
Politecnico di Torino

Master of Science degree in Mechatronic Engineering

Guidelines for PIC4SeR users

PX4 autopilot customization for

non-standard gimbal and UWB

peripherals

Supervisor:

Marcello Chiaberge

Thesis advisors :

Dott. Ing. Gianluca Dara

Dott. Ing. Simone Silvestro

Candidate:

Francesco Malacarne

s260199

Academic year 2019-2020

Contents

List of Figures

1 Introduction

2 How to install PX4 1

2.1 System I’m working on . 1

2.2 General advices . 1

2.3 Installation guide . 1

3 How to replicate my tests 5

3.1 Preamble . 5

3.2 Servo testing . 5

3.3 Driver testing . 7

3.3.1 DWM1001 testing description . 9

3.3.2 Fault tolerance testing using Arduino 14

4 General advices 17

4.1 Tips for custom driver development . 17

4.2 Subscribing to a topic reading information 18

4.3 How to add a simple firmware module . 21

4.4 How to add a new topic . 21

4.5 How to integrate my firmware customization into the newest PX4 version? 22

4.6 How to start a module at startup . 22

4.7 How to log a topic on the SD card . 23

4.8 How to run a bash file . 23

5 Useful links 25

5.1 Doxygen . 25

5.2 Official PX4 guides . 25

5.3 Links related to my work . 25

CONTENTS

List of Figures

2.1 Forking info . 2

2.2 Error during installation . 3

2.3 Error example . 3

3.1 Connections between Pixracer and servomotor. 6

3.2 Pixracer interfaces . 6

3.3 Pixracer port schematic. 7

3.4 QGroundControl AUX1 configuration for RC passthrough. 7

3.5 Driver testing setup using Arduino. 9

3.6 Decawave app configuration needed to run the test. 10

3.7 TELEM2 focus on Pixracer. 11

3.8 DWM1001-dev connection with Pixracer. 11

3.9 PuTTy settings to monitor DWM1001-dev serial communication. 12

3.10 Test output. 13

3.11 Example of PuTTy output during a test. 13

3.12 Real test of the UWB driver performing a circular path. 13

3.13 Connection between Arduino and Pixracer. 15

Introduction

This is a document containing some advices for PIC4SeR users willing to delve into

PX4 and/or trying to replicate the tests I performed during my master thesis work.

The goal of my project was the customization of the open-source autopilot PX4, for the

integration of non-standard peripherals focusing on the implementation of a lightweight

camera gimbal on a drone mounting Pixracer flight controller, and the creation of a custom

driver to leverage UWB technology for future works about indoor positioning and swarm

navigation. I hope you fill find some value in these advices.

My customization

All the details about these components can be found in my thesis, whereas the code

can be read freely either on my GitHub private profile (@francimala) or on PIC4SeR

GitHub profile.

Stabilization module is named servo control and can be found in directory:

Firmware/src/modules/servo control.

DWM1001 driver is named dwm1001 and can be found in directory:

Firmware/src/drivers/distance sensor/dwm1001

rc update has been slightly modified, it publishes on a different topic

(actuator control rc instead of actuator control). It can be found in directory:

Firmware/src/modules/rc update

mission block.cpp was slightly modified to support 1-axis gimbal. It can be

found in directory: Firmware/src/modules/navigator

Moreover, 3 topics have been added:

• actuator control rc

• dwm1001

• dwm1001 raw

Important note: if you want to integrate these components into the new PX4 version,

follow guidelines here: 4.5.

How to install PX4

2.1 System I’m working on

• Linux distro: Ubuntu 18.04.5 LTS

• ROS: installed during procedure but not used

• QGroundControl v4.0.6

• Python2: 2.7.17

• Python3: 3.6.9

2.2 General advices

Before starting I would like to give some general advices based on my experience:

1. It is strongly recommended to use a real machine rather than a virtual machine. It

is possible to work in VM, but you will see a huge difference compared to a standard

installation, especially if you don’t have a top PC.

2. The installation process could be slightly different from the one I’m showing right

now due to many factors. If you encounter any error different from the ones I’m

going to share in this guide, try to google it finding the solution (I actually did it

to install PX4 and to make this guide).

3. Having 8 GB of RAM is suggested, but if you have only 4 GB do not worry, you will

probably need to increase the SWAP memory because during the installation you

will need more than 4 GB of RAM. During my first installation I used a 4 GB PC

but I was not able to complete the set up due to insufficient RAM, then I increased

the SWAP memory and I accomplished the installation.

4. Always rely on the official developer guide. It is a very powerful tool although a bit

confusing sometimes. Here the link: https://dev.px4.io/master/en/.

2.3 Installation guide

This guide is based on the installation toolchain for Ubuntu users that can be found

at the following address: https://dev.px4.io/master/en/setup/dev_env_linux_

1

https://dev.px4.io/master/en/
https://dev.px4.io/master/en/setup/dev_env_linux_ubuntu.html
https://dev.px4.io/master/en/setup/dev_env_linux_ubuntu.html

2.3. INSTALLATION GUIDE 2

ubuntu.html. The first step to install PX4 is to clone the official repository from GitHub.

There are different ways to do so, but I’m going to suggest a variation with respect to

the one presented in the developer guide, since you will probably need your own GitHub

repo containing the changes you made to the original code.

1. If you do not have an account, go on github.com and create one. Being a polito

student you have access to some premium features, so check it out (you can also

register with your private email and then register as a student adding a second

certified email).

2. Fork the official PX4 repository: go here https://github.com/PX4/Firmware and

press “fork” on the top right corner of the screen. You will create a copy of the

firmware into your own repository so that any change you make will not affect the

original repository.

Once you forked the repo you can start with the procedure.

1. Go on your GitHub page and copy the address of the forked repo: click on code and

press the copy button close to the address.

Figure 2.1: Forking example.

2. Now you have to download the Firmware so that you will be able to make changes

locally on your PC without interfering with anyone else. You have to choose a

location into your PC, I personally installed it into my “home” directory. Open a

new terminal and browse to the location you want to install PX4 to, then launch

the following command:

git clone address --recursive.

This command will clone the repo into the directory you decided.

3. After cloning the repository, you can proceed with the installation. Since we may

need to use ROS, it is suggested to follow these instructions: https://dev.px4.

io/master/en/setup/dev_env_linux_ubuntu.html#rosgazebo

Procedure ended with some errors, but they are not going to create problems.

https://dev.px4.io/master/en/setup/dev_env_linux_ubuntu.html
https://dev.px4.io/master/en/setup/dev_env_linux_ubuntu.html
https://github.com/PX4/Firmware
https://dev.px4.io/master/en/setup/dev_env_linux_ubuntu.html#rosgazebo
https://dev.px4.io/master/en/setup/dev_env_linux_ubuntu.html#rosgazebo

CHAPTER 2. HOW TO INSTALL PX4 3

Figure 2.2: Error during installation.

To test whether the installation was successful, it is enough to launch a simulation running

the following commands:

cd Firmware (going to the directory where we forked PX4 firmware)

make px4 sitl gazebo

If everything was successful, Gazebo should start, otherwise some errors appear. Here

I’m proposing the solutions to the errors I faced, after a graphical example of error. PS:

every time you solve an error you have to test again the simulation with command:

make px4 sitl gazebo

Figure 2.3: Error example.

1. sudo apt install python3-pip

2. pip3 install –user empy

3. pip3 install –user pyros-genmsg

4. pip3 install –user toml

5. pip3 install –user numpy

6. pip3 install –user jinja2

7. sudo apt-get install libgstreamer-plugins-base1.0-dev

As you can see, the first errors are related to python, whereas the last one is related to

a missing package needed to compile the code. If you run both bash files presented into

2.3. INSTALLATION GUIDE 4

the developer guide you will probably face no errors (I ran only the second one because

the guide was not clear).

Moreover, you may need to install fastRTPS; follow instructions here: https:

//dev.px4.io/master/en/setup/fast-rtps-installation.html#fast-rtps.

A general suggestion: whenever you make a modification to the code, you have to run

the make command to actually test it in both simulation and real hardware. Moreover,

each platform has its own build requirements (if you make Pixracer code but you have

Pixhawk, the code won’t work), so take care of the platform you are using and the

command you are typing to build the system.

Once the simulation is performed correctly you should also check that the compilation for

Pixracer and Pixhawk are fine. For doing this run the command:

make px4 fmu-v4 default

If you get no errors you are fine, otherwise you have to solve them. Here some of the

errors I got with the corresponding solution.

• Error related to “’ ULong’ does not name a type” → install the correct version for

the gcc-arm compiler from https://developer.arm.com/tools-and-software/

open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads.

Download it into the home directory, extract it using the command:

tar xjf gcc-arm-none-eabi-9-2020-q2-update-x86 64-linux.tar.bz2

https://dev.px4.io/master/en/setup/fast-rtps-installation.html#fast-rtps
https://dev.px4.io/master/en/setup/fast-rtps-installation.html#fast-rtps
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

How to replicate my tests

3.1 Preamble

If you want to replicate my test, you need my Firmware version. You can fork it from

https://github.com/francimala/Firmware. Remember to build it before using it,

otherwise you won’t see anything.

3.2 Servo testing

Goal and expected result

The goal of this test is to check the servomotor behavior with respect to the pitch variation

of the Pixracer. The expected result is a servomotor movement opposite to the pitch

variation of the flight controller. Moreover, setting AUX1 passthrough to channel 7 and

moving the knob it is possible to see a variation of the stabilization point.

Needed gear

• Pixracer.

• Servomotor.

• 5V source (Arduino in my case, but it could be whatever source able to provide 5V).

• Radio controller.

Setup

The first step is the connection between the servo and the Pixracer using the 3 equipped

cables. According to my setup:

• Orange cable: 5V.

• Yellow cable: signal carrying the position.

• Brown cable: ground.

The orange cable should be connected to the 5V source. In my case such a voltage

is provided by the Arduino board, so it is directly connected to the 5V pin available

on Arduino. The brown cable must be connected with both the source GND and the

5

https://github.com/francimala/Firmware

3.2. SERVO TESTING 6

Figure 3.1: Connections between Pixracer and servomotor.

Pixracer GND, so that the three devices (flight controller, servomotor and source) will

have the same reference (this is a key point, if missed the test won’t work). Lastly,

the yellow cable must be connected with the Pixracer signal pin, that is the top one

(according to the figure). Once the connection between the servo and the Pixracer is

performed, it is possible to plug the flight controller to the PC with the micro USB cable

and to open QGC. Running the command << make px4 fmu-v4 default upload >> the

firmware will be loaded into Pixracer and the module servo control will automatically

start. As a consequence, after a few seconds it will be possible to manually change the

Pixracer pitch observing the variation of the servo position.

The next two figures are an useful representation of the communication layout.

Figure 3.2: Pixracer interfaces. The 6 pins on the right represent the 6 PWM outputs;
white is the signal, red is the 5V (present only if there is a battery connected to Pixracer)
and black is ground.

CHAPTER 3. HOW TO REPLICATE MY TESTS 7

Figure 3.3: Pixracer port schematic.

Lastly, for testing the RC contribution, go on Radio setup in QGroundControl and set

channel 7 as AUX1 passthrough (figure 3.4). Switch the RC on and after a while start

moving the associated knob; you should start seeing the servo changing its stationary

point.

Figure 3.4: QGroundControl AUX1 configuration for RC passthrough.

3.3 Driver testing

Testing phase was highly affected by the COVID-19 pandemic, which strongly constrained

the access to the research lab for master thesis students. Instead of giving up, postponing

such a challenging and important part of the work, I decided to find an alternative way to

carry the testing part. Being this driver based on a serial communication, I programmed

an Arduino MEGA board to publish specific messages over one of its serial ports so that

the autopilot could be connected to this port, simulating a connection to a DWM1001

module. The actual features to be tested were mainly 2: the capability of adapting to

different number of anchors without losing consistency, and the capability of recognizing

the presence of the estimated tag position within the payload.

Before delving into the test details, it is worth to mention the actual message sent over

the topic dwm1001.

1 uint64 timestamp # time since system start (microseconds)

2 float32 [98] distances # Distances between anchors and tag , each

3 anchor provides 4 measurements (x,y,z

4 coordinate of the anchor with respect

5 between the anchor and the tag).

6 float32 [4] positions # Position of the TAG into the reference

7 system defined by the anchors (x,y,z,Quality)

8 uint16 anchor_num # Number of anchors

9 bool pos_detected # Is POS present into the payload?

Arduino was programmed to send the following messages, each 4 second spaced:

3.3. DRIVER TESTING 8

1. DIST,1,AN0,1151,5.00,8.00,2.25,6.44\r\n

Here the driver should set anchor num equal to 1 and distances should have the

first 4 values different from 0, whereas the remaining ones equal to 0. POS is not

detected, therefore pos detected should be false and positions set to 0.

2. DIST,4,AN0,1151,5.00,8.00,2.25,6.44,AN1,0CA8,0.00,8.00,2.25,6.50,AN2,

111C,5.00,0.00,2.25,3.24,AN3,1150,0.00,0.00,2.25,3.19,POS,200.55,2.01,

100.24,100\r\n

Here the driver should set anchor num equal to 4 and distances should have the

first 16 values different from 0, whereas the remaining ones equal to 0. POS is

detected, therefore pos detected should be true and positions set to components

read into the message.

3. DIST,4,AN0,1151,5.00,8.00,2.25,6.44,AN1,0CA8,0.00,8.00,2.25,6.50,AN2,

111C,5.00,0.00,2.25,3.24,AN3,1150,0.00,0.00,2.25,3.19\r\n

Here the driver should set anchor num equal to 4 and distances should have the

first 16 values different from 0, whereas the remaining ones equal to 0. POS is not

detected, therefore pos detected should be false and positions set to 0. This test

was made to check the ability of adapting to POS variations. For whatever reason,

modules could stop estimating the position and the drone should be able to detect

such a condition.

4. DIST,3,AN0,1151,5.00,8.00,2.25,6.44,AN1,0CA8,0.00,8.00,2.25,6.50,AN2,

111C,5.00,0.00,2.25,3.24,POS,300.55,1.01,6.24,100\r\n

Here the driver should set anchor num equal to 3 and distances should have the first

12 values different from 0, whereas the remaining ones equal to 0. POS is detected,

therefore pos detected should be true and positions set to read components. This

test was made to check the ability of adapting to number of anchor variations; in a

real application it could happen that an anchor stops working or just go outside of

coverage, the driver should detect this variation and clear the previous values.

5. DIST,3,AN0,1151,15.00,800.25,2.25,6.44,AN1,0CA8,100.00,8.00,2.25,

600.50,AN2,111C,5.00,0.00,2.25,3.24\r\n

Here the driver should set anchor num equal to 3 and distances should have the

first 12 values different from 0, whereas the remaining ones equal to 0. POS is not

detected, therefore pos detected should be false and positions set to 0. This

test was made to check the ability of adapting to variable distances (more than 100

meters, even though it is very unlikely that an anchor has such a high coverage).

Tests highlighted the driver capability of adapting to different number of anchors, the

presence of POS and the variability of the detected distance.

The used setup is shown in figure 3.5. It is worth to say that contrarily to the connection

between Pixracer and DWM1001, the serial link between Pixracer and Arduino was made

in a standard approach: Arduino TX connected to Pixracer RX, Arduino Rx connected

to Pixracer Tx.

CHAPTER 3. HOW TO REPLICATE MY TESTS 9

Figure 3.5: Driver testing setup using Arduino.

3.3.1 DWM1001 testing description

Goal and expected results

The goal of this test is to check the driver functionalities using two real DWM1001-dev

modules. The expected result is that once the driver is started, the active tag will be

programmed to send the relative distance from the anchor publishing this value to the

topic dwm1001.

Needed gear

• 2 DWM1001-dev modules.

• Android phone or tablet (not too old) with Decawave app installed.

• Pixracer/Pixhawk board.

• PC with my version of the PX4 Firmware

(https://github.com/francimala/Firmware) and QGC.

• 2 micro USB cables.

Setup

The first operation is setting up the 2 DWM1001-dev modules using the Decawave

Android App. If you haven’t installed it yet, you can download it from this link:

https://www.decawave.com/source-code-for-the-android-application/. I highly

recommend using an up-to-date smartphone because I tried on a 2015 Huawei model and

I was not able to complete the setup, although having full compatibility. One module

should be set as an active tag (left picture), whereas the other one should be set as an

active anchor (initiator, right picture). The anchor should be plugged to a fixed position

(like the main network) whereas the tag to the flight controller, supplied by whatever

source, either a PC through micro USB cable, or a power bank or a battery (in this case

pay attention to the voltage, it must be 3.3V, not 5V!!). My suggestion is to connect it

https://www.decawave.com/source-code-for-the-android-application/

3.3. DRIVER TESTING 10

to a PC through micro USB cable so that PuTTy can be used to check what is going on

over the serial port.

Important note: if you have any problem with the DRTLS app (you don’t see a tag

or an anchor) you should try to flash again the firmware on the DWM1001 modules. It

happens that if you use a different smartphone from one test to another, it somehow

remember the old configuration and the new smartphone will not detect the modules in

the correct way. If you need to flash again the firmware, follow page 15 and 16 of the

guide that you can find here: https://www.decawave.com/wp-content/uploads/2019/

01/DWM1001-Firmware-User-Guide-2.1.pdf.

Figure 3.6: Decawave app configuration needed to run the test.

Connect flight controller to the DWM1001-dev module using the TELEM2 port of the

Pixracer/Pixhawk (within the code the default port I used is /dev/ttyS2, but you can

change it if you need it). Figures 3.3, 3.2 and ?? may help you finding the right port on

the board, especially Pixracer, because Pixhawk is pretty clear.

The connection should be the following one:

• Black cable is the Pixracer/Pixhawk ground and must be connected to

DWM1001-dev GND (third pin starting from above).

• Yellow cable is Pixracer/Pixhawk TX and must be connected to DWM1001-dev TX

(fourth pin).

• Green cable is Pixracer/Pixhawk RX and must be connected to DWM1001-dev RX

(fifth pin).

Now it is possible to start powering devices up.

1. Plug the anchor to the main net.

2. Plug the tag to the PC.

https://www.decawave.com/wp-content/uploads/2019/01/DWM1001-Firmware-User-Guide-2.1.pdf
https://www.decawave.com/wp-content/uploads/2019/01/DWM1001-Firmware-User-Guide-2.1.pdf

CHAPTER 3. HOW TO REPLICATE MY TESTS 11

Figure 3.7: TELEM2 focus on Pixracer.

Figure 3.8: DWM1001-dev connection with Pixracer.

3. Plug the flight controller to the PC.

If you don’t need PuTTy you can jump to point 4, otherwise If you want to use

PuTTy to monitor what’s going on the DWM1001-dev module you can open a serial

communication following these 3 steps:

(a) Open PuTTy and click on “Serial”. Then, if you don’t know the device name

follow point 2, otherwise jump to point 3.

(b) Open a new terminal and launch command << dmesg | grep tty >>: the

last two devices should be the flight controller and the DWM1001-dev module;

in principle you should use the last-but-one, but if you want to be sure you can

unplug the flight controller and launch again the command << dmesg | grep

tty >>, the last device should be the correct one (ACM. . . or ttyS. . .).

(c) Write the name you discovered and set the baudrate to 115200.

4. Open QGroundControl.

5. Go into the MAVLINK console.

3.3. DRIVER TESTING 12

Figure 3.9: PuTTy settings to monitor DWM1001-dev serial communication.

6. Type << dwm1001 start >> to start the driver. You should see something

happening on PuTTy if you have prepared it. If you read on the MAVLink console

Got the beginning! it means that the module was programmed correctly and the

serial messages started to flow.

7. Type << listener dwm1001 >> to check whether the driver is working correctly.

The test is now complete and it should be possible to see results similar to the ones in

figures 3.10 and 3.11.

Testing 4 anchors and 1 tag

Only at the end of my working period I had the opportunity to test the basic system

on the complete setup (4 anchors and 1 tag). Testing setup is basically the same as

the one presented in this subsection, but with more anchors. The tag should be always

connected to the drone and set as active tag. One anchor should be set as active and

initiator, whereas the 3 other anchors shall be set as simple active anchors (no initiator).

Moreover, indications about the relative position between anchors should be set by means

of the DRTLS Android App; this is an important step, as all the measurements will

depend on this setting. For doing this in the best way, it is convenient to place them in a

rectangular shape all at the same level. However, the Android app will guide you through

the installation step, so do not worry. The test starts again with the same command: <<

dwm1001 start >> and the result should be the same as the one obtained in the Arduino

testing subsection.

For testing purposes I forced logging on SD of the dwm1001 topic so that the estimated

position could be seen and compared with visual measurements. An example showing a

circular path is presented in figure 3.12.

CHAPTER 3. HOW TO REPLICATE MY TESTS 13

Figure 3.10: Test output.

Figure 3.11: Example of PuTTy output during a test.

Figure 3.12: Real test of the UWB driver performing a circular path.

To summarize:

1. Make sure the firmware is correctly uploaded on Pixracer (make

px4 fmu-v4 default upload).

3.3. DRIVER TESTING 14

2. Power on all the modules and program them with the DWM app: set all the initial

positions (measuring them) and check that one anchor is the initiator (active), and

the tag is an active tag.

3. Power on the Pixracer and the stabilization module servo control will

automatically start. The driver will not be initialized automatically, it must be

started manually using a specific command within the MAVLink console. However,

before starting it, the logger shall be started.

4. Start the logger using logger on.

5. Start the driver using dwm1001 start. You will be sure about the initialization

when you see ”Got the beginning” on the MAVLink console. If you don’t, the

driver did not recognize the serial message coming from the tag, which probably

means that the connection is not correct.

6. When the flight mission is over, you can read the log file accessing the microSD

log directory. For the conversion use pyulog (https://github.com/PX4/pyulog).

Copy the correct .ulg file in a directory you know and run the command ulog2csv

ulog file.ulg in a new terminal. This procedure will create a csv human-friently

document in that folder containing all the logs. Then you can use Matlab or Python

to plot the desired values.

Driver explained (italian): https://youtu.be/0GsJtd7PwT8

UWB testing: https://www.youtube.com/watch?v=FuytZULFfAo&ab_channel=

FrancescoMalacarne

Connection between Arduino and DWM1001-dev: https://github.com/francimala/

Arduino-MEGA-to-DWM1001

3.3.2 Fault tolerance testing using Arduino

Goal and expected results

The goal of this test is to make a sort of fault tolerance test of the system simulating wrong

messages sent over the serial port. The expected result is a the same as the DWM1001-dev:

PX4 should think of being receiving messages coming from DWM1001-dev.

Needed gear

• Arduino MEGA (or whatever Arduino having more than 1 RX-TX channels,

Arduino UNO cannot be used).

• Pixracer

• PC with my version of the PX4 Firmware (https://github.com/francimala/

Firmware) and QGC.

https://github.com/PX4/pyulog
https://youtu.be/0GsJtd7PwT8
https://www.youtube.com/watch?v=FuytZULFfAo&ab_channel=FrancescoMalacarne
https://www.youtube.com/watch?v=FuytZULFfAo&ab_channel=FrancescoMalacarne
https://github.com/francimala/Arduino-MEGA-to-DWM1001
https://github.com/francimala/Arduino-MEGA-to-DWM1001
https://github.com/francimala/Firmware
https://github.com/francimala/Firmware

CHAPTER 3. HOW TO REPLICATE MY TESTS 15

Setup

Before plugging anything to the PC, it is necessary to connect Arduino and PX4. For

doing this, only three cables are needed: TX, RX and GND (the same GND must be

guaranteed linking them together). Conversely with respect to the previous test where

TX cables had to be linked together, here the connection is slightly different:

• Black cable is the Pixracer/Pixhawk ground and must be connected to Arduino

MEGA GND.

• Yellow cable is Pixracer/Pixhawk TX and must be connected to Arduino MEGA

RX.

• Green cable is Pixracer/Pixhawk RX and must be connected to Arduino MEGA

TX.

Figure 3.13: Connection between Arduino and Pixracer.

Once completed the connection, both Arduino and PX4 can be plugged to the PC using

their specific cables. Arduino should be programmed with the sketch I wrote that is

downloadable at this link. Whereas Pixracer must be equipped with my PX4 version.

Once everything is uploaded, it is possible to start the test by opening QGC and starting

the driver into the MAVLINK console (using the same command used in the previous

test << dwm1001 start >>). The result should be the same as before, but with different

payloads periodically.

3.3. DRIVER TESTING 16

General advices

4.1 Tips for custom driver development

This is a small general guide that could be useful for writing a custom driver. A driver

is that part of the firmware that allows you to either use data coming from a specific

hardware, or to actuate a control strategy by programming peripherals to work in a certain

way. Unfortunately, as stated into the official developer guide in this page https://

dev.px4.io/master/en/middleware/drivers.html, the easiest way to implement new

drivers is to start from an already existing one, because there is no a universal procedure

to do so. A list of all the driver’s source codes can be found at https://github.com/

PX4/Firmware/tree/master/src/drivers. Before starting to read and understand all

the drivers, it is suggested to have a clear idea about the driver to be developed. In

particular, answering these questions may be a good starting point:

1. Which is the communication protocol used for the communication between the

hardware and the flight controller?

2. Is it sufficient to power up the peripheral or is it necessary to send specific commands

to let it work?

3. How does the payload look like?

The answers to these questions can be generally found inspecting the hardware datasheet.

Once the idea about the driver to be developed is clear, I would start developing a first raw

version to be deployed on Arduino (if the communication protocol is suitable), due to its

simplicity (the code I created for Arduino was about 30 lines, whereas the final PX4 driver

is more than 400). Then, you should take a look at the user guide under the peripheral

section, because you can find the list of the components for each communication protocol

https://docs.px4.io/master/en/peripherals/; this is useful because you can directly

dive into the relevant drivers instead of wasting time under other codes not inherent with

your work. For instance I only looked for the UART drivers so that I2C, UAVCAN etc.

drivers could be avoided. Once you have a clear idea of the drivers to be used as reference,

you can start analysing these codes line by line. At the end of this analysis you should

be able to understand the purpose of each function and whether it is useful for your

application. Lastly you can start writing your driver implementing a similar version to

the one you wrote with Arduino.

17

https://dev.px4.io/master/en/middleware/drivers.html
https://dev.px4.io/master/en/middleware/drivers.html
https://github.com/PX4/Firmware/tree/master/src/drivers
https://github.com/PX4/Firmware/tree/master/src/drivers
https://docs.px4.io/master/en/peripherals/

4.2. SUBSCRIBING TO A TOPIC READING INFORMATION 18

4.2 Subscribing to a topic reading information

Goal

The goal is to subscribe to a topic. A topic is a sort of information container where

different modules can publish information and of course can subscribe to. Whenever you

subscribe to a topic, you basically read all the information inside it. Whenever you publish

into a topic, you update its information; after having updated information a subscriber

can read updated information.

Procedure

This guide is created based on the official guide at https://dev.px4.io/v1.9.0/en/

apps/hello_sky.html.

In order to create a new script to subscribe to a topic and read the information exchanged

within the messages, it is firstly necessary to create the file into the correct directory:

1. Create a new directory Firmware/src/examples/directory name.

2. Create a C file named directory name.c within the created directory.

In order to understand better, an example is carried on. The name for the directory

is px4 camera attitude instead of directory name, and the subscription topic is

mount orientation.h.

After the first declaration part (entirely shown in the complete code), it is necessary to

include the uORB library and the topic we want to subscribe to; in this case, since we

want to subscribe to mount orientation.h, we add the following two lines:

1 #include <uORB/uORB.h>

2 #include <uORB/topics/mount_orientation.h>

The entire list of topics and messages can be found at the following links:

• Messages: https://github.com/PX4/Firmware/tree/master/msg/

• Topics in the local directory: Firmware/build/px4 sitl default/uORB/topics

Once completed the declaration, the main function can be exported and created. The

name of the main function must be equal to the name of the directory, adding the writing

main, in this case: px4 camera attitude main. Then write the code you need according

to the application you have to write.

To resume, a practical procedure to subscribe to a specific topic may be the following one:

1. Create a new directory Firmware/src/examples/directory name.

2. Create a C file named directory name.c within the created directory.

3. Copy the entire file you can find after this list.

4. Use the tool “Find and replace” to replace all the writings mount orientation with

the topic you want to subscribe to.

https://dev.px4.io/v1.9.0/en/apps/hello_sky.html
https://dev.px4.io/v1.9.0/en/apps/hello_sky.html
https://github.com/PX4/Firmware/tree/master/msg/

CHAPTER 4. GENERAL ADVICES 19

5. Use the tool “Find and replace” to replace all the writings camera attitude with

the name of your directory (directory name).

6. At line 69 you have to change attitude euler angle with the actual value you

want to read within the message mount orientation.msg.

7. Notice that the structure mount orientation s defined at line 65 is specified within

the file mount orientation.h.

The following code is used to get the orientation of the camera (euler angles) from the

topic mount orientation.h.

1 #include <px4_platform_common/px4_config.h>

2 #include <px4_platform_common/tasks.h>

3 #include <px4_platform_common/posix.h>

4 #include <unistd.h>

5 #include <stdio.h>

6 #include <poll.h>

7 #include <string.h>

8 #include <math.h>

9

10 #include <uORB/uORB.h>

11 #include <uORB/topics/mount_orientation.h>

12

13 __EXPORT int px4_camera_attitude_main(int argc , char *argv []);

14

15 int px4_camera_attitude_main(int argc , char *argv [])

16 {

17 PX4_INFO("I’m going to read the mount orientation.");

18

19 /* subscribe to mount_orientation topic */

20 int sensor_sub_fd = orb_subscribe(ORB_ID(mount_orientation));

21 /* limit the update rate to 5 Hz */

22 orb_set_interval(sensor_sub_fd , 200);

23

24

25 /* one could wait for multiple topics with this technique ,

26 just using one here */

27 px4_pollfd_struct_t fds[] = {

28 { .fd = sensor_sub_fd , .events = POLLIN },

29 /* there could be more file descriptors here ,

30 in the form like:

31 * { .fd = other_sub_fd , .events = POLLIN },

32 */

33 };

34

35 int error_counter = 0;

36

37

38 for (int i = 0; i < 1; i++) {

39

40 /* wait for sensor update of 1 file descriptor for

41 1000 ms (1 second) */

42 int poll_ret = px4_poll(fds , 1, 2000);

43

44 if(poll_ret == 0) {

4.2. SUBSCRIBING TO A TOPIC READING INFORMATION 20

45 // None of our providers provided us data

46 PX4_ERR("Got no data within a second");

47 }

48

49 else if (poll_ret < 0) {

50

51 /* this is seriously bad - should be an emergency */

52 if (error_counter < 10 || error_counter % 50 == 0) {

53 /* use a counter to prevent flooding

54 (and slowing us down) */

55 PX4_ERR("ERROR return value from poll(): %d", poll_ret);

56 }

57

58 error_counter ++;

59

60 }

61

62 else {

63 if (fds [0]. revents & POLLIN) {

64 /* obtained data for the first file descriptor */

65 struct mount_orientation_s raw;

66 /* copy sensors raw data into local buffer */

67 orb_copy(ORB_ID(mount_orientation), sensor_sub_fd , &raw);

68 PX4_INFO("Camera attitude :\t%8.4f\t%8.4f\t%8.4f",

69 (double)raw.attitude_euler_angle [0],

70 (double)raw.attitude_euler_angle [1],

71 (double)raw.attitude_euler_angle [2]);

72 }

73 }

74 }

75

76 PX4_INFO("exiting");

77

78 return 0;

79 }

The application is now complete. In order to run it you first need to make sure that it

is built as part of PX4. Applications are added to the build/firmware in the appropriate

board-level cmake file for your target:

• PX4 SITL (Simulator): Firmware/boards/px4/sitl/default.cmake.

• Pixhawk v1/2: Firmware/boards/px4/fmu-v2/default.cmake.

• Pixracer (px4/fmu-v4): Firmware/boards/px4/fmu-v4/default.cmake.

• cmake files for other boards can be found in Firmware/boards/.

To enable the compilation of the application into the firmware create a new line

for your application somewhere in the cmake file: examples/directory name, or

examples/px4 camera attitude for our case.

1 px4_add_module(

2 MODULE examples__px4_camera_attitude

3 MAIN px4_camera_attitude

4 STACK_MAIN 2000

CHAPTER 4. GENERAL ADVICES 21

5 SRCS

6 px4_camera_attitude.c

7 DEPENDS

8)

4.3 How to add a simple firmware module

The goal of this section is to understand how to introduce a new piece of firmware in

PX4. In this example I’m going to add a new module named px4 simple app into the

examples directory. However, the procedure is the same to add either new modules (like

servo control in my thesis) or new drivers (like dwm1001 in my thesis). This guide was

created based on the section “Writing your first application” of the PX4 developer guide

(https://dev.px4.io/master/en/apps/hello_sky.html).

1. Create a new directory where you want your file to be, in this case:

Firmware/src/examples/px4 simple app.

2. Create a new C file in that directory named with the name you want the commands

to be called, in this case: px4 simple app.c

3. Insert the header and write your code.

4. Before testing it you need to perform two more operations. The first one is to create

a CMakeList.txt file where you insert the code placed into the guide.

5. The application is now complete. In order to run it you first need to make sure

that it is built as part of PX4. Applications are added to the build/firmware in the

appropriate board-level cmake file for your target:

• PX4 SITL (Simulator): Firmware/boards/px4/sitl/default.cmake

• Pixhawk v1/2: Firmware/boards/px4/fmu-v2/default.cmake

• Pixracer (px4/fmu-v4): Firmware/boards/px4/fmu-v4/default.cmake

• cmake files for other boards can be found in Firmware/boards/

6. To enable the compilation of the application into the firmware create a new line for

your application somewhere in the cmake file:

examples/px4 simple app

More information on how to integrate a new module (italian): https://youtu.be/

IgG5OOK1Tyw

4.4 How to add a new topic

This guide is based on the uORB part of the PX4 developer guide: https://

dev.px4.io/master/en/middleware/uorb.html#adding-a-new-topic. To add a new

topic, you need to first create a new .msg file in the msg/ directory and add the

file name to the msg/CMakeLists.txt list. From this, the needed C/C++ code is

https://dev.px4.io/master/en/apps/hello_sky.html
https://youtu.be/IgG5OOK1Tyw
https://youtu.be/IgG5OOK1Tyw
https://dev.px4.io/master/en/middleware/uorb.html#adding-a-new-topic
https://dev.px4.io/master/en/middleware/uorb.html#adding-a-new-topic

4.5. HOW TO INTEGRATE MY FIRMWARE CUSTOMIZATION INTO THE
NEWEST PX4 VERSION? 22

automatically generated. In fact, the actual topic located into the build directory

(Firmware/build/.../uORB/Topics) will be automatically created based on the message

file definition.

Have a look at the existing msg files for supported types.

To each generated C/C++ struct, a field uint64 t timestamp will be added. This is

used for the logger, so make sure to fill it in when publishing the message.

To use the topic in the code, include the header:

#include <uORB/topics/topic name.h>

4.5 How to integrate my firmware customization into

the newest PX4 version?

The first step is downloading the new firmware version from the official PX4 repo: https:

//github.com/PX4/Firmware. Then, the integration of the new modules and the new

topic must be completed.

Go into the my modules directory (Firmware/src/modules) and copy the servo control

directory into the modules directory of the new firmware. Then, move into my rc update

module and copy and paste the .cpp and .h files in the same folder of the new version.

Then, go into the distance sensor directory Firmware/src/drivers/distance sensor

and copy and paste the dwm1001 directory. So far, all the new modules have been

physically added, however, PX4 will not compile them when launching the build

command, because they are not specified into the default.cmake file. In order to

compile them, browse to the platform of interest (in the case of Pixracer go into

Firmware/boards/px4/fmu-v4), open the default.cmake and add under the section

DRIVERS the name dwm1001, and servo control under the MODULES section; this step

must be replicated for all the used platforms (also Pixhawk, fmu-v5). At this stage all

modules can be correctly compiled. Nevertheless, some topics must be added to the

default ones. For doing this, browse to the msg directory and copy and paste from my

firmware version the following .msg files:

• actuator control rc

• dwm1001

• dwm1001 raw

Similarly to the module integration, these names must be added into the CMakeLists.txt

file located in the same folder. All the customization have now been introduced.

How to integrate my customization (italian): https://youtu.be/V-wbH9gnAvw

4.6 How to start a module at startup

Procedure taken from https://dev.px4.io/master/en/concept/system_startup.

html#starting-additional-applications. You have to connect the microSD card of

the Pixracer/Pixhawk board to a PC, go into the etc directory (if not present create it)

https://github.com/PX4/Firmware
https://github.com/PX4/Firmware
https://youtu.be/V-wbH9gnAvw
https://dev.px4.io/master/en/concept/system_startup.html#starting-additional-applications
https://dev.px4.io/master/en/concept/system_startup.html#starting-additional-applications

CHAPTER 4. GENERAL ADVICES 23

then edit the file extras.txt (if not present create it) inserting the on of the two following

lines:

• If you want to abort boot if this module is not started correctly:

custom app start

• If you don’t want to abort boot if this module is not started correctly:

set +e

custom app start

set -e

In my case I did not want to abort boot if any error occurred with servo control,

therefore I went for the second option.

4.7 How to log a topic on the SD card

Procedure taken from https://dev.px4.io/master/en/log/logging.html. Logging

a topic is a fundamental feature that PX4 offers. For doing this, you have to specify

the topics you want to log in a specific file, named logger topics.txt, placed

in the microSD card into the directory etc/logging/logger topics.txt. Logging

starts when arming the drone, but you can start it before, using the command logger on.

Once you have the ULog file (.ulg), you can convert it into csv (you will obtain a

number of csv files equal to the number of topic you wrote into the topic logger textual

file). For the conversion use pyulog (https://github.com/PX4/pyulog). Copy the

correct .ulg file in a directory you know and run the command ulog2csv ulog file.ulg

in a new terminal in that directory to obtain the csv files related to each topic.

General remark: always publish the current time in your topic messages using

hrt absolute time() function for the timestamp. For instance, if you have a structure

named example, always add the line example.timestamp = hrt absolute time()

before publishing the message.

4.8 How to run a bash file

There are multiple ways to run bash files, here I’m presenting the one I’m more familiar

with. Write the bash script, then save it as file name.sh, open the terminal, change the

directory into the one where the bash file was saved, then use the following commands:

chmod +x ./file name.sh

./file name.sh

https://dev.px4.io/master/en/log/logging.html
https://github.com/PX4/pyulog

4.8. HOW TO RUN A BASH FILE 24

Useful links

5.1 Doxygen

Doxygen is an extremely powerful tool useful for understanding relationships between

modules and topics. A practical example that I used during my work was the following one:

I had two modules publishing on the same topic (actuator control), but I only knew one

of them. To discover the other one I wrote actuator control in Doxygen and I discovered

that module RC update was the second module publishing on actuator control. You can

find it here: https://px4.github.io/Firmware-Doxygen/dc/d61/md_src_drivers_

uavcan_uavcan_drivers_stm32__r_e_a_d_m_e.html, just type what you need into the

search bar on the top right corner.

5.2 Official PX4 guides

Developer guide: https://dev.px4.io/master/en/

User guide: https://docs.px4.io/master/en/

GQroundControl user guide: https://docs.qgroundcontrol.com/master/en/index.

html

MAVLink guide: https://mavlink.io/en/

5.3 Links related to my work

My firmware version: https://github.com/francimala/Firmware

Stabilization module explained (italian): https://youtu.be/IgG5OOK1Tyw

Driver explained (italian): https://youtu.be/0GsJtd7PwT8

How to integrate my customization (italian): https://youtu.be/V-wbH9gnAvw

How does mixing work in PX4? https://www.youtube.com/watch?v=N97bxWtoPJ8&

ab_channel=FrancescoMalacarne

UWB testing: https://www.youtube.com/watch?v=FuytZULFfAo&ab_channel=

FrancescoMalacarne

Connection between Arduino and DWM1001-dev: https://github.com/francimala/

Arduino-MEGA-to-DWM1001

25

https://px4.github.io/Firmware-Doxygen/dc/d61/md_src_drivers_uavcan_uavcan_drivers_stm32__r_e_a_d_m_e.html
https://px4.github.io/Firmware-Doxygen/dc/d61/md_src_drivers_uavcan_uavcan_drivers_stm32__r_e_a_d_m_e.html
https://dev.px4.io/master/en/
https://docs.px4.io/master/en/
https://docs.qgroundcontrol.com/master/en/index.html
https://docs.qgroundcontrol.com/master/en/index.html
https://mavlink.io/en/
https://github.com/francimala/Firmware
https://youtu.be/IgG5OOK1Tyw
https://youtu.be/0GsJtd7PwT8
https://youtu.be/V-wbH9gnAvw
https://www.youtube.com/watch?v=N97bxWtoPJ8&ab_channel=FrancescoMalacarne
https://www.youtube.com/watch?v=N97bxWtoPJ8&ab_channel=FrancescoMalacarne
https://www.youtube.com/watch?v=FuytZULFfAo&ab_channel=FrancescoMalacarne
https://www.youtube.com/watch?v=FuytZULFfAo&ab_channel=FrancescoMalacarne
https://github.com/francimala/Arduino-MEGA-to-DWM1001
https://github.com/francimala/Arduino-MEGA-to-DWM1001

	List of Figures
	Introduction
	How to install PX4
	System I'm working on
	General advices
	Installation guide

	How to replicate my tests
	Preamble
	Servo testing
	Driver testing
	DWM1001 testing description
	Fault tolerance testing using Arduino

	General advices
	Tips for custom driver development
	Subscribing to a topic reading information
	How to add a simple firmware module
	How to add a new topic
	How to integrate my firmware customization into the newest PX4 version?
	How to start a module at startup
	How to log a topic on the SD card
	How to run a bash file

	Useful links
	Doxygen
	Official PX4 guides
	Links related to my work

