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Abstract

Recent works have shown the equivalence between training infinitely wide fully con-
nected neural networks (FCNs) by gradient descent and kernel regression with the
neural tangent kernel (NTK). This kernel can also be extended to convolutional neu-
ral networks (CNNs), modern architectures that achieve remarkable performance in
image recognition, and other translational-invariant pattern detection tasks. The
resulting convolutional NTKs have been shown to perform strongly in classifica-
tion experiments. Still, we lack a quantitative understanding of the generalization
capabilities of these models. In this thesis, we introduce a minimal convolutional
architecture, and we compute the associated NTK. Following recent works on the
statistical mechanics of generalization in kernel methods, we study this kernel’s per-
formance in a teacher-student setting, comparing it with the NTK of a two-layer
FCN when learning translational-invariant data. Finally, we test our predictions
with numerical experiments both on synthetic and real data. Our results show
that these kernels cannot compress invariant dimensions and escape the curse of di-
mensionality. However, the convolutional kernel’s eigenfunctions are better aligned
with translational-invariant data, effectively lowering the generalization error by a
dimensional-dependent prefactor.
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Chapter 1

Introduction

Deep learning is revolutionizing the world around us. Self-driving cars and natural
language processing are examples of the outstanding achievements of deep neural
networks. Despite their success, a theoretical understanding of these complex mod-
els still eludes us, and many fundamental questions related to how they work remain
open. Answering them could provide significant benefits in terms of performance
and reliability.
Deep neural networks are parametrized models that can represent very complex
non-linear functions. Learning corresponds to improving the parameters’ values to
fit a set of training data. The best parameters are found by descending a very high-
dimensional loss function. This dynamics can be studied making an analogy with
glasses, which are complex physical systems with a non-convex energy landscape and
exponentially many local minima. Recent studies show that in the overparametrized
regime, when the number of parameters is bigger than the number of data points,
the landscape is not glassy, but instead it is characterized by connected level sets
and many flat directions, allowing for convergence to a global optimum [1, 2, 3, 4, 5].
Remarkably, in this regime the networks do not overfit the data as one can expect
from classical statistics, and the generalization performance keeps increasing with
the number of parameters [6, 7, 8, 9]. Indeed, practitioners often train these models
using billions of parameters. These observations underline the importance of study-
ing neural networks in the limit in which they have an infinite number of parameters.
Depending on the initialization of the parameters, two distinct regimes emerge. In
the first, the learning dynamics simplifies, and the output of the network becomes a
linear function of the parameters around initialization, i.e. the network learns with
very small changes of the parameters. Formally, in this regime the evolution in time
of the network’s function can be described in terms of a fixed kernel matrix, called
neural tangent kernel (NTK) [10, 11, 12]. In the second, the dynamics is richer, and
the network’s parameters behave as interacting particles in a time-varying velocity
field determined by the optimization algorithm [13, 14, 15, 16]. In this regime the pa-
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Chapter 1 Introduction

rameters evolve significantly, and the neural network’s components learn to respond
to semantically-meaningful features (from simple edges to human faces). It has been
argued that, because of its ”lazy” dynamics, the NTK regime is unlikely to explain
the success of deep networks [17]. Nevertheless, experiments show that networks in
this regime can still achieve remarkable performances, beating all traditional kernel
methods [18]. This is the case of convolutional neural networks (CNNs), that are
architectures inspired by the human visual cortex that can take advantage of the
fact that many datasets posses a lot of structure and symmetries. More precisely,
these models implement invariance to translations (using convolutional filters) and
locality (limiting the filters’ support). CNNs achieve state-of-the-art results in many
fields and are among the most successful deep architectures. However, a quantita-
tive understanding of their impressive performance is still missing. How many data
points do they need to learn a given task? What does determine the gap with other
architectures (e.g. fully connected networks) that are even more expressive than
CNNs? How strong are the priors of locality and translational invariance?
Motivated by the remarkable performance of CNNs’ kernels, this thesis aims to start
investigating these questions in the NTK regime. Specifically, we want to investigate
if and how much the prior of translational invariance affects the sample complexity
(how many training data are needed to learn a task) in this regime.

Thesis structure. In chapter 2, we provide the necessary background in deep
learning theory. In chapter 3, we introduce an analytically-tractable model of a
simple CNN, and we study its performance in the NTK limit. In chapter 4, we
present numerical experiments to check our predictions and to extend them to more
complex data. Finally, in chapter 5 we discuss our findings and possible future
directions.
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Chapter 2

Background

This chapter introduces the necessary background in deep learning. For further
details, we refer the reader to [19, 20, 21]. Other references to research articles are
given inside the sections.

2.1 Supervised Learning

Supervised learning is essentially a high-dimensional interpolation problem. We are
given a training set {(xi, f?(xi))}pi=1, with xi ∈ X ⊆ Rd (input space), f?(xi) ∈ Y
(label space), and (xi, f

?(xi)) ∼ µ which is a probability measure over X × Y. For
example xi can be a picture of an animal with d pixels, and f?(xi) can indicate if
it is present a dog or a cat. Our goal is to find a function f : X → Y that predicts
correctly the label of a new instance x. We introduce a loss function ` : Y × Y →
R+ which measures the cost `(f(x), f?(x)) of predicting the label f(x) when the
true one is f?(x). Ideally, we want to choose f minimizing the expected risk (or
generalization error)R(f) = Eµ[`(f(x), f?(x))], but practically we don’t have access
to µ. Therefore, we minimize the empirical risk (or training error) R̂(f), which is the
expectation of the loss with respect to the empirical distribution µ̂ = 1

p

∑p
i=1 δx,xi

min
f∈F
R̂(f) = min

f∈F

(
1

p

p∑
i=1

`(f(xi), f
?(xi))

)
(2.1)

where F ⊆ {X → Y} is a family of functions called the hypothesis class. The choices
of F and of the optimization algorithm lie at the heart of machine learning. Once the
empirical minimization problem is solved, we can estimate the generalization error by
computing the risk of the optimal f over a test set of labelled points different from the
ones of the training set. An important performance indicator is the learning curve,
which describes how the generalization error decays with the number of training
points p. This curve is strongly affected by the regularity assumptions on the target
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Figure 2.1: Fully connected neural network with L layers of width h as defined in
equations (2.2), (2.3), (2.4). Nodes represents neurons, edges are char-
acterized by a weight. Biases are not represented.

f? and therefore by the choice of the family F . If we assume f? to be just Lipschitz
continuous, the generalization error cannot be guaranteed to decay faster than p−β,
with β = O(1/d) [22]. This is due to the fact that we need p ∼ ε−d points to ε-
cover the data (assuming compactness). Thus, learning is practically impossible in
high-dimensional spaces without stronger regularity priors, and one needs to restrict
the hypothesis class to beat this curse of dimensionality, for instance leveraging the
symmetries and the invariants of the task to learn.

2.2 Neural Networks

Architectures

A fully connected neural network (FCN) with L layers of width h corresponds to the
graph shown in figure 2.1. Nodes in the graph represent neurons, and we associate

a weight W
(t)
i,j with each edge connecting them. Neurons take the weighted sum of

the outputs of all the neurons in the previous layer, add a bias b
(t)
i to obtain the so-

called pre-activations ã
(t)
i , and apply a non-linear function σ : R → R. Commonly

used non-linearities are the rectified linear unit (ReLU) σ(a) = max(0, a) or the
hyperbolic tangent σ(a) = tanh(a). These computations are done iteratively from
layer to layer, and the output function of the network f(x;θ) in response to an input
x ∈ Rd can be written recursively as

f(x;θ) = ã(L+1) (2.2)

ã
(t)
j =

∑
i

W
(t)
i,j σ

(
ã

(t−1)
i

)
+ b

(t)
j (2.3)

ã
(1)
j =

∑
i

W
(1)
i,j (x)i + b

(1)
j (2.4)
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2.2 Neural Networks

where θ denotes the parameters {W (t)
i,j ∈ R}i,j,t and {b(t)i ∈ R}i,t collectively.

The universal approximation theorem states that a neural network with a single hid-
den layer (L = 2) can approximate any continuous function on a compact domain
with arbitrary precision given enough neurons [23, 24]. However, this result does
not specify the number of neurons needed to approximate a given function with a
shallow network, and deeper networks (L > 2) can be more efficient in terms of the
network’s size. For instance, the number of hidden neurons needed to approximate
a radial function f?(‖x‖2) is exponential in the dimension d of the input x using a
single hidden layer, but polynomial in d using two hidden layers [25].
As we commented at the end of the previous section, when learning in high-dimensions
it is crucial to use the prior knowledge on the data. Convolutional neural networks
(CNNs) are an important variant of FCNs that exploit locality and translational
invariance. Therefore, these architectures are particularly suited for image analy-
sis, for which they achieve state-of-the-art results. A CNN alternates convolutional
layers and subsampling (pooling) layers, followed by some dense (fully connected)
layers. A convolutional layer at depth t is composed by h(t) channels, and each
channel c is obtained convolving a filter W (t,c,c′) of support Ω with the outputs
of the channels c′ of the previous layer at depth t − 1 (which are called features).
Mathematically,

ã
(t,c)
i,j =

h(t−1)∑
c′=1

∑
(i′−i,j′−j)∈Ω

W
(t,c,c′)
i′−i,j′−jσ

(
ã

(t−1,c′)
i′,j′

)
+ b(t,c). (2.5)

A padding scheme determines how borders are treated. Usual choices are adding
pixels and setting them to zero, or imposing periodic boundary conditions. The
stride controls if the filters are convolved with the input at all the possible locations
or skip a number of pixels at each movement. Pooling layers reduce the resolution
performing a spatial coarse-graining. The most common procedures are maximum
pooling, where a subregion of outputs at neighboring locations j is substituted with
the maximum element, and average pooling, which corresponds to substituting with
the average value. The output features are (locally) translational invariant depend-
ing on how much spatial resolution is lost by stride and pooling. Convolutions
(which correspond to sparse matrices with shared parameters) and pooling reduce
the computational complexity of CNNs significantly compared to FCNs. Further-
more, deep layers are able to combine the features of the previous layers and learn
to activate for very complex and often semantically meaningful patterns. Figure 2.2
represents LeNet-5, a simple convolutional architecture introduced by LeCun et al.
for handwritten character recognition [26].
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Figure 2.2: Convolutional neural network (LeNet-5) composed by two convolutional
layers with filters of size 5× 5, two subsampling layers performing 2× 2
average pooling, and three fully connected layers.

Optimization Dynamics

Neural networks are trained via empirical risk minimization, i.e. minimizing a loss
function over a training set. However, the loss is not convex with respect to the
parameters θ, and in general minimizing a non-convex function is computationally
intractable. Indeed, this problem is NP-hard. In practice, this minimization is
successfully done using stochastic gradient descent (SGD), without any theoretical
guarantee on the convergence to a global minimizer. SGD is a variant of gradient
descent that starts from a random initialization of the parameters and updates them
moving in the negative gradient’s direction iteratively. In contrast with gradient
descent, the gradient at each step is computed only using a small subset of samples
extracted randomly from the training set, called a mini-batch Bt. Given the loss
function `(·, ·), the update rule reads

θt+1 = θt − ηt
1

|Bt|
∑
xi∈Bt

∇θ`(f(xi;θt), f
?(xi)) (2.6)

where ηt is the learning rate, and the gradient is efficiently computed using a pro-
cedure called back-propagation, which is based on the chain rule for derivatives.
Compared to gradient descent, SGD is noisier due to its stochastic nature, but it is
also much more efficient in terms of computational time and memory.

2.3 Kernel Methods and Wide Neural Networks

Reproducing Kernel Hilbert Spaces

We define a positive definite symmetric (PDS) kernel K : X ×X → R as a function
of two variables which satisfies for any c ∈ L2(X )∫∫

X×X
dx dx′ K(x,x′)c(x)c(x′) ≥ 0. (2.7)

14



2.3 Kernel Methods and Wide Neural Networks

The Reproducing Kernel Hilbert Space (RKHS) HK associated to the PDS ker-
nel K : X × X → R is the completion of the space of functions of the form
f(x) =

∑n
i=1 αiK(xi,x) with the inner product 〈·, ·〉HK . Given two functions

f(x) =
∑

i αiK(xi,x), g(x) =
∑

j βjK(xj ,x), their inner product in HK is de-
fined as

〈f, g〉HK =
∑
i,j

αiβjK(xi,xj). (2.8)

This inner product induces the norm

‖f‖HK =
√
〈f, f〉HK (2.9)

=

√∑
i,j

αiαjK(xi,xj) (2.10)

=
√
α>Kα (2.11)

where (K)ij = K(xi,xj) is called the Gram matrix. The kernel K is called repro-
ducing for HK since 〈K(·,x), f〉HK = f(x), for every f ∈ HK and x ∈ X . If X is
compact, K admits the Mercer’s decomposition [27]

K(x,x′) =
∑
ρ

λρφρ(x)φρ(x
′) (2.12)

with eigenvalues λρ and eigenfunctions φρ defined by∫
dx′K(x,x′)φρ(x

′) = λρφρ(x). (2.13)

Therefore, we can also define a RKHS as the space of functions of the form f(x) =∑
ρ aρφρ(x) with finite norm ‖f‖HK =

∑
ρ
a2ρ
λρ

. If the eigenvalues decay asymptot-
ically fast, in order to have a finite norm, also the coefficients aρ must decay fast.
Thus, the smoothness of the functions in a RKHS is controlled by kernel eigenvalues’
decay.
Learning in a RKHS consists in mapping the data from the input space into a
higher-dimensional feature space via the map

Ψ(x) =
(√

λ1φ1(x),
√
λ2φ2(x), . . .

)
(2.14)

for which K(x,x′) = 〈Ψ(x),Ψ(x′)〉. Then, for any algorithm where the inputs
appear only in inner products, we can map the inputs into the feature space by
replacing their inner products with the kernel K(x,x′). With this method, called
the kernel trick, we obtain a linear model in the feature space, which is equivalent
to a non-linear model in the original space, without significantly increasing the
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Chapter 2 Background

computational complexity. Let consider a learning problem using the RKHS HK as
the hypothesis class F . We want to solve an empirical minimization problem of the
form

min
f∈HK

(
R̂(f) + λ‖f‖2HK

)
(2.15)

where we introduced the regularization term λ‖f‖2HK (λ > 0) in order to control
the complexity of the function f and to avoid overfitting. The representer theorem
states that the optimal solution to this problem can always be written as

f(x) =

p∑
i=1

αiK(xi,x) (2.16)

where {xi}pi=1 are the p points of the training set, and K is the reproducing ker-
nel associated to HK . As an example, we consider regularized least square kernel
regression

1

p

p∑
i=1

(f(xi)− f?(xi))2 + λ‖f‖2HK =
1

p

p∑
i=1

(
p∑
i=1

αiK(xi,x)− f?(xi)

)2

(2.17)

+ λ
∑
i,j

αiαjK(xi,xj) (2.18)

= α>K2α− 2y>Kα+ y>y + λα>Kα (2.19)

where we defined (y)i = f?(xi). Minimizing with respect to α we get

α∗ = y>(K + λI)−1 (2.20)

and so the optimal estimator can be written as

f(x) = y>(K + λI)−1k(x) (2.21)

with (k(x))i = K(xi,x). Taking the limit λ→ 0+ we recover ordinary least square
kernel regression (without the regularization term), which has solution

f(x) = y>K−1k(x). (2.22)

Kernel Analysis of Neural Networks

Jacot et al. in [10] show an equivalence between kernel regression and training
infinitely wide neural networks via gradient descent. Let f(x;θ) be the output
function of deep neural network. We train this network minimizing the squared loss
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2.3 Kernel Methods and Wide Neural Networks

over the training set {xi, yi}ni=1 by (full-batch) gradient descent with a vanishing
learning rate η. Thus, the parameters are updated iteratively with the rule

θt+1 = θt − η∇θ
1

2

p∑
i=1

(f(xi;θt)− yi)2 . (2.23)

Taking the limit η → 0, the evolution of the parameters follows the gradient flow
equation

dθ(t)

dt
= −1

p
∇θ

p∑
i=1

(f(θ(t),xi)− yi)2 . (2.24)

The function f(θ(t),xi) evolves according to

df(θ(t),xi)

dt
=

〈
∂f(θ,xi)

∂θ(t)
,
dθ(t)

dt

〉
(2.25)

= −
p∑
j=1

(f(θ(t),xi)− yi)
〈
∂f(θ(t),xi)

∂θ
,
∂f(θ(t),xj)

∂θ

〉
. (2.26)

Introducing the vector of predictors (u(t))i = f(θ(t),xi),

du(t)

dt
= −Θh(t)(u(t)− y) (2.27)

where Θh is a kernel matrix with elements

(Θh(t))ij =

〈
∂f(θ(t),xi)

∂θ
,
∂f(θ(t),xj)

∂θ

〉
. (2.28)

In the limit in which the width h of the network goes to infinity, Θh(t) does not evolve
and thus it remains equal to Θh(0). Morover, in this limit, for a random initialization
of the parameters this kernel converges in probability to a deterministic kernel Θ∞,
called the neural tangent kernel (NTK), and equation (2.27) reads

du(t)

dt
= −Θ∞(u(t)− y) (2.29)

This dynamics corresponds to the kernel regression dynamics (with vanishing learn-
ing rate). In particular, for t → ∞ the network’s output is the kernel regression
predictor that we found in equation (2.22), where the kernel K(x,x′) now corre-
sponds to the NTK Θ∞(x,x′). Thus, in this limit deep neural networks behave
as affine models around the values of the parameters at initialization. For a full
derivation of the NTK dynamics we refer the reader to [10] and [18].
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Chapter 3

Theoretical Analysis

This chapter studies the impact of learning shift-invariant data on the sample
complexity of fully connected and convolutional networks in the over-parametrized
regime. As we discussed in the previous chapter, in this limit under some assump-
tions the dynamics simplifies and can be entirely described by a frozen kernel called
by Jacot et al. the Neural Tangent Kernel (NTK) [10]. In the first section, we
review the computation of the NTK for a two-layer fully connected network, we
introduce a minimal model of a convolutional neural network, and we compute the
corresponding NTK. In the second section, we study these kernels’ performances in
a teacher-student setting using recent results of Bordelon et al. on the average-case
generalization properties of kernel regression [28].

3.1 Neural Tangent Kernels of Simple Architectures

Two-Layer Fully Connected Network

Consider a fully connected network with one hidden layer of width h ∈ N

fFC(x;θ) =
1√
h

h∑
i=1

βiσ(w>i x). (3.1)

Here x ∈ Rd is the input, θ = (w>1 , . . . ,w
>
h ,β

>) is a vector with all the parameters
{wi ∈ Rd, βi ∈ R}hi=1 initialized as N (0, 1), and σ(a) = max(0, a) is the ReLU
activation fuction. Biases can be added by appending to the vector x an additional
coordinate with value fixed to 1.
The neural tangent kernel associated to this architecture is given by

ΘFC
h (θ) = ∇fFC(θ)>∇fFC(θ). (3.2)
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x

(w1)1

β1

hd

Figure 3.1: Fully connected network with one hidden layer of width h as defined in
equation (3.1).

Taking the gradients,

ΘFC
h (x,x′;θ) =

1

h

h∑
i=1

σ(w>i x)σ(w>i x
′) +

1

h

h∑
i=1

β2
i σ̇(w>i x)σ̇(w>i x

′)x>x′ (3.3)

with σ̇(a) = 1[a ≥ 0] the derivative of the ReLU function with respect to its argu-
ment. As h→∞ this kernel converges to

ΘFC
∞ (x,x′) = E[σ(w>i x)σ(w>i x

′)] + E[β2
i σ̇(w>i x)σ̇(w>i x

′)x>x′]. (3.4)

The expectation values can be computed using techniques taken form the literature
of arc-cosine kernels [29],∫

dw (2π)−
d
2 e−

‖w‖2
2 σ(w>x)σ(w>x′) =

1

2π
‖x‖‖x′‖(sinϕ+ (π − ϕ) cosϕ) (3.5)

∫
dw (2π)−

d
2 e−

‖w‖2
2 σ̇(w>i x)σ̇(w>i x

′) =
1

2π
(π − ϕ) (3.6)

where ϕ is the angle between x and x′

ϕ = arccos

(
x>x′

‖x‖‖x′‖

)
. (3.7)

Finally,

ΘFC
∞ (x,x′) =

1

2π
‖x‖‖x′‖(sinϕ+ (π − ϕ) cosϕ) +

1

2π
x>x′(π − ϕ) (3.8)

For further considerations on this kernel we refer the reader to [17].
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3.1 Neural Tangent Kernels of Simple Architectures

Minimal Convolutional Network

Recently Arora et al. in [18] developed a method to compute the kernels induced by
arbitrary convolutional networks (CNTK), and showed experimentally that these
achieve very good performances. Compared with their work, here we focus on a
much simpler and theoretically tractable convolutional architecture, intending to
study the generalization capabilities of these kernels analytically.
First, we introduce the discrete shift operator ta, which applied to a vector v ∈ Rd
shifts circularly (i.e. with periodic boundary conditions) all the vector’s components
by a positions

(ta[v])i = (v)(i+a) mod d . (3.9)

For instance, if x ∈ Rd is a one-dimensional image with d pixels, ta[x] shifts all the
pixels to the right a times, filling the first pixel with the one that is shifted out of
the array each time.
Taking inspiration from the previous fully connected architecture, we define a min-
imal model of a convolutional neural network with one convolutional layer made of
h channels, filters of size d, periodic padding, stride one, and average pooling

fCN (x;θ) =
1√
h

h∑
i=1

βi
1

d

∑
a

σ(ta[wi]
>x) (3.10)

where the second sum is over the d possible shifts. Since ta[wi]
>x = w>i t−a[x], the

output of this network is shift-invariant by construction

fCN (ta[x];θ) = fCN (x;θ). (3.11)

Switching the action of the shift operator from the weights to the inputs, the asso-
ciated neural tangent kernel reads

ΘCN
h (x,x′;θ) =

1

d2

∑
a

∑
b

(
1

h

h∑
i=1

σ(w>i ta[x])σ(w>i tb[x
′])

+
1

h

h∑
i=1

β2
i σ̇(w>i ta[x])σ̇(w>i tb[x

′])ta[x]>tb[x
′]

)
.

(3.12)

In the limit h→∞,

ΘCN
∞ (x,x′) =

1

d2

∑
a

∑
b

(
E[σ(w>i ta[x])σ(w>i tb[x

′])

+ E[β2
i σ̇(w>i ta[x])σ̇(w>i tb[x

′])ta[x]>tb[x
′]
)
.

(3.13)
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Chapter 3 Theoretical Analysis

Since the shift operator does not affect norms and inner products of two shifted
vectors depend only on the relative shift between them, we get

ΘCN
∞ (x,x′) =

1

d

∑
a

(
1

2π
‖x‖‖ta[x′]‖(sinϕa + (π − ϕa) cosϕa)

+
1

2π
x>ta[x

′](π − ϕa)
) (3.14)

with ϕa the angle between x and ta[x
′]. Recognizing the form of the neural tangent

kernel of the two-layer fully connected network, we can write in compact form

ΘCN
∞ (x,x′) =

1

d

∑
a

ΘFN
∞ (x, ta[x

′]). (3.15)

Intuitively, a kernel corresponds to a notion of similarity. In contrast with the vanilla
NTK ΘFN

∞ (x,x′), the convolutional NTK ΘCN
∞ (x,x′) encodes a shift-invariant no-

tion of similarity. Since images are inherently shift-invariant (e.g. a dog remains
a dog regardless of its position in a picture), we expect this convolutional NTK
to perform better than the vanilla NTK for image classification and shift-invariant
pattern recognition tasks.

3.2 NTK Regression in a Teacher-Student Setting

We study the performance of the neural tangent kernels of the fully connected and
the convolutional networks in a teacher-student setting. In the statistical physics
of machine learning literature, this setting corresponds to training a student neu-
ral network on data generated by a teacher neural network. Here, we leverage the
equivalence between these models in the infinite-width limit and interpolating kernel
regression, and instead of the neural networks we use the corresponding neural tan-
gent kernels to generate and learn the data. This teacher-student setting for kernel
regression was introduced first by Sollich in [30, 31], and recently adopted by Spigler
et at. in [32] to study the learning curves of isotropic kernels, and by Paccolat et al.
in [33] to study how kernel methods learn simple invariant tasks. In the following,
we will address how the kernels that we derived in the previous section deal with
invariance by translations.
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3.2 NTK Regression in a Teacher-Student Setting

Setup

We generate the target function f? using a positive definite teacher kernel KT to
sample a Gaussian random field

f?(x) ∼ N (0,KT ). (3.16)

The training set consists of p examples {(xi, yi)}pi=1, with xi sampled uniformly in
the d-dimensional hypercube Vd = [−L

2 ,
L
2 ]d, and yi = f?(xi).

The goal of kernel regression is to infer the value of the field f(x) at an out-of-sample
point x using a positive definite student kernel KS and minimizing the empirical
mean squared error

min
f∈HKS

p∑
i=1

(f(xi)− yi)2, (3.17)

with HKS the Reproducing Kernel Hilbert Space associated to KS . The minimizer
of this convex problem is unique, and can be written using the representer theorem
as

f(x) = y>K−1
S kS(x) (3.18)

where y is the vector with the target values yi, KS is the p × p Gram matrix with
elements (KS)ij = KS(xi,xj), and kS(x) is a vector with elements (kS(x))i =
KS(xi,x). Notice that the Gram matrix is always invertible since KS is positive
definite. In order to estimate the performance, we compute the asymptotic behaviour
with respect to the number of training samples p of the average-case generalization
error, which we define as

Eg = E
[∫

dµ(x) (f(x)− f?(x))2

]
(3.19)

where the expectation is taken with respect to the teacher random process, and
dµ(x) is the probability measure with which points are generated (in our setting
the uniform distribution in the hypercube Vd). To estimate this error we compute
its spectral decomposition in the eigenbasis of the student kernel. Indeed, using
Mercer’s theorem it is possible to decompose KS in terms of its eigenfunctions φρ(x)∫

dµ(x′)KS(x,x′)φρ(x
′) = λρφρ(x) (3.20)

KS(x,x′) =
∑
ρ

λρφρ(x)φρ(x
′) (3.21)

=
∑
ρ

ψρ(x)ψρ(x
′) (3.22)
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where ψρ(x) =
√
λρφρ(x) are the kernel features. Since the kernel eigenfunctions

form an eigenbasis of the Reproducing Kernel Hilbert SpaceHKS , we can expand the
target function f?(x) and the learned function f(x) in terms of the kernel features

f?(x) =
∑
ρ

w?ρψρ(x) (3.23)

w?ρ =
1√
λρ
〈f?, φρ〉 (3.24)

f(x) =
∑
ρ

wρψρ(x) (3.25)

wρ =
1√
λρ
〈f, φρ〉. (3.26)

Using this decomposition, Bordelon et al. in [28] showed that the average-case
generalization error associated to each mode ρ can be written as

Eρ(p) =
E[w?2ρ ]

λρ

(
1

λρ
+

p

t(p)

)−2(
1− pγ(p)

t2(p)

)−1

(3.27)

t(p) =
∑
ρ

(
1

λρ
+

p

t(p)

)−1

(3.28)

γ(p) =
∑
ρ

(
1

λρ
+

p

t(p)

)−2

(3.29)

Eg(p) =
∑
ρ

Eρ(p). (3.30)

In order to simplify the analytical computations, in what follows we approximate
the NTK of the two layer fully connected network ΘFC

∞ (x,x′) with the Laplacian
kernel

LAP(x,x′) = e−‖x−x
′‖ (3.31)

which has a simpler close form. Indeed, as shown in [34], these two kernels for
data normalized on the hypersphere Sd−1 have the same eigenfunctions and their
eigenvalues decay with the same power law. Furthermore, for real data these kernels
behave empirically in the same way. We define the convolutional version of the
Laplacian kernel corresponding to ΘCN

∞ (x,x′) as

CLAP(x,x′) =
1

d

∑
a

LAP(x, ta[x
′]). (3.32)
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3.2 NTK Regression in a Teacher-Student Setting

To check the validity of this approximation, in the next chapter we present numerical
experiments showing that doing regression with these kernels and training the two
previously defined architectures in the regime in which they can be described by
their NTKs leads to the same results.

Laplacian Teacher

First, we consider the case of using the Laplacian kernel both as the teacher kernel
KT and the student kernel KS . Since this kernel is isotropic, i.e. it depends only on
the difference of its arguments, we can diagonalize it using its Fourier decomposition
on the hypercube Vd. Therefore, choosing as eigenfunctions the normalized plane
waves

φk(x) = L−
d
2 eik

>x (3.33)

we can write

LAP(x,x′) =
∑
k

λkφk(x)φk(x′) (3.34)

where the bar denotes complex conjugation, and the eigenvalues λk are given by the
Fourier transform of the kernel computed in k ∈ 2π

L Zd

λk = L−
d
2

∫
Vd
dx e−‖x‖e−ik

>x. (3.35)

Computing the integral

λk =
L−

d
2 Γ(d+1

2 )

π
d+1
2

1

(1 + 1
4π2 ‖k‖2)

d+1
2

(3.36)

which asymptotically decays as ‖k‖−α, with α = d+ 1.
In order to compute the average-case generalization error, since our eigenfunctions
are complex we need to generalize equation (3.27) to complex valued coefficients,
obtaining

Ek(p) =
E[|w?k|2]

λk

(
1

λk
+

p

t(p)

)−2(
1− pγ(p)

t2(p)

)−1

(3.37)

with t(p) and γ(p) defined as before. Thus, we need to compute E[|w?k|2], t(p), and
γ(p).
The expectation of the squared-modulus of the target function coefficients in the
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eigenbasis of the student kernel is given by

E[|w?k|2] =
1

λk

∫
Vd
dx φk(x)

∫
Vd
dx′ φk(x′)E[f?(x)f?(x′)] (3.38)

=
1

λk

∫
Vd
dx φk(x)

∫
Vd
dx′ φk(x′)LAP(x,x′) (3.39)

=
1

λk

∫
Vd
dx φk(x)λkφk(x) (3.40)

= 1. (3.41)

To compute t(p) and γ(p) we take a continuum limit, and we approximate the sums
over the wave-vectors k’s with integrals over the eigenvalues. To do so, we introduce
the eigenvalue density

ρ(λ) =
∑
k

δλ,λk (3.42)

∼
∑
k

δλ,‖k‖−α (3.43)

∼
∫
dk δ(λ− ‖k‖−α). (3.44)

Going to spherical coordinates in d dimensions and setting q = ‖k‖

ρ(λ) ∼
∫ ∞

0
dq qd−1δ(λ− q−α) (3.45)

∼ λ−1− d
α (3.46)

∼ λ−θ (3.47)

with the exponent θ = 1 + d
α .

Therefore, from equation (3.28)

t(p) ∼
∫ 1

0
dλ λ−θ

λ

1 + p
t(p)λ

(3.48)

where we have taken the continuum limit and rescaled the eigenvalues so that the
largest equals one (this only affects with a constant prefactor). From this implicit
equation it follows that t(p) has to go to zero as p→∞. Thus, we can compute its
asymptotic behaviour assuming it to be small and separating the integration domain
in the two intervals where the denominator is dominated by the first or the second
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3.2 NTK Regression in a Teacher-Student Setting

term of the sum

t(p) ∼
∫ t(p)/p

0
dλ λ−θ+1 +

t(p)

p

∫ 1

t(p)/p
dλ λ−θ (3.49)

∼
(
t(p)

p

)−θ+2

. (3.50)

Finally, rearranging the factors

t(p) ∼ p−
θ−2
1−θ (3.51)

∼ p−χ (3.52)

with the exponent χ = θ−2
1−θ . Then, we can insert this scaling relation in equation

(3.29) and proceed as before to compute γ(p)

γ(p) ∼
∫ 1

0
dλ λ2−θ 1

(1 + pχ+1λ)2
(3.53)

∼ p−
θ−3
1−θ . (3.54)

Substituting in equation (3.37), summing over all modes, and taking the continuum
limit again

Eg ∼
∫ 1

0
dλ λ−θ+1(1 + p−

1
1−θλ)−2 (3.55)

∼ p−
θ−2
1−θ . (3.56)

Recalling that θ = 1 + 1
α , and for the Laplacian kernel α = 1 + d, we obtain

Eg ∼ p−
1
d , (3.57)

which is a manifestation of the curse of dimensionality that we mentioned in the
background chapter.

Convolutional Laplacian Teacher

In the following, we investigate whether the presence of translational invariance in
the target function can cure this curse of dimensionality. Therefore, we consider
a shift-invariant kernel teacher (the convolutional Laplacian), and we compute the
generalization error when using a vanilla Laplacian kernel or a convolutional Lapla-
cian kernel as a student. In the first case the student kernel is not aware of the
invariant’s presence, while in the second case it has the correct prior.
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For the Laplacian student, we already know the eigendecomposition, and we can
proceed as in the previous case.

E[|w?k|2] =
1

λk

∫
Vd
dx φk(x)

∫
Vd
dx′ φk(x′)E[f?(x)f?(x′)] (3.58)

=
1

λk

∫
Vd
dx φk(x)

∫
Vd
dx′ φk(x′)CLAP(x,x′) (3.59)

=
1

λk

∫
Vd
dx φk(x)

∫
Vd
dx′ φk(x′)

1

d

∑
a

LAP(x, ta[x
′]) (3.60)

=
1

d

∑
a

δk,ta[k] (3.61)

t(p) ∼ p−
θ−2
1−θ (3.62)

γ(p) ∼ p−
θ−3
1−θ . (3.63)

Thus, the average-case generalization scales as

Eg ∼
1

d

∑
k

∑
a

δk,ta[k]
1

λk

(
1

λk
+ p−

1
1−θ

)−2

(3.64)

∼ 1

d

∫ 1

0
dλλ−θ+1(1 + p−

1
1−θλ)−2 (3.65)

∼ 1

d
p−

θ−2
1−θ , (3.66)

where we used the fact that the fraction of k’s for which
∑

a δk,ta[k] 6= 1 is a null sub-
set, and so it can be safely neglected. Finally, using the value of θ of the Laplacian,
we get Eg ∼ 1

dp
− 1
d . So, if the student has no prior for the translational invariance of

the teacher, the exponent of the error remains the same (the curse of dimensionality
applies again), but we gain a constant prefactor 1

d .
In contrast with the previous student kernel, the convolutional Laplacian is not
isotropic, therefore we cannot diagonalize it with plane waves. Thus, we introduce
the equivalence class

[k] = {k′ ∈ K | ta[k′] = k} (3.67)

where K = 2π
L Zd is the set of all the allowed wave-vectors, and we define the shift-

invariant eigenfunctions

φCk (x) =
1√

Ldd
∑

a δk,ta[k]

∑
a

eita[k]>x (3.68)
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restricting k to the partition set of equivalent classes and therefore considering only
one element per class since all the k′ ∈ [k] have the same eigenfunction φCk (x).
These eigenfunctions are orthonormal, indeed the inner product between two eigen-
functions is zero if [k] 6= [k′]

〈φCk , φCk′〉 ∝
∑
a

δk,ta[k′] = 0 (3.69)

and is one if [k] = [k′], i.e. k = k′ since we are considering only one element per
equivalence class,

〈φCk , φCk 〉 = 1. (3.70)

All in all,

〈φCk , φCk′〉 = δk,k′ . (3.71)

These eigenfunctions form a complete basis. Indeed, considering the Fourier expan-
sion of the convolutional kernel

CLAP(x,x′) =
1

d

∑
a

e‖x−ta[x′]‖ (3.72)

=
1

d

∑
a

∑
k

λkL
−deik

>(x−ta[x′]) (3.73)

=
∑
k

λk
1

d

∑
a

L−deik
>(x−ta[x′]) (3.74)

=
∑
k

λk
1

d2

∑
a

∑
b

L−deik
>(ta[x]−tb[x′]) (3.75)

=
∑
k

λk
1

d2
L−

d
2

∑
a

eita[k]>xL−
d
2

∑
b

e−itb[k]>x′ (3.76)

=
∑
k

λk

∑
a δk,ta[k]

d

1√
Ldd

∑
a δk,ta[k]

∑
a

eita[k]>x

× 1√
Ldd

∑
a δk,ta[k]

∑
b

e−itb[k]>x′ (3.77)

=
∑
[k]

λkφ
C
k (x)φCk (x′) (3.78)

where with a slight abuse of notation the sum over [k] indicates the sum over one
element per equivalence class, and λk are the eigenvalues of the Laplacian kernel,
which depend only on the modulus of k and thus satisfy λta[k] = λk.
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Finally, we prove that these eigenfunctions satisfy the kernel eigenvalue problem∫
dµ(x′) CLAP(x,x′)φCk (x′) =

∫
dµ(x′)

1

d

∑
a

e‖x−ta[x′]‖ 1√
Ldd

∑
a δk,ta[k]

×
∑
b

eitb[k]>x′ (3.79)

=
1

d

1√
Ldd

∑
a δk,ta[k]

∑
a

∑
b

∫
dµ(x′) e‖x−ta[x′]‖

× eitb[k]>x′ (3.80)

=
1

d

1√
Ldd

∑
a δk,ta[k]

∑
a

∑
b

∫
dµ(x′) e‖x−ta[x′]‖

× eik>tb[x′] (3.81)

=
1√

Ldd
∑

a δk,ta[k]

∑
a

∫
dµ(x′) e‖x−x

′‖eik
>ta[x′]

(3.82)

=
1√

Ldd
∑

a δk,ta[k]

∑
a

∫
dµ(x′) e‖x−x

′‖eita[k]>x′

(3.83)

=
1√

Ldd
∑

a δk,ta[k]

∑
a

λta[k]e
ita[k]>x (3.84)

= λk
1√

Ldd
∑

a δk,ta[k]

∑
a

eita[k]>x (3.85)

= λkφ
C
k (x). (3.86)

Now we can proceed to compute the average-case generalization error.

E[|w?k|2] =
1

λk

∫
Vd
dx φCk (x)

∫
Vd
dx′ φCk (x′)E[f?(x)f?(x′)] (3.87)

=
1

λk

∫
Vd
dx φCk (x)

∫
Vd
dx′ φCk (x′) CLAP(x,x′) (3.88)

=
1

λk

∫
Vd
dx φCk (x)λkφ

C
k (x) (3.89)

= 1. (3.90)

In order to compute t(p), γ(p) and Eg(p), we recall that the summations which
appear are not over all the possible wave-vectors k, but only over one element per
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equivalence class [k]. As we already commented before, the majority of wave-vectors
does not have any special symmetry for shifts of the components. Therefore, it is
possible to convert the series over [k] in series over k simply dividing by d, since the
elements for which card[k] 6= d belong to a null subset. In order to keep track of
possible changes depending on d in the pre-factors, we keep all the constants which
depend explicitly on the dimension.
With the ansatz t(p) = Cp−χ

Cp−χ ∼
∑
[k]

(
1

λk
+

p

Cp−χ

)−1

(3.91)

∼ 1

d

∑
k

Cλk
C + pχ+1λk

. (3.92)

Taking the continuum limit

Cp−χ ∼ 1

d

∫ 1

0
dλλ−θ

Cλ
C + pχ+1λ

(3.93)

∼ C
2−θ

d
p−(χ+1)(2−θ). (3.94)

Comparing the exponents and the coefficients

χ =
θ − 2

1− θ
, C ∼ d−

1
θ−1 , t(p) ∼ d−

1
θ−1 p−

θ−2
1−θ .

Inserting in equation (3.29)

γ(p) ∼
∑
[k]

(
1

λk
+

p

Cp−χ

)−2

(3.95)

∼ C
2

d

∫ 1

0
dλλ2−θ 1

(C + pχ+1λ)2
∼ d−

2
θ−1 p−

θ−3
1−θ . (3.96)

Hence, the average-generalization error reads

Eg ∼
∑
[k]

1

λk

(
1

λk
+ d−

1
θ−1 p−

1
1−θ

)−2

(3.97)

∼ 1

d

∑
k

1

λk

(
1

λk
+ d−

1
θ−1 p−

1
1−θ

)−2

(3.98)

∼ 1

d

∫ 1

0
dλλ−θ+1(1 + d−

1
θ−1 p−

1
1−θλ)−2 (3.99)

∼ d−
1
θ−1 p−

θ−2
1−θ . (3.100)
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This error decays again with exponent 1
d and so it is still affected by the curse of

dimensionality. The prefactor is smaller than the one obtained using the Laplacian
student kernel when

d−
1
θ−1 < d−1 (3.101)

1

θ − 1
> 1 (3.102)

θ < 2 (3.103)

and since for these kernels θ = 1 + d
d+1 and so 1 ≤ θ < 2, it follows that the error of

the convolutional student is always the lowest one.
Therefore, our results seem to confirm for translational invariance what Paccolat et
al. already showed in [33] for simple invariant task, that is kernel regression is not
able to compress invariant dimensions and escape the curse of dimensionality. In
spite of this, the presence of invariance for translations reflects in the pre-factors of
the typical generalization error, lowering it for student kernels associated to both
fully connected and convolutional architectures, which having the correct prior per-
form best.

Spectral Bias

Bordelon et al. in [28] observed that the modal errors Eρ are learnt at different rates.
In particular, adding a single training example causes a bigger relative reduction in
the modal errors corresponding to higher eigenvalues of the student kernel, in the
sense that if λρ > λγ ∣∣∣∣ ddp logEρ

∣∣∣∣ > ∣∣∣∣ ddp logEγ

∣∣∣∣ . (3.104)

Therefore, larger eigenvalues are learnt faster, and the way in which the spectrum
decays controls how much information is learnt. Then, they showed that using p
data sampled uniformly on an infinite-dimensional hypersphere, dot-product kernels
learn modes with ρ ≤ p and don’t learn at all modes with ρ > p. An equivalent
result can be obtained with our formalism (see [32] for an analogous analysis on
isotropic kernels). Since

p ∼
∫ 1

λp

dλ λ−θ (3.105)

∼ λ1−θ
p (3.106)

for p sufficiently large, the p-th eigenvalue scales as

λp ∼ p
1
θ−1 . (3.107)
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Substituting in the equation for the average-case error, together with the scaling
forms of t(p) and γ(p), we find that

Eg(p) ∼
∑
ρ

E[|w?ρ|2]

λρ

(
1

λρ
+ p−

1
1−θ

)−2

(3.108)

∼
∑
ρ

E[|w?ρ|2]

λρ

(
1

λρ
+

1

λp

)−2

(3.109)

∼
∑
ρ≤p

E[|w?ρ|2]
λ2
p

λρ
+
∑
ρ>p

E[|w?ρ|2]
λ2
ρ

λρ
(3.110)

∼
∑
ρ>p

E[|w?ρ|2]λρ (3.111)

∼
∑
ρ>p

|〈f?, φρ〉|2 . (3.112)

Thus, the main contributions to the error are the squared moduli of the target func-
tion’s projections on the student kernel eigenfunctions with rank bigger than the
number of training samples p. Indeed, the projections of a shift-invariant function
on the first eigenfunctions of the convolutional Laplacian are bigger with respect
to the ones of the vanilla Laplacian, resulting in a lower magnitude of the error.
These results show that the great performance of over-parametrized convolutional
architectures on shift-invariant tasks can be due to the fact that their first kernel
eigenfunctions are better aligned with the input data distribution. In the next chap-
ter, we verify this hypothesis through numerical experiments on handwritten digits.
Furthermore, even if in a very simplified scenario and in the over-parametrized
regime only, this analysis justifies recent observation of spectral bias in deep learn-
ing models [35, 36], which could be a key point to understand the generalization
capabilities of neural networks.
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Chapter 4

Numerical Experiments

In this chapter, we test our theoretical results, and we extend them to real data
with numerical experiments. In the first section, we compute the learning curves of
kernel regression in the teacher-student setting, and we compare them with those of
very wide neural networks. In the second section, we estimate the learning curves
for kernel regression of handwritten digits computing numerically the projections on
the eigenfunctions of the kernels defined in the previous chapter, and we compare
with the actual ones. Finally, we analyze the learning curves of our kernels in a
classification setting.

4.1 Synthetic Data

Kernel Regression

We first check if our theory predicts the asymptotic behaviors and the prefactors
of the learning curves in the teacher-student setting. We generate p + ptest points
sampled from a Gaussian random field with zero mean and covariance given by
the teacher kernel. Then, we train a kernel regression model using the student
kernel with p points, and we evaluate the performance computing the mean squared
error on the ptest points that compose the testing set. We use different values of
p comprised between 10 and 10000, and ptest = 1000. In figure 4.1, we report
the learning curves averaged over 100 executions for the various dimensions and
combinations of the student and teacher kernels. All the curves follow the predicted
power law, and the ratios between them are in good agreement with the predicted
dimensional-dependent prefactors, as shown in table 4.1.

Wide Neural Networks

Having established that our theory works with kernels, we test if it approximates
well the behaviour of actual neural networks trained in the NTK regime, which is
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101 102 103 104

p

10−2

10−1

M
S

E

d=3

LAP teach., LAP st.

CLAP teach., LAP st.

CLAP teach., CLAP st.

101 102 103 104

p

10−1

M
S

E

d=6

LAP teach., LAP st.

CLAP teach., LAP st.

CLAP teach., CLAP st.

Figure 4.1: Learning curves (mean squared error vs dataset size p) for kernel regres-
sion in the teacher-student setting. Data points are sampled uniformly
on a d-dimensional hypercube of unitary side. The target function is
a Gaussian random field with zero mean and covariance given by the
teacher kernel. Regression is performed with the student kernel. Each
curve is averaged over 100 runs. The dashed lines are the predicted
power laws with exponent 1/d.
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d = 3 d = 6
MSELL/MSECL th. 3.00, exp. 3.04 th. 6.00, exp. 6.02
MSECL/MSECC th. 1.44, exp. 1.45 th. 1.37, exp. 1.40

Table 4.1: Ratios of the mean squared errors for kernel regression in the teacher-
student setting. Notation: MSECL is the generalization error obtained
using a convolutional Laplacian teacher (C) with a Laplacian student
(L). The first number corresponds to the theoretical prediction (th.), the
second one is obtained from the numerical experiments (exp.) averaging
the errors of the last decade.

101 102 103 104
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10−1

M
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E
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FCN st.

CNN st.

Figure 4.2: Learning curves for NTK regression in the teacher-student setting. Data
points are sampled uniformly on a d-dimensional hypercube of unitary
side. The target function is a Gaussian random field with zero mean and
covariance given by the convolutional Laplacian kernel. Regression is
performed by a one hidden layer fully connected network and a minimal
convolutional network in the NTK limit. Each curve is averaged over
100 runs. The dashed lines are the predicted power laws with exponent
1/d.
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Figure 4.3: Two examples of handwritten digits from the decentred MNIST dataset.

also called lazy regime for very wide but still finite-size networks. In particular, we
use the networks we defined in equations (3.1) and (3.10) with h = 20000, and we
force them to work in the lazy regime with a trick first developed by Chizat et al.
in [17]. Instead of the network function f(x;θ), we train a model defined as

F (x;θ,θ0) = α(f(x;θ)− f(x;θ0)) (4.1)

with θ0 the parameters at initialization. The network function at initialization is not
affected by the optimization algorithm, and for big values of α the weights barely
need to move to change significantly the predictor F (x;θ,θ0), keeping the training
dynamics in the lazy regime. In our simulations we proceed similarly as before. We
generate the training and the test set sampling a Gaussian random field with the
teacher kernel, and we train our model F (x;θ,θ0) using a mean squared loss divided
by α2, optimizing by SGD with batch size 20 until the error on the test set stabilizes
or starts increasing. Figure 4.2 shows the averaged learning curves obtained using a
shift-invariant teacher kernel in d = 3 and the two different architectures as students.
Compared with the learning curves in figure 4.1, they have the same power-law
behaviour and magnitude, confirming the validity of the adopted approximations.

4.2 Real Data

Kernel Regression

In this section, we switch from Gaussian to real data. Specifically, we consider the
problem of inferring if a handwritten digit is an even or odd number. We use the
MNIST database, which consists of 70000, 28× 28, greyscale images of digits. Since
the images are centered, we pad with 4 empty pixels on all the sides, and we apply
a random translation. In figure 4.4 we show two examples of images taken from our
modified database. The training set consists in p tuples {(xi, yi)}pi=1, where xi is
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Figure 4.4: Learning curves for kernel regression on the translated MNIST dataset
using the Laplacian and convolutional Laplacian kernels. Labels are
assigned according to the parity of the number. The curves in plot (a) are
obtained computing the projections of the labels on the eigenfunctions
of the kernel, which are computed numerically. The curves in plot (b)
are obtained averaging 100 runs of kernel regression.
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an image from the database, and yi = f?(xi) = ±1 depending on the parity of the
number. We try to infer the label f(x) of a digit x which does not belong to the
training set doing regression with the student kernel KS .
First, we attempt to get the learning curves using equation (3.112). Consider a
dataset built as the previous one with p̃ > p elements. The eigenfunctions with
respect to the discrete measure which associates equal mass to all the p̃ points are
the p̃-dimensional eigenvectors φ̃ρ of the p̃× p̃ Gram matrix KS

1

p̃
KSφ̃ρ = λ̃ρφ̃ρ. (4.2)

Therefore, we can approximate equation (3.112) with

Eg(p) ∼
p̃∑
ρ=p

(
y>φ̃ρ

)2
(4.3)

where y is the vector with all the labels (y)i = yi. Figure X shows the plots of the
learning curves computed with p̃ = 5000, compared to the actual learning curves
averaged over 100 runs. Except for the region in which p̃ ' p where finite size
effects are present, the curves follow the same power law. As for Gaussian data, the
learning curves obtained with the two student kernels decay with the same exponent
for large p, and the performance with the convolutional kernel is higher. Indeed, the
first eigenfunctions of this kernel are better aligned with our dataset than those of the
standard Laplacian (figure 4.5). We point out that the fitted value for the exponent
β is 0.37, which is notably larger than 1

d = 1
36×36 = 7, 71 × 10−4. Surprisingly, the

curse of dimensionality seems to be absent. However, the distribution of MNIST
images is highly anisotropic, and therefore the effective dimension of the manifold
in which the data live is much lower than the number of pixels of the pictures,
explaining why β is significantly larger than 1

d [32].

Kernel Classification

Finally, we study the previous problem of inferring the parity of a handwritten
number in a classification setting using soft-margin kernel SVMs. This algorithm
seeks for an estimator f(x) which is linear in the feature space φ(x) related to the
student kernel by KS(x,x′) = φ(x)>φ(x′), and whose sign predicts the label f?(x)
correctly. Moreover, for every training point xi we impose a margin f?(xi)f(xi) >
1 − ξi, and we penalize large values of ξi. Mathematically, we write our estimator
as

f(x) = w>φ(x) + b (4.4)

and we want to solve

min
w,b,ξ

(
w>w + C

∑
i

ξi

)
(4.5)
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Figure 4.5: Cumulative power spectral density (CPSD) of the projections of the
translated MNIST dataset on the eigenfunctions of the Laplacian and
convolutional Laplacian kernels. Faster increments correspond to larger
projections on the first eigenfunctions.
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Figure 4.6: Learning curves for kernel classification on the translated MNIST dataset
using soft-margin SVMs with the Laplacian and convolutional Laplacian
kernels. Labels are assigned according to the parity of the number. Each
curve is averaged over 100 runs.
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subject to the constraints

f?(xi)
(
w>φ(xi) + b

)
> 1− ξi, ξi ≥ 0. (4.6)

The constant C controls the trade-off between minimizing the error on the training
set and maximizing the margins (the limit C → ∞ corresponds to the usual hard-
margin SVMs). This problem is equivalent to the following dual Lagrangian problem

max
α

 p∑
i=1

αi −
1

2

p∑
i,j=1

αiαjf
?(xi)f

?(xj)KS(xi,xj)

 (4.7)

subject to the constraints
p∑
i=1

αif
?(xi) = 0 (4.8)

0 ≤ αi ≤ C. (4.9)

Let α∗ be the maximum,

f(x) =

p∑
i=1

α∗if
?(xi)KS(xi,x) + b∗ (4.10)

with

b∗ = f(xi)−
p∑
j=1

α∗jf
?(xj)KS(xi,xj) (4.11)

for any i such that αi < C.
In figure 4.6, we report the learning curves obtained using C = 104 and 1000 test
points to compute the generalization error, which we define as the fraction of mis-
classifications. Again, the convolutional Laplacian kernel performs best, but the
exponents are the same in the two cases. In this setting, we measure β = 0.42,
similarly to [32].
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Conclusion

In this thesis, we studied the performance of the NTK induced by convolutional ar-
chitectures, motivated by the remarkable empirical results obtained by these kernels
on image datasets. We introduced a minimal model of a one-dimensional CNN with
a single hidden convolutional layer, average pooling, and a final dense layer. We
derived the correspondent NTK analytically, and we found a simple relation with
the NTK of a one hidden layer fully connected network. The convolutional NTK
is the average of the vanilla NTK over translations of one of the two arguments.
In particular, this convolutional NTK inherits the invariance to translations of the
convolutional architecture. Then, we studied the learning curves of these two kernels
in the presence of a translational invariant task. We used a teacher-student setting
for kernels in which data are modeled as Gaussian random fields, and we computed
the learning curves using an approximate theory of the typical generalization per-
formance based on the RKHS spectrum. We proved that the exponents β of the
learning curves of these two kernels behave asO(1/d), and thus suffer from the curse of
dimensionality. This fact suggests that kernel methods cannot exploit translational
invariance to reduce the dimensionality of the problem, similarly to what is observed
in [33] for other simple symmetries. However, we showed that the eigenfunctions
of the convolutional NTK are better aligned to the translational-invariant Gaussian
random field with respect to the vanilla NTK’s ones. Since the generalization error
is governed by the power of the target function on the first kernel eigenfunctions,
the error of the convolutional NTK is lowered by a dimensional-dependent prefactor.
The learning curves obtained numerically are consistent with our predictions. Fur-
ther numerical experiments on MNIST suggest that our analysis is also valid beyond
Gaussian random fields. Indeed, both in a regression and a classification setting,
the learning curves display the same exponent β in the limit of a large number of
training points p, and the convolutional NTK achieves the best performance. Fur-
thermore, computing the data projections on the numerical kernel eigenfunctions
results in reasonable estimates of the real learning curves. A potential improvement
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to this analysis is to consider convolutional networks with smaller filters to imple-
ment locality, or with increased depth, to add hierarchy to our model. It would
also be interesting to develop similar simple models of other modern architectures.
Indeed, the computation of the RKHS spectrum of the corresponding induced ker-
nels can shred light on the inductive biases of these models and its effect on sample
complexity. Beyond the NTK regime, there is empirical evidence that infinitely wide
neural networks are able to compress irrelevant dimensions [37]. However, a rigorous
understanding of what symmetries in data can guarantee such an improvement is
still missing. The minimal model of a convolutional network that we introduced,
together with simple data models, can prove useful to analytical analyses aimed at
answering these questions and explaining the improved performance of convolutional
architectures compared to fully connected ones.
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