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Abstract  
 

 

The research on automotive industry in the last year focused on three main 
aspects: electric engine, advanced infotainment and autonomous driving. 

Nowadays autonomous driving represents one of the hottest topics in the 
automotive field, since technology advancement in these last years, especially 
with the new discovery on Artificial Intelligence, allowed to lay the foundations 
for the development of fully autonomous vehicles and revolutionize the concept 
of autonomous mobility. 

Since building a real vehicle equipped with the needed sensors is very 
expensive, it is critical to test every component, both hardware and software, 
considering all the possible scenarios where the vehicle may operate. It is clear 
how Software and Hardware in the Loop play a key role for the development, 
allowing a preliminary validation of the vehicle before road testing. However, 
this approach, to be reliable, requires a virtual environment that mimics the 
conditions of the real world. The goal of this thesis is to create an automated 
system for the generation of three-dimensional maps starting from simple 2D 
maps. The building of a structured simulation ready map, a detailed map 
containing information of the environment, starting from OpenStreetMap data 
is the key for reduce costs and time for fast prototyping of this new generation 
of algorithms. The map generation is accomplished by using CARLA simulator, 
an Unreal Engine-based simulator. After this, the map is converted into a 
specific format suitable for an eventual field test by using a bridge between 
CARLA and the ROS-based platform Autoware. The last part is dedicated to 
the evaluation of the achieved result considering possible limitations and 
improvements. 
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Chapter Ⅰ 
1 Introduction 
 

 

An autonomous car, as the name suggests, is a vehicle capable of operating 
without the human action by making use of several sensors tasked with sensing 
its environment to safely drive. While sensors are essential for the correct 
vehicle operation, they are not the only important components. A combination 
of hardware and software components is required to ensure the self-driving 
capability. The entire process behind autonomous driving can be summarized 
by the below scheme, as shown in Figure 1.1, which shows the fundamental 
components in an autonomous vehicle (AV). 

 
Figure 1.1 Typical autonomous vehicle system overview 

 

More specifically: 

• Sensors: they represent the eye of the vehicle and collect information 
about the environment. Sensor fusion of the data from different sources 
allows the vehicle to perceive the environment more accurately. 

• Perceptions:  the vehicle analyses the data received by the sensors to 
detect and classify the objects around itself and also to locate its position.  
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• Planning: this is the process of planning the route of the vehicle. The 
decision is made considering all the information about the environment 
and the road in order to choose the best path. 

• Control: the combination of actions needed to follow the path previously 
planned. These actions regard the control over the steering angle and the 
acceleration, or the brake amount issued by the planning process. 

 

AV technology has the potential to improve daily life and not only but the 
presence of all these components, both hardware and software, requires a high 
level of reliability as prerequisite since safety has the top priority. Industry is 
still far away from achieving fully autonomous driving but in the meantime its 
development is proceeding rapidly thanks to the number of goals reached by 
technology in these last years. All companies involved in autonomous driving 
development are facing several challenges related to many aspects and in doing 
so their vehicles are undergoing testing to collect essential data and improve 
their systems. Data represent indeed a powerful resource for AV development 
and particularly every information regarding the environment is useful to build 
an infrastructure able to help the vehicle by communicating with the last one 
which will know the status of the surrounding world. For this purpose, in these 
last years a new generation of maps built for AVs is gaining foothold in the 
industry. These so-called HD maps bring with them high road accuracy and 
more information of the surroundings supporting AV navigation. From the 
previous considerations, it is clear why running tests and gathering data is 
essential. 

This thesis work aims to develop a methodology to build a simulation 
environment for testing purpose by means of real geodata and simulation 
software. In the next chapter the state of art of simulation is discussed, 
considering the most important simulators available in this field. This is 
followed by an overview of the HD map features. Then, in the Methodology 
chapter, the workflow to obtain such simulation environment is proposed and 
discussed. 
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Chapter ⅠⅠ 
2 Simulation for autonomous driving  
 

 

2.1  The importance of simulation 
 

Nowadays, the automotive industry is offering models of car equipped with 
Advanced driver-assistance systems (ADAS), electronic systems capable of 
assisting the driver in many situations but still, they are not sufficient to offer 
full self-driving. Despite the continuous technological progress and the 
development of the infrastructure to support the testing, the maturity necessary 
for the landing these technologies in the current productions has not yet been 
reached. Reliability matters above all when safety is considered the top priority 
for drivers who have to rely on intelligence inside a car. It is generally assumed 
that no fully autonomous vehicle has already hit the market because the desired 
level of safety is still not guaranteed. The big question that every companies 
involved in AV development is asking is: “How safe if safe enough?”. 
Answering this is not simple or simplified. The only way to measure safety for 
the companies is to continuously test their vehicles gathering useful data to 
prove the vehicle reliability. According to a report of Rand Automotive, 
Autonomous vehicles would have to be driven hundreds of billions of miles to 
demonstrate their reliability [1]. The objective is to obtain a vehicle able to drive 
at least as good as a human driver. Testing on real road is fundamental, 
especially in real life scenarios to study how the vehicle act and to locate 
eventual issues. The problem of road testing is that it requires a lot of resources 
and money. Making a vehicle can be very expensive due the presence of many 
components, particularly the ones used by ADAS.  For this reason, many 
companies are investing their time and effort in building simulators to be used 
for testing. Virtual testing allows to evaluate the vehicle behaviour in a virtual 
environment where every sort of scenario can be simulated. This is a great 
opportunity for carmakers to improve their systems making the vehicle safer 
before road testing but also to shorten the time of development. Besides being 
a cost-effective solution, a simulator has the advantage to give full control over 
the simulated world. This is extremely important since in real world tests it is 
nearly impossible to cover all kinds of possible scenarios, particularly those that 
are less likely to happen. Hence, it is not simply the number of miles that matters 
but the overall quality of the data obtained by simulating and this is even more 
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true when it comes to AI training. For these reasons, simulation represents a 
linchpin for the autonomous driving development. 

 

2.2 Features and applications of Autonomous Driving 
Simulators  

 

Simulators can be a valuable source for data gathering and development but to 
be useful they must offer realistic simulations. Other than an accurate dynamic 
model of the vehicle, a good simulator requires several important features, such 
as support for different sensors or traffic handling and so on, in order to ensure 
high-fidelity simulation environments. The number of these features depends 
on the functionality to be tested but in general, if the aim is to test the full 
solution stack, a simulator must include all the needed features and models with 
high accuracy to reproduce a real world scenario. “Fidelity” represents an 

important concept in AV simulation since it can tell how well a simulation 
matches the real world. While for vehicle dynamics modelling it is easy to 
achieve a high-fidelity level, for environment representation it is a different 
matter. Environment model contains information about roads, surrounding 
infrastructures and actors. It must be highly detailed, trying to recreate the 
realism of a possible scenario, in particular the behaviour of possible actors 
interacting with the vehicle. Detailed maps, such as HD maps, can be of great 
help for the environment realization. Also, the physics used in the simulation 
plays a key role since all the dynamic elements of the virtual world depend on 
it. These last ones have a great impact on the vehicle perception system. The 
vehicle knows how to act only if it is capable to sense its surroundings correctly. 
Perception requires a high computational effort since it has to process a large 
amount of data and this is due in part to the high level of details of the 
represented environment. The previous features can be considered as the 
foundations of a simulator, but they are not the only features. From the point of 
view of the user, a simulator must be easy to use and offer a good level of 
controllability. This allows the users to test several aspects in the simulation by 
simply setting values in the scenario. Another interesting feature is flexibility 
since it is very useful interfacing the simulator with third party software or 
hardware elements. This is the case of Software in the Loop (SIL) and Hardware 
in the Loop (HIL). These two methods of simulation give the possibility to test 
and validate components which will be implemented in the final platform. The 
more features are present in a simulator the more applications can find, but the 
choice of a specific simulator depends mainly on the purpose of the test. In fact, 
in the industry are available all kinds of simulators, some of them are suitable 
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to test a particular functionality, as can be traffic management or path planning, 
while other are more advanced and allow to test every elements related to the 
autonomous driving, from simple algorithm testing to test and validation of 
software and hardware components. Hence, defining the applications of a 
specific simulator without considering the testing purpose makes little sense. 

 

 

2.3 State of the Art in Autonomous Driving 
Simulators 

 

Leading companies in autonomous driving have already developed their own 
simulating platform for a few years thanks to their resources but now that 
technology has become accessible to everyone, many minor companies or even 
research groups are working on their own solution. Not all of these simulators 
are available on the market, but instead they are only utilised for internal 
research and this is in general the case of big companies. On the other hand, 
many simulators are available as open-source software, thus allowing the 
democratization of autonomous driving research and development [2]. A special 
mention goes to the video game industry which offers the possibility to use 
game engine technology for the creation of photorealistic environments.  

The rest of this section is dedicated to an overview of the most common and 
advanced simulators or platforms available in the industry, also taking into 
consideration the aim of the case study of this thesis work. 

 

2.3.1 Uber platform 
 

At Uber the Advanced Technologies Group (ATG) with the help of the Data 
Visualization Team is working on its platform focusing on the interpretation of 
the collected data [3]. The team is building this platform by designing it as a 
browser-based service (Figure 2.1). Thanks to the data collected from the real 
world, the simulator recreates the roads with high precision which can be used 
for future simulations. 
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Figure 2.1 An example of a pre-processed 3D map 

 

Perception is fundamental to properly predict the position of all the objects the 
vehicle can came across. This information allows to compute the motion 
planning algorithms. Besides, last year Uber made available an open-source 
version of its Autonomous Visualization System [4], hoping to create a standard 
for engineers and developers who can share data. 

 

2.3.2 Cruise 
 

At the beginning of the year, Cruise [5], a subsidiary company of General 
Motors, unveiled its new electric vehicle called Origin, devoid of manual 
controls. After the announcement, the company began to share new information 
about the progress achieved. Like other competitors, Cruise has invested a lot 
of its time to gather data by driving many miles. To further improve the quality 
of the data, the company relies on 3D simulation. The team developed an end-
to-end simulator based on the Unreal Engine [6] (Figure 2.2), which the 
employees call “The Matrix”, capable to recreate high detailed cities [7]. 
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Figure 2.2 The Matrix: a glimpse of the simulation 

 

Moreover, Cruise has made available its open source visualization tool 
Worldview [8], a web browser-based 2D and 3D scene renderer (Figure 
2.3).This tool allows to visualize, explore, and analyse data collected in the 
simulation and on the road. 

 
Figure 2.3 An example of a scene on Worldview 
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2.3.3 Carcraft (Waymo) 
 

Waymo, a subsidiary owned by Alphabet Inc., developed its own simulation 
platform called Carcraft (Figure 2.4). Thanks to the simulator, all the virtual AV 
vehicles drive billion miles per day [9]. 

 
Figure 2.4 A scene of Carcraft 

When Google unveiled Carcraft, a real scene, which really happened in the 
presence of a roundabout, was recreated to show off the potential of the 
simulator.  It has been stated that the simulator has the capability to employ a 
fleet of thousands of virtual vehicles. Moreover, Waymo has recently begun to 
make use of AI to simulate AV sensor data. By using a SurfelGAN network, it 
is possible to recreate realistic camera images through simulation and data [10]. 

 

2.3.4 NVIDIA DRIVE Constellation 
 

Nvidia, one of the leading companies in GPU manufacturing, has developed its 
AV platform called NVIDIA DRIVE [11]. This platform provides both 
hardware and software solutions, including DRIVE Constellation, an advanced 
driving simulation software stack. DRIVE Constellation is a Hardware in the 
loop simulation-based platform which allows to develop and validate 
autonomous vehicles through virtual test. The platform consists of three main 
components: 

SurfelGAN:#_CTVL00114cc268b8ba54acb9d88421c47cb93fa
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• DRIVE Sim: it is the 3D simulation software which recreate a realistic 
virtual environment. 

• DRIVE Constellation Simulator: it is a powerful GPU server which 
runs DRIVE Sim generating data to send to the AV hardware 

• DRIVE Constellation Vehicle: it is the processing system, hosting AV 
hardware and software, which receives the data generated in the 
simulation. 

The simulation provides a high level of fidelity to recreate realistic scenarios. 
In order to reach such level, Nvidia DRIVE platform combines photorealistic 
physics and HD Maps as shown in Figure 2.5. 

 
Figure 2.5 an example of Nvidia DRIVE Sim 

 

2.3.5 rFpro 
 

rFpro [12] provides a simulation platform which allows to test and validate 
vehicles in photorealistic environments (Figure 2.6). The company offers 
LIDAR-scanned road surfaces and supports the HD map format to build detailed 
environments.  
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Figure 2.6 Model of a photorealistic scanned road 

 

Another feature of the platform is its support to Simulink® [13] which allows 
communication between Simulink models and external applications.  

The high level of accuracy offered by the platform has meant that many top 
automotive OEMs have adopted its solutions. 

 

2.3.6 Cognata simulator 
 

Cognata [14], an Israeli start-up company, has developed a simulation platform 
which leverages real world map data to recreate accurate and realistic virtual 
roads, as shown in Figure 2.7. The idea of the company is to speed up testing 
and validation by building 3D city models as detailed as possible. According to 
Dan Atsmon, Cognata CEO, the result is achieved in three steps [15]:  

• a first layer is built, containing the assets of every static element, such as 
the buildings, the roads, the traffic sign or even the trees. 

• A second layer is built, containing all the dynamic information and 
models such as the traffic behaviour of vehicles and pedestrians and the 
weather conditions previously recorded in the real world. 

• Finally, a third layer is dedicated to the simulation of all the sensor 
interactions with the surroundings. 
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Additionally, the company makes use of AI and deep learning to further 
improve fidelity of the generated virtual environments. 

 
Figure 2.7 Cognata simulator:on the left is shown the graphic quality while on the right a comparison between 

simulation and reality 

 

2.3.7 Metamoto simulator 
 

Metamatoto [16] provides its simulation platform as Service to train, test, 
debug, and validate autonomous vehicles. The platform comprises three main 
components, as shown in Figure 2.8: 

• Designer: a development tool to build scenarios and configure vehicle 
• Director: the core of the platform, which schedules and runs simulations 

for every scenario. 
• Analyzer: an autonomous system software debugging tool to assess how 

a vehicle acted in a specific scenario. 

 
Figure 2.8 The platform structure 

The company goal is to build a platform that is scalable and highly 
parameterizable. In addition, the simulation is characterized by a realistic 
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physics and along with the possibility to support HD maps, a high level of 
fidelity can be ensured.  

 

2.3.8 Vires Virtual Test Drive 
 

Virtual Test Drive [17] is a platform which provides the possibility to create, 
configure, simulate and customize virtual environments for AV development. 
Figure 2.9 shows an overview of different scenarios generated in the simulator. 

The platform provides a Road Network Editor which allows to design complex 
road and rail networks with the addition of the OpenDRIVE [18] support for the 
network logic. The open and modular design of the platform offers the 
possibility to interface the simulation with external applications to enable X in 
the loop (where X could be: Software, Vehicle, Hardware etc.). 

 
Figure 2.9 Vires VTD simulation 

 

2.3.9 AutonoVi-Sim 
 

AutonoVi-Sim is presented as a novel high-fidelity simulation platform for 
autonomous driving data generation and driving strategy testing by the 
development team [19]. The platform supports multiple vehicles and non-
vehicle traffic participants, and weather control along with support of several 
sensors allow to recreate all kinds of scenarios useful for data generation. The 
modular structure of the platform, as shown in Figure 2.10, facilitates the 

AutonoVi-Sim:#_CTVL0019e685c1653ba4bcba90efaea1347ff77
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construction of advanced scenarios by enabling the configuration of every 
aspect of the simulation. 

 
Figure 2.10 AutonoVi-Sim Platform Overview 

The simulation platform is still in development and has some limitations, but it 
is promising, especially for its modular nature. 

 

2.3.10 IPG CarMaker 
 

CarMaker [20] is a virtual test-driving platform (Figure 2.11) developed 
specifically for testing passenger cars and light-duty vehicles. The platform 
provides the possibility to recreate realistic scenarios thanks to the accurate 
representation of the vehicle dynamics and traffic models. The road generation 
tool allows to import real road networks from external sources such as HERE 
maps [21] and supports multiple standard file formats including OpenDRIVE.  
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Figure 2.11 a scene of the CarMaker simulation 

 

2.3.11 PreScan 
 

PreScan [22] is a physics-based simulation platform (Figure 2.12) used for 
developing and testing ADAS with the possibility to integrate XIL and third-
party applications. The platform also supports Vehicle-to-everything (V2X) 
communication applications. Scenarios can be quickly built by using real 
information from external sources such as OpenStreetMap, Google Earth and 
GPS navigation device.  

 
Figure 2.12 an example of a PreScan simulation 
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2.3.12 VRXPERIENCE 
 

VRXPERIENCE [23] of ANSYS is a driving simulator used to create virtual 
scenarios powered by SCANeR [24]. Driving scenario generation support HD 
map importing to recreate high-fidelity environments. The level of realism is 
further improved by the possibility to simulate lighting systems and sound 
sources. Another feature is the presence of a tool dedicated to the Human-
Machine-Interface (HMI) assessment. Moreover, it is possible to interface the 
platform with third-party applications and run XIL tests. In Figure 2.13 are 
shown different scenes taken from the simulation. 

 
Figure 2.13  several examples of simulations through VRXPERIENCE 

 

 

 

2.3.13 Deepdrive 
 

Deepdrive [25] is an open-source self-driving car simulator which supports deep 
reinforcement learning and Unreal API integrated with python. The goal of 
Voyage, the company behind this simulator, is to facilitate research and 
development through machine learning and with regard to this, the company has 
decided to launch a leaderboard where anyone can submit their own agent to 
see how it stacks up against others. Regarding the virtual environments 
available, the simulator features realistic 3D worlds built by Parallel Domain 
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[26], a platform for automated generation of virtual worlds. Figure 2.14 shows 
a snapshot taken from the simulator. 

 
Figure 2.14  a snapshot from Deepdrive 

 

 

2.3.14 Udacity Simulator 
 

Udacity has developed its self-driving car simulator [27] for research and 
teaching purposes and made the code available on GitHub as open source 
software. The simulator is built on Unity [28] engine but it does not offer a 
photorealistic graphics, as compensation, however, it has a user-friendly 
interface. In the main screen it is possible to choose a track and a mode as shown 
in Figure 2.15. 
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Figure 2.15  Simulator main screen  

The training mode gives the possibility to record the driving behaviour, useful 
for training purpose. The autonomous mode can be used to test machine learning 
models. Through Unity editor it is possible to modify existing scenes. Figure 
2.16 shows a snapshot taken from the simulator. 

 
Figure 2.16 a snapshot from the simulator 
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2.3.15 AirSim 
 

AirSim [29] is an open-source simulator built on Unreal Engine (an 
experimental release based on Unity is available) for drones, cars and other 
vehicles (Figure 2.17). The main goal of this platform is to support research by 
developing and testing deep learning and reinforcement learning algorithms 
[30]. The simulator features high-fidelity photorealism, in particular thanks to 
the advanced physics, and supports HIL testing and external peripherals, such 
as a flight controller, to improve simulation results.  

 
Figure 2.17 a snapshot from AirSim 

AirSim currently supports the following sensors for data gathering: 

• Camera 
• Barometer  
• Imu  
• Gps  
• Magnetometer  
• Distance Sensor 
• Lidar  

It is available a detailed 3D urban environment which can be customized in the 
Unreal Engine editor, but it is also possible to import new environments. 

 

AirSim:#_CTVL001184dea0282b949de8901b94e11bd9fa8
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2.3.16 CARLA simulator 
 

CARLA is an open-source simulator developed for autonomous driving 
research [31]. The simulator is built on Unreal Engine to provide high-fidelity 
simulations. In Figure 2.18 is shown a scene of CARLA. 

 
Figure 2.18 a snapshot from CARLA 

It is possible to recreate complex and realistic scenarios thanks to traffic and 
agent management. Data gathering can rely on the presence of several kinds of 
sensors and cameras. CARLA offers flexibility and gives good control over the 
simulator through Python API. As stated by the team, the simulator can be used 
to evaluate three approaches to autonomous driving [31]:  

• Classic modular pipeline: this approach focuses on dedicated 
subsystems for perception, planning and control. 

• Imitation learning: this approach utilizes a dataset of human driving 
records to train a deep network. 

• Reinforcement learning: this method trains a deep network to complete 
a task, based on a reward signal, within an environment.  

Roads and urban information are defined according to the OpenDRIVE 
standard. The simulator is still in development and currently the latest released 
version is 0.9.9 [32], which added support to several third-party software.  

 

CARLA:#_CTVL00171299d002ee14d4e84b3e8d81829b771
CARLA:#_CTVL00171299d002ee14d4e84b3e8d81829b771


20 
 

2.3.17 LGSVL Simulator 
 

LGSVL simulator is a high-fidelity simulation platform built on Unity engine 
(Figure 2.19) and its source code is freely available on GitHub [33], [34]. The 
platform is designed to be open and interfaceable with Autonomous Driving 
stacks with support of SIL and HIL testing [34]. Users takes control over the 
simulator by employing Python API. A default set of sensors is available, but it 
is possible to implement custom sensors as plugins. 3D environments support 
HD map annotations to handle agents in the simulation. 

 
Figure 2.19 a snapshot from LGSVL 

Regarding applications, the simulator allows to test machine learning and 
reinforcement algorithms as well as V2X algorithms.  

 

2.3.18 Sim4CV 
 

Sim4CV is a photo-realistic simulator (Figure 2.20) built on Unreal Engine used 
to develop and test autonomous driving for cars and autonomous flying for 
aerial vehicles [35]. 

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/LGSVL%23_CTVL001dc812eb66e794517be5aba37282edec4
file:///C:/Users/salva/Desktop/Roba%20di%20tesi/LGSVL%23_CTVL001dc812eb66e794517be5aba37282edec4
Sim4CV:#_CTVL001fadc540deb0f453892dfdde7012f2aea
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Figure 2.20 a snapshot from Sim4CV 

Multiple sensors can be set up to collect data which can be used to train vehicles 
by exploiting a deep neural network. This neural network is then employed to 
predict waypoints ahead the vehicle and build control algorithms. Virtual 
environments are built by means of an external software tool starting from a 2D 
map with overhead view. 

 

2.4 HD maps 
 

Nowadays High-Definition maps are widely used in the autonomous driving 
industry and are now considered essential in ensuring safety on the road. HD 
maps can be seen as the necessary evolution of the classic maps and they fill the 
void left by the lack of accuracy of the GPS technology. Considering a width of 
10 cm for lane markings, it is clear that autonomous vehicles need centimeter 
level accuracy to avoid collisions by wrongly assessing their position [36]. But 
high precision is not the only feature of HD maps (Figure 2.21). In fact, these 
maps provide rich geometric information as well as semantic data about road 
network and surroundings [37].  

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/Machine%23_CTVL001f934b36d661d4efd9197b9edb81ccd5d
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Figure 2.21 an example of how a HD map appears 

Having a priori information about the environment is critical in assisting 
sensors, reducing accordingly computational effort. From a structural point of 
view, a HD map is organized in multiple layers. Lyft gives an idea about the 
anatomy of this kind of map, although it may slightly change depending on the 
HD map provider [36]. These layers are: the base map layer, the geometric map, 
the semantic map, map priors, and real-time knowledge as shown in Figure 2.22.  

• Geometric Map Layer: this layer contains 3D information about the 
world. It is composed of collected raw sensor data. Data, in the form of 
3D point cloud, is post-processed to produce derived map objects. 

• Semantic Map Layer: this layer, built on the geometric map layer, 
includes semantic objects. 

• Map priors layer: this layer contains information about dynamic 
elements and also human driving behaviour (e.g. the order in which 
traffic lights change). 

• Real-time knowledge layer: this is a layer designed to be continuously 
updated and contains information about real-time traffic. 
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Figure 2.22 the layer-based structure of HD maps 

 

HD maps creation requires great effort and resources but due to their 
importance, all the companies involved in this field are investing their time to 
optimize the process of map generation seeking to lower the cost. For this 
reason, companies adopt different approaches, some of them rely on 
crowdsourcing by encouraging drivers to gather data while others invest on 
computer visions to avoid the high cost of sensors such as LiDAR [38]. Some 
of the top key player operating in the industry are TomTom, HERE, Waymo, 
NVIDIA, and NavInfo, all of them being big companies, a further evidence of 
the required effort for HD map creation.  

The importance of having HD maps to improve the level of safety and reliability 
in AVs has led many companies to integrate them in their simulation platforms 
ensuring high-fidelity. The necessity to speed up autonomous driving 
development is pushing towards the realization of a standard format for HD 
maps. Currently, the most popular formats supported by several companies are: 

• OpenDRIVE: is an open format based on XML syntax for the 
description of road networks in driving simulation applications [39]. The 
data describes the geometry of roads as well as features along the roads 
that influence the logics (e.g. lanes, signs, signals) with the format 
organized in a hierarchical structure. 

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/OpenDRIVE%23_CTVL001af796759294a4a128cdf1d0d683144a9
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• Lanelet2: this format has been developed as an extension of the map 
format Liblanelet and was designed to be representable on the XML-
based OSM (OpenStreetMap) data format [40]. Lanelet2 divides the 
world into a hierachical structure of six different primitives: Points, 
linestrings, polygons, lanelets, areas and regulatory elements. 

• Apollo Map format: Baidu uses a modified version of the OpenDRIVE 
format for its Apollo platform [41]. Roads elements are represented by 
sequences of points. 

• Autoware Vector format: Autoware [42] is one of the most popular and 
advanced open-source frameworks for autonomous driving vehicles and 
its HD map format is now widely supported. This format has been 
developed by the Japanese company Aisan Technology [43] but no 
official documentation is available. 

• Navigation Data Standard (NDS): NDS is a standardized format for 
automotive-grade navigation database, developed by automotive OEMs 
and suppliers [44]. It is not an open format, but it is widely supported by 
companies. Since it requires a purchase of a license, this format is not 
ideal for academic research. 

The diffusion of these formats has led to the development of tools capable of 
map format conversion to facilitate the process of creation. Among the above-
mentioned formats, OpenDRIVE can be considered the de facto standard due to 
its wide and increasing support from many companies and research teams. 

 

2.4.1 Apollo and Autoware: two open source platforms 
strongly related to HD maps 

 

The process of HD map creation consists of two steps: data collection and map 
generation. Data collection is a critical stage and the quality of data can make 
the difference for the final result. Two approaches can be adopted for data 
gathering: by collecting sensor data through vehicle or by using available 
sources of existing map data. The second step requires a software tool to give 
shape to the map itself. To this end, Apollo and Autoware represent a good 
choice for HD map development. These two platforms are both built on ROS 
[45] (Cyber RT for Apollo 3.5 and after), and in terms of open source software, 
they offer the state-of-the-art of the autonomous driving software stack and 
therefore their HD map formats are now popular. Figure 2.23 shows an 
overview of the architecture of both the platforms. 

Lanelet2:#_CTVL00111357e223d5546c7a342861d1e171faf
file:///C:/Users/salva/Desktop/Roba%20di%20tesi/An%23_CTVL0012ef05c7c549044ef883d72abd0b00cbb
ROS:#_CTVL0013971c93db5414179ad7689b89d083209
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Figure 2.23 Overview of the two architectures: on top is shown Autoware architecture while on the bottom is 

shown Apollo architecture 

 

As can be seen, both Apollo and Autoware share similar functionalities. HD 
maps are fundamental for localization and planning, and for this reason, in the 
next chapter the possibility to generate HD maps will be discussed by eventually 
exploiting mapping functionalities of one of these platforms. 
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2.5 Related works 
 

Currently, the main trend for generating 3D scenario for AV simulation is 
mainly based on sensors fusion and manual editing. Geodata is still hardly used 
as the only source of information for scenario generation and only in recent 
years the automotive industry showed interest in speeding up the development 
and diffusion of reliable map database of the real world. The ongoing 
standardization and diffusion of specific formats for HD maps is particularly 
helping the academic world which is focusing the attention on developing useful 
tools for this area of the automotive industry. OpenStreetMap, being the only 
valid data source freely available, is currently supported by several platforms 
and tools but at the time of writing there are still no available works which 
outlined a similar methodology, fully based  on the implementation of GIS data. 
Worth mentioning is Christoffer Wilhelm Gran’s work [46]. Gran has 
developed a methodology for generating HD maps compatible with Apollo 
platform using OpenStreetMap data. The generated maps are very simple and 
not accurate but the work is still interesting since Apollo map format was 
investigated and the obtained results can be potentially useful for possible future 
works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/HD-Maps%23_CTVL00152a0a711ebb741688f786a244d44bfc7
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Chapter III 
3 Methodology 
 

The goal of this work is to define a process to automatically generate realistic 
3D scenarios, using real world data from an open data source, to be implemented 
in driving simulation. The logical description of road networks is then used to 
build HD maps in accordance with the main standard formats. In this chapter, 
the methodology to define the process is presented.  

 

3.1 Selecting the suitable simulator 
 

This section focuses on the selection of the most suitable simulator for this case 
study, keeping in mind the fact that the choice is influenced by the necessity to 
use only an open source simulator. Moreover, the final choice dates back to the 
end of the last year, after conducting the literature review and some tests with 
different software.  

The search, for the simulator to be used, can be further narrowed down by 
setting the following requirements as filters: 

• Constant and long-term support from the development team 
• Good documentation  
• High-fidelity level of simulation 
• Easy for users to customize the simulator according to their own needs 
• Possibility to integrate the simulator with other platforms, especially 

with Apollo and Autoware 
• Support to HD maps and formats for the logical description of road 

networks, such as the OpenDRIVE or lanelet2 formats. 

The only 3D simulators that satisfy these requirements are CARLA and 
LGSVL. 

For this reason, in the following tables only the main features of these two 
simulators are considered for a direct comparison. 

The first table (Table 3.1) shows a comparison of the main sensors available in 
both simulators. The most essential sensors are implemented in both simulators. 
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Table 3.1 Sensors comparison 

 SENSORS 

RGB 
camera 

Depth 
camera 

Segmentation 
camera 

Lidar Radar GPS IMU 

CARLA + + + +* + + + 

LGSVL + + + + + + + 

Table legend:(+) implemented, (-) not implemented 

*: Lidar in CARLA does not generate intensity for the points nor semantic labels. A semantic Lidar is planned to 
be included in the next release. 

 

Table 3.2 shows instead the standard formats and AD platforms supported by 
the simulators. 

  

  
Table 3.2 Standard format support 

 AD Platforms Formats 

Autoware Apollo OSM OpenDRIVE Lanelet2 

CARLA + - +* + - 

LGSVL +** +** - + + 

Table legend:(+) implemented, (-) not implemented 

*: Osm support is planned to be included in the next release. **: Lgsvl allows to export HD maps in the Apollo and 
Autoware formats. 

Looking at both tables, it is evident that lgsvl simulator offers more 
functionalities but for both simulators it is possible to generate a HD map by 
defining a pipeline which exploits several tools. It was eventually decided to 
choose CARLA simulator since this one is release under the MIT license, giving 
more freedom than the proprietary license of lgsvl simulator. 
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3.2 Data source 
 

The first step is to identify an open source database offering geodata. There are 
several companies and agencies that made available for free their database, but 
this is limited to certain areas only. The data must contain information about 
roads, in particular their geometry as well as their features. OpenStreetMap is 
currently the only valid free option to offer the necessary data, good enough to 
be used for HD map generation. The growing popularity of this project attracted 
millions of users, who support the project via crowdsourcing, and many big 
companies giving the opportunity to compete with giants like Google. This 
success allowed the .osm file format to become a standard widely used. The 
official website of OpenStreetMap [47] offers the possibility to export an .osm 
file of a selected area as shown in Figure 3.1. 

 

 
Figure 3.1 Map exporting from a selected area 

A valid alternative is to export osm data from the website BBBike [48] which 
allows to select different file formats for the road data to be exported with the 
possibility to manually set the boundary box shape. The osm file is mainly 
distributed in the XML format. All the features regarding the map are defined 
by the following three primitives: 

• A node: this primitive defines points in space and includes its 
coordinates 

• A way: this primitive defines linear features and area boundaries 
• A relation: this primitive defines a relationship between two or more 

data elements. 
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Many available editors allow to visualize road networks derived from extracted 
osm files and eventually make changes. This can be useful to check the quality 
of the road data. 

 

3.3 Conversion to OpenDRIVE format 
 

Having chosen CARLA as simulator, it is fundamental to have available data 
formatted to the OpenDRIVE format since CARLA requires this type of file. 
For this reason, a conversion from osm to xodr (OpenDRIVE file extension) is 
required. It is possible to exploit the conversion tool included in SUMO 
(Simulation of Urban MObility) to generate an OpenDRIVE file from the osm 
data. 

 

3.3.1 SUMO netconvert 
 

The netconvert [49] tool allows to import road networks from different sources 
and then generates as output a new file formatted as specified in the command 
line. It is possible to easily install SUMO on Windows, Linux and macOS and 
then use its command line applications by setting the necessary parameters. 

SUMO is an open source microscopic traffic simulator which allows to simulate 
and manage road traffic [50]. It is provided as a package containing useful tools 
for the generation, validation and evaluation of traffic scenarios. 

In this specific case for the conversion from osm to OpenDRIVE, the command 
to be run inside the shell is the following: 

 

The converted file is generated according to the version 1.4 of the OpenDRIVE 
specification. This version of the OpenDRIVE standard is currently the most 
supported one with the 1.6 released in March 2020. 

From the official website of OpenDRIVE, a basic viewer can be downloaded to 
visualize the OpenDRIVE data as a map [51]. Figure 3.2 shows the 
representation on the viewer of the converted data.  

netconvert --osm <FILE>.osm --opendrive-output <FILE>.xodr 

 

file:///C:/Users/salva/Desktop/Roba%20di%20tesi/Microscopic%23_CTVL001ffc3811417254c80b4cc773af8597bf0
https://sumo.dlr.de/docs/Basics/Notation.html#referenced_data_types
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Figure 3.2 Visualization of the OpenDRIVE data - Crocetta district 

 

 

3.4 3D Map generation 
 

CARLA simulator is built on top of the Unreal Engine 4, hence map generation 
requires that all the generated assets must be compatible with the engine in case 
an external editor is used. Two approaches are possible to generate a map by 
exploiting osm data: 

• Generate the map inside Unreal Engine 
• Generate the map by using third-party editors 

Currently, there are not many available solutions offering the possibility to 
automatically generate maps from geographic data. In general, the main trend 
in the industry is to manually build a map and only recently the focus is shifting 
towards automatic generation processes. On the web, some plugins for the 
Unreal Engine capable of generating maps by importing osm data are available 
or in development but only one turned out to be potentially interesting during 
the initial investigation. In the end, after some considerations about the desired 
results, the choice fell on the RoadRunner [52] editor, which represents the best 
solution, since it offers native support for CARLA simulator. The use of 
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RoadRunner was possible thanks to the collaboration between TeoresiGroup 
and MathWorks. In next subsection the procedure to generate a map from osm 
data by using the Unreal Engine plugin is still briefly shown since it represents 
a valid free option to RoadRunner. 

 

 

3.4.1 StreetMap 
 

The StreetMap [53] plugin, available for free on GitHub, allows to import osm 
data into Unreal Engine rendering streets and buildings. The plugin can be built 
alongside with CARLA to generate drivable roads almost out of the box. 
CARLA assets can be used to improve the results though the plugin still has 
obvious limitations: 

• Roads are very simple; they do not present lane markings and traffic 
directions are not rendered 

• Textures are not always correctly rendered 
• The lack of an OpenDRIVE file does not allow to enable autopilot and 

cause some issues with the Python API 

In Figure 3.3 is shown an example of map generated via plugin 

 
Figure 3.3 Map created with StreetMap plugin 
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Tests with this approach were limited to run the manual control python script 
after making some changes to the script. 

For the reasons set out above, the plugin requires some improvements and some 
changes to the python scripts of CARLA need to be made but anyway the plugin 
is still interesting for its open source nature. 

 

3.4.2 RoadRunner  
 

RoadRunner editor lets to design 3D scenarios for simulating and testing AD 
systems. Among the various features, such as the possibility to import gis data 
for visual reference, is of particular interest the one that allows to import 
OpenDRIVE files. This last one is very useful since it is possible to 
automatically generate roads from an OpenDRIVE file by simply clicking the 
Convert to roads button. RoadRunner currently supports OpenDRIVE 1.4, the 
same version supported by CARLA. Importing OpenDRIVE files has some 
limitations as indicated in the official documentation and therefore the resulting 
map may have some inconsistencies that require manual intervention. The 
degree of interventions can also be affected by the quality of the initial imported 
data. For any changes made afterwards to the scene, the OpenDRIVE file is 
updated to include the new information. Once the map is ready, it is possible to 
generate the necessary files to be exported to CARLA. The option to export the 
map can be selected by clicking File > Export > CARLA (.fbx + .xml + .xodr) 
in the menu. In Figure 3.4 is shown one of the generated maps successfully 
imported in CARLA.   
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Figure 3.4 Map generated in RoadRunner - Crocetta district 

The generated map could possibly require manual interventions to achieve a 
good result and avoid possible sources of crashes in CARLA. Special attention 
is required for junctions and maneuver roads within them. RoadRunner offers 
several junction tools to edit geometry and traffic behaviour. 

 

3.5 Setting up the simulation environment  
 

Before running the actual experiment to generate the HD map related to the 3D 
scene previously obtained in RoadRunner, it is necessary to set up the 
simulation environment by building all the required software and dependencies. 

Figure 3.5 shows the design of the pipeline related to the simulation 
environment. 
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Figure 3.5 Design of the followed pipeline 

 

As shown in the previous figure, ROS is used as middleware to link CARLA to 
Autoware. 

 

 

 

The setup chosen for the case study is the following: 

• Ubuntu 18.04 
• Unreal Engine 4.24 
• CARLA 0.9.9 (built from source) 
• ROS melodic 
• Autoware 1.14 (built from source) 
• CARLA-ROS bridge 
• CARLA-Autoware bridge 

In addition to these ones, there are other software required for the proper 
functioning of all the environment. All these requirements are properly 
indicated in the documentation of every software listed above.  

 

 

3.5.1 CARLA setup and map importation 
 

CARLA can be easily built by running the following two make commands in 
the terminal: 

1. make launch to compile the server simulator and launch Unreal Engine 
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2. make PythonAPI to compile the API client, necessary for simulation 
control 

It is possible to use a pre-packaged version of CARLA which does not require 
to be build. This version has lower system requirements, but it is not possible to 
customize maps inside the editor and it requires the use of the Docker image of 
Unreal Engine to automatically ingest a map. After building CARLA, the 
process to ingest a map is very simple. The files previously generated in 
RoadRunner are placed in the Import folder inside CARLA. Once placed them, 
running the make import command is enough to start the importing process. A 
possible alternative to this method is to use the Unreal Engine plugin of 
RoadRunner which turned out to be more reliable in some cases. Figure 3.6 
shows the new map correctly ingested in the Unreal Engine editor. 

 
Figure 3.6 Map successfully imported in Unreal Engine 

   

 

It is possible to check the correct functioning of the new map by running a 
python script of CARLA such as the manual_control.py from the Examples 
folder.  

 

 

 



37 
 

3.5.2 Bridge to Autoware 
 

Once CARLA is ready, it is possible to proceed with the installation of ROS 
and Autoware. With the latest releases is now easier to build the bridge thanks 
to the collaboration between the two teams behind CARLA and Autoware. As 
matter of fact, Autoware 1.14 natively supports the bridge with CARLA. To 
launch the bridge, it is necessary to run the following commands on different 
terminals: 

1. Run CARLA:  

$ make launch-only 

2. Run bridge: 

$ roslaunch carla_autoware_bridge carla_autoware_bridge.launch 

3. Run the agent: 

$ roslaunch runtime_manager runtime_manager.launch 

The Runtime Manager GUI (Figure 3.7) allows to operate functions and load 
3D point cloud/vector map. These two kinds of maps are fundamental and 
therefore in the next section is shown how to generate these files. In the absence 
of a vector map is still possible to drive by following a pre-recorded route 
consisting of waypoints which can be made by using the waypoint_saver 
functionality available in the computing tab of the Runtime Manager interface. 
However, this functionality is beyond the scope of this work.  

 
Figure 3.7 Runtime Manager Interface 
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3.6 Autoware HD map generation 
 

As explained above, Autoware requires a 3D point cloud map and a vector map 
to correctly work. The former is used for localization while the latter contains 
all the information inherent to the road, such as lanes, traffic lights, signs and 
intersections. 

There are different possible methods to obtain such kinds of map, some of which 
involve tools available on the web. The following subsections focus on showing 
the recommended and tested methods. 

 

3.6.1 Point cloud map 
 

ROS bridge [54] offers the possibility to create point cloud maps from CARLA 
maps. By driving around the map, point clouds are created and then stored in 
the temporary folder. The entire process makes use of pcl tools [55]. After 
executing CARLA, the command to be run is the following: 

$ roslaunch pcl_recorder pcl_recorder.launch 

This command gives control over the vehicle and starts the point cloud 
capturing. It is highly recommended to enable the autopilot to make easier the 
capturing. 

Once the capture is done, the size of the acquired data can be reduced by 
running: 

#create a single point cloud file 

$ pcl_concatenate_points_pcd /tmp/pcl_capture/*.pcd 

#filter duplicates 

$ pcl_voxel_grid -leaf 0.1,0.1,0.1 output.pcd map.pcd 

A check of the result can be done by launching the pcl viewer. 
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3.6.2 Vector map generation 
The procedure to generate vector map in the Autoware format consists of the 
following two steps: 

1. Conversion from Opendrive to lanelet2 
2. Conversion from lanelet2 to Autoware vector map 

The choice to use lanelet2 as intermediate step is motivated by the fact that 
Autoware is now supporting this format by also including a conversion tool 
among the available utilities. 

The first step requires to install ASSURE mapping tools [56], a useful tool for 
viewing, editing and saving road network maps. This tool supports the following 
formats: 

• OpenPlanner1 [57] map format .kml (import/export) 
• Google Earth .kml (export) 
• Vector map for Autoware (import) 
• Opendrive .xodr (import) 
• Lanelet2 .osm (import/export) 

Point cloud data can be imported and used as reference to guide the process of 
editing, which relies on a minimalist GUI (Figure 3.8). 

 
Figure 3.8 Appearance of the tool Interface. Point cloud data is used as visual reference as shown 

 

 
1 https://github.com/Autoware-AI/core_planning/tree/master/op_global_planner 

https://gitlab.com/autowarefoundation/autoware.ai/core_planning
file:///C:/Users/salva/Desktop/Roba%20di%20tesi/Open%23_CTVL001a90212a4fd8442e69fd605dfc32d8483
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Once loaded the Opendrive file generated from RoadRunner, it is possible to 
proceed with the conversion and obtain the equivalent lanelet2 file. 

The obtained file can be now converted into Autoware Vector map by means of 
the lanelet aisan converter [58] available in the utilities folder of Autoware. 

The conversion can be done by running the following command: 

rosrun lanelet_aisan_converter lanelet2aisan _map_file:=<path to lanelet map> 
_origin_lat:=<latitude> _origin_lon:=<longitude> _save_dir:=<path to save the 
map> 

At the end of the conversion, several .csv file containing semantic information 
about the road network. Conversion is not 100% accurate, hence the obtained 
vector map may require manual adjustments to achieve the desired level of 
quality. Tier IV, the company behind Autoware, offers a free web-based tool 
to manually build or edit vector maps [59]. Using the vector map builder tool 
can fill in the gaps due to the previous conversion. Although this process could 
require substantial manual intervention, largely going against the research goal 
of obtaining an automatic process, it is shown anyway, since it is currently the 
most valid available option to build a vector map for Autoware. The tool 
requires to sign up for an account before using it. Once logged in, the tool 
features a simple Interface as shown in Figure 3.9. 

 
Figure 3.9 Interface of Vector Map Builder 

The first step is to load the .pcd file, previously obtained by using the pcl 
recorder command. Since the tool can only read files in the binary format, it is 
necessary to convert the file from ASCII to binary. This can be done by running 
the following command which exploits pcl tools: 
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$ pcl_convert_pcd_ascii_binary <map.pcd> <bin-map.pcd> 1 

After also importing the vector map obtained from the lanelet2aisan conversion, 
it is possible to edit the map and make the final adjustments. Eventually, the 
map is ready to be used in Autoware. 

 

 

3.7 The overall pipeline – from OpenStreetMap to 
Autoware 

 

In this Chapter, the focus has been put on defining the methodology to be 
adopted for generating a 3D scenario for autonomous driving simulation by 
exploiting free GIS data. To summarize, the process begins with 
OpenStreetMap data extraction to obtain an .osm file which is then converted 
in the OpenDRIVE format (.xodr) through SUMO netconvert tool. The 
converted .xodr file is imported in RoadRunner to automatically generate the 
road network. In this phase it is possible to customize the generated map, if 
desired, before exporting it to CARLA. CARLA simulator is finally connected 
to Autoware through a ROS bridge. To run the simulation, an HD map is 
required. Such HD map is obtained by combining two files: a point cloud map 
and a Vector map. The former is generated by collecting point cloud data of the 
3D map while the latter is generated in two steps: a conversion of the 
OpenDRIVE file in the lanelet2 format by means of ASSURE mapping tools, 
which is then converted in the Vector map format through one of the Autoware 
utilities. Once obtained and loaded these files into Autoware, it is possible to 
eventually run the simulation. Figure 3.10 shows the methodology workflow.  
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Figure 3.10 The entire workflow 
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Chapter IV 
4 Results 
 

This chapter is dedicated to the presentation of the results obtained by following 
the above outlined methodology. Specifications of the laptop, utilized for this 
study, are listed below as reference: 

• CPU: i7-7770HQ, 2.80GHz 4 cores 
• RAM: 16 GB 
• GPU: NVIDIA GTX 1070, 8GB GDDR5 
• OS: Ubuntu 18.04 

 

4.1 OSM data 
 

OpenStreetMap database is a valuable source of road network data but it has 
one significant limitation, map accuracy is not always guaranteed since the 
service relies on crowdsourcing. This led to a preliminary quality check of the 
osm data to be used.  Several tests were carried out on different areas of the city 
of Turin to find a suitable one for the map generation. The analysis of the data 
extracted from the OpenStreetMap database was conducted by means of SUMO 
netedit [60]. This tool is a visual network editor, built on top of netconvert, 
which allows to visualize the road network. Figure 4.1 shows a comparison 
between the original map and the corresponding road network visualized in 
netedit. 
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Figure 4.1 A comparison between a selected area of Turin and its corresponding extracted road network 

     

By looking at Figure 4.1, it is possible to notice some inconsistencies (indicated 
by the red arrows) between the two maps. The absence of some stretches of road 
is due to the aforementioned crowdsourcing model adopted for mapping. The 
use of netedit tool allowed to check the extracted data before proceeding with 
the conversion into OpenDRIVE format. In the end, it was decided to use, as 
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reference for the experiment, an area from the Aurora district after assessing the 
quality of the corresponding osm data as shown in Figure 4.2. 

 
Figure 4.2 The area chosen to conduct the experiment 

 

Figure 4.2 shows how the extracted road network and the map perfectly match, 
turning out to be a good choice. 

 

4.2 OpenDRIVE conversion 
 

Conversion from osm to OpenDRIVE format was performed through 
netconvert tool from SUMO. It is possible to visualize the map, corresponding 
to the obtained OpenDRIVE file, through the viewer available online (Figure 
4.3). 
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Figure 4.3 Map visualized in the OpenDRIVE viewer 

 

A quick comparison between the map in Figure 4.2 and the one in Figure 4.3 
shows that the conversion generated an acceptable map, at least as regards the 
road network. A more in-depth analysis allows to notice the absence of some 
elements in the map such as the traffic lights and traffic signs or some geometric 
anomalies in junctions. These errors are directly caused by the netconvert tool 
which has significant limitations.  

 

 

4.3 Generated map for CARLA 
 

The OpenDRIVE generated from the conversion was imported in RoadRunner 
to automatically generate the road network. Figure 4.4 shows the road network 
automatically generated in RoadRunner. 
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Figure 4.4 A snapshot of the map generated in RoadRunner 

 

When importing OpenDRIVE files, RoadRunner builds junctions based on the 
overlap of roads while dead-end roads are readjusted with the addition of a U-
turns placed as junctions at the end. The map was centered in (0,0) as indicated 
in the CARLA documentation before exporting [61]. Once the map was ready, 
the scene was exported in CARLA by embedding all the textures in the .fbx file. 
The map was then successfully imported in CARLA where it was eventually 
used to generate the corresponding point cloud map in the .pcd format by means 
of the pcl_recorder tool included in the ROS bridge. In Figure 4.5 is shown the 
generated pcd map. 

 
Figure 4.5 The generated pcd map successfully loaded in Autoware 
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4.4 HD map for Autoware 
 

HD map generation was achieved by means of two different tools. The first tool, 
ASSURE mapping tools, allowed to convert the OpenDRIVE file in lanelet2. 
Figure 4.6 shows the resulting map in the lanelet2 format. 

 
Figure 4.6 The generated lanelet2 map successfully loaded in Autoware 

The generated map contains simple information about the roads, and elevation 
tags are always present. No information about traffic signs or lane markings are 
included. 

The lanelet2 map was then converted in the Vector map by means of one of the 
Autoware utility. The conversion process generated the following series of .csv 
files: 

• area.csv 
• dtlane.csv 
• intersection.csv 
• lane.csv 
• line.csv 
• node.csv 
• point.csv 
• wayarea.csv 
• whiteline.csv 

 

https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/intersection.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/lane.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/line.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/node.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/point.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/wayarea.csv
https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/vector_maps/asian/Town02/whiteline.csv
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After obtaining the necessary maps, it was possible to load the two maps and 
finally build the desired HD map. Both maps contain information about their 
coordinates. A specific tf launch file is required to provide the necessary 
transforms for the different coordinate frames. Figure 4.7 shows how the pcd 
map and the lanelet2 perfectly match. The HD map was thereby ready. 

 
Figure 4.7 Matching between pcd map and lanelet2 map 

 

4.5  Running the final simulation 
 

In the end, having obtained the HD map, it was possible to launch the CARLA-
Autoware bridge. Control over the simulation can be taken by directly 
interacting with Autoware or by enabling the manual control functionality 
provided by CARLA PythonAPI module through ROS bridge. In Figure 4.8 is 
shown the simulation successfully performed while the bridge is in execution.  
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Figure 4.8 A snapshot of the simulation running on Autoware  and CARLA via bridge 
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Chapter V 
 

5 Discussions 
 

This chapter focuses on discussing and making observations on the findings of 
this work, which aims to define an automatic process for generating a realistic 
3D simulation scenario featuring semantic information extracted from real 
world road networks. Moreover, limitations are underlined to address the 
weaknesses of this study and highlight all the aspects of the methodology which 
require further development to improve results. The previous chapter showed 
how it is possible to generate 3D scenarios by means of several tools, eventually 
deploying them into an end-to-end driving simulation.  

 

5.1 Map data 
 

As seen in the previous chapters, OpenStreetMap represents the only valid road 
network data source freely available to be used in map generation. The osm file 
format structure is very intuitive, and tags allow to quickly analyse and change 
any code section. However, data are not always good and during the research 
work a few limitations has come to light. Anyway, available data is in general 
quite accurate and traffic information included in the database still represents a 
valuable asset which can be exploited in simulation. Turin was chosen as the 
reference area for demonstration purposes only. All areas which were presenting 
inconsistencies or missing data were avoided in order to have a good map as 
starting point. This step was crucial since SUMO conversion from osm to 
OpenDRIVE is not perfectly accurate and therefore further issues can emerge. 
In this regard, SUMO netconvert turned out to be the most critical phase of the 
entire workflow due to the limitations of the conversion tool. Converted files 
are mainly afflicted by geometrical issues concerning junctions, which in some 
cases require to manually intervene. Furthermore, the tool is not able to maintain 
all the information derived from the osm file such as traffic signs. It is possible 
to find missing data by directly examining the code of the converted file. Below 
a snippet of the code shows the absence of information about signs in the 
converted file, as can be seen under the Signal tag at the end of the snippet.  
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<road name="Corso Verona" length="44.32704031" id="1391" junction="-

1"> 

        <link> 

            <predecessor elementType="junction" elementId="3"/> 

            <successor elementType="junction" elementId="1"/> 

        </link> 

        <type s="0" type="town"/> 

        <planView> 

            <geometry s="0.00000000" x="433.71754369" 

y="427.84956072" hdg="-1.01856079" length="44.32704031"> 

                <line/> 

            </geometry> 

        </planView> 

        <elevationProfile> 

            <elevation s="0" a="0.00" b="0" c="0" d="0"/> 

        </elevationProfile> 

        <lateralProfile/> 

        <lanes> 

            <laneSection s="0"> 

                <center> 

                    <lane id="0" type="none" level="true"> 

                        <link/> 

                        <roadMark sOffset="0" type="solid" 

weight="standard" color="standard" width="0.13"/> 

                    </lane> 

                </center> 

                <right> 

                    <lane id="-1" type="driving" level="true"> 

                        <link/> 

                        <width sOffset="0" a="3.20" b="0" c="0" 

d="0"/> 

                        <roadMark sOffset="0" type="solid" 

weight="standard" color="standard" width="0.13"/> 

                        <speed sOffset="0" max="13.89"/> 

                    </lane> 

                 </right> 

            </laneSection> 

        </lanes> 

        <objects/> 

        <signals/> 

    </road> 
 

By further analysing and comparing the code with the corresponding osm file, 
it is possible to spot all the missing data. This allows to get a sense of the 
expected result on RoadRunner. Limitations of the SUMO netconvert tool had 
a significative impact on the overall result of the outlined workflow and possible 
alternatives were investigated during the initial phase of the study. 
Unfortunately, there are only few minor projects available on GitHub but none 
have given satisfactory results. Recently, CARLA team has started developing 
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an internal conversion tool based on SUMO netconvert but for now results does 
not differ much from the ones obtained with SUMO [62].  

 

5.2 RoadRunner as main choice 
 

Scenario generation for autonomous driving requires significant effort to 
develop high-fidelity simulations.  In this case, where automatic scenario 
generation is sought after, an editor capable of correctly parsing map data files 
to build the corresponding scenario was necessary. At the beginning of this 
work, it was decided to use only open source software, and in fact initial tests 
were conducted with the StreetMap plugin. A custom version of the plugin was 
also developed with minor changes to the source code. However, maps 
generated via plugin were incomplete and required too much manual 
intervention every time. Besides, several crashes and incompatibility issues 
with ROS bridge occurred. For these reasons, it was eventually decided to use 
RoadRunner thanks to the partnership between MathWorks and TeoresiGroup 
company. The use of RoadRunner allowed to come under the objective of 
automatically generating a 3D scenario. The only manual intervention required 
is simply related to the customization of the map through the addition of props 
such as buildings. The strength of RoadRunner is that maps generated in such a 
way will be perfectly compatible with all the functionalities provided by the 
Python module. To be more specific, world and actor settings and blueprints are 
specifically created to properly work with CARLA. By correctly matching these 
files, it is possible to avoid issues related to the Python API and consequently it 
is not necessary to change the code every time for each generated map. 

 

5.3   What the generated maps look like 
 

As seen above, maps imported in CARLA are generated by converting 
OpenDRIVE files in roads through the built-in option in RoadRunner. Road 
generation supports signals importation. Due to the loss of information about 
signals derived from SUMO netconvert tool, all road networks imported in 
RoadRunner did not contain any signals. However, the editor offered the 
possibility to automatically signalize junctions. Ideally, RoadRunner would 
then be capable of generating satisfying scenarios without intervention if a good 
OpenDRIVE file is used. Leaving aside these limitations, all imported maps 
were fully driveable, and autopilot worked properly. Maps were also tested with 
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generated traffic to simulate a more complex scenario. In addition, ROS bridge 
had no issues with maps generated from RoadRunner. The editor proved to be 
the best choice and it is possible to assess its potential by looking at CARLA 
official maps which were created through it. In the end, the major limitation 
results from the converted OpenDRIVE which affects the final results.  

 

5.4 Generated HD maps  
 

The methodology presented in this thesis specifically focuses on HD map 
generation compatible with Autoware. The latest releases (Autoware v1.13 and 
v1.14) currently support Vector map and lanelet2 as official formats. The 
Autoware Foundation will fully migrate from Vector map format to lanelet2 in 
order to avoid relying on the proprietary map format of Aisan Technology 
company. In spite of this, it was preferred to still include in this work a possible 
method for generating a Vector map for a simple reason, older versions (v1.12 
and older), which do not support lanelet2, are still widely used. As previously 
stated in Chapter III, the process for Vector map generation consists of two steps 
to obtain the desired map format starting from the OpenDRIVE file related to 
the imported map in CARLA. Conversion from OpenDRIVE to lanelet2 relies 
on ASSURE mapping tools. The developer behind these tools is an active 
contributor of the Autoware community and he is currently a PhD student at 
Nagoya University, the place where the Autoware Foundation started. While 
interesting and useful, these tools are still in early development and they are not 
exempt from bugs. Nevertheless, lanelet2 maps obtained from these tools are 
specifically generated to be compatible with Autoware. Maps generated in such 
a way slightly differ from the default format and contain specific tags which are 
mandatory for Autoware. It is possible to have a better understanding about the 
lanelet2 structure specific for Autoware by looking at the documentation 
available on GitHub [63]. The operation to obtain the lanelet2 file was quite 
simple and immediate. In this phase, it is possible to choose between the UTM 
and MGRS coordinate system, therefore it is important to pay attention to this 
point to avoid a possible mismatch between pcd and lanelet2 map. In this case, 
matching between the two types of map is easy to achieve through the tf.launch 
file since for every map imported into CARLA was chosen the point (0,0,0) as 
the world origin. All tests were conducted using only the OpenDRIVE files 
generated with SUMO netconvert or RoadRunner, which did not contain any 
traffic signs. More tests would be needed to see how the tool handles the 
conversion when using OpenDRIVE files containing more information. 
However, it was possible to use the code of CARLA default maps, as reference, 
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to find out that information about traffic signs was missing in the lanelet2 file 
whereas the OpenDRIVE file contained it. Checks on these files showed that 
the tool is able to only generate simple road networks through conversion and 
manual editing is needed if additional details in the map are required. 
Conversion from lanelet2 to Vector map was the last step. The conversion tool 
as part of the Autoware utilities is simple to use but, as said before, it is not 
100% accurate and part of the information is lost with the conversion process. 
It is possible to get an idea of the missing features by looking at the script 
create_feature.cpp, where when a certain feature is not supported, a comment 
like the following one is shown:  

“missing.attribute” = 0;  // Not supported 

 

In the generated .csv file these missing features will display a value equal to 0. 
If necessary, it is still possible to use the Vector Map Builder tool to improve 
the resulting map. In any case, it is recommended to use the lanelet2 format, if 
possible, for two simple reasons: it is an open source format, whereas the Vector 
map format is proprietary and no clear documentation is available, and by 
avoiding a further conversion process it is possible to maintain more 
information.   

 

 

 

 

5.5 Analysis of the final simulation 
 

After generating the HD map, it was finally possible to test the bridge between 
CARLA and Autoware. Before launching the bridge, a few changes in the code 
of the bridge files were made. Once made all necessary preparations, the bridge 
was successfully launched and the generated map was tested. The correct 
functioning of the simulation was assessed by trying the autopilot mode and the 
2D Nav Goal function on Rviz. The simulation performance can be affected by 
the map derived from the OpenDRIVE. It is suggested to intervene in the map 
creation on RoadRunner, if necessary, by fixing those areas of the map afflicted 
by geometric anomalies which can make things difficult for the autopilot. As 
mentioned above, possible issues are mainly related to junctions or road ends 
which do not present U turns, so when the vehicle approaches a critical zone a 
crash could occurs. Regardless, the entire methodology proved to give good 
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results and currently it represents a valid alternative to classical methods which 
rely on sensor fusion and manual editing. 
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Chapter VI 
6 Conclusion 
 

The goal of this thesis work was to define a methodology to automatically build 
3D scenarios generated from available map data of the real world as means of 
implementing them in an autonomous driving framework. It was decided to rely 
on open source software to accomplish the task with the only exception of 
RoadRunner, which was implemented in the workflow thanks to the 
collaboration between TeoresiGroup and MathWorks. The entire process 
consisted of two main phases. The first phase focused on generating a 3D scene 
by importing an existing road network previously extracted from the 
OpenStreetMap database. In the second phase, the OpenDRIVE file, which 
contains semantic road information, was converted in the lanelet2 and Vector 
map formats to exploit them as HD map in simulations. The indicated 
methodology points out all the necessary tools and software needed to reach the 
desired goal. The strength of this methodology is that the development of each 
software takes into account the progress of the others to keep up with them. This 
leads to a simple integration of these software within the workflow. Moreover, 
the adoption of open source formats, which are now de facto standards, 
simplifies research and development, especially thanks to available clear 
documentation. Results of this work are promising since having the possibility 
to automatically generate a 3D scenario without resorting to a demanding 
manual editing can be considered an important achievement. The outlined 
methodology has large room for improvement, but it already represents a valid 
means for speeding up the development of autonomous driving platforms. 

 

6.1 Future work 
 

This thesis work has shown how it is possible to build maps to support 
autonomous driving by exploiting open source map data. Although 
OpenStreetMap has proven to be a valid solution for map generation, the use of 
SUMO netconvert tool had an impact on the outcome. The next step to improve 
the proposed methodology would be to work on the source code of SUMO in 
order to overcome the limitations imposed by the netconvert tool. Moreover, it 
would be beneficial to monitor developments in the Autoware support for 
lanelet2 since the team is still working on it. This must be kept in mind since in 
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the future it may be necessary to make some changes to ASSURE mapping 
tools. Eventually, after solving all the issues related to SUMO, a field test with 
a real car will be considered to move on the next step of the development of an 
autonomous driving system. 
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