
POLITECNICO DI TORINO

Corso di Laurea Magistrale

in Ingegneria Aerospaziale

Tesi di Laurea Magistrale

Numerical simulations of compressible turbulent flows
using modern GPU architecture

Relatori : Candidato:

Francesco Larocca Alfredo Bianchi

Andrea Ferrero

Anno Accademico 2019/2020

1

Abstract

The purpose of this Master Thesis is the development of numerical software to solve compressible

turbulent flows using recent GPU architecture. Performance of parallel computing has been evaluated

and the architecture of numerical codes has been studied in order to identify the key features for a

proper use of these computational systems.

2

Contents
Introduction .. 8

Chapter 1 CUDA Fortran ... 10

1.1 CPU and GPU architectures .. 11

1.2 CUDA Fortran program structure ... 12

1.3 Memory Hierarchy .. 13

1.4 Kernel Subroutines .. 15

1.5 1D Vectorial Addition ... 17

Chapter 2 Legion and MPI ... 20

2.1 Cluster technical specifications ... 20

2.2 How to launch a Job .. 20

2.3 Message Passing Interface ... 22

2.4 Boundary values exchange across multiple MPI processes .. 25

Chapter 3 STREAmS ... 27

3.1 Navier-Stokes equations .. 27

3.2 Spatial discretization ... 29

3.3 Time integration .. 31

3.4 Boundary conditions.. 32

3.5 Digital filter design techniques for turbulence generation .. 33

3.6 Implementation of digital filters in STREAmS ... 38

Chapter 4 Strong and weak scalability of STREAmS ... 42

4.1 Strong scalability ... 42

4.2 Weak Scalability.. 52

4.2.1 Preprocessing time at constant GPU workload .. 52

4.2.2 Integration time at constant GPU workload ... 53

4.2.3 Job Wall-clock time at constant GPU workload .. 54

4.2.4 Memory usage per geometrical node at constant GPU workload 56

Chapter 5 Parametric studies for SBLI .. 57

3

5.1 Difference in statistics during transitory and steady state ... 58

5.2 Parametric study of SBLI varying temperature ratio 𝑻𝒓𝒂𝒕 .. 86

5.3 Q-Criterion applied to different grid sizes .. 104

Chapter 6 A 2D CFD Solver in modern GPU Architecture ... 107

6.1 Comparison of performances .. 109

Chapter 7 Conclusions ... 120

Bibliography... 121

4

List of Figures
Figure 1-1 Overview of NVIDIA GPU applications and libraries. Credits from [2] 10

Figure 1-2 Difference in architecture schemes between CPUs and GPUs. Credits from [2] 11

Figure 1-3 Organization of CUDA threads on the device hardware. Credits from [2] 13

Figure 1-4 Memory space organization on the device. Credits from [2] ... 14

Figure 1-5 Transfer of variables from host to device over the PCI bus , credits from [4] 15

Figure 1-6 Multiple concurrency scheme running on GPU and CPU using CUDA Streams , credits

from [5] .. 16

Figure 1-7 CPU and GPU time performance without serial writing of output data. 19

Figure 1-8 Ratio between the CPU and the GPU runtime of the application. 19

Figure 2-1 Distribution of the job among 4 nodes of the cluster . MPI software is midware the user

application and the operating system. From [7] ... 23

Figure 2-2 Scheme for MPI flow of buffer arrays in X direction .. 26

Figure 3-1 Mesh detail of the wall region in the x-y plane .. 30

Figure 3-2 Energy Cascade scheme for turbulent eddies , Credits from [9] 34

Figure 3-3 Visualization of two-dimensional filtering of random data using greyscale picture, Credits

from [8] .. 34

Figure 3-4 Difference in shape of the autocorrelation functions ... 37

Figure 3-5 Mean streamwise velocity profile in the inlet region ... 41

Figure 4-1 Job time for a grid of 7077888 points incrementing number of GPU and MPI processes,

500000 iterations. ... 42

Figure 4-2 speed-up for a grid of 7077888 points, incrementing number of GPU and MPI processes,

500000 iterations. ... 43

Figure 4-3 Job time for a grid of 14155776 points incrementing number of GPU and MPI processes,

500000 iterations. ... 43

Figure 4-4 Speed-up for a grid of 14155776 points incrementing number of GPU and MPI processes,

500000 iterations. ... 44

Figure 4-5 Job time for a grid of 28311552 points incrementing number of GPU and MPI processes,

500000 iterations. ... 44

Figure 4-6 speed-up for a grid of 28311552 points incrementing number of GPU and MPI processes,

500000 iterations. ... 45

Figure 4-7 Comparison of speed-up performances for the three grid cases 45

Figure 4-8 Job time ratio tN/t1 for a fixed number of GPUs (1 node , 4 GPUs) incrementing number

of grid point ratio with the first case grid size . 500000 iterations. ... 46

5

Figure 4-9 Preprocessing time at constant GPU workload . .. 53

Figure 4-10 Preprocessing time ratio with reference case at constant GPU workload 53

Figure 4-11 Integration time at constant GPU workload ... 54

Figure 4-12 Job Wall-clock time at constant GPU workload .. 55

Figure 4-13 Time ratio with reference case at constant GPU workload .. 55

Figure 4-14 Memory usage per grid point at constant GPU workload .. 56

Figure 5-1 Boundary layer thickness along streamwise coordinate. ... 57

Figure 5-2 Mean Velocity in streamwise stations 𝑥 = [20 40 60] during transitory 𝑇0,

𝑅𝑒𝜏 = [200 500 800] 61

Figure 5-3 Mean Velocity in streamwise stations 𝑥 = [20 40 60] during statistically Steady State 𝑇𝑓.

 𝑅𝑒𝜏 = [200 500 800] ... 62

Figure 5-4 Compressible Friction Coefficient during transitory 𝑅𝑒𝜏 = [200 500 800] 63

Figure 5-5 Compressible Friction Coefficient during statistically Steady State; 𝑅𝑒𝜏 = [200 500 800]

 .. 64

Figure 5-6 Reynolds stress tensor for x = 20 during transitory 𝑅𝑒𝜏 = [200 500 800] 65

Figure 5-7 Reynolds stress tensor for x = 20 during statistically Steady State 𝑅𝑒𝜏 = [200 500 800]

 .. 66

Figure 5-8 Reynolds stress tensor for x = 40 during transitory; 𝑅𝑒𝜏 = [200 500 800] 67

Figure 5-9 Reynolds stress tensor for x = 40 during statistically Steady State 𝑅𝑒𝜏 = [200 500 800];

 .. 68

Figure 5-10 Reynolds stress tensor for x = 60 during transitory 𝑅𝑒𝜏 = [200 500 800] 69

Figure 5-11 Reynolds stress tensor for x = 60 during statistically Steady State 𝑅𝑒𝜏 = [200 500 800]

 .. 70

Figure 5-12 . Mean pressure rms at the wall normalized with the wall-shear stress in streamwise

direction during transitory; 𝑅𝑒𝜏 = [200 500 800] ... 71

Figure 5-13 Mean pressure rms at the wall normalized with the wall-shear stress in streamwise

direction during statistically Steady State, 𝑅𝑒𝜏 = [200 500 800] .. 72

Figure 5-14 Pressure root mean square normalized with square root of wall shear stress during

transitory; 𝑅𝑒𝜏 = [200 500 800] .. 73

Figure 5-15 Pressure root mean square normalized with square root of wall shear stress during

statistically Steady State; 𝑅𝑒𝜏 = [200 500 800] .. 74

Figure 5-16 Friction Reynolds number during transitory , 𝑅𝑒𝜏 = [200 500 800] 75

Figure 5-17 Friction Reynolds number during statistically Steady State; 𝑅𝑒𝜏 = [200 500 800] 76

Figure 5-18 Compressible Reynolds number during transitory , 𝑅𝑒𝜏 = [200 500 800] 77

6

Figure 5-19 . Compressible Reynolds number during statistically Steady State; 𝑅𝑒𝜏 = [200 500 800]

 .. 78

Figure 5-20 Friction velocity during transitory. 𝑅𝑒𝜏 = [200 500 800].. 79

Figure 5-21 Friction velocity during statistically Steady State 𝑅𝑒𝜏 = [200 500 800]. 80

Figure 5-22 q-criterion applied to the last .vtr file saved by the program. .. 81

Figure 5-23 Pseudocolor of the U , 𝑅𝑒𝜏 = [200 500 800] ... 82

Figure 5-24 Mach contour and q-criterion contour for 𝑅𝑒𝜏 = [200 500 800] 83

Figure 5-25 Pressure pseudocolor for 𝑅𝑒𝜏 = [200 500 800] ... 84

Figure 5-26 Density pseudocolor for 𝑅𝑒𝜏 = [200 500 800] .. 85

Figure 5-27 Mean streamwise velocity profile for 𝑇𝑤𝑎𝑙𝑙/𝑇𝑎𝑤 = [1 2 3] 88

Figure 5-28 Compressible Friction Coefficient , it gets smaller after the reflected shock by rising the

wall temperature. .. 89

Figure 5-29 . Reynolds Stress tensor for x = 20 .. 90

Figure 5-30 Reynolds Stress Tensor for x = 40 , In the interaction region the Reynolds shear stress

gets deeply negative by rising wall temperature. ... 91

Figure 5-31 Reynolds Stress Tensor for x = 60 .. 92

Figure 5-32 . Mean pressure normalized with the wall shear stress for 𝑇𝑟𝑎𝑡 = [1 2 3] 93

Figure 5-33 Pressure root mean square , the pressure fluctuation after the reflected shock gets higher

by increasing wall temperature. ... 94

Figure 5-34 Friction Reynolds number for 𝑇𝑟𝑎𝑡 = [1 2 3] ... 95

Figure 5-35Compressible Reynolds number for 𝑇𝑟𝑎𝑡 = [1 2 3] .. 96

Figure 5-36 Friction Velocity for 𝑇𝑟𝑎𝑡 = [1 2 3] ... 97

Figure 5-37 Q-criterion applied to last .vtr file saved by the program. ... 98

Figure 5-38 Pseudocolor of the U velocity component of the last .vtr file saved by the program. ... 99

Figure 5-39 Mach contour and q-criterion contour for 𝑇𝑟𝑎𝑡 = [1 2 3] .. 100

Figure 5-40 Temperature pseudocolor for 𝑇𝑟𝑎𝑡 = [1 2 3] . .. 101

Figure 5-41 Density pseudocolor for 𝑇𝑟𝑎𝑡 = [1 2 3] .. 102

Figure 5-42 Pressure pseudocolor for 𝑇𝑟𝑎𝑡 = [1 2 3] .. 103

Figure 5-43 Q-criterion applied to simulations with different grid sizes ... 105

Figure 5-44 Difference in Cf statistics with increasing grid sizes 106

Figure 6-1 CPU and GPU time performance at fixed 10 iterations ... 110

Figure 6-2 CPU and GPU time performance at fixed 100 iterations ... 111

Figure 6-3 CPU and GPU time performance at fixed 1000 iterations ... 111

Figure 6-4 CPU and GPU time performance at fixed 10000 iterations ... 111

7

Figure 6-5 CPU and GPU time performance at fixed 100000 iterations ... 112

Figure 6-6 Time ratio between CPU and GPU job clock time for a fixed number of 10 iterations 112

Figure 6-7 Time ratio between CPU and GPU job clock time for a fixed number of 100 iterations

 .. 112

Figure 6-8 Time ratio between CPU and GPU job clock time for a fixed number of 1000 iterations

 .. 113

Figure 6-9 Time ratio between CPU and GPU job clock time for a fixed number of 10000 iterations

 .. 113

Figure 6-10 Time ratio between CPU and GPU job clock time for a fixed number of 100000 iterations

 .. 113

Figure 6-11 Time needed to write a single output file for different grid sizes 114

Figure 6-12 CPU and GPU memory usage at fixed 10000 iterations .. 114

Figure 6-13 CPU and GPU memory usage at fixed 100000 iterations .. 115

Figure 6-14 CPU .plt files at different number of iterations . Pseudocolor of Mach number . Grid

size:200x200 .. 116

Figure 6-15 GPU .plt files at different number of iterations. Pseudocolor of Mach number. Grid size:

200x200 .. 117

Figure 6-16 Subsonic flow field with a grid size of 5 000 000 points ... 118

Figure 6-17 Supersonic flow field with a grid size of 2 560 000 points ... 119

Figure 6-18 Supersonic vector field around the selected sinusoidal geometry. 119

List of Tables
Table 1 Legion - technical specification .. 20

Table 2 Storages technical specification .. 20

Table 3 #SBATCH directives .. 22

Table 4 Inner and outer integral length scales in z direction ... 39

Table 5 Streamwise and Lagrangian length scales .. 39

Table 6 Integration time table .. 59

Table 7 Integration time table for temperature parametric study ... 87

Table 8 Grid characteristics of the simulations carried out ... 110

8

Introduction
In modern days, Computational Fluid dynamics (CFD) is widely used even in the preliminary phase

of an aerospace project , as computing performance of modern machines has rapidly increased in the

last decades and numerical investigation of fluid motion became a reliable tool to replace

experimental collection of data in various situations . Many CFD algorithms have been developed to

solve both the compressible and incompressible formulation of the flow field and with the advent of

open-source software it is possible to investigate complex physic interactions, such as turbulent

compressible wall-bounded flows at high Mach number , using solvers released under the GNU

General Public License .

However , given the dimensions of the physical domain, we know that the numerical solution

computed by these solvers is deeply influenced by the grid size . To achieve an accurate representation

of the flow field we need to rise the number of grid points to reduce the truncation error, which is due

to the difference between the set of Partial Differential Equations (PDE) that describes the physics

of the problem and the finite numerical schemes implemented to solve them.

If the numerical schemes involved are convergent , we can ideally tend to the real solution of the

problem by simply generating a really fine mesh of the fluid domain . On the other hand , it is

impossible to carry out simulations on a mesh with tens of millions of grid points by writing serial

source code running on ordinary Central Processing Units (CPUs) without facing issues related to

time of the integration and memory usage .

To solve the problem with present technologies , we can parallelize the source code using Graphic

Processing Units (GPUs) instead of CPUs . Frequently , in fluid dynamics we perform independent

arithmetic operations in each node of the grid . Thus , we can think about using GPUs which are made

of thousands of processing units (cores) designed to maximize throughput and not to minimize latency

like CPUs.

Moreover , to achieve higher performance , we can divide the domain into several subdomains and

assign each of them to a different physical device that can communicate boundary values and

synchronize with the others .

This is why we need High Performance Computing centers (HPC) , especially in the academic

community, to shed some light on compressible flows at high speed . HPC systems are servers made

of multiple computing nodes (CPUs and GPUs) connected through a network and running on Linux

or other Unix-like operating systems .

9

In the first part of this Master Thesis we present STREAmS , an open-source solver for “large-scale,

massively parallel direct numerical simulations (DNS) of compressible turbulent flows on graphical

processing units (GPUs) . STREAmS is written in the Fortran 90 language and it is tailored to carry

out DNS of canonical compressible wall-bounded flows “ [1]. In this work we analyze the interaction

between an oblique shock wave and a turbulent compressible boundary layer (SBLI) at supersonic

Mach number, focusing on evaluating strong and weak scalability of the solver. We executed the code

on HPC@POLITO Legion cluster , where the single node has four NVIDIA Tesla V100 GPUs.

In the second part of the thesis we parallelized a simple 2D CFD solver of Euler equations by

implementing the CUDA Fortran directives in the source code to use a single GPU of the cluster.

A comparison of physical time needed to conclude the integration of equations is reported for both

the CPU and GPU versions of the code , in order to show the benefits of these technologies in future

implementations of more sophisticated CFD numerical solvers.

10

Chapter 1
CUDA Fortran
In the past , GPUs were generally made for graphic applications and one of the most common personal

use of them deals with the entertainment industry. In the early ‘90s these devices had specific

architecture for specific fixed functions and operations on 2D or 3D data structures, like shading

triangles and pixels for graphic rendering of images . Later on people realized that we can use the

same hardware design and software applications in different fields that involve the processing of huge

multi-dimensional data .

The newer generation of GPUs have evolved into computational units with highly parallel

programming capabilities, that are easier to access through the use of libraries released both by the

same GPU hardware developers , such as NVIDIA Corporation with their CUDA library , and the

open source community. In scientific computing , GPUs are deeply impacting performances in

applications that require the processing of massive arrays and matrices , especially when we use

multiple devices connected together in HPC clusters .

Figure 1-1 Overview of NVIDIA GPU applications and libraries. Credits from [2]

11

1.1 CPU and GPU architectures
A typical parallel computing system requires both a CPU and a GPU . The first one is optimized to

minimize latency , to be able to switch between different operations in a very short time , while the

latter is optimized to maximize throughput, to push as many independent operations as possible

through the device to process a huge amount of data .

Figure 1-2 Difference in architecture schemes between CPUs and GPUs. Credits from [2]

The main differences in architectures are the followings :

• CPU is designed to excel at executing a sequence of operations , called a thread , as fast as

possible , but it can execute in parallel only a few tens of these threads because of the small

amount of processing units that are embedded on the chip . Generally , the infrastructure of

the chip is made of :

1 large Cache memory , to have readily available data that are copied from the DRAM;

2 control flow transistors to order the execution of operations;

3 A few Arithmetic Logic Units (ALU) or cores , which read , process and write data

back to the L Cache memory space .

• GPU is designed to excel at executing thousands of threads in parallel , amortizing the slower

single-thread performance to achieve greater throughput . In GPUs the balance of CPU

hardware elements is shifted :

1 there are tons of ALUs to have sufficient work on the device , to hide the bigger latency

which comes with this architecture ;

12

2 The L Cache is shrinked , so we have more data to be copied back and forth the

DRAM;

3 Cores are grouped into arrays of Streaming Multiprocessors (SM) to distribute the

workload efficiently across the multiple processing units .

Basically , in recent CPUs we can have about twelve or sixteen cores and we want to switch among

different tasks as fast as we can by making memory accesses as short as possible to cache the data

and continuing processing .

On the other hand , in GPUs it can take a longer time for processors to receive data from the memory

space , but as we are running thousands of them in parallel to hide this latency and produce a massive

data output , it seems like the single GPU thread has better performance than the CPU one . However,

all this is possible only when we have independent operations, like graphic renderings or loops over

points of a mesh grid as in CFD applications .

1.2 CUDA Fortran program structure
In this section we introduce and discuss the programming model for Computing Unified Device

Architecture (CUDA) using the high-level Fortran language . We point out the fact that CUDA is a

free downloadable library developed by NVIDIA Corporation, which is currently supported on Linux

Operating Systems and offers routines for most common programming languages such as C , C++ or

Fortran F77/F90.

Fortran is a key programming language for high performance computing developers , especially in

the field of CFD simulations of complex systems such as high-speed turbulent compressible flows or

weather and ocean modeling , rather than applications regarding finite-element analysis , molecular

dynamics and quantum chemistry .

The NVIDIA CUDA Fortran Compiler provides Fortran language support for NVIDIA’s CUDA-

enabled GPUs . To build a Fortran source code with GPU capability we used the Portland Group Inc.

(PGI) PGF90 compiler in the HPC@POLITO Legion cluster with the -Mcuda option activated to

recognize and implement the CUDA Fortran directives .

In CUDA programs we can identify the CPU as the host , which executes the source code and

manages allocation of variables and parallel subroutine invocation on the device , that is the GPU.

To give a brief overview, CUDA programs must perform the following steps [3]:

a) Select the GPU to run on ;

13

b) Allocate memory for data on the GPU using the attributes(device) syntax ;

c) Move data from the host to the device via the Peripheral Component Interconnect (PCI) bus;

d) Launch kernels (subroutines) from the host to run on the multiple cores of the GPU ;

e) Gather results back from the GPU for further processing in the host program , again via the

PCI bus ;

f) Deallocate the data on the GPU to free the device memory space.

Through the use cudafor syntax in the host code , we can access a Fortran module that makes possible

kernel launches on the GPU and where all special CUDA memory attributes are defined .

1.3 Memory Hierarchy
In CUDA Fortran programs , we can allocate variables into different memory spaces . The CPU can

access data into the host main memory and transfer copies of the variables to and from the device

global memory [3].

The CUDA threads are organized into blocks and can cooperate using shared memory, a low-latency,

high bandwidth cache memory . We can organize threads in a block using one-, two-, or three-

dimensional indices accessed through the built-in threadidx variable.

Blocks of threads are organized in a one-, two-, or three-dimensional grid , so each thread has a thread

index within the block and a block index within the grid [3] .

Figure 1-3 Organization of CUDA threads on the device hardware. Credits from [2]

14

For the one-dimensional case , we may know the global index of a thread by using the built-in

functions :

𝑖 = 𝑏𝑙𝑜𝑐𝑘𝑖𝑑𝑥%𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚%𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑𝑥%𝑥

Through the dim3 derived type , defined in the cudafor module , we can specify variables in the host

code to manage the group configuration of threads and blocks within the grid , in order to control the

mapping of subroutines into CUDA cores .

On the GPU side , each thread has its private local memory. Each thread block has shared memory

visible to all threads of the block and with the same lifetime as the block. Furthermore, all threads

have access to the same global memory as shown in the following scheme [2]:

Figure 1-4 Memory space organization on the device. Credits from [2]

We can carry out dynamic allocation of multi-dimensional arrays through the attribute allocatable in

the variable declaration , to avoid segmentation fault errors with high numbers of array elements.

15

Variables resident in the GPU memory have the device attribute , in Fortran we can simply copy

variables from the CPU to the GPU and back with explicit assignment syntax , for instance:

A_gpu = A

To optimize the code , we can use the pinned attribute for variables which are frequently transferred

between host and device , to put them directly in special page-locked host physical memory, when it

is available . In this way Direct Memory Access of host memory is faster, as variables are copied

from virtual to physical memory only when page-locked memory is not available [3].

Figure 1-5 Transfer of variables from host to device over the PCI bus , credits from [4]

GPU read-only variables are allocated in the device constant memory space , which allows really fast

accesses . These data may not be assigned or modified in any device subprogram, but can be modified

in host parts of the source code and have lifetime of the entire application.

Some scalar variables may be allocated in local thread private memory , which can be implemented

as processor registers or may be allocated in the global device memory , the slowest GPU memory

space [3].

1.4 Kernel Subroutines
CUDA Fortran allows the definition of Fortran subroutines which can be executed in parallel by

different CUDA threads . A thread is a computational unit on the GPU which reads data from the

memory space , executes an arithmetic operation and writes data back to the memory . As GPUs are

made to maximize throughput , there are thousands of cores which can run subroutines in parallel.

16

To define a kernel we can use the attributes(global) specifier on the subroutine statement , in the host

code we call the subroutine to run in parallel on the GPU using special chevron syntax to specify the

number of thread blocks in the grid and the threads within each block , in parenthesis we specify the

subroutine parameters , for instance :

𝑡𝑦𝑝𝑒(𝑑𝑖𝑚3) ∷ 𝑏𝑙𝑜𝑐𝑘𝑠, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠

𝑏𝑙𝑜𝑐𝑘𝑠 = 𝑑𝑖𝑚3(𝑛/256, 𝑛/16,1)

𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 𝑑𝑖𝑚3(16,16,1)

𝑐𝑎𝑙𝑙 𝑑𝑒𝑣𝑘𝑒𝑟𝑛𝑒𝑙 < < < 𝑏𝑙𝑜𝑐𝑘𝑠, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 > > > (…)

However , CUDA Fortran allows automatic Kernel generation and invocation from a region of host

code containing nested loops [3], the kernel directive is:

! $cuf kernel do(n) < < < ∗ , ∗, [𝑠𝑡𝑟𝑒𝑎𝑚] > > >

After a host program launches a kernel subroutine on a queue for execution by the device , it can

continue executing the following lines of the source code . By calling the routine :

𝑖𝑒𝑟𝑐𝑢𝑑𝑎 = 𝑐𝑢𝑑𝑎𝐷𝑒𝑣𝑖𝑐𝑒𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒()

the host program waits until all previously Kernel executions are completed and stores integer error

values in iercuda .

The CUDA Fortran application can manage more levels of concurrency by using multiple CUDA

streams . Basically we can place operations on different queues that execute concurrently with each

other on the GPU. For instance in STREAmS the evaluation of convective fluxes for internal points

can be performed before receiving the boundary values from other MPI processes . Thus, the

exchange of ghost node variables can be overlapped with the flux evaluation by placing it on a

different CUDA stream.

Figure 1-6 Multiple concurrency scheme running on GPU and CPU using CUDA Streams , credits from [5]

It is possible to create multiple streams through the routine :

17

𝑐𝑢𝑑𝑎𝑆𝑡𝑟𝑒𝑎𝑚𝐶𝑟𝑒𝑎𝑡𝑒(𝑠𝑡𝑟𝑒𝑎𝑚_𝑛𝑢𝑚𝑏𝑒𝑟)

1.5 1D Vectorial Addition
To give an example of a typical CUDA Fortran program structure , a simple source code that executes

in parallel the addition of two one-dimensional arrays A and B has been written and compiled to make

an executable file which can run on a single GPU of the Legion cluster .

Firstly , in the variabili.F90 module , we define CPU and GPU versions of the arrays using special

attributes introduced in the previous sections :

module variabili

 use cudafor

 implicit none

 integer :: N, iercuda !number of array elements

 real(4),dimension(:),allocatable,pinned :: A , B , C

 real(4),dimension(:),allocatable,device :: A_gpu , B_gpu , C_gpu

endmodule variabili

This module can be used in any host subprogram, but we need to remember that some variables are

allocated just on the device and other ones in the host memory space , therefore we need to make sure

that kernels launched on the GPU may only have access to the device version of variables otherwise

a segmentation fault may occur .

In the main.F90 program we use the module and call a series of subroutines to perform the addition .

We need to read with the CPU the two vectors from an input.dat file , where in the first lines we

specify the number of array elements to allocate them both in the host and the device , and store the

values in the CPU memory space :

program main

 use variabili

 call readinp

 call solver

 call writeout

endprogram main

In particular the solver.F90 is written as followed :

subroutine solver

 use variabili

18

 implicit none

 integer :: i

 call copy_cpu_to_gpu()

 !$cuf kernel do(1) <<<*,*>>>

 do i =1,N

 C_gpu(i) = A_gpu(i) + B_gpu(i)

 enddo

 !@cuf iercuda=cudaDeviceSynchronize()

 call copy_gpu_to_cpu()

endsubroutine solver

It is interesting to note that CUDA Fortran directives are preceded by a comment sign , which in

Fortran language is the exclamation mark . In this way, GPU kernels are generated by the pgf90

compiler only when the -Mcuda option is activated in the makefile running on Linux . If we carefully

set the preprocessor directives we may think about writing a CUDA program which can run only on

the CPU when CUDA is not available , without releasing multiple versions of the source code. For

the moment this is not the case as in GPU variables the special device attribute has to be defined.

We can easily identify the copying procedure from CPU to GPU in Fortran using a simple explicit

assignment:

subroutine copy_cpu_to_gpu()

 use variabili

 implicit none

 A_gpu = A

 B_gpu = B

endsubroutine copy_cpu_to_gpu

However , we should limit these transfers as much as we can to avoid a bottleneck in computing

performance , in fact the PCI bus which links the CPU and the GPU has limited bandwidth and data

passage over it can slow down tremendously the Fortran application .

To make a comparison between the serial CPU version of the addition using one-dimensional loops

and the GPU version exploiting multi-thread kernels , we evaluated the job time of the application

through a call to the cpu_time routine before and after the solver subroutine in the main program .

In this way we try to compare time performance of completely serial loops with CUDA Fortran

kernels , cutting off the time needed to read and write files with the CPU . We need to keep in mind

19

that the more workload we leave on the device without copying data back to the host to perform serial

processing , the more benefits we gain regarding time to complete the application .

Figure 1-7 CPU and GPU time performance without serial writing of output data.

Figure 1-8 Ratio between the CPU and the GPU runtime of the application.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.00E+06 1.00E+07 1.00E+08 1.00E+09

O
p

er
at

io
n

 t
im

e
[s

]

Array elements

CPU vs GPU performance

CPU

GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.00E+06 1.00E+07 1.00E+08 1.00E+09

t_
C

P
U

/t
_G

P
U

Array elements

CPU vs GPU performance

20

Chapter 2
Legion and MPI

2.1 Cluster technical specifications
All simulations in this master thesis have been carried out in HPC@POLITO Academic Computing

Center , which provides computational resources for research activities and didactical purposes . In

particular the cluster used for parallel computing was Legion , that has the following technical

specifications [6] :

Table 1 Legion - technical specification

Architecture Cluster Linux Infiniband-EDR MIMD Distributed Shared-Memory

Node Interconnect Infiniband EDR 100 Gb/s

Service Network Gigabit Ethernet 1 Gb/s

CPU Model 2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores

GPU Node 8x nVidia Tesla V100 SXM2 - 32 GB - 5120 cuda cores

Performance 21.1 TFLOPS (July 2019)

Computing Cores 448

Number of Nodes 14

Total RAM Memory 5.4 TB DDR4 REGISTERED ECC

OS CentOS 7.6 - OpenHPC 1.3.8.1

Scheduler SLURM 18.08

Table 2 Storages technical specification

Home Storage 140 TB on RAID 6, throughput near 200 MB/s

Lustre Storage 87 TB. throughput greater than 2.2 GB/s

Storage Interconnect Ethernet 10 Gb/s

2.2 How to launch a Job
Each account logs into a frontend node of the cluster using a simple ssh client from any Linux , Unix,

OSX or Windows terminal by simply typing the following line:

$ ssh username@legionlogin.polito.it

21

and inserting then the account password .

After accessing the cluster , the first directory shown is the user’s /home directory located in the Home

Storage , this is one of the two directories where data have to be put in to start a job and where results

will be written at the end of the task. There is one TB available for each user .

All users can access a high performance storage, implemented with the Lustre filesystem, that is really

good to improve tasks making consistent I/O operations on files. This secondary directory , accessible

with the command : cd /work/username , was set as the starting directory of each job launched on the

cluster , due to the massive amount of output data computed by the CFD solvers in this thesis. Also

this storage space has one TB per user by default.

Normally , jobs are launched on the cluster as batch processes , that means they are non interactive

and their execution is managed by the SLURM scheduler , which distributes processes among cluster

nodes and allocates memory resources . After submission of a job using the command :

sbatch file_batch_legion

it is queued on a priority line waiting for resources that my be drained by other jobs running on the

same cluster partition . The special partition for GPU tasks in Legion is cuda , where there are 4 GPU

slots per node and jobs can have a maximum duration of 5 days . This is why it is highly

recommendable to use CFD numerical codes which have restarting options to continue a really long

time integration .

As an example , a typical batch file with some scheduler directives (starting with #SBATCH syntax)

for the execution of the job is shown below. It can be expected that #SBATCH commands will not

be run by the Linux shell but only interpreted by the SLURM resource manager :

#!/bin/bash

#SBATCH --job-name=SBLI

#SBATCH --mail-type=ALL

#SBATCH --mail-user=mail@studenti.polito.it

#SBATCH --partition=cuda

#SBATCH -o output.out

#SBATCH -e output.err

#SBATCH --time=10:00:00

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=2

#SBATCH --gres=gpu:2

#SBATCH --mem=2GB

mpirun -n 2 ./streams.exe

The most important directives that have been used for simulations in this thesis are the following:

22

Table 3 #SBATCH directives

--partition Indicates the partition where the job has to be scheduled (default=global).

--output the standard output is redirected to the file name specified, by default both standard

output and standard error are directed to the same file.

-error instruct Slurm to connect the batch script's standard error directly to the file name

specified.

--time Indicates the hard run time limit, which is about the time that processes needs to reach

the end. This value must be less than 5 days for tasks on cuda partition.

--nodes Each server is referred as a node and is associated with the –nodes directive

--ntasks-per-

node

Give the possibility to control the number of task on one single node

--gres=gpu:N of

gpu

Generic resource scheduling, used for specify the required number

of GPU(s) per node .

--mem Specify the real memory required per node, default units are megabytes.

We need to be careful in specifying memory for the job , which is treated as a consumable resource.

If requests of memory are not congruous with the job real usage , the overall throughput of the system

is penalized along with our position on the priority line computed by the algorithm , therefore we

need to be enough precise in demanding more memory than the default value for the job , which is

one GB per core . It is advisable to estimate memory usage analyzing precedent completed jobs .

2.3 Message Passing Interface
MPI stands for Message Passing Interface . Generally , it is software that runs on a server and

simplifies the network activity among nodes of the cluster . In this way , the application source code

can run parallelly in different nodes and the exchange of information is made easier by this software

library , which is available for most common programming languages such as C , C++ , Fortran 77/90.

There are different implementations of MPI , some of them are Open Source such as OpenMPI.

The main purpose of parallel computing is sharing the job across multiple nodes in a server . For

instance, in fluid dynamics we can divide the computational domain into different subdomains and

assign each of them to a different CPU/GPU of the cluster . The evaluation of numerical fluxes for

internal points of the subdomains can run independently , but at a certain point we need to exchange

boundary values of the conservative variables and this is done through MPI communication across

different processes .

23

Figure 2-1 Distribution of the job among 4 nodes of the cluster . MPI software is midware the user application
and the operating system. From [7]

However, to deliver high performance computing we need a network with low latency and high

bandwidth , otherwise the communication process may overcome the benefits of sharing the job. In

the past, in the first tens of seconds after the job launch there was a massive exchange of information

(Megabytes of data) among processes running on different cluster nodes needed just to set the MPI

environment .

Basically , through the MPI programming module we run in parallel multiple versions of the source

code across different CPUs of the cluster , in this way in a CFD application each process can work

on a single portion of the domain and communicate with other processes through the network.

For instance , in the numerical solver STREAmS used in this thesis we can set the MPI decomposition

of the fluid domain along streamwise (x) and spanwise (z) direction in the input.dat file , but not in

the wall-normal direction y . We need to specify the number of processes with the -n option when

executing the mpirun command in the Linux shell . Then , in the program main.F90 a call to the

startmpi.F90 subroutine initialize the MPI environment . Each process is assigned a rank number

(integer), which is set through a call to the mpi_comm_rank subroutine , to identify it in the MPI

communicator . Using the rank we can write if statements to make a root process . In this way , parts

of the code can run differently among the cluster nodes when the logical variable masterproc is true,

for instance:

24

𝑖𝑓(𝑟𝑎𝑛𝑘 == 0) 𝑡ℎ𝑒𝑛

𝑚𝑎𝑠𝑡𝑒𝑟𝑝𝑟𝑜𝑐 = . 𝑡𝑟𝑢𝑒.

𝑒𝑛𝑑𝑖𝑓

𝑖𝑓 (𝑚𝑎𝑠𝑡𝑒𝑟𝑝𝑟𝑜𝑐) 𝑡ℎ𝑒𝑛

… 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑒𝑙𝑠𝑒

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑒𝑛𝑑𝑖𝑓

A typical format to initialize MPI processes in Fortran F90 is the following , where the input

parameters are all integers :

 call mpi_init(iermpi)

 call mpi_comm_rank(mpi_comm_world,nrank,iermpi)

 call mpi_comm_size(mpi_comm_world,nproc,iermpi)

To send and receive a message (for example boundary values) between different processes we need

to know the source and destination rank in the MPI communicator world.

Through the OpenMPI syntax we can give different structures to the default communicator . In

STREAmS with startmpi.F90 subgroups of MPI processes with Cartesian topology are created using

mpi_cart_create and mpi_cart_sub routines , furthermore it is possible to identify them based on their

coordinates in the cartesian grid , which are set through a call to mpi_cart_coords subroutine (ncoords

is a three-dimensional array of integers) :

 call mpi_cart_create(mpi_comm_world,ndims,nblocks,pbc,reord,mp_cart,iermpi)

 call mpi_cart_coords(mp_cart,nrank,ndims,ncoords,iermpi)

 call mpi_cart_sub(mp_cart,remain_dims,mp_cartx,iermpi)

 call mpi_comm_rank(mp_cartx,nrank_x,iermpi)

To easily identify the source and destination process rank of a buffer array within the cartesian

topology we use the mpi_cart_shift subroutine and store the values in ileft and iright variables to find

neighbors of the considered process . For example , in the x direction .

 call mpi_cart_shift(mp_cartx,0,1,ileftx,irightx,iermpi)

A single process can broadcast data to other processes in the communicator by using the 𝑚𝑝𝑖_𝑏𝑐𝑎𝑠𝑡

subroutine , this is the case for the target Reynolds stress matrix needed for cross-correlation of

turbulence in digital filtering , computed only by the root process.

25

Generally, only the root process has to write standard error and standard output which are redirected

to the .out and .err files. In addition to that , the master process has to allocate variables , to read the

input.dat file and to generate the mesh grid.

Furthermore , we can choose only a certain subgroup of processes in the cartesian topology by

selecting them based on their 𝑛𝑐𝑜𝑜𝑟𝑑 value. This is the case in the writing of 2D statistics in

STREAmS where only (ncoords(3) == 0) processes access and write to the stat output files.

2.4 Boundary values exchange across multiple MPI processes
As an example we analyze the bcswap.F90 subroutine in STREAmS intended to exchange boundary

values across different MPI processes . Firstly , we copy ghost cell variables of each subdomain into

buffer arrays through the use of cuf kernels to run in parallel the reading/writing procedure on the

GPU.

!$cuf kernel do(3) <<<*,*>>>

 do k=1,nz

 do j=1,ny

 do i=1,ng

 do m=1,nv

 wbuf1s_gpu(i,j,k,m) = w_gpu(i,j,k,m)

 wbuf2s_gpu(i,j,k,m) = w_gpu(nx-ng+i,j,k,m)

 enddo

 enddo

 enddo

 enddo

 !@cuf iercuda=cudaDeviceSynchronize()

Secondly, we move the send buffer from the GPU to the CPU by using the cudaMemcpyAsync

routine , specifying the CUDA stream2 to run the operation concurrently with Eulerian flux

evaluation for internal points. The cudaStreamSynchronize call stops the execution of the host code

until the copying procedure is completed.

cudaMemcpyAsync(wbuf1s, wbuf1s_gpu, indx, cudaMemcpyDeviceToHost, stream2)

cudaStreamSynchronize(stream2)

Thirdly , we can send/receive buffer arrays resident on the CPU to/from neighbor MPI processes

using the 𝑚𝑝𝑖_𝑠𝑒𝑛𝑑𝑟𝑒𝑐𝑣 routine . To find the source and destination process rank within the cartesian

topology we used the 𝑚𝑝𝑖_𝑐𝑎𝑟𝑡_𝑠ℎ𝑖𝑓𝑡 routine in the startmpi.F90 file.

call

mpi_sendrecv(wbuf1s,indx,mpi_prec,ileftx,1,wbuf2r,indx,mpi_prec,irightx,1,

mp_cartx,istatus,iermpi)

26

Finally , we copy the received buffer back to the GPU using again the cudaMemcpyAsync routine .

Again another call to cudaStreamSynchronize is necessary before the execution of the following lines.

To conclude , the received buffer arrays are copied into ghost nodes using again the cuf kernels to

run the reading/writing procedure in parallel on the GPUs.

However , in the most recent CUDA implementations we can pass device-resident variables across

different MPI processes if CUDA-Aware MPI is available . The structure of the code is similar but

we need to specify device-resident buffer arrays in the mpi_sendrecv subroutine.

Figure 2-2 Scheme for MPI flow of buffer arrays in X direction

27

Chapter 3
STREAmS
STREAmS is an open-source CFD solver developed by D. Modesti , F. Salvadore, M. Bernardini and

S. Pirozzoli from the “Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di

Roma” ; “Aerodynamics Group , Faculty of Aerospace Engineering , Delft” and “HPC Department,

Cineca” . It can be downloaded from https://github.com/matteobernardini/STREAmS and it is used

to investigate three complex cases of canonical turbulent compressible wall-bounded flows:

1. compressible turbulent channel flow

2. compressible zero-pressure-gradient turbulent boundary layer

3. supersonic oblique shock wave/turbulent boundary-layer interaction (SBLI)

Fully compressible Navier-Stokes equations are solved with a finite difference approach on a

Cartesian mesh , for a perfect heat-conducting gas . In this section we briefly describe the

methodology followed to solve the set of equations , in particular we present a digital-filter technique

that has been implemented by the authors of the program to generate artificial turbulence for the case

under investigation , that is the SBLI at a supersonic Mach number . After that , some parametric

studies have been carried out in Legion cluster and results have been collected and reported in this

thesis , focusing on the visualization of the flow field through the open-source program Visit and

reporting some graphs of the flow statistics using MATLAB .

3.1 Navier-Stokes equations
In fluid mechanics we can write the governing equations of viscous compressible flows in local

conservative form . Given an elementary volume fixed in cartesian space, we can explicit the time

derivative of conservative variables by considering the fluxes of mass , momentum and energy, for a

perfect heat-conducting gas, across the multiple walls of the infinitesimal volume .

Therefore , the continuity equation in divergence form is :

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌�̅�) = 0

where ρ is density and q is the velocity vector field , while ∇ is the divergence operator :

�̅� = [
𝑢
𝑣
𝑤
]

∇ ⋅ (𝜌�̅�) =
𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
+
𝜕(𝜌𝑤)

𝜕𝑧

https://github.com/matteobernardini/STREAmS

28

Similarly , we can write the vectorial equation of momentum for a viscous compressible flow:

𝜕(𝜌�̅�)

𝜕𝑡
+ ∇ ⋅ (𝜌�̅� ⊗ �̅�) = ∇ ⋅ 𝜎 + 𝜌𝑓 ̅

where 𝜎 is the stress tensor , which has an hydrostatic and a deviatoric component :

𝜎 = − 𝑝𝐼 ̿ + 𝜏̿

The viscous stress tensor in the relation above can be written as a function of velocity gradients as:

𝜏𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝜇 ∇ ⋅ �̅� 𝛿𝑖𝑗

�̅��̅� is a tensor of velocity components :

�̅�⨂�̅� = [
𝑢𝑢 𝑢𝑣 𝑢𝑤
𝑣𝑢 𝑣𝑣 𝑣𝑤
𝑤𝑢 𝑤𝑣 𝑤𝑤

]

𝜇 is the molecular viscosity, which is a function of temperature T that can be accounted for through

Sutherland’s law , while 𝛿𝑖𝑗 is the Kronecker delta . 𝑓 ̅is the vector of body mass forces such as gravity

or centrifugal forces . p is pressure and 𝐼 ̿is the identity tensor .

Finally we can write the energy scalar equation as:

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇ ⋅ (𝜌𝐸�̅�) = ∇ ⋅ (�̿� ⋅ �̅�) + 𝜌𝑓̅ ⋅ �̅� − ∇ ⋅ �̅�𝑇

�̅�𝑇 = −𝑘∇𝑇 = −𝑘
𝜕𝑇

𝜕𝑥𝑖
 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑒𝑎𝑡 − 𝑓𝑙𝑢𝑥 𝑣𝑒𝑐𝑡𝑜𝑟

𝐸 = 𝑐𝑣𝑇 +
𝑞2

2

Where E is the total energy per unit mass , 𝑒 = 𝑐𝑣𝑇 is the fluid internal energy per unit mass and

therefore the total enthalpy H can be written as a function of total energy E , pressure p and density

ρ:

𝐻 = 𝐸 +
𝑝

𝜌

k is the thermal molecular conductivity which in STREAmS is deeply linked to 𝜇 with the Prandtl

number Pr = 0.72 through the expression :

𝑘 =
𝑐𝑝𝜇

𝑃𝑟

29

It is impossible to find analytical procedures to solve this system of PDE equations , apart for really

simple canonical cases . Hence , discrete numerical schemes are needed to approximate the real

solution using algorithms on computing machines.

3.2 Spatial discretization
The convective terms in the Navier-Stokes equations are discretized using a hybrid energy-

conservative, shock-capturing scheme in locally conservative form [1] .

Given the transported quantity φ it is possible to define the convective flux in one space direction:

𝑓𝑥 = ρ𝑢φ

φ = 1 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

φ = 𝑢 𝑓𝑜𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

φ = 𝐻 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

To discretize the convective derivatives in a mesh with equally spaced grid points we can use a finite

difference approach based on Tylor expansion formula for first order derivatives:

𝜕𝑓𝑥
𝜕𝑥
|
𝑖
=
1

∆𝑥
(𝑓𝑥,𝑖+1/2 − 𝑓𝑥,𝑖−1/2)

The numerical fluxes at intermediate nodes i + ½ of the mesh are obtained by defining the three-point

averaging operator [1] :

(𝐹, 𝐺, �̃�)
𝑖,𝑙
=
1

8
(𝐹𝑖 + 𝐹𝑖+𝑙)(𝐺𝑖 + 𝐺𝑖+𝑙)(𝐻𝑖 + 𝐻𝑖+𝑙)

Therefore , it is possible to recast in conservative form the split formulation of the Eulerian fluxes

[1]:

𝑓𝑥,𝑖+1/2 = 2∑𝑎𝑙

𝐿

𝑙=1

∑(𝜌, 𝑢, �̃�)𝑖−𝑚 ,𝑙

𝑙−1

𝑚=0

where al are standard coefficients for central finite-difference approximations of the first derivative ,

yielding order of accuracy 2 L . In smooth (shock-free) regions of the flow we use a fourth-order

energy-consistent flux, which guarantees that the total kinetic energy is discretely conserved in the

limit case of inviscid incompressible flow [1] .

Viscous terms are expanded to Laplacian form and also approximated with fourth-order formulas to

avoid odd-even decoupling phenomena [1] :

30

𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑥
|
𝑖
)|
𝑖

=
𝜕𝜇

𝜕𝑥
|
𝑖

𝜕𝑢

𝜕𝑥
|
𝑖

+ 𝜇
𝜕2𝑢

𝜕𝑥2
|
𝑖

=

1

∆𝑥2
∑ 𝑎𝑙

2𝜇𝑖+𝑙𝑢𝑖+𝑙

𝐿

𝑙=−𝐿

+ 𝜇𝑖
1

∆𝑥2
∑ 𝑏𝑙𝑢𝑖+𝑙

𝐿

𝑙=−𝐿

where bl are the finite difference coefficients for the second derivative of order 2 L .

Equations are solved in a physical rectangular box of dimensions 𝑟𝑙𝑥 × 𝑟𝑙𝑦 × 𝑟𝑙𝑧 where the three

cartesian axes of the reference system points to streamwise x , wall-normal y and spanwise z

directions. The mesh spacing is constant in wall-parallel directions x and z , while to cluster grid

points towards the wall-resolved region , where velocity gradients are stronger and viscous effect are

dominant for the non-slip condition , an hyperbolic sine mapping is chosen from 0 to the distance

rlywr , which is computed after choosing the number of grid points in the wall-region in the input.dat

file . Then a geometric progression is applied from y=rlywr up to y = rly to have constant spacing in

the upper wall-normal direction.

Figure 3-1 Mesh detail of the wall region in the x-y plane

31

3.3 Time integration
The vector of conservative variables is defined as :

𝑤 =

[

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝐸]

after discretizing the convective Eulerian and viscous fluxes in all space directions it is possible to

perform a discrete time integration . In STREAmS the system of equations is advanced in time using

Wray’s three-stage third-order scheme [1] ,

𝑤(𝑙+1) = 𝑤(𝑙) + 𝛼𝑙∆𝑡𝑅
(𝑙−1) + 𝛽𝑙∆𝑡𝑅

(𝑙), 𝑙 = 0,1,2

𝑤(0) = 𝑤𝑛

𝑤𝑛+1 = 𝑤(3)

where R is the vector of the residuals.

The integration coefficient are:

𝛼𝑙 = [
0

17/60
−5/12

]

𝛽𝑙 = [

8/15
5/12
3/4

]

It is possible to calculate primitive variables such as velocity components (u,v,w) , velocity module

q, temperature T, pressure p, speed of sound a and entropy s using the w components , given the gas

properties , such as 𝛾 = 𝑐𝑝

𝑐𝑣
 , and closing the system with the state equation for a perfect heat-

conducting gas.

In STREAmS equations are in non-dimensional form . In order to avoid the specification of ambient

pressure and temperature at the inlet plane their static values are set to unity , therefore the wall

temperature in adiabatic conditions is equal to the recovery value :

𝑇𝑟
𝑇∞
= 1 +

(𝛾 − 1)

2
𝑟𝑀∞

2

𝑟 = 𝑃𝑟1/3 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑓𝑎𝑐𝑡𝑜𝑟

The inlet speed of sound and streamwise velocity are simply :

32

𝑎∞ = √𝛾

𝑢∞ = √𝛾 ⋅ 𝑀∞

3.4 Boundary conditions
It is important to point out the fact that the discrete solution is deeply affected by the boundary

conditions imposed by the physics of the problem . Hence , we need to be careful in selecting those

conditions for the case under investigation , otherwise the convective numerical fluxes may be

completely wrong and we can never converge to the real solution of the problem .

In our case , an oblique shock wave is generated artificially from the upper wall of the rectangular

domain by imposing the Rankine-Hugoniot relations , valid for inviscid compressible flows for a

given flow deflection angle θ and an inlet Mach number rm specified in the input.dat file . In this way

the discontinuity in the flow field is treated explicitly , as shock relations stem from conservation of

mass , momentum and energy applied to an elementary volume fixed in space . For the case :

[𝜌𝑢]1 = [𝜌𝑢]2

[𝜌𝑢2 + 𝑝]1 = [𝜌𝑢
2 + 𝑝]2

[(𝜌𝐸 + 𝑝)𝑢]1 = [(𝜌𝐸 + 𝑝)𝑢]2

By rearranging the above equations it is possible to calculate cinematic and thermodynamic properties

of the flow after the shock as a function of quantities in normal direction to the shock :

𝑀1𝑛 = 𝑀1𝑠𝑖𝑛(𝜎)

𝑝2
𝑝1
= 1 +

2𝛾

𝛾 + 1
(𝑀1𝑛

2 − 1)

𝜌2
𝜌1
=
𝑢1𝑛
𝑢2𝑛

=
(𝛾 + 1)𝑀1𝑛

2

(𝛾 − 1)𝑀1𝑛
2 + 2

𝑣1𝑡 = 𝑣2𝑡

𝑢2 = 𝑞2𝑐𝑜𝑠(𝜃)

𝑣2 = −𝑞2𝑠𝑖𝑛(𝜃)

Where 𝑀1𝑛 is the component of the Mach number normal to the oblique shock . The shock angle σ

can be evaluated using classic 𝜃 − 𝜎 −𝑀 relations :

𝑡𝑎𝑛(𝜃) =
2

𝑡𝑎𝑛(𝜎)
∙ [

𝑀1
2(𝑠𝑖𝑛𝜎)2 − 1

𝑀1
2(𝛾 + 𝑐𝑜𝑠2𝜎) + 2

]

33

The interaction region with the turbulent boundary layer corresponds to the lower wall , where a

recirculation bubble forms due to the adverse pressure gradient and a reflected shock generates from

a nominal abscissa known as the impinging point .

In the rest of the domain , the solver applies shock-capturing schemes based on Lax-Friedrichs flux

vector splitting , using a weighted essentially non-oscillatory (WENO) reconstruction of positive

and negative characteristic fluxes at the interfaces . WENO is active if the shock sensor value exceeds

0 < 𝑡𝑟𝑒𝑠𝑑𝑢𝑐 < 1 , that can be set in the input.dat file along with the shock deflection angle and the

nominal impinging abscissa of the reflected shock . To judge the local smoothness of the numerical

solution , the classic shock sensor expression is [1] :

𝜃 = 𝑚𝑎𝑥 (
−∇ ⋅ 𝑢

√∇ ⋅ 𝑢2 + ∇ × u2 + u0
2/L0

, 0) ∈ [0,1]

where 𝑢0, 𝐿0 are suitable velocity and length scales , 𝜃 ≈ 0 in smooth regions and 𝜃 ≈ 1 in presence

of a shock [1].

In the spanwise direction z the flow is assumed to be statistically homogeneous , therefore periodic

boundary conditions are applied . At the lower wall of the rectangular domain the non-slip condition

is applied to take into account viscous effects on the flow field .

At the outflow plane non-reflecting boundary conditions are imposed by performing characteristic

decomposition in the direction normal to the boundary [1].

To gain a more in-depth knowledge about turbulence , artificial generation of velocity fluctuations

through digital filter techniques has been studied to further investigate the boundary condition at the

inlet plane of the domain .

3.5 Digital filter design techniques for turbulence generation
The most simple inlet condition for SBLI would only satisfy the mean turbulent velocity profile,

discarding fluctuations. It may be possible to pass from a laminar to a turbulent state by inserting a

region before the shock interaction where transition occurs . Unfortunately, this would lead to

unnatural flow behavior with a much delayed transition to realistic turbulence [8] . From experiments

we know the intensity of perturbations are of the order of 1-3 % of the averaged streamwise and wall-

normal velocity profiles.

Turbulent eddies have different sizes with different energies and wave numbers associated , a typical

scheme of how turbulent kinetic energy is transferred from larger size eddies to smaller isotropic ones

and then dissipated into heat is shown in Figure 3-2 :

34

Figure 3-2 Energy Cascade scheme for turbulent eddies , Credits from [9]

Random white noise may be super-imposed to an average turbulent profile at the inlet to introduce

perturbations to the flow and represent velocity fluctuations; however, the noise spectral density is a

flat profile , because the signals are equally distributed within a fixed bandwidth , and contain far too

much energy at the high (under-resolved) wave-numbers associated to smaller size eddies, with little

or no energy at the well-resolved low wave-numbers associated to larger ones , which are dependent

from the geometry and mean flow settings of the problem [8]. Due to this lack of energy in the low

wave number range, viscous dissipation would cause a rapid damping of the perturbations, resulting

in a laminar inflow even before the interaction with the oblique shock wave.

To solve the issue, Klein et al. [10] have suggested low-pass filtering and re-scaling of the white noise

to obtain a more reasonable spectrum for the inlet velocity fluctuations. To give an impression of

what spatial filtering of random data is , in Figure 3-3 is shown the change in greyscale picture of

random white noise applying filtering firstly in the j-direction and subsequently in the i-direction .

Figure 3-3 Visualization of two-dimensional filtering of random data using greyscale picture, Credits from
[8]

Klein et al. [10] Proposed a method for generating inflow data for DNS based upon digital filters,

correlation functions and length scales. The one-dimensional theory for this procedure is presented.

Given a set of random data (white noise) at each grid point m with mean values:

𝑟�̅̅̅� = 0

35

𝑟𝑚𝑟𝑚̅̅ ̅̅ ̅̅ = 1

we can define velocity fluctuations by creating a two-point correlation using digital filter coefficients:

𝑢𝑚 = ∑ 𝑏𝑛𝑟𝑚+𝑛

𝑁

𝑛=−𝑁

Because 𝑟𝑚𝑟𝑛̅̅ ̅̅ ̅̅ = 0 for 𝑚 ≠ 𝑛 we can derive a relation between the two-point autocorrelation function

and the filter coefficients:

𝑢𝑚𝑢𝑚+𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑢𝑚𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅
= ∑ 𝑏𝑗𝑏𝑗−𝑘

𝑁

𝑗=−𝑁+𝑘

∑ 𝑏𝑗
2

𝑁

𝑗=−𝑁

⁄

Based on the assumption that the two-point autocorrelation function for homogeneous turbulence in

a late stage takes a Gaussian form :

𝑅𝑢𝑢(𝑟, 0,0) = exp (−
𝜋𝑟2

4𝐿2
)

Where the length scale L can be prescribed and r is the distance between two grid points , in this one-

dimensional case in the x direction , if ∆𝑥 is the grid spacing and 𝐿 = 𝑛∆𝑥 is the desired length scale,

we can rewrite :

𝑢𝑚𝑢𝑚+𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑢𝑚𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅
= exp (−

𝜋𝑘2

4𝑛2
)

Thus , the filter coefficients can be approximated by the following analytical expression:

𝑏𝑘 ≈ 𝑏�̃� (∑ 𝑏𝑗
2

𝑁

𝑗=−𝑁

)⁄ 𝑎𝑛𝑑 𝑏�̃� = exp(−
𝜋𝑘2

4𝑛2
)

In the multi-dimensional case , we can choose for each coordinate direction corresponding to the

inflow plane the length scales : 𝐿𝑦 = 𝑛𝑦𝛥𝑦 ; 𝐿𝑧 = 𝑛𝑧𝛥𝑧 and the time scale Lx . Moreover , as filter

coefficients are limited in number, it is necessary to select also a filter width N according to the

constraint 𝑁𝛼 ≥ 2𝑛𝛼 , 𝛼 = 𝑥, 𝑦, 𝑧

Klein’s algorithm first creates and stores three independent fields of random numbers 𝑟𝛼 with

dimensions [−𝑁𝑥: 𝑁𝑥 , −𝑁𝑦 + 1:𝑀𝑦 + 𝑁𝑦, −𝑁𝑧 + 1:𝑀𝑧 + 𝑁𝑧] where 𝑀𝑦 × 𝑀𝑧 is the size of the

computational grid at the inflow plane . Each field will be used for fluctuations in a separate

component of the flow velocity (α = [u, v, w]).

36

After that it is possible to calculate filter coefficients 𝐵𝑖,𝑗,𝑘 with the prescribed integral length scales.

Considering a single slice of data at streamwise station x, for each point 𝑗 = 1, … ,𝑀𝑦 , 𝑘 = 1,… ,𝑀𝑧

the random fields 𝑟𝛼 are then convoluted (smoothed) with the discrete low-pass filters Bi,j,k to obtain

the spatially correlated data 𝑅𝛼 .

𝑅𝛼(𝑗, 𝑘) = ∑ ∑ ∑ 𝑏(𝑖′, 𝑗′, 𝑘′) 𝑟𝛼(𝑖
′, 𝑗 + 𝑗′, 𝑘 + 𝑘′)

𝑁𝑧

𝑘′=−𝑁𝑧

𝑁𝑦

𝑗′=−𝑁𝑦

𝑁𝑥

𝑖′=−𝑁𝑥

After having defined the three-dimensional signal of correlated random data 𝛹𝛼(𝑥, 𝑦, 𝑧), 𝛼 = 1,2,3

with prescribed two point statistics within each point of the rectangular domain , we can perform the

following transformation to cross-correlate the velocity fluctuations , as suggested by Lund et al. [11]:

𝑢𝑖 = �̅�𝑖 + 𝑎𝑖𝑗𝛹𝑗(𝑥, 𝑦, 𝑧)

Where 𝑢𝑖 is the final needed velocity signal and with :

(𝑎𝑖𝑗) =

(

(𝑅11

1
2) 0 0

𝑅21/𝑎11 (𝑅22 − 𝑎21
2)

1
2 0

𝑅31/𝑎11 (𝑅32 − 𝑎21𝑎31)/𝑎22 (𝑅33 − 𝑎31
2 − 𝑎32

2)
1
2)

𝑅𝑖𝑗 is the one point correlation tensor , which may be known from interpolation of experimental target

Reynolds stress tensors, defined as a function of root mean squared velocity fluctuations :

𝜏𝑖𝑗
′ = 𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = 𝜌√

1

𝑇
∫ 𝑢𝑖

′𝑢𝑗
′

𝑇

0

 𝑑𝑡

In STREAmS this step is accomplished by the subroutine target_reystress.F90 that provides the 𝑎𝑖𝑗

coefficients as a function of the wall-normal distance and the friction Reynolds number 𝑅𝜏 .

Now it is possible to copy velocity components 𝑢𝛼 to the inflow plane and start solving the equations.

For the next iteration we need to discard the first y,z-plane of 𝑟𝛼 and shift the whole data 𝑟𝛼(𝑖, 𝑗, 𝑘) =

𝑟𝛼(𝑖 + 1, 𝑗, 𝑘) , then we can fill again the plane 𝑟𝛼(𝑁𝑥, 𝑗, 𝑘) with new random numbers and repeat the

spatial convolution for each time step.

As an alternative to Klein procedure , which is actually implemented in STREAmS for its lower need

of computational resources , Xie e Castro [12] chose to calculate the digital filter coefficients with an

exponential form rather than a Gaussian curve like Klein :

37

𝑏𝑘 ≈ 𝑏�̃� (∑ 𝑏𝑗
2

𝑁

𝑗=−𝑁

)⁄ 𝑎𝑛𝑑 𝑏�̃� = exp (−
𝜉𝜋|𝑘|

𝑛
)

The filter coefficients are normalized to ensure that 𝑢𝑚𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅ = 1 and the value of 𝜉 is chosen to

minimize the following standard deviation:

𝜎 [∑ 𝑏𝑗𝑏𝑗−𝑘

𝑁

𝑗=−𝑁+𝑘

∑ 𝑏𝑗
2

𝑁

𝑗=−𝑁

⁄ − exp (−
𝜋|𝑘|

2𝑛
)] 𝑓𝑜𝑟 𝑁 ≥ 2𝑛 𝑎𝑛𝑑 𝑛 = 2,…200

For simplicity a value of 𝜉 = 1 is chosen but it is not universal. One may seek other values of ξ for

other types of flows. The difference in shapes of the two-point autocorrelation function for the two

methods is reported , for a fixed value of n = 1 . It can be noticed that turbulent fluctuations are less

spatially correlated when a decaying exponential form is chosen :

Figure 3-4 Difference in shape of the autocorrelation functions

Based on the work of Xie e Castro a two dimensional slice of random data of dimensions [-Ny + 1 :

My + Ny , -Nz + 1 : Mz + Nz] is generated, where My x Mz is the size of the grid, while 𝑁𝛼 ≥ 2𝑛𝛼 ,

𝛼 = 𝑦, 𝑧 is the filter support , which needs to be at least twice the integral length scale L.

38

After calculating the digital filter coefficients with prescribed integral length scales in the two

directions (y, z) , we can perform a two dimensional convolution to generate spatially correlated

random data , similarly to Klein procedure :

𝛹𝛽(𝑡, 𝑦, 𝑧) = ∑ 𝑏𝑗 ∑ 𝑏𝑘𝑟𝛽(𝑡, 𝐽 + 𝑗, 𝐾 + 𝑘)

𝑁

𝑘=−𝑁⏟
𝑓𝑖𝑙𝑡𝑒𝑟 𝑖𝑛 𝑘−𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑁

𝑗=−𝑁

⏟
𝑓𝑖𝑙𝑡𝑒𝑟 𝑖𝑛 𝑗−𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

Now at the first time step we have a slice of correlated random data for each velocity component:

𝛹𝛽(𝑡, 𝑦, 𝑧), 𝛽 = 1,2,3

For the next iteration, we need to generate only one more two-dimensional slice of spatially correlated

random data 𝜓(𝑡, 𝑦, 𝑧) and we can update the inflow plane by adopting the following relation:

𝛹𝛽(𝑡 + 𝛥𝑡, 𝑦, 𝑧) = 𝛹𝛽(𝑡, 𝑦, 𝑧) exp (−
𝜋𝛥𝑡

2𝑇
) + 𝜓(𝑡, 𝑦, 𝑧) [1 − exp (−

𝜋𝛥𝑡

𝑇
)]
0.5

Where T is the Lagrangian time scale, which can be derived heuristically from previous simulations.

In this expression we can notice that even the time correlation of data between 𝑡 + ∆𝑡 and t assumes

a decaying exponential form.

The procedure by Xie e Castro is equivalent to Klein e al. original procedure, where a three-

dimensional set of random data was needed along with a three-dimensional convolution using digital

filter coefficients in the three cartesian dimensions. This method calculates only a two-dimensional

slice of data, but we need to know the lateral and vertical length scales as well as the Lagrangian time

scale T , which can be held constant or differ depending on the inflow zone. It is generally called a

Forward Stepwise Method (FSM).

3.6 Implementation of digital filters in STREAmS
In the GPU-accelerated version of STREAmS the digital filter coefficients are defined in the

subroutine df_par.F90 . Here the z length scale is locally defined using outer and inner constant z

length scales and a blending function of the wall normal coordinate y (ftany) . For each velocity

component m=1,3 and wall normal index j=1,ny :

𝑧𝑙𝑒𝑛(𝑚, 𝑗) = 𝑧𝑙𝑒𝑛𝑖𝑛(𝑚) + 𝑓𝑡𝑎𝑛𝑦 ∗ (𝑧𝑙𝑒𝑛𝑜𝑢(𝑚) − 𝑧𝑙𝑒𝑛𝑖𝑛(𝑚))

𝑓𝑡𝑎𝑛𝑦 =
1

2
[1 + 𝑡𝑎𝑛ℎ (

𝑦 − 0.2

0.03
)]

39

The inner z length scale can be expressed as a function of the inlet friction Reynolds number, which

can be set in the input.dat file:

𝑧𝑙𝑒𝑛𝑖𝑛~
1

𝑅𝑒𝜏

𝑅𝑒𝜏 =
𝑢𝜏𝛿

𝜐
=
𝛿

𝛿𝜐

Where δ is the boundary layer thickness at the inflow station , computed considering 99 % of the

free-stream velocity , ν is the kinematic viscosity and 𝑢𝜏 = √𝜏𝑤 𝜌𝑤⁄ is the friction velocity, which is

a function of the wall shear stress 𝜏𝑤 and wall density 𝜌𝑤 . 𝛿𝜐 = 𝜐 𝑢𝜏⁄ are viscous units .

Table 4 Inner and outer integral length scales in z direction

𝑧𝑙𝑒𝑛𝑜𝑢𝑡(1) 0.4

𝑧𝑙𝑒𝑛𝑜𝑢𝑡(2) 0.3

𝑧𝑙𝑒𝑛𝑜𝑢𝑡(3) 0.4

𝑧𝑙𝑒𝑛𝑖𝑛(1) 𝑚𝑖𝑛(150 𝑅𝑒𝜏⁄ , 𝑧𝑙𝑒𝑛𝑜𝑢𝑡(1))

𝑧𝑙𝑒𝑛𝑖𝑛(2) 𝑚𝑖𝑛(75 𝑅𝑒𝜏⁄ , 𝑧𝑙𝑒𝑛𝑜𝑢𝑡(2))

𝑧𝑙𝑒𝑛𝑖𝑛(3) 𝑚𝑖𝑛(150 𝑅𝑒𝜏⁄ , 𝑧𝑙𝑒𝑛𝑜𝑢𝑡(3))

Following Xie e Castro we can derive the y length scale which is proportional to the z length scale:

𝑦𝑙𝑒𝑛(𝑚, 𝑗) = 0.7 ∗ 𝑧𝑙𝑒𝑛(𝑚, 𝑗)

The x length scale is assumed constant , thus the Langrangian time scale T can be expressed as a

function of the inlet free-stream velocity u0 . The values for the three velocity components are:

Table 5 Streamwise and Lagrangian length scales

Following Xie e Castro we can evaluate the filter coefficients 𝑏(𝑖, 𝑗, 𝑘) with an analytical expression.

𝑥𝑙𝑒𝑛(1) 0.8

𝑥𝑙𝑒𝑛(2) 0.3

𝑥𝑙𝑒𝑛(3) 0.3

𝑇(1) 𝑥𝑙𝑒𝑛(1) 𝑢0⁄

𝑇(2) 𝑥𝑙𝑒𝑛(2) 𝑢0⁄

𝑇(3) 𝑥𝑙𝑒𝑛(3) 𝑢0⁄

40

It is important to note that the size of turbulent eddies is limited by the distance to the wall. As we

approach the lower boundary, both the wall-normal and spanwise length scales must go to zero. That

is why we need a blending function of the wall-normal coordinate to scale the superimposed length

scales.

The mixing length 𝑙𝑚 in turbulence is linked to the dissipation rate 𝜖 of turbulent kinetic energy k .

Hence, reducing the integral length scale could generate turbulent velocity fluctuations with a higher

energy decay into heat :

𝑘 =
1

2
((𝑢′)2̅̅ ̅̅ ̅̅ ̅ + (𝑣′)2̅̅ ̅̅ ̅̅ ̅ + (𝑤′)2̅̅ ̅̅ ̅̅ ̅)

𝜖 ∝
𝑘3/2

𝑙𝑚

We can estimate first and second order velocity moments and integral length scales from DNS of

previous simulated cases available in databases. Given a set of two-point correlated data from the

database, we can calculate Integral length scales by the following equation:

𝐿𝑖 = ∫ 𝑅(𝑥𝑖)𝑑𝑥𝑖

∞

0

, 𝑖 = 1, 2, 3,

Where 𝑅𝛼𝛼 is the autocorrelation function of the α velocity component (typically a Gaussian or

decaying exponential curve). For example , Xie e Castro estimated 𝐿𝑖 based on DNS of plane channel

flows by Kasagi’s group (http://www.thtlab.t.u-tokyo.ac.jp/) .

In STREAmS the computation is initialized by prescribing a mean fully developed turbulent

compressible boundary layer , obtained by applying the Van Driest transformation to an

incompressible velocity profile of the Musker family (�̅�). For the effective velocity in the outer part

of the boundary layer [13] :

𝑢𝑉𝐷
+ =

1

𝑘
𝑙𝑜𝑔(𝑦+) + 𝐶

𝑑𝑢𝑉𝐷 = (
�̅�

𝜌𝑤̅̅̅̅
)

1
2
𝑑�̅�

𝑦+ =
𝑦

𝛿𝑣

In the input.dat file one can set the ratio 𝑇𝑟𝑎𝑡 between wall temperature and adiabatic wall

temperature, which is equal to the recovery temperature:

http://www.thtlab.t.u-tokyo.ac.jp/

41

𝑇𝑟
𝑇∞
= 1 + 𝑟

(𝛾 − 1)

2
𝑀∞
2

𝑟 = 𝑃𝑟

1
3

Hence, we can consider 𝑇𝑟𝑎𝑡 as another parameter for turbulence, as the Van Driest mean streamwise

velocity changes according to density, which is related to the temperature ratio 𝑇𝑟𝑎𝑡 . The kind of

velocity profile we expect before the interaction region is the following (with a logarithmic scale for

the horizontal axis) , where a linear and a log-law region stems from the results in the inner and outer

part of the boundary layer:

Figure 3-5 Mean streamwise velocity profile in the inlet region

In the file initurb.F90 generation of random fields and convolutions in the three cartesian directions

are performed to initialize the inflow velocity. Fluctuations are derived following Klein procedure

and superimposed to the mean velocity profile . Finally the vector of conservative variables is

calculated and the initial condition of the flow field is defined.

In the file bcdf.F90 inflow turbulent boundary conditions are updated in time using Xie e Castro

procedure , in this way we have a set of random data spatially and time correlated for each iteration.

We can modify the two-point statistics by changing the integral length scales , and the one point

cross-correlation function by changing the Reynolds target stress tensor in the database_bl.dat file.

The support of the digital filter nfmax is defined in mod_streams.F90 and it is set to a constant value

of 64 .

42

Chapter 4
Strong and weak scalability of STREAmS

4.1 Strong scalability
Performance of parallel computing has been evaluated for SBLI numerical simulations incrementing

number of MPI processes launched on Legion cluster and therefore scaling up the computational

resources (CPUs and GPUs) for the job .

The following simulations are carried out on a rectangular domain of lengths :

𝑟𝑙𝑥 = 70

 𝑟𝑙𝑦 = 12

 𝑟𝑙𝑧 = 3

The inflow Mach number is M = 2.28 , the friction Reynolds number is 𝑅𝑒𝜏 = 475 . Wall temperature

is set equal to the adiabatic wall temperature and shock wave angle is set equal to 8 deg. The nominal

impinging point of the reflected shock is 𝑥𝑖𝑚𝑝 = 40.

Time performance is the Job wall clock-time , that is the total physical runtime needed to complete

the job on the cluster , multiplied by the CPU efficiency . From the results , we can notice that

increasing the number of GPUs reduces rapidly the integration time when the job is shared in the

same cluster node (where we can use a maximum of 4 GPUs) , probably because the communication

time needed to exchange boundary values across MPI processes is much higher when multiple nodes

are involved. Speed-up is time ratio between reference case (1 GPU) and job execution with N GPUs.

Figure 4-1 Job time for a grid of 7077888 points incrementing number of GPU and MPI processes , 500000
iterations.

0:00:00

4:48:00

9:36:00

14:24:00

19:12:00

24:00:00

28:48:00

0 2 4 6 8 10 12 14 16 18

jo
b

 w
al

l c
lo

ck
-t

im
e

[h
h

:m
m

:s
s]

number of GPUs

Grid: 512x192x72

43

Figure 4-2 speed-up for a grid of 7077888 points, incrementing number of GPU and MPI processes, 500000
iterations.

Figure 4-3 Job time for a grid of 14155776 points incrementing number of GPU and MPI processes , 500000
iterations.

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18

sp
ee

d
-u

p
 =

 t
1

/t
N

number of GPUs

Grid: 512x192x72

0:00:00

12:00:00

24:00:00

36:00:00

48:00:00

60:00:00

72:00:00

0 2 4 6 8 10 12 14 16 18

Jo
b

 w
al

l c
lo

ck
-t

im
e

[h
h

:m
m

:s
s]

number of GPUs

Grid: 1024x192x72

44

Figure 4-4 Speed-up for a grid of 14155776 points incrementing number of GPU and MPI processes , 500000
iterations.

Figure 4-5 Job time for a grid of 28311552 points incrementing number of GPU and MPI processes ,
500000 iterations.

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

sp
ee

d
-u

p
 =

 t
1

/t
N

number of GPUs

Grid: 1024x192x72

0:00:00

12:00:00

24:00:00

36:00:00

48:00:00

60:00:00

72:00:00

84:00:00

96:00:00

108:00:00

120:00:00

0 2 4 6 8 10 12 14 16 18

Jo
b

 w
al

l c
lo

ck
-t

im
e

[h
h

:m
m

:s
s]

number of GPUs

Grid: 2048x192x72

45

Figure 4-6 speed-up for a grid of 28311552 points incrementing number of GPU and MPI processes ,
500000 iterations.

Figure 4-7 Comparison of speed-up performances for the three grid cases

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18

sp
ee

d
-u

p
 =

 t
1

/t
N

number of GPUs

Grid: 2048x192x72

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

sp
ee

d
-u

p
 =

 t
1

/t
N

number of GPUs

2048x192x72

1024x192x72

512x192x72

ideal speed-up

46

Figure 4-8 Job time ratio tN/t1 for a fixed number of GPUs (1 node , 4 GPUs) incrementing number of grid
point ratio with the first case grid size . 500000 iterations.

The main statistics computed by the program are the following:

1) Favre averaged streamwise velocity, normalized with the friction velocity. Statistics are

collected at the following streamwise coordinates :

𝑥 = [20 , 40, 60]

Grid size is : nx = 2048 ; ny = 192 ; nz = 72. Statistics are collected for 100000 and 500000 iterations,

corresponding to a physical time of 41 [s] and 205 [s] . 𝑦+ =
𝑦

𝛿𝑣
 is the wall-normal coordinate ,

normalized with the viscous length scale. It is interesting to note the thickening of the incoming

boundary layer caused by the shock in the interaction region , which is close to the x = 40 station ,

the boundary layer relaxes again to an equilibrium state after the reflected shock .

2) Density scaled streamwise , wall-normal and spanwise velocity root mean square , in viscous

units . 𝑢𝑣+ is Reynolds turbulent shear stress in viscous units. Statistics are collected at

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5

tN
 /

 t
1

total grid points / grid points first case

4 gpu

47

streamwise coordinate 𝑥 = 20 , located in the region before the impinging shock wave, for

100000 and 500000 iterations, corresponding to a phisical time of 41 [s] and 205 [s]. There is

almost no change in statistics as the oblique shock wave is located downstream the considered

x station. We can notice that the fluctuation level must go to zero in the viscous sublayer

nearby the wall , where laminar viscous stresses are dominant , and again at the upper edge of

the boundary layer where the flow field is almost irrotational .

Grid size is : nx = 2048 ; ny = 192 ; nz = 72.

3) Density scaled streamwise , wall-normal and spanwise velocity rms , in viscous units . 𝑢𝑣+ is

Reynolds turbulent shear stress in viscous units. Statistics are collected at streamwise

coordinate 𝑥 = 40 , located in the region between the impinging and reflected shock wave,

for 100000 and 500000 iterations , corresponding to a physical time of 41 [s] and 205 [s]. This

is the region where we have higher turbulent fluctuations due to the recirculation bubble that

forms for the adverse pressure gradient caused by the impinging and reflected shock .

Grid size is : nx = 2048 ; ny = 192; nz = 72.

48

4) Density scaled streamwise , wall-normal and spanwise velocity rms , in viscous units . 𝑢𝑣+ is

Reynolds turbulent shear stress in viscous units. Statistics are collected at normalized

streamwise coordinate 𝑥 = 60 , located in the region after the reflected shock wave.

Simulation is carried out for 100000 and 500000 iterations , corresponding to a physical time

of 41 [s] and 205 [s]. The fluctuation level decreases as the turbulent boundary layer

approaches again an equilibrium state after the interaction region . Grid size is : nx = 2048 ;

ny = 192 ; nz = 72

5) Square root of the mean density , normalized with the wall density. Grid size is : nx = 2048 ;

ny = 192 ; nz = 72 and simulation is carried out for 100000 and 500000 iterations,

corresponding to a physical time of 41 [s] and 205 [s]. Statistics are collected at the same

streamwise coordinates of the previous cases.

6) Pressure rms , normalized with the square root of the wall shear stress . Grid size is :

nx = 2048; ny = 192 ; nz = 72 and simulation is carried out for 100000 and 500000 iterations,

corresponding to a physical time of 41 [s] and 205 [s]. Statistics are collected at the same

streamwise coordinates of the previous cases.

49

7) Friction velocity as a function of the normalized streamwise coordinate . Simulation is carried

out for 100000 and 500000 iterations , corresponding to a physical time of 41 [s] and 205 [s].

8) Friction Reynolds number as a function of the normalized streamwise coordinate . Simulation

is carried out for 100000 and 500000 iterations , corresponding to a physical time of 41 [s]

and 205 [s].

50

9) Mean pressure at the wall, normalized with the wall-shear stress 𝜏𝑤, as a function of the

normalized streamwise coordinate . In the interaction region between the shock wave and the

turbulent boundary layer the statistic goes to infinity and a recirculation bubble originates due

to the strong adverse pressure gradient. Grid size is : nx = 2048 ; ny = 192 ;

nz = 72. Simulation is carried out for 100000 and 500000 iterations , corresponding to a

physical time of 41 [s] and 205 [s].

10) Skin-friction coefficient as a function of the normalized streamwise coordinate , for the same

grid of the previous cases. Simulation is carried out for 100000 and 500000 iterations ,

corresponding to a physical time of 41 [s] and 205 [s]. 𝐶𝑓 rises after the interaction region

between the shock wave and the turbulent boundary layer and stays fairly constant.

51

11) Visualisation of the vector velocity field. Grid size : nx = 2048 ; ny = 192 ; nz = 72 .

Iterations 100000.

12) Visualization of q-criterion for 100000 and 500000 iterations , corresponding to a physical

time of 41 [s] and 205 [s]. Grid size : nx = 2048 ; ny = 192 ; nz = 72 .

52

13) Visualization of density pseudocolor for 100000 and 500000 iterations , corresponding to a

physical time of 41 [s] and 205 [s]. Grid size : nx = 2048 ; ny = 192 ; nz = 72 .

4.2 Weak Scalability
To evaluate parallel performances of the numerical code , we should run some simulations with a

lower number of iterations (1000) keeping constant the number of grid points per single GPU .

4.2.1 Preprocessing time at constant GPU workload

As we should not take into consideration the time necessary to initialize and preprocess the MPI

environment of the computational domain using multiple GPUs , we evaluated it by running just 1

iteration.

Starting from a grid of 1024x96x72 = 7077888 total points , we scaled up the number of points with

the number of GPUs . Simulations were carried out for a number of 1,2 and 4 GPUs in the same

cluster node. As we note from the results, the time to preprocess data increases with the number of

GPUs imposed in the input file, at constant GPU workload.

The number of points was first doubled in y cartesian direction for the second case and then doubled

in x cartesian direction for the third case.

53

Figure 4-9 Preprocessing time at constant GPU workload .

Figure 4-10 Preprocessing time ratio with reference case at constant GPU workload

4.2.2 Integration time at constant GPU workload

Starting from a grid of 1024x96x72 = 7077888 total points , we scaled up the number of points with

the number of GPUs and evaluated the integration time as the Job Wall-clock time minus the

preprocessing time. Simulations were carried out for a number of 1,2 and 4 GPUs in the same cluster

node. Despite the more communication time needed to exchange boundary values among multiple

MPI processes , the integration time stays fairly constant . We carried out simulations for just a few

minutes, corresponding to a low number of iterations (1000).

1

2

4

00:00:00

00:00:09

00:00:17

00:00:26

00:00:35

00:00:43

00:00:52

00:01:00

00:01:09

00:01:18

0.00E+00 5.00E+06 1.00E+07 1.50E+07 2.00E+07 2.50E+07 3.00E+07

[h
h

:m
m

:s
s]

total grid points

preprocessing time

1

2

4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

tN
/t

1

grid point ratio

preprocessing time

54

The number of points was first doubled in y cartesian direction for the second case and then doubled

in x cartesian direction for the third case.

Figure 4-11 Integration time at constant GPU workload

4.2.3 Job Wall-clock time at constant GPU workload

Starting from a grid of 1024x96x72 = 7077888 total points , we scaled up the number of points with

the number of GPUs and evaluated the Job Wall-clock time, which comprises both the preprocessing

and integration time. Simulations were carried out for a number of 1,2 and 4 GPUs in the same cluster

node. The number of points was first doubled in y cartesian direction for the second case and then

doubled in x cartesian direction for the third case.

1 2 4

00:00:00

00:00:43

00:01:26

00:02:10

00:02:53

00:03:36

00:04:19

0.00E+00 5.00E+06 1.00E+07 1.50E+07 2.00E+07 2.50E+07 3.00E+07

[h
h

:m
m

:s
s]

Total grid points

Integration time

1000 iterations

55

Figure 4-12 Job Wall-clock time at constant GPU workload

Figure 4-13 Time ratio with reference case at constant GPU workload

1

2

4

00:00:00

00:00:43

00:01:26

00:02:10

00:02:53

00:03:36

00:04:19

00:05:02

00:05:46

0.00E+00 5.00E+06 1.00E+07 1.50E+07 2.00E+07 2.50E+07 3.00E+07

[h
h

:m
m

:s
s]

Total grid points

Job Wall-clock time

1000 iterations

1

2

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

tN
/t

1

grid point ratio

Job Wall-clock time

1000 iterations

56

4.2.4 Memory usage per geometrical node at constant GPU workload

Starting from a grid of 1024x96x72 = 7077888 total points , we scaled up the number of points with

the number of GPUs and evaluated the mean Bytes per geometrical node as (𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦

𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑)/(𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑖𝑛𝑡𝑠).

Simulations were carried out for a number of 1,2 and 4 GPUs in the same cluster node.

Results show a slight increase in the memory usage for the single grid point.

The number of points was first doubled in y cartesian direction for the second case and then doubled

in x cartesian direction for the third case.

Figure 4-14 Memory usage per grid point at constant GPU workload

1 2

4

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

0.00E+00 5.00E+06 1.00E+07 1.50E+07 2.00E+07 2.50E+07 3.00E+07

B
yt

es
 p

er
 g

ri
d

 p
o

in
t

total grid points

Memory usage per grid point

57

Chapter 5
Parametric studies for SBLI
Three simulations were carried out using four MPI processes and four GPUs in the same cluster node,

on a grid of 1024x192x72 points at different friction Reynolds number : 𝑅𝑒𝜏 = [200 500 800] .

In this way , the integral length scales of turbulent eddies in z and y direction have been diminished

across the three cases , leading to a more isotropic kind of turbulence. The computational domain had

lengths rlx = 70 , rly = 12 , rlz = 3.

Statistics of the flow properties should be collected after statistical steadiness is achieved, hence a

period 𝑇0 ≈ 100
𝛿𝑖𝑛

𝑢∞
 should be sufficient to wait for the end of the initial transient [13] .

After that, samples of the flow field are periodically stored up to the final time 𝑇𝑓 ≈ 220
𝛿𝑖𝑛

𝑢∞
 , where

𝛿𝑖𝑛 is the inflow boundary layer thickness estimated from previous simulations (as shown in the

following graph , where 𝛿99 has no physical meaning nearby the recirculation bubble zone close to

x=40) while 𝑢∞ is the streamwise velocity component based on the Mach number imposed in the

input file.

In our case 𝑢∞ = √𝛾 ∗ 𝑀 with 𝑀 = 2.28 , as Navier-Stokes equations are in dimensionless form.

Shock wave angle is 8 deg and nominal impinging point is x = 40. The CFL number for numerical

stability is 0.5 .

Figure 5-1 Boundary layer thickness along streamwise coordinate.

From a simulation on a grid of 2048x192x72 points and 500000 iterations, we estimated

𝛿𝑖𝑛 ≈ 0.8 (Ly = 12) , then we calculated the transient period 𝑇0 ≈ 30 𝑠 , corresponding

58

approximately to 80000 iterations . To collect figures during statistically Steady State we restarted

the computation by setting the parameter idisk = 1 in the input file . Then, time integration was carried

out until 𝑇𝑓 ≈ 65 𝑠 , corresponding to at least 100 000 more iterations.

In the following graphs we point out the difference in statistics during the transitory and the statistical

convergent state.

For cases with 𝑅𝑒𝜏 = [200 500] , the transitory was estimated to last 80000 iterations , while for

the case 𝑅𝑒𝜏 = 800 the transitory was longer due to the smaller time step required for the numerical

stability, hence 160000 iterations were needed. In this way , all cases had a minimum physical time

of the transitory T0 > 30 𝑠.

For the first case we collected steady-state statistics every 150 iterations for a total of 100000

iterations, for the second case we collected statistics every 250 iterations for a total of 100000

iterations and for the third case we collected statistics every 250 iterations for a total of 200000

iterations.

5.1 Difference in statistics during transitory and steady state
The statistics reported are:

1. Mean Streamwise Turbulent Velocity normalized with the friction velocity, in stations

𝑥 = [20 40 60] ;

2. Compressible Friction Coefficient ;

3. Reynolds stress tensor for x = 20;

4. Reynolds stress tensor for x = 40;

5. Reynolds stress tensor for x = 60;

6. Mean pressure normalized with wall shear stress;

7. Pressure root mean square normalized with square root of wall shear stress;

8. Friction Reynolds number;

9. Compressible Reynolds number;

10. Friction velocity.

59

Table 6 Integration time table

𝑅𝑒𝜏 𝑇0 [s] 𝑇𝑓 [s]
N° Iterations

Transitory

N° Iterations

statistically

Steady State

istat

200 71 158 80000 180000 150

500 32 72 80000 180000 250

800 41 93 160000 360000 250

To post-process data and visualize the flow field we used the software Visit to read the vtk files,

which are printed out by STREAmS every physical time step ∆𝑡𝑠𝑎𝑣𝑒 specified in the input file.

It is necessary to express velocity components (U, V, W) as scalar mesh variables and as a function

of conservative quantities of the vector w . Then we can define the velocity vector field and the q-

criterion using built-in functions in Visit . In particular the syntax :

q_criterion(<gradient(velocity[0])>, <gradient(velocity[1])>, <gradient(velocity[2])>)

generates the Q-criterion value developed by Hunt et. al.. It is based on the observation that, in regions

where the Q-criterion is greater than zero, rotation exceeds strain and, in conjunction with a pressure

min, indicates the presence of a vortex. The three arguments to the function are gradient vectors of

the x-, y-, and z-velocity. The gradient function can be used to create the gradient vectors. [14]

From the results we notice that the compressible skin friction coefficient diminishes at higher 𝑅𝑒𝜏,

both during transitory and steady state , while the fluctuation level rises especially in the interaction

region located close to x = 40 , where the Reynolds shear stress component assumes deeply negative

values for 𝑅𝑒𝜏 ≥ 500 . As it can be expected , the compressible Reynolds number increases according

to 𝑅𝑒𝜏 , but it can be computed by the solver only until the nominal impinging point of the incoming

shock . Even the mean pressure statistic is defined until the recirculation bubble region , afterwards

it assumes higher values due to the adverse pressure gradients caused by the impinging and reflected

shock waves , which are visible from the Mach contour of the flow field with proper Mach levels set

in Visit .

60

Time performance and memory usage per grid node are reported for the three cases , for the last one

we need more iterations to reach the physical final time Tf , as the computed time step for CFL

stability is lower :

00:00:00

01:12:00

02:24:00

03:36:00

04:48:00

100 200 300 400 500 600 700 800 900

Jo
b

 w
al

l-
cl

o
ck

 t
im

e

Friction Reynolds number

Time performance with 4 GPUs

Transitory

00:00:00

01:12:00

02:24:00

03:36:00

04:48:00

06:00:00

100 200 300 400 500 600 700 800 900

Jo
b

 w
al

l-
cl

o
ck

 t
im

e

Friction Reynolds number

Time performance with 4 GPUs

Steady State

0

50

100

150

200

250

100 200 300 400 500 600 700 800 900

B
yt

es
 p

er
 n

o
d

e

Friction Reynolds number

Memory usage with 4 GPUs

Steady State

61

Figure 5-2 Mean Velocity in streamwise stations 𝑥 = [20 40 60] during transitory 𝑇0 , 𝑅𝑒𝜏 =
[200 500 800] .

62

Figure 5-3 Mean Velocity in streamwise stations 𝑥 = [20 40 60] during statistically Steady State 𝑇𝑓.
 𝑅𝑒𝜏 = [200 500 800]

63

Figure 5-4 Compressible Friction Coefficient during transitory 𝑅𝑒𝜏 = [200 500 800]

64

Figure 5-5 . Compressible Friction Coefficient during statistically Steady State ; 𝑅𝑒𝜏 = [200 500 800]

65

Figure 5-6 Reynolds stress tensor for x = 20 during transitory 𝑅𝑒𝜏 = [200 500 800]

66

Figure 5-7 Reynolds stress tensor for x = 20 during statistically Steady State 𝑅𝑒𝜏 = [200 500 800]

67

Figure 5-8 Reynolds stress tensor for x = 40 during transitory; 𝑅𝑒𝜏 = [200 500 800]

68

Figure 5-9 Reynolds stress tensor for x = 40 during statistically Steady State 𝑅𝑒𝜏 = [200 500 800];

69

Figure 5-10 Reynolds stress tensor for x = 60 during transitory 𝑅𝑒𝜏 = [200 500 800]

70

Figure 5-11 Reynolds stress tensor for x = 60 during statistically Steady State 𝑅𝑒𝜏 = [200 500 800]

71

Figure 5-12 . Mean pressure rms at the wall normalized with the wall-shear stress in streamwise direction
during transitory; 𝑅𝑒𝜏 = [200 500 800]

72

Figure 5-13 Mean pressure rms at the wall normalized with the wall-shear stress in streamwise direction
during statistically Steady State, 𝑅𝑒𝜏 = [200 500 800]

73

Figure 5-14 Pressure root mean square normalized with square root of wall shear stress during
transitory; 𝑅𝑒𝜏 = [200 500 800]

74

Figure 5-15 Pressure root mean square normalized with square root of wall shear stress during statistically
Steady State; 𝑅𝑒𝜏 = [200 500 800]

75

Figure 5-16 Friction Reynolds number during transitory , 𝑅𝑒𝜏 = [200 500 800]

76

Figure 5-17 Friction Reynolds number during statistically Steady State; 𝑅𝑒𝜏 = [200 500 800]

77

Figure 5-18 Compressible Reynolds number during transitory , 𝑅𝑒𝜏 = [200 500 800]

78

Figure 5-19 . Compressible Reynolds number during statistically Steady State; 𝑅𝑒𝜏 = [200 500 800]

79

Figure 5-20 Friction velocity during transitory. 𝑅𝑒𝜏 = [200 500 800]

80

Figure 5-21 Friction velocity during statistically Steady State 𝑅𝑒𝜏 = [200 500 800].

81

Figure 5-22 q-criterion applied to the last .vtr file saved by the program.

𝑅𝑒𝜏 = [200 500 800]

82

Figure 5-23 Pseudocolor of the U , 𝑅𝑒𝜏 = [200 500 800]

83

Figure 5-24 Mach contour and q-criterion contour for 𝑅𝑒𝜏 = [200 500 800]

84

Figure 5-25 Pressure pseudocolor for 𝑅𝑒𝜏 = [200 500 800]

85

Figure 5-26 Density pseudocolor for 𝑅𝑒𝜏 = [200 500 800]

86

5.2 Parametric study of SBLI varying temperature ratio 𝑻𝒓𝒂𝒕
We carried out a parametric study by varying the ratio 𝑇𝑟𝑎𝑡 between wall temperature and adiabatic

wall temperature. The simulations run over four GPUs in the same cluster node.

The three cases have values of 𝑇𝑤𝑎𝑙𝑙
𝑇𝑎𝑤

= [1 2 3] and an inflow friction Reynolds number of

𝑅𝑒𝜏 = 500.

The computational domain had lengths rlx = 70, rly = 12, rlz = 3 and grid size was 1024x192x72

points.

Mach number was set to 2.28. Shock wave angle is 8 deg and nominal impinging point is x = 40. The

CFL number for numerical stability is 0.5 .

The statistics shown are:

1. Mean Velocity in streamwise stations 𝑥 = [20 40 60] , normalized with the friction

velocity;

2. Compressible Friction Coefficient ;

3. Reynolds stress tensor for x = 20;

4. Reynolds stress tensor for x = 40;

5. Reynolds stress tensor for x = 60;

6. Mean pressure normalized with wall shear stress;

7. Pressure root mean square normalized with square root of wall shear stress;

8. Friction Reynolds number;

9. Compressible Reynolds number;

10. Friction velocity.

Only statistics at convergent steady state have been reported in this thesis , cutting off the transitory

with a restart of STREAmS after a prefixed number of iterations equal to 80000. It can be pointed out

that the final physical time Tf of the simulation reduces by increasing wall temperature , as the speed

of sound rises and therefore the computed time step for CFL stability gets smaller .

Time performance and memory usage per grid point are reported in the following graphs .

87

Table 7 Integration time table for temperature parametric study

𝑇𝑤𝑎𝑙𝑙
𝑇𝑎𝑤

 𝑇0 [s] 𝑇𝑓 [s]
N° Iterations

Transitory

N° Iterations

Steady State
Istat

1 32 72 80000 180000 250

2 24 59 80000 200000 250

3 19 48 80000 200000 250

00:00:00

00:28:48

00:57:36

01:26:24

01:55:12

02:24:00

02:52:48

03:21:36

03:50:24

0 0.5 1 1.5 2 2.5 3 3.5

Jo
b

 W
al

l c
lo

ck
 t

im
e

Trat

Time performance with 4 GPUs

Steady State

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3 3.5

B
yt

es
 p

er
 n

o
d

e

Trat

Memory usage with 4 GPUs

Steady State

88

Figure 5-27 Mean streamwise velocity profile for 𝑇𝑤𝑎𝑙𝑙
𝑇𝑎𝑤

= [1 2 3]

89

Figure 5-28 Compressible Friction Coefficient , it gets smaller after the reflected shock by rising the wall
temperature.

90

Figure 5-29 . Reynolds Stress tensor for x = 20

91

Figure 5-30 Reynolds Stress Tensor for x = 40 , In the interaction region the Reynolds shear stress gets
deeply negative by rising wall temperature.

92

Figure 5-31 Reynolds Stress Tensor for x = 60

93

Figure 5-32 . Mean pressure normalized with the wall shear stress for 𝑇𝑟𝑎𝑡 = [1 2 3]

94

Figure 5-33 Pressure root mean square , the pressure fluctuation after the reflected shock gets higher by
increasing wall temperature.

95

Figure 5-34 Friction Reynolds number for 𝑇𝑟𝑎𝑡 = [1 2 3]

96

Figure 5-35Compressible Reynolds number for 𝑇𝑟𝑎𝑡 = [1 2 3]

97

Figure 5-36 Friction Velocity for 𝑇𝑟𝑎𝑡 = [1 2 3]

98

Figure 5-37 Q-criterion applied to last .vtr file saved by the program.

99

Figure 5-38 Pseudocolor of the U velocity component of the last .vtr file saved by the program.

100

Figure 5-39 Mach contour and q-criterion contour for 𝑇𝑟𝑎𝑡 = [1 2 3]

101

Figure 5-40 Temperature pseudocolor for 𝑇𝑟𝑎𝑡 = [1 2 3] .

102

Figure 5-41 Density pseudocolor for 𝑇𝑟𝑎𝑡 = [1 2 3]

103

Figure 5-42 Pressure pseudocolor for 𝑇𝑟𝑎𝑡 = [1 2 3]

104

5.3 Q-Criterion applied to different grid sizes
This section is focused on how DNS simulations can capture different eddy length scales by changing

the number of grid points in the three cartesian dimensions.

Simulations were carried out on a computational domain with limits rlx = 70 , rly = 12 , rlz = 3, in

the three cartesian dimensions .

Mach number was equal to 2.28 , Shock wave angle is 8 deg and nominal impinging point is x = 40.

The CFL number for numerical stability is 0.5 . Friction Reynolds number 𝑅𝑒𝜏 = 475.

• First case had a grid size of 1024x96x72 points;

• Second case had a grid size of 1024x192x72 points;

• Third case had a grid size of 2048x192x72 points;

The q-criterion was applied to the last .vtr file saved by the program , corresponding to a physical

time of nearly 200 𝑠 and a number of 500000 iterations.

The legends of the graphs show an increase in the range of values of the q-criterion. The CFD solver

can capture turbulent eddies with smaller length scales by reducing the grid size with more points in

the three cartesian dimensions. Thus, when we do not apply a simplified model for turbulence in the

set of equations , such as in Direct Numerical Simulations, it is important to choose a finer mesh to

capture eddies with different turbulent energies , that may be of interest for the case under

investigation .

The compressible friction coefficient statistics are reported , by increasing the grid size the discrete

solution converges to the real one as the truncation error reduces with a finer mesh for the

computational domain .

105

Figure 5-43 Q-criterion applied to simulations with different grid sizes

106

Figure 5-44 Difference in Cf statistics with increasing grid sizes .

107

Chapter 6
A 2D CFD Solver in modern GPU Architecture
The CFD solver of 2D Euler equations, based on a finite volume numerical scheme, has been

parallelized using CUDA Fortran library for a GPU implementation in HPC@POLITO Academic

Computing Center. The set of PDE we want to solve is the following , where U is the vector of

conservative variables, F is the flux tensor for compressible inviscid flows, V is the cell volume (in

the 2D case the cell area) , S is the cell delimiting surface (in the 2D case the cell edges) and �̅� is

the external normal to the cell surface :

𝜕

𝜕𝑡
∫ 𝑈 𝑑𝑉
𝑉

 + ∫ �̅� ⋅ �̅� 𝑑𝑆
𝑆

= 0

𝑈 = [

𝜌
𝜌�̅�
𝜌𝐸
]

𝐹 = [

𝜌�̅�

𝜌�̅�⨂�̅� + 𝑝𝐼 ̅

(𝜌𝐸 + 𝑝)�̅�
]

In the module variabili.f90 we use cudafor to access GPU directives , kernels and special memory

attributes . The number of grid points in x and y directions is defined in the input.dat file . We carried

out dynamic allocation of arrays through the attribute allocatable in the variable declaration to avoid

segmentation fault errors with high numbers of grid points.

Variables resident in the GPU memory have the device attribute , we can simply copy data from the

CPU to the GPU and back with explicit assignment syntax (for instance A_gpu = A) . To improve

performance we used the pinned attribute for variables which are frequently transferred between host

and device , to put them in page-locked host memory, such as primitive variables a, u, v, p, T, s .

GPU read-only variables are allocated in the device constant memory space , which allows really fast

accesses but can be overwritten only by the host CPU. Some scalar variables , such as velocity module

q and local time steps Δ𝑡𝑙𝑜𝑐𝑥 , are allocated in local thread private memory.

Using !$cuf kernels we parallelize independent loops in the grid generation through the automatic

CUDA Fortran mapping of loops on the GPU threads . In this way we do not need to specify the

number of threads in a block and the number of blocks in the grid and thread indexes are calculated

automatically. The mesh grid is algebraic and the lower boundary is represented by a sine curve

defined between the two abscissas x1 and x2. For instance the y coordinate of the mesh is:

108

!$cuf kernel do(2) <<<*,*>>>

 do i=0,nc

 do j=0,mc

 y_gpu(i,j)=b_gpu(i)+(c_gpu(i)-b_gpu(i))*(1.*j)/mc

 end do

 end do

!@cuf iercuda=cudaDeviceSynchronize()

As GPU Kernel execution is asynchronous with respect to the host code execution , we need to call

the cudaDeviceSynchronize routine after each cuf kernel to stop the CPU and wait that every previous

Kernel launch is completed . After that we need to copy back to the CPU grid point matrices x and y,

as well as cell centers , cell edges and edge normal components . Hence , we can print out the mesh

using the CPU to write .plt files .

The same approach is used to define the initial condition, GPU versions of conservative and primitive

variables are needed to compute Eulerian fluxes and to integrate in time on the device.

In the subroutine compute_dt.f90 we need to evaluate the minimum global time step that guarantees

the CFL numerical stability. However , to make it in parallel on the GPU we can loop in one cartesian

dimension with multiple threads set in the other one . For each cell center , the local time step in x

and y direction is :

Δ𝑡𝑙𝑜𝑐𝑥 =
Δ𝑥

(𝑢 + 𝑎)
𝐶𝐹𝐿

Δ𝑡𝑙𝑜𝑐𝑦 =
Δ𝑦

(𝑣 + 𝑎)
𝐶𝐹𝐿

When we have a two dimensional nested loop , we can decide to parallelize just the outer one with

multiple threads with the do(1) syntax . In this way , each thread is going to loop on the other

dimension to evaluate the minimum time step of a single slice of data . Hence , multiple threads were

set in the x direction and each thread looped in the y direction to calculate local minimum time step

of the vertical slice of cell centers. Finally , to evaluate minimum global time step we can copy back

to the CPU memory the time steps calculated previously and use the minval routine on host resident

variables to reduce the operation.

The main purpose of GPUs is to maximize the throughput using thousands of cores which run in

parallel independent operations . Therefore, we can calculate Eulerian fluxes at the cell interfaces for

internal points of the domain following local Lax-Friedrichs schemes, using device resident variables

and !$cuf kernels defined previously.

109

𝐹
𝑛+
1
2
=
1

2
(𝐹𝑛+1 + 𝐹𝑛) − 𝜆𝑚𝑎𝑥(𝑈𝑛+1 − 𝑈𝑛)

𝜆𝑚𝑎𝑥 = 𝑚𝑎𝑥[(𝑢 + 𝑎)𝑛, (𝑢 + 𝑎)𝑛+1]

In this CUDA version of the CFD solver , we use one single MPI process and one single CPU-GPU

unit of the cluster node . Hence , we do not need to implement the swapping procedure of ghost cell

variables across different MPI processes, which is necessary to compute Eulerian fluxes at the

boundaries of each subdomain when multiple MPI processes are used .

Instead, to compute fluxes at the boundary edges of the domain we still can parallelize the problem

using one-dimensional blocks of threads . Some scalar variables local to each thread are defined using

GPU primitive variables (a, u, v, s, p) .

After the calculation of all Eulerian fluxes in the domain , we can perform time integration always in

parallel through the use of GPU conservative variables . Moreover, we compute in parallel the

primitive variables a, u, v, p, T, s for the next iteration.

𝑈𝑛,𝑚
𝑘+1 = 𝑈𝑛,𝑚

𝑘 −
∆𝑡

𝑉𝑛,𝑚
∑�̅� ⋅ �̅� ∆𝑆

Finally , to write the .plt files for Visit we need to copy back to the CPU the primitive variables and

call the writing subroutine WDKs_tk . We need to remember that the copying procedure can deliver

poor speed performance , so we should limit the printing procedure every 𝑘𝑜𝑢𝑡 iterations by setting a

proper value in the input.dat file.

6.1 Comparison of performances
The following simulations were carried out using both the original CPU version of the code and the

GPU CUDA Fortran version.

In the input.dat file we set the inlet Mach number 𝑀𝑖𝑛𝑙 = 0.5 and the 𝐶𝐹𝐿 = 0.5 . Exit static pressure

is 𝑝𝑒𝑥𝑖𝑡 = 𝑝𝑡𝑜𝑡/ (1 +
𝛾−1

2
𝑀𝑖𝑛𝑙

2)

𝛾

𝛾−1 and 𝑝𝑡𝑜𝑡 = 1 as equations are in non-dimensional form.

• We run several cases where we kept constant the number of iterations and we increased the

number of grid points for the two versions.

• We evaluated performances by reporting the CPU-clock time , using subroutine cpu_time in

the main program to estimate the time needed for the integration of equations , and the

Memory usage per grid point.

110

Table 8 Grid characteristics of the simulations carried out

Case 1 2 3 4 5 6 7

X points 200 400 400 800 800 1600 1600

Y points 200 200 400 400 800 800 1600

The following results show that with a fixed number of iterations the integration time on the GPU is

much lower than the CPU one with a high number of grid points. For a lower number of iterations

and grid points the difference between the two versions is much smaller, as shown in the graphs where

the time ratio between the CPU and GPU clock time is reported as a function of grid point ratio with

the reference case (200x200 grid points) .

Figure 6-1 CPU and GPU time performance at fixed 10 iterations

0

2

4

6

8

10

12

14

16

0 500000 1000000 1500000 2000000 2500000 3000000

C
P

U
 c

lo
ck

 t
im

e
[s

]

Total grid points

Iterations : 10

CPU

GPU

111

Figure 6-2 CPU and GPU time performance at fixed 100 iterations

Figure 6-3 CPU and GPU time performance at fixed 1000 iterations

Figure 6-4 CPU and GPU time performance at fixed 10000 iterations

0

10

20

30

40

50

60

70

80

90

0 500000 1000000 1500000 2000000 2500000 3000000

C
P

U
 c

lo
ck

 t
im

e
[s

]

Total grid points

Iterations : 100

CPU

GPU

0

100

200

300

400

500

600

700

800

900

0 500000 1000000 1500000 2000000 2500000 3000000

C
P

U
 c

lo
ck

 t
im

e
[s

]

Total grid points

Iterations : 1000

CPU

GPU

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 500000 1000000 1500000 2000000 2500000 3000000

C
P

U
 c

lo
ck

 t
im

e
[s

]

Total grid points

Iterations : 10000

CPU

GPU

112

Figure 6-5 CPU and GPU time performance at fixed 100000 iterations

Figure 6-6 Time ratio between CPU and GPU job clock time for a fixed number of 10 iterations

Figure 6-7 Time ratio between CPU and GPU job clock time for a fixed number of 100 iterations

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 500000 1000000 1500000 2000000 2500000 3000000

C
P

U
 c

lo
ck

 t
im

e
[s

]

Total grid points

Iterations : 100000

CPU

GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70

t_
C

P
U

/t
_G

P
U

point ratio

Iterations : 10

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70

t_
C

P
U

/t
_G

P
U

point ratio

Iterations : 100

113

Figure 6-8 Time ratio between CPU and GPU job clock time for a fixed number of 1000 iterations

Figure 6-9 Time ratio between CPU and GPU job clock time for a fixed number of 10000 iterations

Figure 6-10 Time ratio between CPU and GPU job clock time for a fixed number of 100000 iterations

0

5

10

15

20

25

0 10 20 30 40 50 60 70

t_
C

P
U

/t
_G

P
U

point ratio

Iterations : 1000

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

t_
C

P
U

/t
_G

P
U

point ratio

Iterations : 10000

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

t_
C

P
U

/t
_G

P
U

point ratio

Iterations : 100000

114

Through the call to the cpu_time subroutine in the main program , it is possible to estimate the time

needed to write a single output file with the CPU for different grid sizes , the following graph shows

the results :

Figure 6-11 Time needed to write a single output file for different grid sizes

At fixed number of iterations , the GPU version of the code requires more memory per grid point than

the CPU version , however the memory usage decreases exponentially by increasing the size of the

grid and converges to the CPU value.

Figure 6-12 CPU and GPU memory usage at fixed 10000 iterations

0

2

4

6

8

10

12

14

16

18

0 1000000 2000000 3000000 4000000 5000000 6000000

p
lt

 t
im

e
[s

]

grid points

output time

0

1000

2000

3000

4000

5000

6000

7000

0 500000 1000000 1500000 2000000 2500000 3000000

B
yt

es
 p

er
 g

ri
d

 p
o

in
t

Total grid points

Iterations : 10000

CPU

GPU

115

Figure 6-13 CPU and GPU memory usage at fixed 100000 iterations

0

1000

2000

3000

4000

5000

6000

7000

0 500000 1000000 1500000 2000000 2500000 3000000

B
yt

es
 p

er
 g

ri
d

 p
o

in
t

Total grid points

Iterations : 100000

CPU

GPU

116

Figure 6-14 CPU .plt files at different number of iterations . Pseudocolor of Mach number . Grid
size:200x200

117

Figure 6-15 GPU .plt files at different number of iterations. Pseudocolor of Mach number. Grid size:
200x200

118

We carried out a simulation with a high number of grid points , that is 5000x1000 , using only the

GPU version of the code . Total iterations are 100000 ; Job Wall clock time is: 00:57:18 ; Bytes per

node are 111 . Pseudocolor of Mach number at the last iteration is reported.

Figure 6-16 Subsonic flow field with a grid size of 5 000 000 points

It can be noticed that the numerical solution becomes more symmetric by increasing the number of

grid points and tend to converge to the real solution of the case under investigation , this happens

because the numerical viscosity needed to guarantee the CFL stability gets smaller with a finer mesh

and the discrete solution converges to the real one as the truncation error reduces.

Therefore , GPUs enabled CFD solvers show a great potential to scale the grid and calculate more

accurate solutions of the flow field , as the integration time with a really fine mesh made of millions

of points is still reasonable to wait compared to the time needed with CPU solvers with the same grid

settings .

The CFD code can solve even supersonic flow fields , to make an example a simulation with

1600x1600 grid points was carried out using one GPU and setting an inlet Mach number of 1.5 . Total

119

iterations are 100000 ; Job Wall clock time is 00:51:54 ; Bytes per node are 158. Pseudocolor of Mach

number at the last iteration is reported.

Figure 6-17 Supersonic flow field with a grid size of 2 560 000 points

From the previous picture it is well visible the detached normal shock close to the leading edge of the

lower sine profile , afterwards the subsonic flow accelerates reaching again supersonic values until a

second oblique shock wave makes it horizontal at the outlet .

Figure 6-18 Supersonic vector field around the selected sinusoidal geometry.

120

Chapter 7
Conclusions
The main purpose of this master thesis was reporting the benefits of using GPU enabled CFD solvers

to carry out simulations on mesh grids with tens of millions of points and to investigate the physics

of compressible flows , in particular the complex interaction between an oblique shock wave and a

compressible turbulent boundary layer (SBLI) .

The modern GPU architecture and the usage of cloud computing in HPC@POLITO Legion Cluster

made possible great improvements in time performance for jobs requiring huge amount of

computational resources , especially when four GPUs in the same cluster node were involved .

In fact , it is impossible to complete a Direct Numerical Simulation of a SBLI on a grid of more than

28 000 000 points using a single CPU or GPU on a personal computer , because the time needed for

the job would be incredibly long compared to the cloud-based computation , in particular with the

high number of iterations that are necessary to cut off the transitory and to collect statistics at the

convergent steady state .

Moreover , as we do not apply any simplified model of turbulence in the set of Navier-Stokes

equations solved by the GPU program STREAmS , we can think about capturing different scales of

turbulent eddies by simply refining the mesh as much as we can , to be able to see even the smaller

coherent structures in the turbulent fluctuations . This was nearly impossible in CPU-based CFD

solvers , where quite often models like the Reynolds Averaged Navier-Stokes equations are necessary

to compute the mean properties of turbulence in really complex cases , even though we lose the ability

to see eddies with various length scales associated.

Finally , the CUDA Fortran version of the 2D CFD solver of Euler equations has great potential to

complete simulations on inviscid compressible flows in a really short time . Even using a single GPU

of the cluster , we can tend to converge to the real physical solution of the problem by rising with

millions of points the mesh grid , to minimize the truncation error due to the spatial and time

discretization of the PDE set and to reduce the numerical viscosity which is needed for CFL stability.

To sum up , if we want to calculate more accurate solutions of the flow field , waiting reasonable time

to carry out the integration of equations describing the physics of our problem , we need to move to

GPU enabled solvers and to cloud-based computing resources . In this way, it is possible to start the

CFD analysis even from the preliminary phases of an aerospace project , to better drive the design of

components and to predict performances without leaning to expensive experimental sessions .

121

Bibliography

[1] M. Bernardini, D. Modesti, F. Salvadore and S. Pirozzoli, "STREAmS: a high-fidelity

accelerated solver for direct numerical simulation of compressible turbulent flows,"

physics.comp-ph, 2020.

[2] NVIDIA, "CUDA C , https://docs.nvidia.com/cuda/cuda-c-programming-guide , accessed

2020-10-04," [Online].

[3] NVIDIA, "CUDA FORTRAN, https://developer.nvidia.com/cuda-fortran, accessed 2020-10-

04," [Online].

[4] NVIDIA, "CUDA , http://developer.nvidia.com/cuda-zone , accessed 2020-10-04," [Online].

[5] "https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pd

f," [Online]. [Accessed 14 10 2020].

[6] "https://www.hpc.polito.it/docs/guide-slurm-it.pdf," [Online]. [Accessed Aug 2020].

[7] OpenMPI, "https://www.open-mpi.org/video/general," [Online]. [Accessed 5 10 2020].

[8] A. Kempf, S. Wysocki and M. Pettit, "An efficient, parallel low storage implementation of

Klein's turbulence generator for LES and DNS," Computers and Fluids, vol. 60, pp. 58-60,

2012.

[9] D. S.-K. Ting, Basics of Engineering Turbulence, Elsevier Inc., 2016.

[10

]

M.Klein, A. Sadiki and J.Janicka, "A digital filter based generation of inflow data for spatially

developing direct numerical or large eddy simulations," J. Comput. Phys, vol. 186 (2), pp. 652-

665, 2003.

[11

]

T. Lund, X. Wu and D. Squires, "Generation of turbulent inflow data for spatially-developing

boundary layer simulations," J. Comp. Phys., vol. 140, pp. 233-258, 1998.

[12

]

Z.-T. Xie and I. Castro, "Efficient generation of inflow conditions for large eddy simulation of

street-scale flows," Flow, Turbulence and Combustion, vol. 81 (3), pp. 449-470, 2008.

122

[13

]

S. Pirozzoli and M. Bernardini, "Turbulence in supersonic boundary layers at moderate

Reynolds number," J. Fluid Mech, no. 688, pp. 120-168, 2011.

[14

]

"https://visit-sphinx-github-user-manual," [Online]. [Accessed 13 10 2020].

[15

]

K. M.Bercin, Z.-T. Xie and S. R. Turnock, "Exploration of digital-filter and forward-stepwise

synthetic turbulence generators and an improvement for their skewness-kurtosis,," Computers

and Fluids, vol. 172, pp. 443-466, 2018.

[16

]

K. Iwamoto, "Database for fully developed channel flow, THTLAB Internal Report (ILR-

0201), Dept. Mech. Eng., Univ. Tokyo. DNS database (CH12_PG.WL7)," 2002. [Online].

Available: http://www.thtlab.t.u-tokyo.ac.jp/.

