640; % revolutions per days

n=(2*pi*mean_motion)/86400; % orbital rate, approximating to

circular orbit. 86400=seconds in a day

w_oi_o=[0; -n; 0]; % angular velocity of orbital frame

wrt inertial, written in orbital

C=qua2dcm(q_bo);

w_oi_b=C*w_oi_o;

w_bi_b=w_bo_b+w_oi_b;

102

REFERENCES

1. ai-solutions, Attitude Reference Frames. s.d.

https://aisolutions.com/_help_Files/attitude_reference_frames.htm.

2. Analog Devices, AD7415 sensor. s.d.

https://www.analog.com/media/en/technical-documentation/data-sheets/AD7414_7415.pdf.

3. Carlo Novara, Enrico Canuto, Luca Massotti, Donato Carlucci, Carlos Perez Montenegro. Spacecraft

Dynamics and Control. s.d.

4. Documentation, ROS2 Foxy. s.d.

https://docs.ros.org/en/foxy/index.html.

5. Elmos, E910.86 Sun sensor. s.d.

https://www.mouser.com/datasheet/2/594/910_86-224506.pdf.

6. Fabio Celani, Gain Selection for Attitude Stabilization of Earth-Pointing Spacecraft Using Magnetorquers.

s.d. https://link.springer.com/article/10.1007/s42496-020-00062-2#Abs1.

7. James, R Wertz. Spacecraft attitude Determination and Control. s.d.

8. MathWorks, Aerospace Blockset Toolbox. s.d.

https://it.mathworks.com/matlabcentral/fileexchange/70030-aerospace-blockset-cubesat-simulation-

library.

9. MathWorks, Generate Code to Manually Deploy a ROS 2 Node from Simulink. s.d.

https://it.mathworks.com/help/ros/ug/generate-code-to-manually-deploy-ros-2-node.html.

10. MathWorks, ROS Toolbox. s.d.

https://it.mathworks.com/products/ros.html.

11. Parallax, Compass module HMC5883L magnetometer. s.d.

https://components101.com/asset/sites/default/files/component_datasheet/HMC5883L-Module-

Datasheet.pdf.

12. Richard Becker, Dealing with the Quaternion Antipodal. s.d.

https://apps.dtic.mil/sti/pdfs/AD1043624.pdf.

13. Satellite Wiki, Bdot law. s.d.

https://www.aero.iitb.ac.in/satelliteWiki/index.php/B_Dot_Law.

14. Skyfield, Earth Satellites. s.d.

https://rhodesmill.org/skyfield/earth-satellites.html.

15. Wikipedia, Raspberry Pi 3 B+. s.d.

https://it.wikipedia.org/wiki/Raspberry_Pi.

https://aisolutions.com/_help_Files/attitude_reference_frames.htm
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7414_7415.pdf
https://docs.ros.org/en/foxy/index.html
https://www.mouser.com/datasheet/2/594/910_86-224506.pdf
https://link.springer.com/article/10.1007/s42496-020-00062-2%23Abs1
https://it.mathworks.com/matlabcentral/fileexchange/70030-aerospace-blockset-cubesat-simulation-library
https://it.mathworks.com/matlabcentral/fileexchange/70030-aerospace-blockset-cubesat-simulation-library
https://it.mathworks.com/help/ros/ug/generate-code-to-manually-deploy-ros-2-node.html
https://it.mathworks.com/products/ros.html
https://components101.com/asset/sites/default/files/component_datasheet/HMC5883L-Module-Datasheet.pdf
https://components101.com/asset/sites/default/files/component_datasheet/HMC5883L-Module-Datasheet.pdf
https://apps.dtic.mil/sti/pdfs/AD1043624.pdf
https://www.aero.iitb.ac.in/satelliteWiki/index.php/B_Dot_Law
https://rhodesmill.org/skyfield/earth-satellites.html
https://it.wikipedia.org/wiki/Raspberry_Pi

