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Abstract 
 

 

The subject of this master thesis is to investigate on model-based 

calibration, in particular on the modelling stage. 

The first phase has been dedicated to the DoE theory, the first step of an 

engine calibration work: very essential to reduce the tests number and 

increase the model quality at the same time. Then an alternative method 

was found for outlier detection.  

These theoretical considerations have been applied on experimental diesel 

engine data: gaussian and polynomial models are compared on different 

tests, with different engines and different strategies in order to evaluate 

their precision in fitting and predictivity. 

Model-based calibration (MBC) toolbox is the employed software for the 

activity. 
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Nomenclature 
 

Acronyms 

 

bsfc(or b_e) brake specific fuel consumption 

CI confidential interval 

CLF cumulative distribution function 

CN combustion noise 

CoV coefficient of variance 

DoE design of experiment 

dof degrees of freedom 

DT dwell time 

ED error difference 

EGR exhaust gas recirculated  

FSN filter smoke number 

GP gaussian process 

HC unburned hydrocarbons 

IQR interquartile distance 

LHS latin hypercube sampling 

MSE mean square error 

MFB50 crank angle where the 50% of injected fuel is bured 

NOx nitrogen oxides 

OFAT one factor a time 

PCCI premixed combustion compression ignition 

PEV prediction error variance 

PRESS predicted residual sum of squares 

RDE real driving emissions 

RMS root mean square 

RMSE root mean square error 

SCR selective catalytic reduction 

SE square exponential 

SSE sum of square error 

 

Symbols 

 

D Cook’s distance 

e  residual 

H hat matrix 

h leverage 

L  number of levels 

p number of model parameters 

r studentized residual 

s415 filter smoke number measured by smoke meter 
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X regressor matrix 

Xr_CO2 exhaust gas recirculated percentage measured by CO2 gas analyzer 

y measured output  

�̅� mean output value 

�̂� predicted output 

λ exponential parameter of Box-Cox transformation 

ν degrees of freedom 
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1. Introduction 
Upcoming legislation of Real Driving Emissions (RDE) brings new challenges for the automotive 
world. In order to improve efficiency in calibration, the measurement methodologies have evolved, 
at the same time empirical model prediction capability was improved through new model types - 
the reason behind this being to improve the accuracy with lower measurement effort.  
These improvements allowed fulfilment of the emission legal limits with minimum fuel consumption 
but also handling the complexity of an increasing number of actuators in the powertrain system. Up 
to same years ago, emissions were optimized within the certification cycle area, while outside of 
this area, the focus was fuel consumption minimization.  
With upcoming regulations, the calibration needs to be robust against a wider powertrain operating 
range, under different environmental and driving conditions. Due to the high number of variants, it 
is not feasible to test and calibrate the emissions in all conditions. Therefore the model-based 
approach has to be extended to non-standard conditions.  
 

 
Figure 1.1 LOAD/SPEED chart: different operating points changing the test typology 

 

A model-based approach, which can predict emissions under real driving conditions, is required. But 

“What is a model?” 

The two types of models are: 

• The physically based, mathematical models are typically applied in the early phases of a 

development process in simulation tools. E.g. for designing the gas path of an engine including 

the after treatment system. Such models are using well understood relationships and can reach 

a high degree of detail with high reliability in the prediction quality. The input parameters in this 

example are gas condition parameters and design parameters of the engine to be developed. 

The challenge lies in the real time capability.  

 

• In case of very complex relationships – such as combustion processes, a system is just observed 

under defined, different input conditions. The Design of Experiment techniques (DoE) allow 

correct placement of input settings, in order to identify empirical, time free, mathematical 
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models, from the observed results. This is achieved with low measurement effort. The 

calculation speed of such models is remarkable higher and far beyond real time - but they are 

typically not capable to predict outside the investigated range. [1] 

 

In the engine calibration field, with high number of actuators, the idea is to measure some output 

(consumption, emissions, noise) and to construct a mathematical model by regression. This is the 

fastest method. However it is impossible to measure and test all the possible combinations. To 

overcome this problem the Design of Experiment theory is employed. 

The used software for modelling is MBC toolbox, a Mathlab tool, in this thesis.  

Model-Based Calibration Toolbox provides apps and design tools for modeling and calibrating 

complex nonlinear systems. It can be used in a wide range of applications, including powertrain 

systems such as engines, electric machines, pumps, and fans, as well as nonautomotive systems 

such as jet engines, marine hydrofoils, and drilling equipment.  

It is consists of two user interfaces and both have been used in the following thesis work: 

• Model Browser: provides the tools for applying the DoE technique and for statistical 

modeling. The tool provides the techniques for DoE construction: Optimal, Space filling, 

Classical designs.  

Importing data, it also allows the comparison between various statistical models and 

experimental projects and there is a large library of pre-built models that can be used or 

alternatively it is possible to create new ones. it is possible to study the model fitting of 

different model process and finally, after creating the model, it can be exported to Matlab, 

Simulink or Cage for further analysis. 

• CAGE Browser: provides tools for analytical calibration. It is a simple graphical interface 

created with the aim of calibrating the lookup tables of the electronic control unit. Through 

analytical methods it allows to easily calibrate lookup tables. There are also optimization 

tools and data testing, to find optimal point (with or without constraints) and trade-off 

graphs. 
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2. Design of experiment 

The term Design of experiment (DoE) refers to a series of experiments to be performed and to be 

analyzed. The goal is to design in the best way a series of experiments drawing conclusions from his 

behavior in the shortest possible time. The DoE technique, unlike the intuitive approach that bases 

the search for the best by changing sequentially every single variable, changes all factors 

simultaneously allowing to find the optimal solution quickly. The basic concept is a symmetrical 

distribution of the experiments around a central point. A range is established for each factor, the 

center point is calculated and the distribution is created symmetrical. The Figure 2.1 compares the 

traditional OFAT (one-factorial-at-time) and the DoE approach. 

 
Figure 2.1 Comparison between DOE and OFAT 

 

In the traditional method, the experimenter does not know which value of X1 or X2 to change, he 

goes to attempts, changing their value one at a time. DoE instead creates a symmetric distribution 

of experiments around the center point, simultaneously changing all factors, outlining a direction 

that allows for better results.  

The big disadvantages of OFAT is the long time to perform all the experiments especially if the inputs 

are more than two and the risk to conclude the process finding a local optimum point, not a global 

one [2]. 

 

The steps of DoE methodology are: 

1. Recognition of and statement of the problem 

2. Selection of the response variable 

3. Choice of the factors, levels and ranges (inputs domains) 

4. Choice the experimental design 

5. Performing the experiment 

 

For what about the point 4, there are three different approaches: Classical, Space-filling, Optimal. 
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2.1. Classical design 

This approach is the simplest one.  After defining the input variables, their ranges and their levels 

the experimenter develops the variation list considering all the possible combinations. It is possible 

to represent this graphically by square (2 inputs), cube (3 inputs) or hypercube (more than 3 inputs). 

The number of all possible experiments are: 

𝑁 =∏𝐿𝑖

𝐷

𝑖=1

 

𝐿𝑖  is the number of levels of the input i, D is the number of the input variables.  

This specific approach is called Full factorial plan. 

It is clear that this solution is very expensive from time point of view: for example in engine 

calibration situation, like the following figure, the number of measurements is huge. 

 

 
Figure 2.2 Full factorial plan: how increase the experiments number with the input variables 

To overcome this issues it is possible to adopt a fractorial factorial design, choosing only a fraction 

of the full factorial design. 

Another design type for a classical approach is the composite design. It combines the investigations 

done by a fractorial design, the corners and replicated central-points, with the use of axial 

experiments. These last ones are called star points. In general their locations on the cube 

representation in function of the distance from central point and the other points. 

 

 
Figure 2.3 Composite design examples 
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These approaches in engine calibration are practically never used because are the most expensive 

approach from time (and so cost) point of view, and because there are procedures (like optimal 

design) that give better model results with less tests. 

 

2.2. Space filling design 
Space-filling design should be used when there is little or no information about the underlying 

effects of factors on responses. For example, they are most useful when you are faced with a new 

type of engine, with little knowledge of the operating envelope. These designs do not assume a 

particular model form. The aim is to spread the points as evenly as possible around the operating 

space. These designs literally fill out the n-dimensional space with points that are in some way 

regularly spaced.  

There are different types of space filling design. 

Latin Hypercube Sampling (LHS) are sets of design points that, for an N point design, project onto N 

different levels in each factor. Here the points are generated randomly. You choose a particular Latin 

Hypercube by trying several such sets of randomly generated points and choosing the one that best 

satisfies user-specified criteria. 

 

 
Figure 2.4 LHS design on MBC 

 

On MBC there are different selection criteria for the points distribution: 

The Selection criteria drop-down menu has these options: 

• Maximize minimum distance (between points).  

• Minimize maximum distance (between points) 

• Minimize discrepancy — Minimizes the deviation from the average point density 
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• Minimize RMS variation from CDF — This option minimizes the Root Mean Square (RMS) 

variation of the Cumulative Distribution Function (CDF) from the ideal CDF. 

• Minimize maximum variation from CDF — Minimizes the maximum variation of the CDF from 

the ideal CDF. 

 

 

Lattice designs project onto N different levels per factor for N points. The points are not randomly 

generated but are produced by an algorithm that uses a prime number per factor. If good prime 

numbers are chosen, the lattice spreads points evenly throughout the design volume. A poor choice 

of prime numbers results in highly visible lines or planes in the design projections. If all the design 

points are clustered into one or two planes, it is likely that cannot estimate all the effects in a more 

complex model. 

 

 
Figure 2.5 Lattice design examples: on the left a poor choice on prime number. On the right a good 

one 

 

 

When design points are projected onto any axes, there are a large number of factor levels. For a 

small number of trials (relative to the number of factors) LHS designs are preferred to Lattice 

designs. This is because of the way Lattice designs are generated. Lattice designs use prime numbers 

to generate each successive sampling for each factor in a different place. No two factors can have 

the same generator, because in such cases the lattice points all fall on the main diagonal of that 

particular pairwise projection, creating the visible lines or planes described above. When the 

number of points is small relative to the number of factors, the choice of generators is restricted 

and this can lead to Lattice designs with poor projection properties in some pairwise dimensions, in 

which the points lie on diagonals or double or triple diagonals. This means that Latin Hypercube 

designs are a better choice for these cases. 

 

Stratified Latin Hypercubes separate the normal hypercube into N different levels on user-specified 

factors. This can be useful for situations where the preferred number of levels for certain factors 

might be known; more detail might be required to model the behavior of some factors than others.  

They can also be useful when certain factors can only be run at given levels. All these methods 

require a symmetric design space [3]. 
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S-optimal design is also a space filling technique. The space is filled by maximizing the minimum 

distance between the points which leads a much more equally distributed coverage of the design 

space. Points on the domain border are integrated specifically, so that a better border coverage is 

achieved. For a very low number of design points in respect to the variation space dimension, only 

borders will be covered. In this case the LHD would be a better choice. S-optimal design fully 

supports asymmetric design space: this is the best advantage [4]. 

 

2.3. Optimal design 

The optimal design approach is the most refined method for DoE construction. The starting point is 

the classical equation between inputs and output for linear model: 

𝑌 = 𝑋 ∗ 𝛽 + 𝜀 
The β is the parameters vector. If it will be estimated by least square method , it is: 

𝛽 = (𝑋′ ∗ 𝑋)−1 ∗ 𝑋′ ∗ 𝑦 

 

The experiment tests are expressed in the matrix X.  So the optimal design goal is to find the best 

matrix X according the chosen criteria. From the previous considerations, it is clear that the optimal 

design is suitable for linear model, because the dimension of matrix X is function of polynomial order 

and structure. 

 

The D-optimal design employs a criterion on the selection of design points that results in the 

minimization of the volume of the joint confidence region of the regression coefficients. The DoE is 

chosen to maximize  𝑑𝑒𝑡⁡(𝑋′ ∗ 𝑋). The matrix (𝑋′ ∗ 𝑋) is called information matrix. When fitting the 

model to experimental data, the experimental error and the error of the model are transmitted to 

the coefficients. Geometrically, the coefficients and their errors are represented as (hyper)ellipsoids 

whose axes describes these errors (figure 2.6). So, the smaller the axes, the more precise are the 

coefficients and consequently, the more accurate are the predictions. The volume of this ellipsoid 

is inversely proportional to the square root of the determinant of the information matrix. So  this 

criteria tries to maximize this determinant, which is the same as minimizing the volume of the 

ellipsoid.  

 
Figure 2.6 Confidential intervals of the model coefficients (b) 
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The A-optimal design criteria minimizes the trace(sum of the diagonal elements) of the matrix  

(𝑋′ ∗ 𝑋)−1⁡, called dispersion matrix. The practical meaning of this operation is minimizing the 

average variance of the estimated coefficient and reduces the asphericity of the confidence 

ellipsoid. 

 

The variance function is a measure of the uncertainty in the predicted response. It is described as 

follows: 

𝑣𝑎𝑟(𝑦�̂�) = 𝑥𝑖
′ ∗ (𝑋′ ∗ 𝑋)−1 ∗ 𝑥𝑖 ∗ 𝜎

2 = 𝑃𝐸𝑉(𝑥𝑖) ∗ 𝜎
2 

 

where PEV is the prediction error variance(read the chapther xx for more details). The ideal situation 

would be when the variance function is as small as possible, leading to minimum deviations between 

predicted and true values. When PEV is equal to 1, the variance in the prediction will be the same 

as the variance of the experimental method [5]. To increase the precision PEV must be as low as 

possible in all the inputs domain. Therefore the prediction error variance is function of the regressor 

matrix X, that contains the DoE. 

The G-optimal design minimizes the maximum value of prediction error variance in the design 

region. 

The V-optimal design minimizes the mean value of prediction error variance in the design region. 

 

The optimal designs are the smartest approaches to design a variation list: it is adaptable to all types 

of inputs domain and potentially the only limit to the tests number is the coefficients number (for 

example, at least 10 tests are necessary to compute a polynomial model with 10 coefficients). 

With this approach the calibration engineer can have better modelling results from its DoE than one 

designed by a classical approach also with a smaller tests number. 

 

2.4. Active DoE 
Active DoE is a method which iteratively adapts the test design during the testrun. 

On the basis of already measured data, models are calculated online. These models are used to 

adapt the test design during the testrun in such a way that measurements are executed within the 

required ranges (Active Doe is also called COR DoE = Customized Output Range DoE). 

This DoE type is available on AVL Cameo (not available on MBCmodel). 

The testrun is continued until the model quality matches a termination criterion. This has the 

advantage that it is not necessary to specify the number of required measurement points in advance 

and that only as much measurements as required are executed. 

With Active DoE the test design can be adapted advantageously: 

• Selected measurement quantities can be distributed equally within a range - increasing, therefore, 

the model quality in those ranges which are of interest to users. 

• Selected measurement quantities can be minimized or maximized - providing, therefore, the 

possibility to run an online optimization. 

• Selected measurement quantities must not fall below or exceed a predefined value - avoiding, 

therefore, limit violations through the selection of variation parameters. 

 

The below figure shows the comparison between conventional DoE (to the left) and Active DoE (to 
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the right): 

• With the conventional approach, the test design is created without information on the 

system behavior. Consequently, it might be possible that too little points are measured in 

ranges showing nonlinearity to sufficiently model the behavior and, therefore, a further test 

must be started. As a result, with the conventional approach measurements may be 

executed in ranges which later on do not end in additional benefit during the evaluation 

process. 

• With Active DoE, the test run is adapted automatically, thereby well covering relevant 

ranges and nonlinearities without requiring re-measurements [6]. 

 

 
Figure 2.7 Comparison between traditional DoE and Active DoE on Smoke(FSN) measurements 

 

The Active DoE can be applied for local and global models. 

For example in global situation(varying load and speed) analyzing the Smoke/NOx plot can be useful 

for a diesel engine. With an active DoE, focussing on pareto front is possible avoiding to waste time 

on uninteresting points. 

This technique ensures respect conventional ones: 

• Maximum accuracy if the optimization results 

• Focus on area of interest 

• 30% less data needed for better results 

• Added protection from wear and drift [7]. 

 

 
Figure 2.8 comparison between conventional DoE and Active DoE on Smoke/NOx plot 
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3. Model-based calibration 
In engine calibration the aim of modeling is to assign to an output function (such as NOx emissions, 
fuel consumption) a function or a system of functions that depends on several inputs (such as 
injection timing, injection pressure). 

Since the internal combustion is a complex process, which is influenced by thermodynamics, fluid 
dynamics and chemistry, a precise modeling and simulation of this process is not practicable today. 
Hence, nowadays only very simplified physical models of the combustion are used for simulation in 
engine calibration. Further in engine calibration, models are used in domains where the combustion 
does not need to be considered. 

In base engine calibration many effects of the combustion cannot be neglected. A typical example 
is the modeling of different emissions, e.g. soot, with respect to many different adjustment 
parameters, e.g. input pressure. Obviously, in this example the fluid flow and the chemical reactions 
in the cylinder have a major influence on the formation of soot and cannot be neglected. 

However, as said above, a detailed physical modeling and numerical simulation is not practicable 
today. Therefore, in base engine calibration measurements are taken from the test bench and with 
this data a black box modeling is done. 

A set of measurements 𝑫 = {(𝒙𝒏, 𝒚𝒏)|⁡𝒏 ∈ {𝟏… . . 𝑵}} where N is the number of measurements, 
contains the values of inputs 𝑿 = (𝒙𝟏, … . , 𝒙𝑵), and the measured values(outputs) 𝒀 =
(𝒚𝟏, … . , 𝒚𝑵). 

The calculation of a black box model is called modelling: this process starts from the measurements 
and the system that links the inputs and the output is estimated according the type of regression 
(gaussian process for gaussian models, least square method for polynomial models,..). 

 

In engine model-based calibration it is possible to distinguish: 

• Local model: the load and the engine speed are not inputs, so the model is valid in a single 
point of LOAD-SPEED plot 

• Global model: load and engine speed are model inputs. In this way it is possible to predict 
the model output in offline mode in every working condition. 

 

3.1. Modelling: polynomial and gaussian processes  
The models used in data regression are divided in linear models and nonlinear ones. 

The linear models are linear combinations of fixed functions  of input variables, and can be written 

as: 

𝑦(𝑥, 𝜃) =∑𝜃𝑗𝜙𝑗(𝑥) = Θ𝑇Φ(𝑥)

𝑀

𝐽=1

 

 

This does not mean that this class of models is linear in the input x, but rather these models are 

linear in its model parameters θ. Therefore, this class of models shares simple analytical properties 

and yet can be nonlinear with respect to the input variables.  

One advantage of linear modelling is that these can directly obtain a closed-form solution for the 
minimization of the SSE (sum of square errors) , like the Least Square method: generally speaking, 
given the measured system inputs and outputs the polynomial coefficients are computed 
minimizing SSE. 
If the basis functions φj are chosen to be: 
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𝜙𝑗(𝑥) = 𝑥𝑗 

 

 

in this case it is a polynomial model. 

An example can be: 

𝑏𝑠𝑓𝑐 = 3.45 + 0.21 ∗ 𝑆𝑂𝐼 + 2 ∗ 𝐸𝐺𝑅 + 3 ∗ 𝑆𝑂𝐼2 + 2.65 ∗ 𝐸𝐺𝑅2 − 23 ∗ 𝑆𝑂𝐼 ∗ 𝐸𝐺𝑅 
 

Instead the nonlinear regression models have in common that are not linear in the model parameter 
θ. 
One type of this one can be designed by the Gaussian process. Polynomial regression has some 
significant drawbacks, since the basis functions φj  have to be chosen in advance, before the model 
training. However, typically the basis functions suitable for the training data are unknown. 
Therefore, one idea can be to work with an infinite number of basis functions, which can be achieved 
with GP regression.  
 
The Gaussian process viewpoint is a non-parametric approach, and this type of modeling is 
somewhat different than the other modeling techniques. 
In order to gain a better understanding of GP regression, the derivation of the formulas is started 
with the dual representation, in which initially the well known parametric viewpoint is considered 
(for more detailed information see [8]). 
The formula of the model output is: 

𝑦(𝑥) = 𝑘(𝑥)𝑇 ∗ (𝐾 + 𝜆 ∗ 𝐼𝑁)
−1 ∗ 𝑦 

k(x) is the kernel function,  K is the gram matrix that is function of k(x) and λ is the regularization 
parameter. 
 
The solution of the fitting problem can be expressed completely by the kernel function, without 
explicit calculation of the basis functions. This is the major GP advantage.  
A common choice for the kernel function is the squared exponential kernel: 

𝑘𝑆𝐸(𝑥, 𝑥
′) = 𝜃𝜎

2 ∗ exp⁡(−∑
(𝑥𝑗 − 𝑥𝑗′)

2

2 ∗ 𝜃𝑙,𝑗
2

𝐷

𝑗=1

) 

 

with the signal variance 𝜃𝜎
2 and the length-scale parameters in each input dimension ⁡𝜃𝑙,𝑗

2 . 

Since the Gaussian process regression is a form of non-parametric modeling, they are called 
hyperparameters in the area of machine learning. 
The length-scale hyperparameters have an interesting property. They  can be estimate the values 
of all hyperparameters out of the training data. In doing so, it is possible that different inputs obtain 
different values for the length-scale parameters. Θl,j  becomes high, the function becomes relatively 
insensitive to the corresponding input variable xj. 
Hence, with the squared exponential kernel it becomes possible to detect input variables that have 
little or much effect on the model [9]. 
Therefore, we are able to interpret the model also from a physical viewpoint. Inputs which have a 
high or low value for θl,j, have a low or high nonlinear behavior. This determination of the 
importance of a certain input is called automatic relevance determination, and it is well known in 
machine learning. Instead of going into more detail on this technique, it is referred to the literature 
[8]. 
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Polynomial regression has several advantages compared to Gaussian processes. Polynomials have a 
simple form, are well known and easy to understand. Further, as polynomial regression is a special 
form of linear modeling, this modeling is computationally cheap and easy to implement. In order to 
avoid overfitting, statistical tests can be used (stepwise). These tests remove parameters which are 
not significant and therefore not needed in the model. In this way, a big set of admissible basis 
functions can be chosen for regression, which increases the potential flexibility of the modeling, 
without the fear of obtaining overfitting. 
However there are some drawbacks of polynomial regression in theory and practice. 
One disadvantage of polynomial regression is a bad extrapolation of the data. Polynomials, which 
are not constant over the whole input space, tend very fast to high (positive or negative) values 
outside the region of the measurement data. In comparison to that, using the SE kernel, Gaussian 
processes tend to the mean of the data, if every measurement is far away from the prediction.  
Another drawback is, that polynomials of high order tend to waviness and ’end-effects’. This can be 
illustrated by Runge’s phenomenon, which describes the problem of oscillation at the edges of an 
interval. 

 
Figure 3.1 Runge’s function 

The big advantage of GP regression is the use of kernel functions , which can express an infinite 
dimensional vector of basis functions  
However the gaussian models often suffer of overfitting: the model matches very well the training 
data but with “unnatural way” that makes the model poor in prediction. The following figure shows 
an overfitting example: the coefficient of determination R2 tends to 1 but the model is too 
conditioned by training data and will have insufficient predictivity quality. 
Seeing the response surface view is a method to detect overfitting. Another possible method can 
be to compare the RMSE and the PRESS RMSE (see the chapter “statistic indicators” for more 
details): the overfitting is probable if there is one or more order of magnitude of difference between 
these values. 
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Figure 3.2  Multiline plot of brake specific CO in function of SOI for different values of rail pressure: overfitting 

 

 

3.2. Outliers detection 
Outliers are observations that are very different from the bulk of the data. For example, consider 

the data in Figure 3.3 : observation A seems to be an outlier because it falls far from the line implied 

by the rest of the data.  

The outlier may be a “bad value” that has resulted from a data recording or some other error. On 

the other hand, the data point may not be a bad value but it is only badly predicted by the model 

and may be a highly useful piece of evidence concerning the process under investigation [10]. 

 

 

Figure 3.3  A possible  outlier example 
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Detecting outliers is a significant problem that has been studied in various research and application 

areas. Researchers continue to design robust schemes to provide solutions to detect outliers 

efficiently. 

There are different methods to identify outliers. The simplest approach is graphical: the 

experimenter  checks the INPUT/OUTPUT graph (like the previous figure) in order to find data that 

are abnormal like A. 

However this method is only figurative and the risk is to cancel a test that can be precious for the 

model. 

For model-based calibration purpose, a more reliable and impartial method is necessary. So the 

statistics and the data analysis are two important subjects to use. 

A simple approach can be the data quartiles representation by the box plot. It is a pre-modeling 

approach: it describes simultaneously the most important characteristics like the median value, the 

dispersion and the identification of the data far from the median value. 

Knowing the median value (value that splits the data in two equal parts, q2), the first quartile (it 

divides the data between the 25% and 75% of them, q1) and the third quartile (it divides the data 

between the 75% and 100% of them, q3) the box can be plotted with a line inwardly. The distance 

between q3 and q1 is called interquartile distance (IQR) and is the box long side. q2 is the red line.   

Now the whiskers can be defined: the low whisker connects q1 to the bigger value within 1,5*IQR 

from q1; the high whisker connects q3 to the lower value within 1,5*IQR from q3. The value that are 

outside the box and the whiskers are outliers. 

In the figure these data are represented by red crosses [11]. 

 
Figure 3.3 Box plot of brake specific fuel consumption 
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Figure 3.4 Box plots of brake specific NOx at intake and exhaust manifolds 

The main drawback is that it is only graphic and does not take into account the modelling results. 

Furthermore, this method eliminates data taking into account the median value of the considered 

output and the values surrounding it. In engine calibration, for example in a single engine point 

(fixed load and speed), the emission values may vary widely, by varying only some input parameters 

such as SOI or the opening of the EGR valve. This method could therefore discard a priori data of 

this kind, even if they are not “bad” data and which can give very useful information for the model 

creation. 

To overcome this limitation and not discard data that may be useful, it is necessary to use another 

method that also takes into account the modelling results and it is necessary to analyze other 

statistical indicators taking into account the inputs that generate the measured output.  

A widely used approach is the detection from residual plot. The residual formula is: 

𝑒𝑖 = 𝑦𝑖 − 𝑦�̂� 

The residual i is the difference between the output data i and the model predicted output i. So each 

observation has its residual. 

 
Figure 3.5  Residual plots of brake specific fuel consumption 
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In the figure 3.5 the predicted  brake specific fuel consumption is plotted versus the residuals. This 

is the most common choice. Another useful view can be the plot Observation number vs residuals: 

for example if the residuals are constant in a value or grows up with the observation number may 

mean that after a certain time same test bed measurement devices have not worked correctly. 

The drawback of this approach is the lack of objectivity:  the experience of the operator decides 

what is the threshold for each output (maximum value for the residual), that is different for each of 

them. For example in a data set the brake specific fuel consumption mean value can be 450g/kWh. 

The operator will use a threshold  residual value of ±10g/kWh. If he takes into account the brake 

specific NOx (assuming 40g/kWh as mean value) he cannot use ±10g/kWh because it is very relevant 

respect the measured values.  

It is necessary another indicator that is more objective and usable for each output regardless its 

range and its mean value. 

The approach used by MBC analyzes the studentized external residuals. 

The studentized residual is a residual that is normalized according the error variance. This last 

quantity is: 

�̂�2 =
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛 − 𝑝
 

Where the numerator is the SSE (sum of square errors), n is the number of tests and p is the number 

of model parameters. 

Moreover the measured outputs and the model ones can be connected by the hat matrix H: 

�̂� = 𝐻 ∗ 𝑦 

Hat matrix because gives the hat at each output. 

�̂�1 = ℎ11 ∗ 𝑦1 + ℎ12 ∗ 𝑦2 +⋯+ ℎ1𝑛 ∗ 𝑦𝑛 

�̂�2 = ℎ21 ∗ 𝑦1 + ℎ22 ∗ 𝑦2 +⋯+ ℎ2𝑛 ∗ 𝑦𝑛 

… 

�̂�𝑛 = ℎ𝑛1 ∗ 𝑦1 + ℎ𝑛2 ∗ 𝑦2 +⋯+ ℎ𝑛𝑛 ∗ 𝑦𝑛 

The ℎ𝑖𝑗 terms are only functions of the inputs X and are very simple to compute (see [10] for more 

details). Moreover ℎ𝑗𝑖 = ℎ𝑖𝑗⁡and the diagonal terms are: 

0 < ℎ𝑖𝑖 ≤ 1 

The ℎ𝑖𝑖  quantifies the distance of the point (𝑥𝑖1, 𝑥𝑖2, … . , 𝑥𝑛1) from the mean of all points belonging 

to data set. Accordingly high value means that this data is far from the data center. In the figure 3.6 

this concept is explained by a DoE with two inputs: X1 and X2. The highlighted point has inputs 

values that are much higher than average. So it has high value of h. 
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Figura 3.6  DOE with 2 inputs(X1 and X2) 

 

The studentized residual i releated to the test i is: 

𝑟𝑖 =
𝑒𝑖

√𝜎2̂ ∗ (1 − ℎ𝑖𝑖)

 

The quantity at the denominator is the correct standard error of data i. 

 

The studentized residual can be internal or external. 

In the internal case, all the data are used for the calculation of error variance. 

But if the ith residual is suspected of being improbably large, it is prudent to exclude the ith 

observation from the process of estimating the variance.  

In this case the error variance is different for each test and is: 

 

𝜎(𝑖)̂
2 =

∑ (𝑦𝑗 − �̂�𝑗)
2𝑛

𝑗=1,𝑗≠𝑖⁡

𝑛 − 𝑝 − 1
 

This formula is used for external studentized residual computation.  

 
Figure 3.7  Studentized(external) residuals plot of brake specific fuel consumption 
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The cut-off value for MBC is 3. This approach is absolutely more efficient than residual approach 

because a more objective indicator is adopted: it is normalized by the correct standard error for 

each data, so it is a pure number. By this it is possible to adopt a cut-off value that can be used for 

each output (bsfc, bsNOx, MFB50, Noise,..). 

However this strategy for outlier detection deletes the data considering only the modelling 

capability. For example it is possible that a data, that has |𝑟𝑖| > 3 (so it is outlier for MBC algorithm) 

can be a data that is not well predicted by the model and including it can be very important: its 

elimination can decrease the model predictivity. 

To avoid the elimination of important test, one way is to measure the observation influence. For 

this aim an excellent diagnostic tool is the Cook’s distance: 

𝐷𝑖 =
𝑟𝑖
2

𝑝
∗

ℎ𝑖𝑖
1 − ℎ𝑖𝑖

 

Clearly if the ith data is influent, its elimination will involve a great variation for the model. The first 

factor contains the square of studentized residual that suggests how the model is suitable to ith 

observation; the second term indicates how the ith observation inputs is far from the data rest. In 

the figure 3.8 shows as the Cook’s distance grows up with the leverage ℎ𝑖𝑖  (fixed studentized 

residual=2, p=15) 

 
Figure 3.8 Cook's distance versus leverage 

 

According the literature, the cut-off value for this indicator is 1: if an observation has 𝐷𝑖 > 1 , it is 

defined influential. This means that is precious for the model creation and it is recommended not 

to take it off [11]. 

Another way to detect an influential observation is to observe the Cook’s distance of each 

observation: if all the distances are lower than 1 but there are observation where Di is enough higher 

than the others, it is convenient to take into account them as influential observations.  

In the figure 3.9 the Cook’s distances are plotted for the brake specific NOx model. The highest value 

is about 0.4: it is less than 1. Theoretically if it had a ri greater than 3, it should be eliminated. 

However it has the most influential data and so it is counterproductive for the model its elimination. 

On the contrary the point circled in red (because its studentized residual is higher than 3) has a low 
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value of Cook’s distance and this value is practically on the average. In conclusion this data can be 

an outlier and its elimination wouldn't get worse the model quality. 

 
Figure 3.9  Cook's distance of brake specific NOx model 

In the case of figure 3.10 the outlier is detected for a data that has the highest 𝐷𝑖. So its exclusion 

can be risky for the model quality because it is an important observation. The suggestion is to 

maintain this observation. 

 
Figure 3.10 Cook's distance of EGR model 

At the end the following algorithm can be implemented. 

The ith observation may be eliminated if respects all the following equations: 

• |𝑟𝑖| > 3  (high discrepancy between model and observation) 

• 𝐷𝑖 < 1  (low importance of the observation in absolute value) 

• 𝐷𝑖 < 𝐾 ∗ 𝐷𝑀𝐴𝑋  (low importance of the observation in relative value) 

The parameter K is calibrated by some practical test but a good value of it should be 0.5. 
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However it is important that, first to create the model and find the outliers, the user scans the raw 

data in order to find measurement errors or wrong test series. The  following example (figure 3.11) 

represents a possible issue if the previous recommendation is bypassed: the bsfc in a operating 

point is modeled and two clouds of data are present in the graph Predicted/Observed. For an 

engineer is obvious that a value of bsfc higher than 500g/kWh is very uncommon. Probably there 

were some problems during these tests running. However the program (or the algorithm) cannot 

define them as outliers because there are  quite a large number and the model construction is highly 

influenced and fitted by them. 

 

 
Figure 3.11  Predicted/Observed graph of bsfc 

The user for example can check some data that highlight the strangeness like the CoV between the 

cylinder of same outputs. A typical output for this type of analysis is the MFB50 (the crank angle 

after the top dead center where the combustion of the 50% of fuel is completed) like the following 

figure. 

 
Figure 3.12  MFB50_CoV versus bsfc 
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To have a stable combustion process, the maximum value of CoV is 4%-5%. In this case there are 

value much higher. Moreover they are points where the bsfc is very high: definitely these are points 

very unstable. So they are detrimental for the model and they must be eliminated before fitting the 

model. 

In the figure there is also a point with a bsfc equal to 300g/kWh and a very high MFB50_CoV (about 

29%). It is possible that can be a error in CoV calculation or this is a bad test. However the good 

choice is to maintain it and to refit the model. Without the eliminated tests, the model is “purified” 

by a big number of instable tests. So with the outlier algorithm, the user can now try to find outlier 

and decide if it is one. 

  

 

3.3. Statistical tool  
This chapter is dedicated to statistical tools used during the modelling to refine and study its quality. 

 

3.3.1. Statistical indicators 
To evaluate the model quality, it is necessary to check some statistical parameters.  

The first term to take into account is the coefficient of determination: 

𝑅2 =
𝑆𝑆𝑟𝑒𝑔

𝑆𝑆𝑡𝑜𝑡
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑡𝑜𝑡
 

Where: 

𝑆𝑆𝑟𝑒𝑔 =∑(𝑦�̂�

𝑛

𝑖=1

−�̅�)2⁡ 

is the sum of squares of deviations between predicted (calculated by means of regression) values 

and mean value . 

 

𝑆𝑆𝑡𝑜𝑡 =∑(𝑦𝑖

𝑛

𝑖=1

− �̅�)2 

is the sum of squares of deviations between measured values and mean value. 
 

𝑆𝑆𝐸 =∑(𝑦𝑖 − 𝑦�̂�

𝑛

𝑖=1

)2 

is the sum of squares of error . 

From the previous definition: 

𝑆𝑆𝑡𝑜𝑡 = 𝑆𝑆𝑟𝑒𝑔 + 𝑆𝑆𝐸 

The coefficient of determination varies from 0 and 1 and shows how precisely the model fits to the 

measured values. More the predicted values are close to measured ones, SSE is smaller and R2  tends 

to one 

 

For linear models with p as the parameters number, a variation of R2 is the adjusted R2: 

𝑅𝑎𝑑𝑗
2 = 1 −

𝑆𝑆𝐸 ∗ (𝑛 − 1)

𝑆𝑆𝑡𝑜𝑡 ∗ (𝑛 − 𝑝)
 



30 
 

For the same model this indicator has a lower value than R2 taking into account the degrees of 

freedom of the model equation. This an important element to identify the overfitting: for example 

a 4th order polynomial model can have a value of R2 close to 1, but a value of R2
adj lower than 0.7. 

This means that the data fitting is excellent but it is due to high order model and probably for 

different inputs respect the training data the predictions are poor(overfitting). 

 

The PRESS (predicted residual sum of squares) R2 is: 

𝑃𝑅𝐸𝑆𝑆⁡𝑅2 = 1 −
𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑡𝑜𝑡
 

 

𝑃𝑅𝐸𝑆𝑆 =∑(𝑦𝑖 − 𝑦(𝑖)̂

𝑛

𝑖=1

) 

The term 𝑦(𝑖)̂ (predicted value for the ith measurement) is the predicted model value i without take 

into account the value i in the model construction. 

This indicator can sense the model predictivity: in general PRESS R2 ≥ 0.7 is the requirement for a 

good model.  

 

Two additional estimators help to analyze more extensively the goodness of fit for the model. 

The root mean square error (RMSE) is a measure of accuracy to quantify the differences between 

values predicted by a model and the values actually observed:  low RMSE value reflects greater 

accuracy. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦�̂�
𝑛
𝑖=1 )

𝑛
 

With previous considerations, it is possible to define the PRESS RMSE: 

𝑃𝑅𝐸𝑆𝑆⁡𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦(𝑖)̂
𝑛
𝑖=1 )

𝑛
 

The  benefit of these terms is its unit of measure that is the same of y so it is directly comparable. 

 

 

 
 
 
 

3.3.2. Stepwise regression 
Stepwise function helps to search for a good model fit. The goal of the stepwise search is to minimize 
PRESS. Minimizing Predicted Error Sum of Squares (PRESS) is a good method for working toward a 
regression model that provides good predictive capability over the experimental factor space. 

The PRESS statistic gives a good indication of the predictive power of model: it is useful to compare 
PRESS RMSE with RMSE as this may indicate problems with overfitting. RMSE is minimized when the 
model gets very close to each data point; 'chasing' the data will therefore improve RMSE. However 
chasing the data can sometimes lead to strong oscillations in the model between the data points; 
this behavior can give good values of RMSE but is not representative of the data and will not give 
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reliable prediction values where you do not already have data. The PRESS RMSE statistic guards 
against this by testing how well the current model would predict each of the points in the data set 
(in turn) if they were not included in the regression. To get a small PRESS RMSE usually indicates 
that the model is not overly sensitive to any single data point [12]. 

Once the user sets up the model, he should use the stepwise function and examine the diagnostic 
statistics to search for a good model fit.  The process is pointed out by the following flow chart:  

 

Figura 3.13  Flow chart of linear model construction [12] 

   

1. Begin by conducting a stepwise search(automatically or using the stepwise window in MBC).The 
goal of the stepwise search is to minimize PRESS. 

2. Remove outliers at this stage. The criteria is subjective, however in the previous chapter an 
algorithm is recommended.  

3. After removing outliers(if there are), review the stepwise window and minimize again the PRESS. 
If the minimization of PRESS has been implemented in the first phase of model set up, this step 
is done automatically by the program 

4. A transform of the response feature might prove beneficial. A useful set of transformations is 
provided by the Box and Cox family. It is recommended a transformation if the statistic indicators 
are still deficient. After repeat the stepwise PRESS search. This procedure has been not 
recommended at first attempt and the reason are explained in the next chapter. Then remove 
the outliers if there are. 

5. After this if the statistic indicators of the model are still insufficient, the current model is 
probably inadequate. The user should try to use another model type. 

There is also another final conclusion: the data cannot be fitted by any model, for example in 
situation where the measurement are very compromised by the uncertainty of the instrument. An 
example can be the measurement of soot in a PCCI(premixed combustion compression ignition) 
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combustion at low load. In the figure the FSN of 50 different tests  is showed. The value are too low 
and too influenced by the uncertainly: no models can describe this output. 

 

Figure 3.14  Filter smoke number measurements over 50 tests (PCCI 1800rpmx27Nm) 

In this field another example can be the measurement of unburned hydrocarbon in a normal diesel 
combustion at medium/high load. It is possible to have measurement about 5-10 ppm that are 
comparable to measurement uncertainly . 

 

Figure 2.94 HC(ppm) measurement over 150 tests (2700rpmx12bar) 
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3.3.3. Box-Cox transformation  
Generally, transformations are used for three purposes: stabilizing response variance, making the 

distribution of the response variable closer to the normal distribution, and improving the fit of the 

model to the data. This last objective could include model simplification, say by eliminating 

interaction terms. Sometimes a transformation will be reasonably effective in simultaneously 

accomplishing more than one of these objectives. Power family of transformations 𝑦∗ = 𝑦𝜆 can be 

very useful, where λ is the parameter of the transformation to be determined (e.g., 𝜆 = 0.5 means 

use the square root of the original response). Box and Cox (1964) have shown how the 

transformation parameter 𝜆 may be estimated simultaneously with the other model parameters 

(overall mean and treatment effects). The theory underlying their method uses the method of 

maximum likelihood. The actual computational procedure consists of performing, for various values 

of λ, a standard analysis of variance on: 

𝑦(𝜆) = {

𝑦𝜆 − 1

𝜆 ∗ �̇�𝜆−1
⁡⁡⁡⁡⁡⁡⁡⁡𝜆 ≠ 0

�̇� ∗ ln(𝑦) ⁡⁡⁡⁡⁡⁡⁡⁡𝜆 = 0

 

Where �̇� = 𝑙𝑛−1[
∑ ln⁡(𝑦)

𝑛
] is the geometric mean of the observations. The maximum likelihood 

estimate of λ is the value for which the error sum of squares SSE is a minimum. This value is usually 

found by plotting a graph of SSE versus  λ and then reading the value that minimizes SSE from the 

graph. 

A problem arises in y when λ tends to 0, and the fraction tends to infinite.  The component  
𝑦𝜆−1

𝜆
⁡⁡ 

alleviates this  problem because as λ tends to zero, 
𝑦𝜆−1

𝜆
⁡⁡  goes to a limit of ln (y). The divisor 

component �̇�𝜆−1  in the equation rescales the responses so that the error sums of squares are 

directly comparable. In using the Box–Cox method, it is  recommend that the experimenter use 

simple choices for  because the practical difference between 0.5 and  0.58  is likely to be small, but 

the square root transformation (λ=0.5) is much easier to interpret. Obviously, values of   close to 

unity would suggest that no transformation is necessary. SSE versus 𝜆 has in general a parabolic 

behaviour, like the figure 3.15: 

 
Figure 3.15  Box-Cox transformation: SSE versus 𝜆 on MBC 

MBC computes the SSE varying 𝜆 from -3 to 3 with a step of 0.5. In this case the best choice is 𝜆 

equal to 0. 

An approximate 95% confidence interval for 𝜆 can be found by computing: 
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𝑆𝑆𝐸∗ = 𝑆𝑆𝐸(𝜆𝑚𝑖𝑛𝑖𝑚𝑢𝑚⁡𝑆𝑆𝐸) ∗ (1 +

𝑡𝛼
2
,𝜈

2

𝜈
) 

Where 𝜈 is the number of degrees of freedom (number of tests minus number of model parameters) 

and plotting a line parallel to the 𝜆 axis at height SSE* on the graph(red line in the previous figure). 

The value of 𝜆 that has SSE lower than SSE* are better than the others for the model at 95% of 

confidence. If this confidence interval includes the value 𝜆 = 1 , this implies that the data do not 

support the need for transformation. 

In the previous example under the CI there are: -0.5, 0, 0.5 and 1. The best choice is 0 for SSE 

minimization, however it is preferable to maintain 𝜆 = 1, because it is under the CI of SSE(𝜆 = 0) 

and it is preferable not to transform if possible.  

Indeed the Box-Cox transformation is suggested only in a second moment, after that the 
model(after stepwise process for a linear model) is still not satisfactory. There are two main reasons 
for this: 

• The  normal output function(λ=1) possesses a natural engineering interpretation. It is unlikely 
that the behaviour of a transformed version of a response feature is as intuitively easy to 
understand. 

• Outliers can strongly influence the type of transformation selected. Applying a transformation 
to allow the model to fit bad data well does not seem like a prudent strategy [13].  

3.3.4. Prediction error variance view 
Prediction Error Variance (PEV) is a very useful way to investigate the predictive capability of model. 
It gives a measure of the precision of a model's predictions. There are the PEV for designs and for 
models. It is useful to remember that: 

𝑃𝐸𝑉⁡(𝑚𝑜𝑑𝑒𝑙) ⁡= ⁡𝑃𝐸𝑉⁡(𝑑𝑒𝑠𝑖𝑔𝑛) ⁡∗ ⁡𝑀𝑆𝐸 

So the accuracy of the model's predictions is dependent on the design PEV and the mean square 
errors in the data.  A low PEV (close to zero) means that good predictions are obtained at that point. 

If the design PEV < 1, then the errors are reduced by the model fitting process. If design PEV >1, then 
any errors in the data measurements are multiplied. Overall the predictive power of the model will 
be more accurate if PEV is closer to zero. 

Starting with the design matrix, for example, for a quadratic in SOI (start of injection) and P_rail(rail 
pressure), it is a Nx6 matrix where N is the number of tests: 

𝑋 = [
1 𝑆𝑂𝐼1 𝑃_𝑟𝑎𝑖𝑙1
… … …
1 𝑆𝑂𝐼𝑛 𝑃_𝑟𝑎𝑖𝑙𝑛

⁡⁡⁡⁡
𝑃_𝑟𝑎𝑖𝑙1 ∗ 𝑆𝑂𝐼1 𝑆𝑂𝐼21 𝑃_𝑟𝑎𝑖𝑙21

… … …
𝑃_𝑟𝑎𝑖𝑙𝑛 ∗ 𝑆𝑂𝐼𝑛 𝑆𝑂𝐼2𝑛 𝑃_𝑟𝑎𝑖𝑙2𝑛

] 

The actual model can be written as: 

𝑌 = 𝛽 ∗ 𝑋 + 𝜀 

where 𝜀 is the measurement error with variance: 

𝑣𝑎𝑟(𝜀) = 𝑀𝑆𝐸 

The predicted coefficient of the model are: 
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�̂� = (𝑋𝑇 ∗ 𝑋)−1 ∗ 𝑋𝑇 ∗ 𝑦 

Which have variance: 

𝑣𝑎𝑟(�̂�) = (𝑋𝑇 ∗ 𝑋)−1 ∗ 𝑀𝑆𝐸 

Let x* be the vector that contains the input of a new point for the evaluation: 

𝑥∗ = {1 𝑆𝑂𝐼∗ 𝑃_𝑟𝑎𝑖𝑙∗⁡⁡⁡⁡𝑆𝑂𝐼∗ ∗ 𝑃_𝑟𝑎𝑖𝑙∗ 𝑆𝑂𝐼∗
2

𝑃_𝑟𝑎𝑖𝑙∗
2} 

Then the model prediction for this point is: 

�̂� = �̂� ∗ 𝑥∗ 

At this point the PEV is: 

𝑃𝐸𝑉(𝑥) = 𝑣𝑎𝑟(�̂�) = (𝑥∗ ∗ (𝑋𝑇 ∗ 𝑋)−1 ∗ 𝑋𝑇) ∗ (𝑋 ∗ (𝑋𝑇 ∗ 𝑋)−1 ∗ 𝑥∗𝑇) ∗ 𝑀𝑆𝐸 =)
= 𝑥∗ ∗ (𝑋𝑇 ∗ 𝑋)−1 ∗ 𝑥∗𝑇 ∗ 𝑀𝑆𝐸 

The PEV(x) for a design (without MSE) has this effect of the new observations - if it is greater than 1 
it will magnify the error, and the closer it is to 0 the more it will reduce the error [13]. 

In MBC environment it is possible to see the PEV plot: an example in the figure 3.16 
This is the PEV of lambda in 3D where in the x and y axis there are SOIm ( start of main injection) 
and qPil1(fuel quantity in the pilot injection 1).  

This is a good trend because the value are really small. To quantify this there are the optimality 
criteria:  

• G is the maximum value of PEV in the space considering all the possible combination of the 
inputs in the domain region. It is 0.719 and there is also the location of this point 

• V is the average value of PEV in the space considering all the possible combination of the inputs 
in the domain region. 

• A e D are not value related to PEV but only to DOE design(see previous chapter) 

In general the PEV plot has a “cup” shape in 3D for each combination of inputs. In particular it has 
the minimum in the domain middle: this is intuitive because it represent the barycenter of the tests 
so the expected precision  of prediction is the highest. 

On the other hand, the point with highest PEV are the ones at the domain extremes because these 
points are adjacent only on one side to the other tests and are very far from the tests barycenter.  
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Figure 3.16 Prediction error variance view on MBC 
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4. Modelling 
This chapter is dedicated to practical modelling on real data. Different DoE are created for different 

engines in different working conditions. 

 

4.1.  1800 rpm x 27 Nm-PCCI combustion (3L engine) 
The first models are created considering a PCCI combustion test. The employed engine is an heavy 

duty one with the following specifics: 

 

 
Table 4.1 3L engine specifications 

 

Premixed charge compression ignition (PCCI), which can be achieved by using large amounts of 

exhaust gas recirculation (EGR), and advanced or retarded fuel injection timing, can be considered 

a promising alternative combustion strategy. Under these working conditions, the combustion 

process and the mechanism of pollutant formation differ significantly from those of conventional 

diesel combustion. The combined effect of advancing or retarding fuel injections and using high EGR 

rates (which reduce the oxygen concentration of the intake charge) leads to a slower pre-ignition 

chemistry, and to a higher ignition delay. This in turn allows a better pre-combustion mixing than 

conventional diesel combustion, hence the formation of rich mixture pockets within the cylinder is 

avoided, which is the main cause of soot generation. Moreover, high EGR rates diminish flame 

combustion temperatures, and thus lower NOx emissions. On the other hand, due to heavily 

reduced oxygen content, low combustion temperatures and early injections, the formation of 

incomplete combustion products, such as carbon monoxide (CO) and unburned hydrocarbons (HC), 

can be significant, and can require a higher conversion efficiency of the diesel oxidation catalyst. 

Penalties in fuel consumption have also been observed. In addition, due to sharp rises in the in-

cylinder pressure, high noise levels are generally related to PCCI combustion [14]. 

However this combustion can be adopted only at low load, where it is possible to work with high 

EGR and low oxygen presence. 

The  models have been created  in the operating point 1800rpmx27Nm. The following input 

parameters have been identified as the ones that mainly affect PCCI combustion: the rail pressure, 

the start of injection, the position of variable geometry turbine and the position of the backpressure 

flap valve used to regulate the EGR rate, since the EGR poppet valve was fully open in all the PCCI 

working conditions. The DoE is created by V-optimal design approach with 50 tests. 

There are also 33 tests in the same operation point with a different variation list: they have been 

used for the model validation. 
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For every output, 2 alternative models are presented: a second order polynomial model with 

stepwise and a gaussian one.  
Mean value R^2 RMSE PRESS RMSE Validation RMSE 

 
50 tests 2nd 

order 
gaussian 2nd 

order 
gaussian 2nd 

order 
gaussian 2nd 

order 
gaussian 

b_e [g/kWh] 416.4 0.969 0.976 0.739 0.568 0.85 0.899 1.424 1.538 

Nox_bs_exh 
[g/kWh] 

0.6 0.995 0.996 0.02 0.016 0.023 0.022 0.024 0.02 

CO_bs_exh 
[g/kWh] 

50.67 0.996 0.994 0.535 0.415 0.585 0.59 2.983 2.982 

HC_bs_exh 
[g/kWh] 

7.18 0.985 0.993 0.172 0.108 0.193 0.19 0.893 0.976 

Noise_1[dB] 85.02 0.985 0.989 0.171 0.133 0.19 0.194 0.488 0.473 

MFB50_1    
[deg aTDC] 

3.2 0.995 0.995 0.133 0.116 0.151 0.165 0.284 0.272 

PMAX_2[bar] 51.05 0.994 0.994 0.182 0.152 0.208 0.222 0.69 0.669 

Xr_CO2[%] 60.6 0.996 0.996 0.149 0.118 0.171 0.16 0.212 0.206 

Table 4.2 Statistical indicators about 1800x27 PCCI models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the previous tables, the first consideration is the negligible differences comparing the 

statistical indicators between the polynomial models and gaussian ones. 

Secondly from the tables it is possible to see that the statistic indicators that measure how the 

models fit the measurements are extremely good.  From a first view also PRESS RMSE and Validation 

RMSE (that measure the predictive power) look satisfactory. However they express a mean error 

value: it may therefore be convenient to analyze the tests individually. 

The following plots show the error(in percentage) of the models in the 33 validation tests. The test 

number is on the x-axis while the error in the y-axix. The error formula is:  

 

𝐸[%] =
𝑦𝑖(𝑚𝑜𝑑𝑒𝑙) − 𝑦𝑖(𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛)

𝑦𝑖(𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛)
 

 

 
R^2 adjusted PRESS R^2 

b_e [g/kWh] 0.961 0.947 

Nox_bs_exh [g/kWh] 0.996 0.99 

CO_bs_exh [g/kWh] 0.991 0.989 

HC_bs_exh [g/kWh] 0.982 0.977 

Noise_1[dB] 0.982 0.977 

MFB50_1[deg aTDC] 0.994 0.992 

PMAX_2[bar] 0.992 0.989 

Xr_CO2[%] 0.995 0.993 

Table 4.3 R2 adjusted and PRESS R2 related to polynomial model(1800x27 PCCI) 
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In the figure 4.2  the brake specific fuel consumption error is represented: the values are always 

under the 1%(in absolute value). This means that the bsfc model predicts very well the validation 

data. This figure also highlights that the difference between the two model typologies is not existent 

practically. 

 

 
Figure 4.1 error percentage of bsfc validation data 

 

 

 

 

 

 

 

The figure 4.3 describes the bsNOx errors. The values are higher than previous ones on average but 

there are in a safety margin: the worst prediction is the test 10, where the error is -10%. However 

this value is quite low and it can be concluded that the NOx models are reliable. 
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Figure 4.2 error percentage of bsNOx validation data 

The following two pictures summarize the validation study  showing the mean error and the 

maximum one over the n*(33 in this case) validation tests. They are computed as: 

 

�̅� =
∑ |𝐸𝑖|
𝑛∗
𝑖=1

𝑛∗
 

𝐸𝑀𝐴𝑋 = max⁡(|𝐸𝑖|) 
 

 
Figure 4.3 Mean and maximum error on validation data: 1800rpmx27Nm PCCI combustion 

 

 

For the other outputs(Noise1, MFB50_1, Xr_CO2) it is preferable to study the mean error difference 

and the maximum error difference: 
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𝑚𝑒𝑎𝑛(𝐸𝐷) =
∑ |𝑦𝑖 − 𝑦�̂�|
𝑛∗

𝑖=0

𝑛∗
 

max⁡(𝐸𝐷) = max⁡(|𝑦𝑖 − 𝑦�̂�|) 

 

 
Figure 4.4 Mean and maximum error difference of MFB50, Noise of cylinder 1 and EGR percentage 

 

The first impression is the irrelevant difference between the two model typologies also in validation. 

Seeing the first image, the mean errors of HC models are about 8% with a maximum value of 30%. 

These are alarming values and so these models cannot be defined reliable. 

Instead the other models have a mean error value under the 4%. The CO models measure the 

maximum error value(excluding HC models). However it is about 15% and can be consider a passable 

prediction. 

From right to the left in the figure 4.4: 

• MFB50_1(related to 1st cylinder) model have a mean error  of 0.2 degrees and a maximum error 

of less than 0.6 degrees. These are negligible numbers for this type of measurement and so the 

model is satisfactory. 

• Noise_1(related to 1st cylinder) model have a mean error of 0.4 dB and a maximum error of 0.9 

dB. The measured value during the validation tests goes from 82.8 dB to 87.2 dB. So the errors 

are negligible respect the measured values. 

• Xr_CO2(EGR percentage measured by gas sensors)  model have a mean error of 0.19% and a 

maximum error of 0.45%. The measured value during the validation tests goes from 59,5% to 

64%. Also in this case the errors are negligible respect the measured value. 

 

In conclusion the created models have a good predictivity power except for the HC model. 

A possible reason can be the extremely high amount of exhaust gas recirculated: it is possible that 

in some validation tests this high EGR value may have created an high unbalancing of exhaust gases 

between the cylinders. This  could have led to an extremely high HC production and since this 

phenomenon cannot be expected by this model there is a large discrepancy between the predicted 

value and the measured value. 

Further investigation has been done on these models: the optimal point for each models has been 

searched using cage (calibration generation, a MBC tool). The following table points out the results: 
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Optimization 

on: 
constraints model Value SOI[°] FLAP[%] VGT[%] Prail[bar] 

1 b_e[g/kWh] 
 

2nd 
order 

409.22 19.56 73.24 45.02 500.04 
   

gaussian 409.28 19.63 73.44 45.02 500.04 

2 Nox_bs_exh 
[g/kWh] 

 
2nd 

order 
0.26 17.97 80.57 25.00 588.90 

   
gaussian 0.26 17.97 80.57 25.00 568.14 

3 HC_bs_exh 
[g/kWh] 

 
2nd 

order 
5.19 20.43 73.24 37.64 499.97 

   
gaussian 5.12 20.70 73.24 38.28 499.96 

4 CO_bs_exh 
[g/kWh] 

 
2nd 

order 
37.75 17.97 73.24 40.08 499.97 

   
gaussian 37.78 17.97 73.24 40.49 499.97 

5 b_e  [g/kWh] Nox_bs_exh<0.6g/kWh 2nd 
order 

411.85 20.45 77.86 45.01 500.01 
   

gaussian 412.01 19.88 77.83 45.01 500.01 

6 b_e[g/kWh] HC_bs_exh<7g/kWh 2nd 
order 

411.85 20.42 77.85 45.01 500.01 
  

Nox_bs_exh<0.6g/kWh gaussian 412.01 19.88 77.83 45.01 500.01 

7 b_e[g/kWh] HC_bs_exh<7 g/kWh 2nd 
order 

411.85 20.42 77.85 45.01 500.01 
  

CO_bs_exh<50 g/kWh gaussian 412.01 19.88 77.83 45.01 500.01 

Table 4.4 optimal calibration(1800rpmx27Nm) 

Also in calibration stage the models give practically the same results. The only careless difference is 

on the 2nd   optimization: the models suggest a rail pressure that differs of about 20 bar. However 

this difference considering the range(from 500 bar to 700bar) is absolutely negligible and moreover 

the NOx emission is almost constant changing the rail pressure in this condition(PCCI combustion). 

For this DoE it was not possible built the Soot model. This because the FSN measurements are too 

low and too influenced by measurement uncertainty. These measurements are displayed in the 

figure XXX 

 

 

4.2. 5 operating points-conventional diesel combustion (3L engine) 
The previous described engine is adopted for further tests: 5 operating points are selected and a V-

optimal DoE of 25 tests has been created for each of them. The engine is used in normal combustion 

mode and the only 2 test variables are: rail pressure and start of injection. 

The operation points are listed in the following table: 

 Engine 
speed[rpm] 

Torque[Nm] 

1st point 3250 47 

2nd point 2500 161 

3rd point 1800 161 

4th point 1200 260 

5th point 1200 23 

Table 4.5  The tested operating points for DoE with 2 variables(3L engine) 
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Consumption, emissions and noise models are created for each operation point. The results are 

similar for each operating point from model quality point of view. For simplicity only the 1st point 

results are showed in the following table: 

   
mean value R^2 RMSE PRESS RMSE  
(25 tests) 2nd order gaussian 2nd order gaussian 2nd order gaussian 

b_e[g/kWh] 352.00 0.984 0.992 0.408 0.259 0.481 0.435 

Nox_bs[g/kWh] 8.32 0.999 1 0.109 0.033 0.13 0.078 

Soot_bs[g/kWh] 0.21 0.981 0.999 0.017 0.004 0.019 0.009 

CO_bs[g/kWh] 4.00 0.97 0.998 0.092 0.022 0.103 0.051 

HC_bs[g/kWh] 1.10 0.888 0.996 0.054 0.01 0.061 0.033 

Noise_1[dB] 88.29 0.93 0.999 0.481 0.05 0.578 0.135 

Table 4.5 statistic indicators about 3250rpmx47Nm  point 

The results are very satisfying: the 2nd order model and the gaussian one produce similar results also 

in this case(with only 2 inputs). The fitting is excellent for always models. From the surface response 

plots there are not overfitting issues. 

For these DoE there are not validation tests. 

 

4.3. Multiple injections DoE (2L engine) 
The following models are created considering V-optimal DoE related to a 2L engine. Its 

characteristics are listed in the table 4.6 

 

 
Table  4.6  2L engine specifications 

The following DoE are more complex than the previous ones.  The following parameters were 

considered as the most relevant input variables for the procedure: rail pressure, swirl actuator 

position, dwell times (DT) between consecutive injections, main injection timing , the injection 

quantities in each shot, the boost pressure(not for each DoE) and the inducted air per stroke and 

per cylinder. 

The next table summarizes the tests: 
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Injection strategy Operating point [rpm x bar] 

pM(pilot+main) 1500x2, 2000x5, 2750x12 

ppM(double pilot+main) 1500x2, 1500x5, 2000x2, 2000x5 

pMa(pilot+main+after) 1500x5, 2000x5, 2500x8, 2750x12 

ppMa(double pilot+main+after) 1500x5 

Table 4.6 list of injection strategies 

For each DoE a 2nd order model and gaussian one have been created for the following outputs: 

 
bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

 

The fuel injection strategy can play an important role in simultaneously reducing passenger car 

diesel engine emissions and combustion noise, without neglecting fuel consumption targets. A 

multiple injection strategy, adopted to replace a single fuel injection shot with multiple discrete fuel 

injection events of reduced size, can easily be implemented using Common Rail systems, equipped 

with the modern injectors. 

The implementation of a pilot injection in diesel engines makes the entire amount of the fuel 

chemical energy be released over a prolonged time interval, thus determining a longer combustion 

than for the single injection case. Furthermore, the premixed combustion of some of the pilot 

injected fuel causes a slight increase in the in-cylinder gas pressure and temperature before the 

main injection has occurred, and therefore leads to a considerable reduction in the ignition delay of 

the main injection. This reduction in the fuel ignition delay limits the impact of the premixed 

combustion and generates a less rapid heat release rate during the main injection than in a single 

injection schedule. As a consequence, the main combustion becomes predominantly mixing-

controlled. A pilot injection that is sufficiently close to the main injection has the potential of 

enhancing combustion efficiency and thus brake specific fuel consumption (bsfc), because the pilot 

and main combustions are linked smoothly. For the same reason, pilot injections are also effective 

in decreasing combustion noise (CN), especially at engine idle. Reductions of up to 5–8 dB are 

generally obtained in the CN, compared to single injection strategies. Since the pilot injection 

decreases the impact of the overall premixed combustion, it makes the highest flame temperatures 

diminish and, as a consequence, the NOx emissions generally also reduce, compared to the single-

injection strategy. However, large pilot injected quantities make the NOx produced in the pilot 

combustion grow, and the increase in the NOx amount produced by the pilot combustion can 

surpass the decrease in the main combustion NOx emissions, due to the shortened ignition delay  

The smoke emission in pilot–main injections generally tends to increase, compared to single 

injections. In fact, the pilot injection increases the in-cylinder temperature and decreases the oxygen 

concentration in the gases before the main injection has occurred. Both of these effects generally 

make the smoke emission grow [15]. 

After-injection is efficient in reducing the soot engine-out emissions, which can be up to 40% lower 

than in the single injection case. In general, after-injections can oxide part of the unburned fuel and 

a decrease in CO, HC and PM engine-out emissions is obtained. The benefits increase when mixing 
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is difficult, i.e. at medium to high loads and under high EGR conditions when the utilization of in-

cylinder air is critical. After-injections have also been proposed as a means of reducing turbocharger 

lag during engine transients, since the pressure and the temperature of the exhaust gas leaving the 

cylinder can be raised significantly. This makes the turbocharger accelerate more quickly and allows 

the aggressive increase in the injection quantity to be started sooner, since the fuel quantity growth 

must follow the increase in the air supply in order to avoid high soot during transients. Finally, after-

injections can be applied to raise the diesel oxygen catalyst (DOC) temperature above its light-off 

temperature after a cold start and post injections can then be supplied to raise the exhaust 

temperature even further [16]. 

To simplify the discussion are evaluated only the models that have also validation data. The other 

model results are in the appendix. 

 

4.3.1. 1500rpmx2bar pM 
From fitting point of view, all the models have R2 higher than 0.8: the only exception is the  2nd order 

model of HC(R2=0.72). 

Seeing the table 4.7  and 4.8 the models are validated, almost all with good precision. However the 

HC, soot and s415 models are poor.  
 

Model bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

validation RMSE 2nd order 11.34 0.07 1.47 0.84 0.02 0.14 0.95 0.05 

validation RMSE gaussian 11.66 0.06 1.51 0.84 0.01 0.12 0.84 0.05 

range 
 

285.3-335.4 0.37-1.27 4.60-21.90 1.35-8.47 0.003-0.09 0.04-0.79 70.47-82.08 1.71-2.17 

Table 4.7 statistic indicators about 1500rpmx2bar  pM  point 
 

Model bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

validation 
RMSE/mean 
value 

2nd 
order 

3.4% 11.2% 12.8% 31.0% 54.9% 45.4% 1.2% 2.5% 

validation 
RMSE/mean 
value 

gaussian 3.5% 9.5% 13.2% 30.9% 45.2% 38.7% 1.1% 2.4% 

Table 4.8 ratio between validation RMSE and mean value about 1500rpmx2bar pM point 

In the image xxx the residual of validated data for s415(2nd order model) are plotted. Apparently the 

errors are very small, but they are important in proportion to the measured values. Indeed the ratio 

of the validation RMSE and the mean value is very high. This means that there are points with worst 

error than 45%. The same conclusions can be done for HC and soot models. 

Instead the other models are excellent in validation. 
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Figure 4.5 Validation data: measured FSN versus residuals (1500rpmx2bar pM) 

4.3.2. 2000rpmx5bar ppM 
From fitting point of view, all the models have R2 higher than 0.8: the only exception is the  2nd order 

model of HC (R2=0.73). 

However in some gaussian models, overfitting is present. It is notable by response surface plot. For 

example the following image points out the NOx emission models ( 2nd order and gaussian) 

 

 
Figure 4.6 bsNOx surface. On the left the predicted surface by 2nd order model. On the right the 

one predicted by gaussian model 

 

The gaussian surface appears very distorted by the fitting. This is one of the main drawbacks of 

gaussian process. This problem is present also for bsfc, HC, CO, s415, noise2, lambda and soot. 

  
Modello bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

validation RMSE 2nd 
order 

1.7 0.05 0.34 0.08 0.14 0.5 0.01 

validation RMSE gaussian 1.5 0.05 0.33 0.06 0.12 0.4 0.01 

range  
 

234.6-263.6 0.40-1.19 1.89-6.39 0.08-1.93 0.95-5.21 80.5-86.7 1.36-1.92 

Table 4.9 statistic indicators about 2000rpmx5bar  ppM  point 
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Model bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

validation 
RMSE/mean value 

2nd 
order 

0.7% 6.8% 11.3% 18.9% 5.7% 0.6% 0.5% 

validation 
RMSE/mean value 

gaussian 0.6% 7.6% 11.0% 14.5% 4.7% 0.4% 0.6% 

Table 4.10 ratio between validation RMSE and mean value about 2000rpmx5bar ppM point 

The predictivity power is remarkable for these models. The only model, on which to do further 

analysis, is the soot model. However its validation RMSE value is enough low on the mean measured 

value. 

 

4.4. Active DoE-AVL CAMEO simulator 
The Cameo heavy duty engine simulator has been used to test the potentiality of the active DoE. 

To point out it, two examples are showed. 

Two different variation lists have been constructed for two examples with the same point numbers: 

• 40 points created by D-optimal design 

• 29 points created by D-optimal design plus 11 additional points computed by Active DoE 

procedure. 

The free variables are: SOI, rail pressure, boost pressure, pilot injection quantity, pilot injection 

timing, air mass for cylinder. 

A quadratic polynomial model has been computed for each engine output: brake specific fuel 

consumption, bsNOx, bsHC, bsCO, combustion noise. 

 

The first example regards the operating point 2200rpm x 375Nm. The strategy of active procedure 

is to minimize the brake specific fuel consumption. The aim is to add N additional point (in this case 

11) in order to find the minimum value. 

From the fitting  point of view, the difference are negligible between the two model.: 

 

 Conventional DoE Active DoE 

𝑅2  0.991 0.963 

𝑅𝑎𝑑𝑗
2  0.982 0.94 

𝑃𝑅𝐸𝑆𝑆⁡𝑅2  0.965 0.881 

Table 4.11 Statistic indicators between conventional and active D.o.E. (2200rpm x 375Nm) 

 

Using CaGe, the minimum point has been found about bsfc (optimal point) for the two models: 

 

 

bsfc [g/kWh] NOx [g/kWh] CO [g/kWh] HC [g/kWh] Noise [dB] 

199.7 8.7 0.09 0.14 100.9 
Table 4.12 minimum bsfc (conventional procedure 2200rpm x 375 Nm) 
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bsfc [g/kWh] NOx [g/kWh] CO [g/kWh] HC [g/kWh] Noise [dB] 

181.1 16.3 1.23 0.18 99.8 
Table 4.13 minimum bsfc (active procedure 2200rpm x 375 Nm) 

The bsfc minimization is about 18 g/kWh. However there is a huge increment about NOx: for a HD 

engine this means an high increment of urea consumption by SCR. 

So a second optimization has been done for the active DoE model, with a constraint on NOx (it must 

be equal or less than 10g/kWh). The bsfc is anyway less the first minimization and now the 

increment NOx is moderate: 

 

bsfc [g/kWh] NOx [g/kWh] CO [g/kWh] HC [g/kWh] Noise [dB] 

188.1 10.0 0.67 0.17 100.0 

Table 4.14 minimum bsfc with constraint on NOx (active procedure 2200rpm x 375 Nm) 

 

The operating points is 2600rpm x 425 Nm for the second example. 

The active strategy is to increase the fitting quality for the combustion noise model (called standard 

strategy). The following table shows that with the same number of measurements (40), the Active 

DoE method increases the fitting quality. 

 

 Conventional D.o.E. Active D.o.E. 

𝑅2  0.908 0.92 

𝑅𝑎𝑑𝑗
2  0.844 0.893 

𝑃𝑅𝐸𝑆𝑆⁡𝑅2  0.725 0.86 
Table 4.15 Statistic indicators between conventional and active D.o.E. (2600rpm x 425Nm) 
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5. Conclusions  
This aim of this thesis is to investigate on the model-based calibration for engines. This approach is 

mandatory in this period where the number of engine and aftertreatment actuators is very high and 

testing all the engine conditions is necessary at the same time. 

 

The first part focuses on the Design of Experiment choice: different methods are compared from 

application and mathematical point of view. From comparisons, the optimal design is the best 

choice to reduce the number of experiments maintaining an high quality modelling. Moreover 

innovative solutions are researched: Active DoE is a method to perform an online modelling to 

further increase the efficiency (highest model quality with low measurements). 

 

In the second step, different modelling techniques are compared on experimental data.  

A new outlier detection method and a refined fitting procedure are tested with excellent result. 

Then gaussian and polynomial models have been created and compared on different outputs,  

inputs, engines and working conditions. 

The results highlight that the differences are almost always negligible both for fitting and predictivity 

properties. However gaussian ones have always R2 greater than polynomial second order ones but 

in same cases the GP models suffer from overfitting.  

The conclusion is that these two regression processes are comparable and almost always equivalent 

for these applications. 

 

A possible investigation for future activities can be to study the global modelling techniques and 

compare polynomial and GP processes on these problems, with engine load and speed as input 

variables. Another suggestion can be to test an Active DoE on test bed. 
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Appendix 
 

  
bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,81 0,86 0,861 0,766 0,825 0,852 0,91 0,975 
 

RMSE 4,457 0,049 1,47 0,848 0,014 0,107 0,906 0,02 
 

PRESS 
RMSE 

4,745 0,052 1,584 0,984 0,015 0,115 1,013 0,047 

gaussian R^2 0,81 0,972 0,97 0,817 0,947 0,957 0,964 0,976 
 

RMSE 4,184 0,038 0,635 0,624 0,00727 0,055 0,528 0,018 
 

PRESS 
RMSE 

4,843 0,051 1,359 0,846 0,013 0,1 0,931 0,045 

Table A.1 1500rpmx2bar pM models: statistical indicators 

 
  

bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,827 0,92 0,841 0,829 0,912 0,979 0,962 0,994 
 

RMSE 3,347 0,034 0,812 0,052 0,054 0,128 0,358 0,0043 
 

PRESS 
RMSE 

3,758 0,039 0,868 0,06 0,065 0,152 0,388 0,0048 

gaussian R^2 0,991 0,916 0,842 0,998 0,972 0,979 0,967 0,993 
 

RMSE 0,657 0,032 0,71 0,0044 0,045 0,113 0,303 0,0042 
 

PRESS 
RMSE 

4,935 0,039 0,879 0,093 0,069 0,167 0,383 0,0051 

Table A.2 2000rpmx5bar pM models: statistical indicators 

 
  

bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,878 0,942 0,883 0,837 0,919 0,984 0,862  
RMSE 1,554 0,076 0,229 0,055 0,223 0,128 0,018  
PRESS 
RMSE 

1,614 0,081 0,244 0,059 0,24 0,139 0,019 

gaussian R^2 0,878 0,94 0,973 0,96 0,985 0,997 0,975  
RMSE 1,492 0,072 0,079 0,026 0,089 0,049 0,0073  
PRESS 
RMSE 

1,642 0,082 0,138 0,043 0,142 0,087 0,011 

Table A.3 2750rpmx12bar pM models: statistical indicators 

 
  

bsfc[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,816 0,811 0,773 0,805 0,884 0,888 0,951 
 

RMSE 5,958 1,707 0,509 0,089 0,285 1,241 0,023 
 

PRESS 
RMSE 

6,601 1,964 0,576 0,101 0,323 1,388 0,025 

gaussian R^2 0,911 0,942 0,967 0,995 0,994 0,999 0,985 
 

RMSE 3,801 0,856 0,175 0,012 0,058 0,079 0,012 
 

PRESS 
RMSE 

7,098 2,184 0,445 0,109 0,333 1,674 0,028 

Table A.4 1500rpmx2bar ppM models: statistical indicators 
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bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,947 0,958 0,866 0,861 0,909 0,964 0,954 0,993 
 

RMSE 2,053 0,061 0,608 0,024 0,097 0,222 0,358 0,012 
 

PRESS 
RMSE 

2,399 0,065 0,699 0,029 0,111 0,245 0,407 0,013 

gaussian R^2 0,99 0,96 0,997 0,99 1 0,994 0,987 0,994 
 

RMSE 0,805 0,055 0,08 0,0057 0,00647 0,085 0,174 0,00962 
 

PRESS 
RMSE 

3,018 0,071 0,542 0,028 0,161 0,326 0,394 0,015 

Table A.5 1500rpmx5bar pMa models: statistical indicators 

 
  

bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,963 0,988 0,895 0,849 0,928 0,981 0,902 0,995 
 

RMSE 1,68 0,042 0,744 0,026 0,135 0,206 0,514 0,011 
 

PRESS 
RMSE 

1,919 0,047 0,816 0,029 0,155 0,228 0,561 0,012 

gaussian R^2 0,954 0,985 0,972 0,964 0,975 0,978 0,903 0,994 
 

RMSE 1,674 0,041 0,357 0,012 0,076 0,197 0,473 0,01 
 

PRESS 
RMSE 

2,23 0,056 0,554 0,023 0,141 0,29 0,609 0,013 

Table A.6 1500rpmx5bar ppM models: statistical indicators 

 
  

bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,965 0,975 0,908 0,86 0,904 0,97 0,922 0,995 
 

RMSE 1,925 0,061 0,748 0,075 0,156 0,248 0,464 0,01 
 

PRESS 
RMSE 

2,125 0,068 0,828 0,078 0,173 0,277 0,526 0,012 

gaussian R^2 0,979 0,992 0,995 0,991 0,989 0,986 0,995 0,996 
 

RMSE 1,355 0,031 0,156 0,019 0,05 0,156 0,112 0,0086 
 

PRESS 
RMSE 

2,214 0,06 0,662 0,067 0,15 0,268 0,364 0,012 

Table A.7 1500rpmx5bar ppMa models: statistical indicators 

 
  

bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,856 0,92 0,841 0,779 0,823 0,89 0,888 0,977 
 

RMSE 6,926 0,079 2,052 0,896 0,082 0,258 1,163 0,025 
 

PRESS 
RMSE 

8,039 0,088 2,385 1,001 0,097 0,287 1,384 0,029 

gaussian R^2 0,979 0,933 0,946 0,996 0,999 0,995 1 0,982 
 

RMSE 2,358 0,064 1,048 0,095 0,006 0,049 0,051 0,02 
 

PRESS 
RMSE 

9,083 0,1 2,569 1,081 0,1 0,313 1,487 0,033 

Table A.8 2000rpmx2bar ppM models: statistical indicators 
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bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,971 0,978 0,937 0,749 0,951 0,974 0,96 0,995 
 

RMSE 1,75 0,029 0,296 0,054 0,053 0,162 0,341 0,0081 
 

PRESS 
RMSE 

2,033 0,034 0,356 0,059 0,06 0,186 0,373 0,0091 

gaussian R^2 0,994 0,998 0,993 0,943 0,994 0,997 0,992 0,999 
 

RMSE 0,691 0,0079 0,086 0,024 0,016 0,048 0,138 0,0036 
 

PRESS 
RMSE 

2,166 0,04 0,459 0,05 0,05 0,173 0,39 0,01 

Table A.9 2000rpmx5bar pMa models: statistical indicators 

 
  

bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,951 0,97 0,938 0,722 0,969 0,986 0,902 0,997 
 

RMSE 1,544 0,035 0,218 0,018 0,065 0,132 0,491 0,0057 
 

PRESS 
RMSE 

1,705 0,038 0,24 0,019 0,077 0,153 0,571 0,0064 

gaussian R^2 0,971 0,979 0,955 0,695 0,978 0,994 0,996 0,995 
 

RMSE 1,092 0,027 0,166 0,017 0,049 0,075 0,09 0,0069 
 

PRESS 
RMSE 

1,863 0,041 0,284 0,022 0,088 0,183 0,664 0,0088 

Table A.10 2000rpmx5bar ppM models: statistical indicators 

 

 
  

bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,974 0,984 0,842 0,894 0,976 0,99 0,993 
 

RMSE 1,415 0,068 0,319 0,138 0,197 0,155 0,0097 
 

PRESS 
RMSE 

1,576 0,074 0,36 0,157 0,232 0,178 0,01 

gaussian R^2 0,988 0,99 0,991 1 1 0,994 0,997 
 

RMSE 0,872 0,049 0,071 0,0038 0,022 0,104 0,0062 
 

PRESS 
RMSE 

1,95 0,08 0,423 0,171 0,269 0,243 0,016 

Table A.11 2500rpmx8bar pMa models: statistical indicators 

 
  

bsfc[g/kWh] NOx[g/kWh] CO[g/kWh] HC[g/kWh] soot[g/kWh] s415[FSN] Noise2[dBA] lambda[-] 

2nd order R^2 0,935 0,991 0,864 0,715 0,923 0,975 0,878 0,964 
 

RMSE 2,597 0,046 1,025 0,015 0,239 0,21 0,454 0,013 
 

PRESS 
RMSE 

2,817 0,053 1,163 0,017 0,282 0,239 0,493 0,014 

gaussian R^2 0,971 0,994 0,997 0,849 1 0,993 0,879 0,97 
 

RMSE 1,591 0,032 0,127 0,0098 0,014 0,1 0,415 0,011 
 

PRESS 
RMSE 

3,55 0,076 1,065 0,016 0,288 0,383 0,529 0,014 

Table A.12 2750rpmx12bar pMa models: statistical indicators 
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