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ABSTRACT

In this work, I discuss the implementation and optimization of an Artificial Neural
Network based on the analysis of the back-EMF coefficient capable of making
ElectroMechanical Actuator (EMA) prognostics.

Aircraft manufacturers are increasingly focusing on the use of electromechanical
actuators as they have numerous advantages in terms of weight and compactness
respect to the technologies adopted at this time. However, they are early technology
and for this reason, engineers are still studying the failure modes that characterize
this component. The objective of this thesis is to study a methodology for the

recognition of faults within the system.

To solve the problem my supervisors have thought of implementing a logic, based
on artificial intelligence, particularly on artificial neural networks, which allows to
estimate the remaining useful life of the system components starting from a training
dataset. The neural network learns autonomously the relationships that link the

quantities given as input with those in output.

However, during learning, the creators need to set the value of the hyperparameters.
My job is to show how these values influence learning and how it is possible to
optimize the network to make it more performing in terms of computational cost
and complexity, so that the variation of hyperparameters improves supervised
learning. The future of aviation is certainly based on the "more electric" philosophy.
Electricity is the only indispensable energy source for an aircraft. Nowadays, the
remote hypothesis of "full electric aircraft" is still under study and yet there are

several queries to be clarified.

The results are very satisfactory considering the small number of examples present
in the available dataset. In the future, I think that we can build a neural network
having datasets with a greater number of examples and deeper even though this, as
you can read in this/my thesis, does not always turn out to be an advantage. For this

reason, optimizing the work is important.
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1. Introduction

1.1. Prognostics: Why and What it is



2. Electromechanical Actuator (EMA)

A servo actuator is a device used to control the position or velocity of a mechanical
element by converting power from different sources (hydraulic, electrical, or

pneumatic) into a controlled motion. [1]

An electromechanical actuator (EMA) converts electrical energy into mechanical

energy necessary for the movement of the aircraft's control surfaces.

Generally, for the primary controls, hydraulic powering is used with linear cylinder-
piston or, very rarely, rotary motors; the secondary controls can be realized by
means of hydraulic or electric rotary motors. However, EMAs are now being

studied to be implemented for primary flight controls.

An EMA consists of:
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Figure 1: ElectroMechanical Actuator scheme

e ACE (Advanced Control Electronics): this control logic allows to calculate
and output the error deriving from the difference of two signals, i.e. the
FBW signal given by the pilot as a command and the position feedback

signal read by the sensors.



e PDE (Power Drive Electronics): this module is powered by DC current and
transforms the error deriving from the ACE into a modulated 3-phase AC
current that will drive the electric motor.

e BLDC Motor: BrushLess Direct Current motor, converts electrical power
into mechanical power.

e (Gear: mechanical transmission that transforms low torque and high angular
speed into high torque and low angular speed to move the actuator.

e Screw Jack: a device used to convert rotational motion into linear motion.

e RVDT: Rotary Variable Differential Transducer is an angular position

acquisition sensor that allows the closure of the feedback loop.

The most important parameter of this device is the gear ratio T:

O Tm
T=—=
eu nTu

Equation 2.1: Gear ratio

where 8,,, and T,, are respectively the velocity and the torque of the motor, 8, and
T, are the velocity and the torque of the user; finally, n is the transmission

efficiency.

2.1. Model Description

A model on MATLAB-Simulink was used to test the prognostic algorithms and see
the real-life response. The latter has several advantages. In this way it, is possible
to reduce costs, develop the algorithm without having the physical system at hand
and speed up its development. It is possible to simulate multiple malfunctions such

as partial coil circuits.
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Figure 2: Simulink Model

On the left side we can see the Com block, which is the subsystem used to model

the commanded position to be achieved by the system.

In the trapezoidal EMA block the whole electromechanical servomechanism is
modeled, it receives the COM signal and the loads acting on the aircraft flight
control surface as inputs and it gives as output &,, which is the deflection of the

elevetor (assuming that the servomechanism is mounted on the aircraft's elevator).

Finally, in the F16 longitudinal dynamics block is modeled the dynamic response

of an F16 aircraft passing through a model described in the state space form.

We now proceed with the accurate description of each block. [2]



2.2. Com subsystem
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Figure 3: Com block scheme

This block allows the generation of different signals and simulates the FBW

command given by the pilot that the control system must follow.

We have several commands available: a step command, a ramp command, a
sinusoidal command, a chirp command that is sinusoidal with variable frequency
and a command defined by the user. We can select the function we prefer by

modifying some parameters.



Trapezoidal EMA subsystem
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Figure 4: Trapezoidal EMA subsystem



In this subsystem, there are other subsystems which will now be analyzed.

The command generated by the COM block enters the PID subsystem, from which
a reference current flow. The latter enters an inverter model in which the three-

phase current that powers the BLDC motor is generated.

The motor torque comes out of the BLDC model, which enters the dynamic model
of the transmission and the currents, that are read by an acquisition system, returns

in feedback in the inverter model.

The dynamic model of the transmission outputs the position of the user, the speed
and angular position of the engine. The first two are used in the PID controller for
the determination of the reference current while the last two are used for the
accomplishment of the BLDC electromagnetic motor’s model. Finally, the position

of the motor is read by the hall sensors. A low pass filter is used to read signals.

2.3.1. Control Electronics (PID) subsystem
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Figure 5: Control Electronics subsystem

Control Electronics subsystem is used to create the reference current that goes into

the inverter model.

Starting from the command and the feedback signal of the user's position and speed,
an error signal is generated which is given as input to a PID-type controller. A
Proportional-Integral-Derivative controller is a control loop mechanism employing
feedback signal. The controller attempts to minimize the error over time by

adjustment of a control variable u(t).



e P — The proportional term acts on the rise time and it reduces slightly the

steady state error, however a high value leads to instability.

e [ - The integrative term erases the steady state error but worsening the

transistory response.

e D — The derivative term decreases the overshoot improving the transitory

term. [3]
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Process -
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Figure 6: PID scheme

To have an optimal response it is necessary to fine-tune the coefficients Kp, K;, Kp.

Here are some effects to consider when choosing coefficients.

- T e -

Im;reasmg Kp decrease increase small increase decrease degrade

small decrease increase increase large decrease degrade
small decrease decrease decrease minor change improve

Figure 7: PID tuning

In the model there are two saturations to safeguard the integrity of the motor’s

assembly, or rather to limit the currents and angular speeds. Background noise is

added to recreate a realistic effect to the final signal.

2.3.2. Hall Sensors subsystem
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Figure 8: Hall Sensors subsystem

The block receives the angular position of the motor 6,, as input and returns three

signals: H1, H2 and H3.

These last ones can take the value of 0 or 1 according to a table of the mounted

sensor in which the electrical angle is evaluated through the following relationship:

. [POm (p9m>]
0, =2m o floor 7o

Equation 2.2: Relationship between electrical angle 8., motor’s angular position 8,, and number of
motor pole pairs p

2.3.3. Inverter Model subsystem
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Figure 9: Inverter Model subsystem

This block is the most important of the whole model. It receives in input:

- the current I ref, that is a pure control signal which has the task of controller to

allow feedback control.

- H1, H2 and H3 or the signals that come directly from the modeling of the Hall

SENsors.

-1 A, I Band I C which are the values of the currents of each phase.
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Three reference currents useful for the switching logic are determined within the

Evolution of active phase subsystem. They are calculated by adding and subtracting

10



the signals from the Hall sensors and multiplying these by the reference current.
While in the Hysteresis PWM subsystem each reference current passes through a
hysteresis block which returns the same value in inputs if the latter is not higher
than +hb or lower than —hb. If these hypotheses are satisfied it returns 1 or 0

respectively.

(71— P boclean
L
PWM_A
B NOT
2 ) M baclean |
L
P B
® NOT
|:. 3 _,:' . B baclean
[+
B NOT

=

L

T Py
-

4 -

L
g

n@J

node 0

Figure 12: H-Bridge subsystem

Modeling of the H-bridge is done through the Simulink library through the
"Universal bridge" block. To work, the block must be powered by a DC power and
the PWM signals must enter inside according to a precise logic. For controlling the
rotation direction of the motor, the direction of the current can be inverted and the

most common method of doing that is by using an H-Bridge.
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Figure 13:Combination of three separate H-Bridges for BLDC motors [4]

If we connect the phase A to the positive DC voltage, with some kind of switch like
a MOSFET, and on the other side, connect the phase B to ground, then the current
will flow from V+, through phase A, the neutral point and phase B, to ground. So,
we generated the four different magnetic poles which cause the rotor to move. With
this configuration we have a star connection of the motor phases, where the neutral
point is internally connected. To allow a rotor rotation of 360 degrees it is necessary

to activate the two correct MOSFETs in each of the 6 intervals. [4]

If we combine the methods of PWM with H-Bridge a BLDC motor can be fully

controlled.

The output of the subsystem are the voltages A, B and C.

2.3.4. BLDC electromagnetic subsystem

12
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Figure 14: BLDC electromagnetic subsystem overview

This subsystem consists of three main blocks:
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Figure 15: Computation of back-EMF coefficient block

k;’,emf =ki(0,)|1+ (cos|8b,, + 3

2(i—1)

T

Equation 2.3: Back-EMFcoefficient as a function of the angular position of the motor
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Computation of back-EMF coefficients block: it calculates the back-EMF



where { = ;—0 (see 3.6) and k. is the trapezoidal wave-shaped normalized
0

back-EMF relative to the i*" phase of the non-damaged model.

Three-phase RL model block: it receives in input the commanded voltages
and the normalized coefficients calculated from the output of the previous
block.

The normalized back-EMF coefficient is the ratio between back-EMF and

the angular speed of the motor w,,.

BEMF

Wm

bemf = = BEMF,5rm

Equation 2.4: Back-EMFcoefficient
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Figure 16: Three-phase RL model block

The block contains some components of the Simscape library that must be

converted before use in Simulink.
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The block outputs are the voltage drops across the phases and each phase
current.

3. Computation of motor torque block: it calculates the motor torque starting
from the outputs of the two previous blocks because it exploits the back-
EMF coefficients of the first block and the currents of each phase of the
second block.

These parameters are multiplied respectively for each phase, added together

and finally passed through a torque saturation block.
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Figure 17: Computation of motor torque block

2.3.5. Motor-transmission dynamical subsystem
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Figure 18: Motor-transmission dynamical subsystem
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In this block, the mechanical transmission has been modeled which allows passing
from low torque and high angular speed (fast shaft) to high torque and low angular

speed (slow shaft).

The gear ratio is the most important parameter of the subsystem. The Borello model
is used for friction modeling. For a correct representation of the phenomenon, the
saturation port is used, which allows avoiding the limit cycles. In addition, end-

stops are considered through the saturation blocks present on Simulink.

The system evolves with a dynamic of the first order as the feedback loop is made

on the speed and not on the position of the motor.

The block outputs the angular position of the user, which is the one we want to
control through the PID controller, the motor speed and the angular position of the
motor. The latter is read by the Hall sensors and used to calculate the back-

electromotive force and the switching logic of the phases.

2.4. F-16 Longitudinal dynamics subsystem
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Figure 19: F16 Longitudinal dynamics subsystem

This block receives the deflection of the elevator as input and using the state-space

model of the aircraft calculate the vector of states and more.

16



This model simulates the response of the entire aircraft only in the longitudinal

plane, so the command vector is formed only by the variable §,.
F16.x0(5) represents the initian condition of elevator’s deflection.

The subsystem outputs the velocity of the aircraft V, angle of attack a, angle of

pitch 0 (Euler's angle), pitch rate g, elevator's deflection §, and hinge moment H.

All the matrices that populate the model are the same as those mentioned in the

book "Aircraft Control and Simulation". [5]

17



3. Fault Modes

EMAs are mainly used for the control of secondary flight surfaces (trim-tab,
spoilers, speedbrakes) in civil aircraft and military aircraft. However, engineers are
studying these devices to adopt them also for primary flight controls and, since
EMAs are a recent technology when compared to -electrohydraulics and
hydromechanics, it is very important to be aware of the fault modes of these

actuators [6]. Most of this chapter is based on [2].
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Figure 20: Flight Control Surfaces of Jet Passenger Carrier [7]

3.1. Definition

First, we need to explain the difference between fault and failure:

e Fault: state of an item characterized by inability to perform as required.
e Failure: the event resulting in an item being no longer able to perform its

required function. [8]

Basically, the failure is the event while the fault is the state. In aeronautics it is very

common to talk about Fault Tree Analysis [FTA] and Failure Modes Effects (and

18



Criticality) Analysis [FMEA/FMECA]. These methods all have the objective of
identifying risk factors, the possible causes of all undesirable events that can
influence mission reliability. The FTA can understand and identify the causes of a
certain undesirable event, evaluate human errors and quantify the probability of
failure. Furthermore, it allows for understanding the interactions between the

different faults.

There are standards for system security, grouped in MIL-STD-882. Based on the

severity of the consequences, the legislation performs a classification of faults.

Categories | Consequences Description

A failure which may cause death or
weapon system loss

I Catastrophic

A failure which may cause severe injury,
II Critical major property damage, or major system
damage which will result in mission loss

A failure which may cause minor injury,

minor property damage, or minor system

III Marginal damage which will results in delay or

loss of availability or mission
degradation

A failure not serious enough to cause
injury, property damage, or system
damage, but which will result in
unscheduled maintenance or repair

IV Negligible

Table 1: Failure severity classification (MIL-STD-882)

Severity is usually linked to the probability of an event occurring. The result is a

risk assessment matrix.

19



RISK ASSESSMENT MATRIX
Probabillity
. Frequent | Likely | Occasional | Seldom | Unlikely
i A | B C D E
Catastrophic | E E H H M
Critical ] E H H M L
Marginal 1l H M M L L
Negligible v M L L L L
E — Extremely High H - High M - Moderate L-Low

Table 2: Risk Assessment Matrix (MIL-STD-882E)

In a system, it is good practice to arrange multiple elements so that it has greater
resistance to a fault. Redundancies must be designed to avoid common failure

modes.

3.2. EMASs Fault Modes

An EMA can be affected by 4 types of fault modes:

Motor Faults: | The BLDC motor that is used in the EMA presents the problem
of not having any type of active cooling and for this reason, heat
management is a problem to be addressed. If the temperature
inside the motor is very high, the insulation between the stator
coils can degrade causing a short circuit that can irremediably

damage the device.

20



Furthermore, if the Curie temperature is exceeded, a
ferromagnetic material loses its magnetic characteristics (for

example the rotor can become demagnetized).

Additionally, it operates at very high rotation speeds and for this
reason vibrations are induced on the rotor bearings and high

inertial loads.

Electrical and | These are faults affecting the electrical power system and the
electronic control system: short circuits, overheating, degradation of the
faults: welds, degradation of the wires, degradation of the connectors,

degradation of the insulation, overvoltages and overcurrents.

Mechanical Due to the application of excessive aerodynamic loads, the
faults: transmission or the moving surface can deform and therefore
induce a malfunction of the system. Even improper
maintenance of the system, poor lubrication (with a consequent
increase in heat due to friction and the onset of electrical and
motor faults); the propagation of a crack can lead to the total
breakage of a component. Often even the environment in which
the device is found to operate can be decisive: just think of

phenomena such as galvanic corrosion.

Sensor faults: | The loss of the signal coming from the Hall sensors can mean
the loss of the actuator because it is no longer able to manage
the switching logic for the excitation of the phases. There can

be three types of faults: bias, drift and scaling.

3.3. Friction fault

Friction is the force resisting the relative movement of two bodies sliding against

each other. On the surfaces of all objects, there are tiny bumps and ridges. Those

21



microscopic peaks and valleys catch on one another when two objects are moving

past each other.

The Stribeck curve is an overall view of friction variation forthe entire transition of
lubrication modes, from the boundary and mixed lubrication up to the full-film

hydrodynamic of static friction.

A

/}

Boundzugj Mixed Full-film lubrication

Friction coefficient p

Hersey number yN/P

Figure 21: Stribeck curve (Hersey number is the relative velocity between the contact surfaces) [9]

In the boundary layer region, the friction force is high, approximately constant and

is not affected by external load and speed.

In the mixed lubrication regime, i.e. when the speed begins to increase, the friction

force drops sharply as lubricating fluid (air) is pushed between the contact surfaces.

As the speed increases, we enter the full-film lubrication regime, the friction force

begins to increase again as the shear strain rate increases.

3.3.1. Model

The problem of dynamic modeling (obtained by numerical simulation) of the dry
friction is that the calculation procedure does not notice the speed passing through
zero and, therefore, does not carry out any checks regarding the possible stopping
of the mechanical organ. If this happens, by integrating the acceleration between

the start and end of the step, two-speed values of opposite sign are obtained. This

22



check must instead be conducted because, in stationary conditions, the friction force

(or torque) may be greater than the active one.

| L
min P

static friction ue] »

- :
Act Torque

1
DThU SP 4

Reset_DXJ
2 SIGN > esel
DThU

dynamic friction

Figure 22: Borello friction model implementation in Simulink

The Borello model [10] is an evolution of the Coulomb model which has several

advantages:

o It distinguishes the sign of the frictional torque as a function of the direction
of the speed.

e [t distinguishes the adhesion conditions from the dynamic ones (in fact, two
distinct values can be assigned for the torque - friction, Fg; in static or grip
conditions and Fp; in dynamic conditions).

e [t evaluates the possible stop of the mechanical element initially in motion.

e It keeps the mechanical element correctly stationary (or in motion) in
adherence conditions (or motion).

e [t evaluates the possible restart of the initially stopped mechanical element.

e [t considers, in a single model, the presence of end-stop.

e [t does not need a dimensionless € parameter which is very difficult to
determine, unlike friction models such as Karnopp’s model and Quinn’s

model.

The mathematical model is the following:
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Toce » ifUZO/\lFact|STS]
TF =<{sgn(Tqce) TS]) if v=0A|Fg| > TS]
sgn(v) - Tpy, ifv+0

Equation 3.1: Borello mathematical model for torque friction

where, T, is the torque acting on the system, Ty, is the static friction force, Tp; is

the dynamic friction force and v is the relative speed between the two surfaces.

In the model, there is a zero-crossing detection block. This block outputs one when
it detects the speed signal passing through zero (from less to greater than zero or
vice versa). When this happens, the speed is set to zero and the static friction force

is set.

Algebric loops are avoided by using the state port.

3.4. Noise fault

Original signal

_3 1 1 ] 1 1 1 1 1 1
0 100 200 300 400 500 E0D 700 8oo 200 1000
Moisy signal

T 7]

U -
-t .
ok
_3 1 1 ] 1 1 1 1 1

0 100 200 300 400 400 600 o0 800 Q00 1000

Figure 23: Noise signal [11]
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Noise can be defined as an unwanted signal that interferes with the communication
or measurement of another signal. A noise is a signal that carries information about

the sources of the noise itself and the environment in which it propagates. [12]
The sources of noise include:

e Electronic noise:
o Thermal noise generated by the random movements of thermally
energised particles in a conductor.
o Shot noise i.e. fluctuations of electrons.
o Burst noise caused by step transitions of as high as several hundred
millivolts, at random times and durations.
e Acoustic noise: revolving machines, computer fans, moving vehicles,
people talking in the background, wind and rain produce vibrations.
e Electromagnetic noise: electromagnetic induction and conduction due to
atmosphere.
e Electrostatic noise: presence of voltage with or without current flow i.e.
fluorescent lighting.
e Processing noise: lost data packets in digital communication systems.
e (CO-Channel noise: crosstalk from two different radio transmitters on the

same frequency channel.

Depending on its frequency spectrum or time characteristics, a noise process can be
further classified into one of several categories. When we speak of white noise, for
example, we refer to purely random noise that has an impulse autocorrelation

function and a flat power spectrum. It contains equal power at all frequencies.

The autocorrelation function 73, of a continuous-time zero-mean white noise

process, n(t), is given by:
1an (1) = E[n(®On(t + 1)] = 0 (1)
Equation 3.2: Autocorrelation function of pure white noise
where 0,2 variance is a particular delta function.
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A7)

Figure 24: Autocorrelation function of pure white noise

Using the Fourier transform of the autocorrelation function, the power spectrum

of white noise is obtained:

[0e]

Pin(f) = f rnn(t)e_jznft dt = 0121

— 00

Equation 3.3: Power spectrum of pure white noise

AP®

Figure 25: Power spectrum of pure white noise

Since a pure white noise need to have infinite power to cover an infinite range of
frequencies, it is a theoretical concept. A more practical concept is band-limited

white noise, defined as a noise with a flat spectrum in a limited bandwidth B:
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Figure 26: Power spectrum of band-limited white noise

_{o® ifIfI<B
P””_{o if |fl > B

Equation 3.4: Power spectrum of band-limited white noise

The autocorrelation function of a band-limited white noise, in case of discrete-time,

has the shape of a sinc function:

>3V ——~COQO®
o o o
- n w

. N

o

f\r./\/\/\j\ /\/\/\/\/\/v

i

-50 -40 -30 0-20 -10
Correlation lag (k)

S
=

Figure 27: Autocorrelation function of band-limited white noise

sin(2nBTk)

Tyn (Tsk) = 2Bo}? BT
N

Equation 3.5: Autocorrelation function of band-limited white noise

where T, is the sampling period.
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When Ty = %, i.e. when the sampling rate is equal to the Nyquist rate, the equations

becomes:

sin(mk)

= 2Bc25(k)

Equation 3.6: Autocorrelation function of band-limited white noise when Ts = 1/2B

3.4.1. Model

PAT R OR e

Current
Reference
Limiter

Band-limited
white noise

Figure 28: Band-limited white noise in Control Electronics (PID) subsystem

A band-limited white noise model is implemented in the Control Electronics (PID)
subsystem superimposing it on the current reference signal. The highest noise

frequency is set at less than half of the sampling rate.

3.5. Short circuit fault

When the motor operates at a very high temperature, the insulation covering the
wires that make up the stator coils degrades and allows the formation of short

circuits.
The formation of a short circuit can take place:
e between two wires of the same phase (coil-coil): the resistance and

inductance of the motor decrease; consequently, the current increases and
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the motor is brought to overheating. This condition is the first that is

observed.

e between two wires of different phases (phase-phase): generally, this

condition occurs after the coil-coil and leads to a fault condition.
e Dbetween a wire and the stator iron core (phase-ground): generally, this

condition occurs after the coil-coil and leads to a fault condition.

3.5.1. Model

As just mentioned, a short circuit between two wires leads to a decrease in
resistance and inductance proportional to the number of shorted wires.
Consequently, one effect is the reduction of the back-electromotive force which can

be expressed in the following way:

k, =GM:a—<b:nAi f B-ndS
emf 20, 360,, \J,

Equation 3.7: BEMF reduction due to short circuit

where A is the total winding area, B the magnetic flux density of the rotor and n is

the number of windigs making up the coil.

Defining N; as the normalized value of shorted coil windings in respect to n, we can

express:
RL' == NLR
L; = N2L
Keé = Nk,

where R;, L; and k. are respectively resistance, inductance and normalized BEMF
coefficient of the i*" phase while R, L and k,, are the nominal values, referring to a

zero-fault condition.
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3.6. Rotor eccentricity fault

It is possible to distinguish two types of rotor eccentricity:

Type

Definition

Effects

Static eccentricity

The misalignment error
between the rotor
rotation axis and the

symmetry axis

Irregularities in the air
gap surrounding the
rotor (different for each

phases)

Dinamic eccentricity

The misalignment error
between the rotor
rotation axis and its

rotational inertia axis

Vibrations, bearing
wear, non-constant

torque

Table 3: Static and Dinamic rotor eccentricity fault differences

The effects of static eccentricity are now analyzed, i.e. the irregularities in the air

gap surrounding the rotor. The rotor is assumed to be a rigid body without

deformations.
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From the figure we extrapolate the following relationships:

Cartesian Coordinates Polar Coordinates

Y7 = R p= R,

(x —x0)? + y%> = R? p% — 2p cosO + x§ = R?

Table 4: Stator and Rotor equation with static eccentricity

where x, is the distance between the two axes, R, is the rotor radius and Rj is the
stator radius.

Now we define the air gap g:

Q

X\ 2
g =xycos0+R; [1— (R_O) sin?6 — R,
N

1 Xo 2 )
~ X, €0s0 + R; 1_§(R_S) sin“0 | — R,

~ X9 c0s0 + g,

Q

Equation 3.8

where go = Ry — R, is the air gap considered during nominal condition.
A new parameter, called eccentricity parameter §, can now be entered:

Xo

E_go

Equation 3.9: Eccentricity Parameter
g = go(1+%§cosb)

Equation 3.10: Air gap approximation
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The magnetic flux ® calculated solving the circuit between two consecutive rotor

poles is:

g(6,)
Figure 30: Air gap approximation
O = Fm _ EaleS 298,
- m\ m\ I
g6 , 8 (6. +5) s00e(5) eGs(p)

HoS HoS

Equation 3.11: Magnetic flux

where F,, is the rotor magneto-motive force, P is the number of poles, S is the

surface crossed by magnetic flux and @, is the nominal flux.

The change in magnetic flux over time is the back-ElectroMotive Force.

3.6.1. Model

As shown in [13] the rotor eccentricity fault can be described through a block

diagram without involving the FEM analysis.

We can express the back-ElectroMotive Force through the following relationship:
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. . 2(i—1)
khems = ke(0m) -| 1+ & cos <6m + Tn)

Equation 3.12: Back-electromotive force coefficient

where kL (8,,,) is the non-faulty condition traperzoidal-shaped coefficient.
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4. Artificial Neural Network

The neural network is one of the most interesting programming tools in this
historical period. Mankind is trying to make machines have their own intelligence
and for this reason, neural networks play a fundamental role. In a neural network,
the programmer does not tell the computer how to solve problems. It, by contrast,
learns itself from a dataset the relationship between input and output. These
techniques are used extensively in computer vision and speech recognition. They
are also studied at a company level by Google and Facebook. Our goal is to

implement them within an electromechanical servomechanism.

4.1. Concepts

Before talking about the architecture of a neural network, it is important to clarify

the concept of perceptron, neuron, activation function, weights, and bias.

) o } » output

Figure 31: Perceptron

A perceptron takes several binary inputs and produces a single binary output. The
scientist Frank Rosenblatt introduced weights to compute the output. These

elements are real numbers, and they express the value of their input to the output.

Instead the output is calculated based on the value of the sum Y. ;0 ; x ;.
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If the latter is greater than a threshold value, the output is 1 and vice-versa.

Formally:
0 if ) 6;x;< threshold
output = J
1 if ZBJ- xj> threshold
J
Equation 4.1
If b = —threshold, we can rewrite the relationship as it follows:
(0 ir Y o;x4b<0
output = J

1 if ) 0;x,+b> 0
J

Equation 4.2

“The perceptron’s bias (b) is a measure of how easy it is to get the perceptron to

output 1. [14]

Another type of neuron is the sigmoidal neuron that instead of responding with an

output of only 0 and 1 can return a value within the range.
The letter o indicates the sigmoid function, which is very similar to the step function

but smoother:

1
1+e?

o(z) =

Equation 4.3: The sigmoid function
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Sigmoid function Step function
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Figure 32: Comparison between sigmoid function and step function

4.2. The architeture of neural networks

\Nddml layers
v "I) / output layer

——

input layer

Figure 33: The architeture of neural network

Simple neural networks are basically composed of three layers. Each column of
neurons represents a layer while each arrow represents a weight. The leftmost layer
is called the input layer and the rightmost is called output layer. The middle layer

is called hidden layer, since the neurons in this layer are neither inputs nor outputs.
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Generally, there are multiple hidden layers in a network and when this happens, we
are talking about of a deep neural network (for example, in the figure above the net
has two hidden layers). The output of a previous layer is the input of the next layer

and this is the main feature of the feedforward network.

4.3. The Activation Function

Inside the neuron, the inputs are multiplied by their respective weights and then
added together by adding the bias value. The obtained value represents the
activation input z = f(x, 8, b ). The latter must go through an activation function
which is responsible for establishing whether the activation input is intense enough

to be able to be propagated to the next neuron and then activate it. [15]

D e
@

OUTPUT

0;

NEURON

zZ = xlel +x262 + x393 + b

he(x) = ¢(2)

Figure 34: The Activation Funtion
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Step

_ (0 ifz<0
¢(2) {1 ifz>0
Sigmoid
P = T
Tanh
1 — e—ZZ
PO = 1=
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Rectified Linear Unit (ReLU)

_ (0 ifz<0
¢(Z)_{Z ifz>0

Leacky ReLU

_(001z ifz<0
¢(Z)_{Z if z>0

Using the step function, the quantitative information related to the activation input
is lost: an activation input of 0.5 will return 1 as well as an activation input of 1000.
For this reason, the step function is never used. Generally, the activation functions
used in the hidden layers are the ReLU and the tanh. In the last layer, the sigmoid
function or the linear function are used depending on whether it is a classification

or regression problem.

4.4. Learning

To train the neural network, we need to give it the inputs from our dataset and

compare its hypothesis outputs hg(x) with the outputs y from the dataset.

39



Features 1 Features N Output 1 Output N
Example 1 X11 e X1N Vi1 e ViN
ExampleZ X1 XoN Y21 Yon
Example M X1 XuN Vu1i VuN

Table 5: Input and Output of a neural network

From this, we understand that it is important to have a large dataset and a large
amount of computational power. Since the neural network is still untrained, its
hypothesis outputs will be wrong. In the next paragraphs we define a cost function
that shows us how much the neural network’s outputs are wrong from the real

outputs and how to train them.

4.5. Multivariate Linear Regression

A multivariate linear regression is a linear regression with multiple variables. For

simplicity, only one output is considered.

Let us imagine we have a dataset structured as follows:

Features 1 | Features 2 Features n Output
X1 X2 Xn y
Example 1
xt x3 xk Y
x!
Example 2
xf X3 X; Y2
X2
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Example m

xm

Notation:

e n: number of features.
e m: number of training examples.

x@: input (features) of it training example.

o xj(i): value of feature j in i*" training example.

The hypothesis function that links each features of an example to the output is the

following:

hg(x) = 00 + 91x1 + ezxz + o+ Onxn

Equation 4.4: The hypothesis function

. i .
For convenience reasons we assume xé ) =1fori€ [1,m].

X1 (7]
x = eR"t1 0 = 1 eRrnt1
Xn 0,

Equation 4.5: Input vector and weight vector

Xo
ho(X) = [0 6; .. 6,1 '[=6"x
xn

Equation 4.6: The hypothesis function vector shape
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4.6. Cost Function (mse)

The cost function expresses the accuracy of our hypothesis function with respect to

the real value of the output. In fact, for a linear regression it can be expressed as:

1 m
J©) = 5= > (ho(x) = y)?
i=1

Equation 4.7: Cost Function (mse)

Where hg(x;) is the predicted value (hypothesis function), y; is the actual value and
m is the number of examples. This function is also called "mean squared error"
(mse) because the difference between them represents an error, which is squared
and finally all the errors of each single example are added together and divided by

the number of examples (mean).

4.6.1. Gradient Descent

Since the value of hg(x;) is a function of the weights 6 and of the biases b we want
to find those values that best approximate the predicted function to the real function,

i.e. we want the cost function to be as small as possible.

We are helped by the gradient descent because its task is precisely this, that is to

update the value of weights and bias in such a way as to minimize the cost function.

The gradient descent algorithm repeats the following rule until convergence:

d

Equation 4.8: Gradient descent algorithm

Where 6; represents the j th weight (the same is true for biases).
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The hyperparameter a is known as the learning rate. It allows us to vary the size of
each single step: the higher this parameter, the larger the step. The direction in
which the step is taken is determined by the partial derivative of J(6) the minus

sign has the task of inverting the trend of the gradient.

Substituting the expression of hy in the case of linear regression for a single

example we obtain:

0 a0 (1
35)© = 55 (51000 %) =230 -2 5 <h9<x) )

]

a n
= (hg(x) —y) _0<Z ) = (ho(x) — ¥)x;

=0
Equation 4.9: Partial derivative of J(8) in the case of linear regression for a single

In the case of multiple variables, the gradient descent algorithm takes the following

form:

m
1 o _
0 =6 —a— E (ho(x') =y -xf forj:=
i=1

Equation 4.10: Gradient descent algorithm in the case of multiple variables

The choice of the learning rate a is very important because:

e A very small value leads to slow convergence.
e A very large value can lead to divergence (bounce from one side of the curve

to the other without ever reaching the minimum).

Since two features can have very different ranges of values, the speed of the
grandient descent can differ and oscillate inefficiently when the variables are

irregular.
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For this reason, the feature scaling technique is carried out, i.e. all the features are
brought into the same range, for example (0,1) thanks to the following conversion

formula:

x; — min(x;)

X =
" max(x;) — min (x;)

Equation 4.11: Feature scaling

A very similar method is mean normalization, in which the average value is taken

as a reference:

x; — average(x;)

X =
" max(x;) — min (x;)

Equation 4.12: Mean normalization

4.6.2. Backpropagation

The backpropagation is the algorithm that allows minimizing the cost function in
an artificial neural network, the same task performed by the gradient descent in
linear regression. This process occurs through the determination of the derivative

of the cost function.
Let us imagine we have a dataset and one training example (x, y). [16]

Forward propagation consists in the calculation of:

eV =g

2(2) — @(1)4(1)

a® = g(2(?) (add a(()z))
,3) — 9(2)4(2)

a® = g(2®) (add af”)
L(4) — 9(3)4(3)

a(4) = h(—)(l') = 9(3(4)) Layerl Layer2 Layer3 Llayer4d
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Figure 35: Forward propagation

where a® is the activation values of i*" layer i.e the value of z to which the
activation function g is applied. a™® is the last activation value and coincides with

the hypothesis value hg(x).

Remembering that a]@ represents the activation values of the node j in layer [, the

intuition of the backpropagation algorithm is the calculation of error values of node

j in layer [ called 5]'(1).
The delta term captures the error in the activation of that node, for example:

w _ @ _ .
6j = a; Vi

Equation 4.13: Delta last layer error values
where L is the total number of layes. In vector form:

50 = a®) —y = ho(x) ~ y

Equation 4.14: Delta last layer error vectorial form

Now let us proceed with the calculation of §¢~ back to §®), hence the name

backpropagation (6 = 0, since a(*) corresponds to the features).

5O = ((@(D)T(g(lﬂ)) x g'(z®)

Equation 4.15: Delta error in previous layers

where g'(z(?) = a® .« (1 —a()) is the derivative of the activation function g
evaluated with the input values given by activation input z(® | @ is the matrix of

weights of 1 layer and the symbol .* identifies the element-wise multiplication.
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Now we can determine and update the A matrix values at each iteration:

O ._ AO O +1)
Aij = Aij +a; d;

Equation 4.16: Delta matrix values

Finally, the last matrix D is calculated, which coincides with the derivative of the

)

. ) . .
cost function 500 J(®) = D; i~ as a function of each weight:
ij

1

RO O\ g
M YO if j=0
m-Y /=

where j = 0 coincides with the case of bias.

4.6.3. Underfitting and Overfitting

The training error tends to decrease as the degree d of the polynomial of the function

hg(x) increases as we are trying to adopt a more complex model. [16]

Similarly, the cross-validation error tends to decrease as d increases, however at a

certain point the trend assumes an opposite behavior, forming a convex curve.

Underfitting
{higr bia s)
Jc:'n:—:H val -:1;1[i:3n(6:]I
) Overfitting
2 (high variance)
S
Jiaining(©
\\\. tralnmg( l

d (polynome degree)
Optimal value for d

Figure 36: Underfitting vs Overfitting
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So we talk about underfitting when J;4in(0) and J.,(8) are high, while we talk

about overfitting when J;;-4i (0) is low and J,,,(8) is quite higher than ;.4 (6).

Degree 1 Degree 4 Degree 15

MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.81e408(+/- 5.42e+08)
—— Model — Model — Model
Tue function Tue function Tue function
e Samples e Samples e Samples

Figure 37:Underfitting and overfitting example [17]

The terms overfitting and underfitting therefore describe how much the model
learns and generalizes the new data. A good machine learning model must be

capable of generalizing new data well.

With the term underfitting we refer to a model that has a high cost function, i.e.

with poor performance.

With the term overfitting we refer to when the model a network is too tied to the
training data and does not generalize about new data, so the resulting test cost

function is higher.

“Performed b

Performed No well on No
Model ¥<_ well on ‘ i éaining _— Underfitting
test set 2
/ - set
Yes l Yesl
Good Model Overfitting

Figure 38: Logical scheme to understand if the neural network is affected by overfitting or underfitting
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5. Creation And Optimization of the ANN

In this chapter we also talk about the optimization of the artificial neural network
through the wvariation of its hyperparameters. The back-electromotive force
coefficient signal kpe, s Was obtained. About three thousand signals were analyzed
and parameters representative of the health of the system were obtained. In the

nominal operating condition (in which faults are not present) the value is unitary.

1.3 — — .t e et e e et e e Y
F — Nominal ]
1.2- — N, = 0.25, E:U.35;

[
—

e 2
w o =

kbm'ﬂf/kbcmf,nom

e
9

30 60 90 120 150 180 210 240 270 300 330 360
6. [deg]

<
=N

=gy

Figure 39: Back-EMF in nominal and faulty condition [18]

The signal has been appropriately sampled and each curve is represented by a
certain number of points that characterize the features of the artificial neural

network.

The latter must predict five output values:

[Na' Nb,Nc, E' d)]

1. Ng N, N. which represent the percentage coil short for each phase (the
values are within the range [0,1] where 0 represents no damage and 1 total

phase short).

2. &= Z—O which represents the static eccentricity, i.e. the relationship between
0

the axis offset from center x, and the nominal air gap g,.
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3. ¢ which represents the angular phase of the static eccentricity.

For this reason, a single example of the training set is characterized by eighteen

features and five outputs. [18]

[ = Commutation
[ = Center point
0.076 r » Additional points[]

-..FU.UM

[

~

0,072

=
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=
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0.066

0_064-|HH||HM A b b e b e b by b b e b e e b e by 1y
0 30 60 90 120 150 180 210 240 270 300 330 360 390 420

B, [deg]

Figure 40: Sampling of five examples of back-EMF signals

At this point the network is trained using the Deep Learning Toolbox present in

MATLAB from MathWorks®.
Let us start now with a configuration suggested by [18].

Hidden Output
Input Output
18 5
10 5

Figure 41: Architecture of the reference network

The network is made up of 3 layers:

e an input layer with 18 features representing the sampled signal.
e ahidden layer with 10 neurons.

e an output layer with 5 neurons representing [N,, Ny, N,, &, ¢].
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The training function used is ‘train/m’. This function updates weight and bias

values according to Levenberg-Marquardt optimization rule:

— T -14T
Xpv1 =X — ']+ Il e
Equation 5.1: Levenberg-Marquardt Algorithm update rule

where U is a scalar value like the inverse of learning rate: a high p value results in
a gradient descent with a small step size and viceversa. The algorithm can manage

this parameter automatically.

The Levenberg-Marquardt algorithm is designed to approach second-order training
speed without having to compute the Hessian matrix. In fact, the latter is

approximated as:

H=]"]

Equation 5.2: Hessian matrix approximation

while the gradient is calculated as:

g=J'e

Equation 5.3: Gradient’s calculation

The “satlins’ is used as an activation function between one layer and another.

a = satlins(n)

Figure 42: Satlins activation function
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1 ifz>1
P(z) =1z if —1<z<1
-1 ifz<-1

Equation 5.4: Satlins activation function

The results obtained are now presented:

+ Simulation time: 2 s
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Mean Squared Error {mse)

Best Validation Performance is 0.00054838 at epoch 49

Train
Validation

104
076 frorr e
0 10 20 30 40 50
59 Epochs
Figure 43: MSE performance of reference network
Gradient = 0.0001081, at epoch 59
1=
o
B
o
1'3_5 Il | Il | Il
o Mu =1, at epoch 59
107 T T T T T

val fail

E 1-:}"3x'\_\/_\/'\_/_\ 1\_\/ v 7

Validation Checks = 10, at epoch 59

¢ WA ¢ 4 04 4

589 Epochs

Figure 44: Results for reference network

52



N_: R=0.99955
a

Nh: R=0.99954
o 03170 Data
0.3 Fit
o Y=T
0.25
n "]
9 0.25 =1
@ @
2 ]
o« @
by T oz
- 02 r
2] =)
Ly o
] =
) ©
[ £ 015
=015 -
1 W
1 1
= -
5 3 01
% 0.1 =
3
[s] [#]
0.05 0.05
0.05 01 015 02 0.25 03 0.05 0.1 015 0.2 0.25 03
Target Target
N_: R=0.99968 £ R=0.9993
03 ©  Data
03 Fit
¥=T
o,
o~ 0.25 £ 096
=) =]
53 1]
a =)
o =]
+ 02 +
x r ooz
@ @
& o
2 2
£ e
0.15
I £ 015
n n
i 1
s E
5 o1 g o1
5 E]
o =]
0.05 0.05
0.05 0.1 0.15 0.2 0.25 0.3 0.05 0.1 0.15 0.2 0.25 0.3
Target Target

¢: R=0.98889

Qutput ~= 0.99*Target + 0.0035
°
o

01 02 03 04 05 06 07 08 09
Target

Figure 45: Linear regression plot for each output [N,, Ny, N, &, ¢]
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From the figures, we can conclude that the lowest value of the mean squared error
(mse) for the validation cost function is reached at epoch 49 and is equal to

0.00054838.

The gradient never drops below the value of 1075 and the simulation is stopped
when 10 validation failures occur, i.e. the network does not improve or remains the

same for 10 epochs.

Finally, from the graphs of the linear regressions we can see that the parameter that

presents a greater error is the angular phase of the static eccentricity ¢.

5.1. Variation of hyperparameters

Some hyperparameters of the network are now changed. In particular, the

architecture is changed by varying the number of neurons and the number of layers.

Since we want to try to improve the model from the point of view of bias
(underfitting), more complexity is added to the network. We then proceed with the
variation of the activation function between one layer and another and finally with
the introduction in the model of the regularization and the increase in the number
of features. An increase in the complexity of the system leads to a rise in the

computational time for training the network.

5.1.1. Neurons

Hidden Output

In put ( Qutput

& Twell (el
100 5

Figure 46: Increase in the number of neurons in the hidden layer

p -

++ Simulation time: 165 s
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Best Validation Performance is 0.0003598 at epoch 38
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Figure 47: MSE performance for the network with with twenty-four neurons in the hidden layer
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Figure 48: Results for the network with twenty-four neurons in the hidden layer
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We can see improvements in network performance at the expense of more

computational time.

5.1.2. Hidden Layers
Hiddien 1 Hidden 2 Output
S g g

Figure 49: Increase in the number of hidden layers

f

++ Simulation time: 3 s

Best Validation Performance is 0.0005838 at epoch 50
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Figure 50: MSE performance for the network with two hidden layers
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Gradient = 0.0011967, at epoch 60
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Figure 51: Results for the network with two hidden layers
5.1.3. Activation Function
............ ¢.2 N
a= fﬂHSlgt'PH
Figure 52: Tansig activation function
sinh(x) e* e *

¢(z) = tanh(z) =

Equation 5.5: Tansig activation function

cosh(x) e *+e* e*+e*

In MATLAB we can use the 'tansig' function which corresponds to the tanh function

as an activation function.

X/

*¢ Simulation time: 1 s
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Mean Squared Error (mse)

Best Validation Performance is 0.0004577 at epoch 40
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Figure 53: MSE performance for the network with tansig activation function
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Figure 54: Results for the network with tansig activation function
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5.1.4. Regularization

If the overfitting problem is caused by a neural network with many features, we can

use regularization to solve this problem.

Regularization penalizes weights that become too high during training by means of

coefficients. There are two types of regularizations: L1 and L2.

m m
1 . ) A
= — ®Y — y® - 2
J(8) 2m ;(h"(" ) y ) + 2m ,Z=1 9

Equation 5.6: Cost Function with regularization L2 term

m m
1 ; ) A
J(6) = 2m Z(ho(x( ) —y®) to Z 16,
i= j=

Equation 5.7: Cost Function with regularization L1 term

Usually the L2 regularization is more effective than the other and if we want, we

can combine the two types of regularization.
The regularization L2 hyperparameter A has been set to the value of 11075,

+ Simulation time: 1 s
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Best Validation Performance is 0.00068955 at epoch 16
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Figure 55: MSE performance for the network with regularization term
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Figure 56: Results for the network with regularization term

In this case the simulation was interrupted by a p value equal to 10°.
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5.1.5. Features
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Figure 57: Back-EMF signal interpolation

From the reference signal of the back-EMF represented by eighteen features, thanks

to the spline function, further points of the curve are obtained to have a greater

number of features to train the neural network. We now have eighty-six features

available.
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+ Simulation time: 27 s

Best Validation Performance is 0.00041372 at epoch 42
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Figure 58: MSE performance for the network with new features
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Gradient = 0.007953, at epoch 52
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Figure 59: Results for the network with new features
5.2. Best Cases

Having seen how each individual hyperparameter affects the neural network, the

5.2.1. Case 1

best hyperparameter trade-offs are now presented.
Hidden

Output
In put Output
18 5
25 5

Figure 60: Network architecture for best case

+ Simulation time: 11 s

net.layers{:}.transferFcn = 'tansig’;
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Best Validation Performance is 0.00014026 at epoch 59
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Figure 61: MSE performance for the best network
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Figure 62: Results for the best network

5.2.2. Case 2
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Figure 63: BEMF with 40 features

+ Simulation time: 86 s

net.performParam.regularization = Se-5;

net.layers{:}.transferFcn = 'tansig';

Mean Squared Error (mse)

Best Validation Performance is 0.00020066 at epoch 20
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