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Abstract

Due to their extreme versatility, autonomous drones have been gaining a lot of interest

over the last decades. Applications are mainly intended to reduce injuries, saving lives

and optimizing already existing processes, covering a wide range of scenarios, such as

smart agriculture, emergency situations and safety inspections.

PIC4SeR, PoliTO Interdepartmental Centre for Service Robotics, embraced this topic a

few years ago starting to develop different UAVs, from ultralight models lighter than 250

grams to much heavier drones, in order to exploit technologies oriented to service robotics,

smart cities, precision agriculture and search-rescue operations, which are the main topics

of interest of the center. This thesis was born as one of the building blocks of a wider

project about swarm flight, indoor navigation and robots cooperation, that will take place

in the near future merging several technologies coming from different works carried by

researchers, PhD students and master thesis works.

As most of the standard solutions implemented in autonomous drone navigation rely

on GNSS positioning, indoor navigation represents one of the main challenges to be

managed. Although computer vision is getting more and more accurate, allowing a

possible solution to this problem, it always needs a lot of computational power, requiring

the addition of companion PCs, increasing both the system complexity and the UAV’s

weight. Nonetheless, an emerging technology used to solve indoor navigation problems

leaning on very low hardware resources components, is the Ultra Wide Band technology,

an anchor-tag radio-frequency based positioning system. Considering that no drivers for

the integration of UWB modules in UAV autopilots have been developed in literature so

far, the goal of this thesis is the deep understanding of the RTOS PX4 autopilot firmware,

and the implementation of custom modules, drivers and commands, with particular focus

on UWB nodes.



Introduction

1.1 Objective of the thesis

The goal of this thesis is to study and customize the open-source autopilot PX4,

integrating functionalities and non-standard hardware components. The main focus will

be on two big topics: the integration of a non-standard lightweight camera gimbal on a

drone mounting Pixracer flight controller, and the integration of a UWB module to be

used for future works about indoor positioning and swarm navigation. The stabilization

of the camera pitch is the progression of a previous work developed at PIC4SeR by Simone

Silvestro, which was aimed at building an ultralight drone (less than 250 grams) to perform

most of the standard operations a heavier drone could do, but with fewer law constraints,

due to its weight. The problem with such a model was that the chosen flight controller

(Pixracer), was not built for mounting a camera pitch stabilizer, despite having a pin

potentially available for this purpose. Therefore, since most of the operations require a

camera recording specific scenes, we decided not only to add the possibility of changing

the camera orientation using the radio controller but also to introduce a stabilization

module to get smoother videos.

On the other side, dealing with the second topic, the standard approach for introducing

UWB sensors is to do so using companion PCs, which are general-purpose PCs connected

to the drone, much more powerful than the flight controller used to run the autopilot,

allowing the UAV to perform more sophisticated tasks (vision-based tasks, object tracking

and many others). With this approach, the flight controller is not directly connected to

the UWB module, but it is leveraging data processed by an external unit (companion

PC) interfaced with the drone with a specific communication protocol. Although being a

common and versatile solution, companion PCs cannot be physically mounted on drones

that must be lighter than 250 grams, due to their weight. Therefore, the goal of this work

is to bypass the companion PC and read the necessary UWB measures directly from the

autopilot leveraging a custom driver.

1



1.2. ORGANIZATION OF THE THESIS 2

1.2 Organization of the thesis

The work of this thesis is organized in seven chapters, here briefly summarized for a

better understanding.

Chapter 1: a short introduction about the problem to be solved and the organization

of the thesis.

Chapter 2: an overview about the state of the art of drone autopilots focusing on

standard procedures used to introduce UWB sensors in UAVs.

Chapter 3: PX4 overview highlighting the main parts that will be involved in this work.

Chapter 4: an overview about the main PX4 competitor (Ardupilot) plus a comparison

between the two firmware.

Chapter 5: description of the two customization applied to the firmware:

• Introduction of a module able to stabilize the camera pitch on Pixracer.

• Development of a serial driver to integrate UWB modules.

Chapter 6: detailed description of the testing phase highlighting obtained results and

problems to be solved.

Chapter 7: an overview about the obtained results with some hints about further

development under study at PIC4SeR.



State of Art

State of Art was the first challenge of this thesis. In the first place it was necessary

to understand how autonomous drones are made, since I have never had the chance of

working with such a system, then it was useful to validate the purpose of my work. In

particular, I had to figure out whether it was possible to introduce a single-axis camera

gimbal and a UWB sensor without a companion PC.

In the first part of this chapter I will briefly introduce the main components of an

autonomous drone, focusing more on the software parts rather than on the hardware

ones, as they have been deeply introduced by Simone Silvestro’s work. Then, in the second

part, I will show the most relevant papers I found during my investigation, highlighting

the main challenges I will have to face at during the work.

2.1 System description

Any autonomous vehicle project is essentially composed by the following parts:

• Hardware: combination of sensors, controllers and output devices allowing the

drone to sense the external environment and decide what to do according to the

current scenario. It essentially consists in all the physical components composing

the drone.

• Firmware: the code running on the controller which guarantees reliability, stability

and provides features leveraging inputs from sensors, elaborating them through a

processing unit and sending outputs to other peripherals such as ESC’s, servos,

gimbals etc. The firmware allows to integrate hardware components.

• Software: it is the interface to the controller often called Ground Control Station

(GCS). Software can run both on PC’s and/or mobile devices. A GCS allows

users to set-up, configure, test, and finely tune the vehicle setup, acting on the

firmware in a simple and straight-forward fashion. Advanced packages or add-ons

allow autonomous mission planning, operation, and post-mission analysis [3]. This

is generally used by the operator both to program the mission and to analyze log

files.

The cooperation of these 3 parts allows the drone to perform specific operations

autonomously, given an initial setup provided by the operator. Working on the firmware,

different hardware components can be integrated, allowing the drone either to perform

new tasks or to enhance already existing ones.

3



2.2. OPEN-SOURCE FIRMWARE 4

Autonomous drones are gaining a lot of interest both in private companies and in

universities. This lead to a subdivision of the market in two different categories of systems:

open-source and private. The main interest of this thesis will be on open-source systems,

with focus on open-source firmware.

2.2 Open-source firmware

Autonomous drones are gaining a lot of interest both in private companies and in

universities. This lead to a subdivision of the market in two different categories of systems:

open-source and private. The main interest of this thesis will be on open-source systems,

with focus on open-source firmware.

Open-source firmware can be divided in 2 different categories based on the automation

level they can provide: fully autonomous firmware are those not requiring human

intervention at all (or just partially, according to the flight mode that is chosen), whereas

non-autonomous firmware are those requiring human control for any operation (no level of

automation). This work will be focused on the first category, as the final goal is to achieve

a fully autonomous drone able to work in specific conditions. There are many different

open-source firmware available on the market: ArduPilot, PX4, Paparazzi, FlexiPilot,

Airrails, SmartAP, Armazila, Autoquad and SLUGS, but only the first two can rely on

a stable community and complete documentation. Both ArduPilot and PX4 are valid

choices as far as the available functionalities are concerned; wide range of hardware

compatibility, good software stability, similar architecture, ROS compatibility and strong

community are only a flavour of their entire capabilities, nonetheless, some differences are

present.

Before choosing one of the two software it is important remarking that both alternatives

will lead to similar and optimal performance. The choice made for the PIC4SeR project

was PX4, essentially due to the BSD license and the user-friendliness.

2.3 Recent works from other Universities

Investigations were mainly focused on UWB integration rather than camera stabilization,

as the latter one is a more practical implementation deeply discussed on the community

forum rather than in academical researches. In fact, there is an already existing (and well

documented) 3-axis gimbal implementation available for Pixhawk boards, therefore the

extension to Pixracer was only a matter of understanding the original module and writing

a new one, based on the already existing one.

On the other side, as far as the UWB technology is concerned, the goal was to understand

the standard approach used to introduce such modules in autonomous systems, in order

to compare it with our aim, trying to understand whether it was even possible to realize

it.

One of the best paper able to summarize the standard approach is the one written by

Francesco Betti Sorbelli and Cristina M. Pinotti, researchers from University of Perugia,

Italy, named “Ground Localization with a Drone and UWB Antennas: Experiments on

the Field” [38], that is available on IEEE periodic. This work was aimed at evaluating

the precision of the Drone Range-Free (DRF) localization algorithm, comparing it with
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a custom algorithm, leveraging a drone mounting the same UWB sensors used in our

research center. My interest was not about their results concerning the localization

algorithm, but on the used setup. They used the 3DR Solo drone running PX4 connecting

the UWB module to a Raspberry Pi interfaced to the drone, therefore the flight controller

was not receiving data directly from the UWB module, it was receiving messages from

the companion PC. A similar approach was used by Janis Tiemann, Andrew Ramsey

and Christian Wietfeld, researchers from Dortmund University, in their work named

“Enhanced UAV Indoor Navigation through SLAM-Augmented UWB Localization” [43],

where they implemented an indoor navigation system for drones based on SLAM and

UWB technology, using a Parrot Bebop 2 connected to a companion PC. It is plenty

of work relying on such a setup, because it is strongly versatile allowing to both

create complex projects (vision-based, neural network oriented etc.) and to abstract

the UWB modules from the flight controller (guaranteeing interchangeability between

different drones). Nonetheless, it is not compatible with ultralight drones due to the

companion PC’s weight, which is generally higher than 250g itself, making the entire

system exceeding the law limitations that play a relevant role in drone operations. This is

why Michael Strohmeier, Thomas Walter, Julian Rothe, and Sergio Montenegro researches

from University of Wuerzburg, Germany, in their work “Ultra-Wideband Based Pose

Estimation for Small Unmanned Aerial Vehicles” [40], available on IEEE, did not use

a companion PC, but they directly connected the UWB module to the custom drone,

realizing a final assembly lighter than 200 grams. Even though they implemented the

UWB module with the operating system Real-time Onboard Dependable Operating

System (RODOS), their setup increased our chances of realizing an ultralight drone

running PX4 implementing UWB technology.
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PX4 overview

3.1 PX4 main features

“PX4 is an open-source flight control software for drones and other unmanned vehicles.

The project provides a flexible set of tools for drone developers to share technologies to

create tailored solutions for drone applications” [28].

Its main properties are:

• Modular Architecture: PX4 is strongly modular and extensible, both in terms of

hardware, allowing the integration of many different sensors, and software, allowing

to directly interact with the firmware to implement any desired feature.

• Open-source: PX4 development is carried out all around the world by a very

active community. The flight stack is not intended to fulfill the needs of single

labs or companies, but has been designed as a general toolkit to be used in both

industries and universities.

• Configurability: PX4 provides optimised APIs and SDKs for developers working

with integrations and customizations.

• Autonomy Stack: PX4 is designed to be deeply coupled with embedded computer,

in particular concerning vision for autonomous capabilities.

3.2 PX4 architectural overview

PX4 is made of two main layers: the flight stack that is an estimation and flight control

layer, and the middleware that is a general robotics layer providing hardware integration

and internal/external communications. PX4 main feature is that all the airframes share a

single codebase (including other robotic systems like rovers, submarines, boats etc.) [32].

3.2.1 Flight stack

According to the developer guide, “the flight stack is a collection of guidance, navigation

and control algorithms for autonomous drones. It includes controllers for fixed wing,

multirotor and VTOL airframes as well as estimators for attitude and position” [32]. In

this thesis the main focus will be on multirotor, nevertheless, everything can be easily

extended to different airframes.

7
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Figure 3.1 shows a general overview of the flight stack building blocks. It contains the

full pipeline from sensors, RC input and autonomous flight control (Navigator), down to

the motor or servo control (Actuators) [32].

• An estimator takes one or more sensor inputs, combines them according to specific

algorithms, and computes a vehicle state (for instance the attitude based on IMU

sensor data).

• A controller is a component that takes a setpoint (i.e. the target) and a

measurement (if available) or estimated state (process variable) as input. Its aim

is to adjust the value of the process variable so that it matches the target setpoint.

The output is the correction needed to reach the setpoint. Making an example, the

position controller has position setpoints acting as inputs, the current estimated

position as process variable, whereas the output is a combination of attitude and

thrust setpoints moving the vehicle towards the desired position.

• “A mixer takes force commands (e.g. turn right) and translates them into

individual motor commands, while ensuring that some limits are not exceeded. This

translation is specific for a vehicle type and depends on various factors, such as the

motor arrangements with respect to the center of gravity, or the vehicle’s rotational

inertia” [32].

Figure 3.1: Flight stack diagram. Image source: PX4 developer guide.

Multicopter position controller

The multicopter position controller diagram is shown below. The controller is made of two

loops: a P loop for position error and a PID loop for velocity error. The controller output

is a thrust vector split in two components: thrust direction (namely rotation matrix for

multicopter orientation) and thrust scalar (i.e. multicopter thrust itself). The controller

does not need Euler angles for its routine, they are generated to be used (control purposes)

and understood by developers (logging).

Some remark about such a control schematic based on the developer guide [33]:

• Estimated states and variable come from EKF2.

• The control schematic represents a standard cascaded position-velocity loop.

• The position loop is only involved in specific situations: when holding position or

when the desired velocity along an axis is null. This is why the outer loop may be

bypassed depending on the used mode (whenever the position should not be held).

https://dev.px4.io/master/en/concept/architecture.html
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Figure 3.2: mc position controller control diagram. Image source: PX4 developer
guide

• The integrator within the inner loop controller (velocity) includes an anti-reset

windup, using a clamping method.

Multicopter attitude controller

The multicopter attitude controller [7] diagram is very similar to the position

one, although implementing the multicopter attitude and rate controller. It takes

attitude setpoints (vehicle attitude setpoint) or rate setpoints (in acro mode via

manual control setpoint topic) as inputs and outputs actuator control messages [33].

The controller has two loops: a P loop for angular error and a PID loop for angular rate

error.

Publication documenting the implemented Quaternion Attitude Control can be found at

the following link:

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/

154099/eth-7387-01.pdf

3.2.2 Middleware

“The middleware consists primarily of device drivers for embedded sensors,

communication with the external world (companion computer, GCS, etc.) and the

message bus. The Firmware is made of modules/programs communicating each other

through a publish-subscribe message bus named uORB” [32]. While the flight stack is

necessary to let the drone fly in a reliable manner, the middleware is that part of the

firmware allowing to add functionalities, integrating sensors or changing the behaviour of

the already existing ones.

Dealing with a publish-subscribe scheme means that:

• The system is reactive therefore it is asynchronous and will update instantly

whenever new data are available.

• All operations and communications are fully parallelized.

• A system component can employ data from anywhere in a thread-safe manner.

https://dev.px4.io/master/en/flight_stack/controller_diagrams.html
https://dev.px4.io/master/en/flight_stack/controller_diagrams.html
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154099/eth-7387-01.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154099/eth-7387-01.pdf
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Moreover, the middleware incorporates a simulation layer allowing PX4 to run on a

desktop OS and control a modelled vehicle in a simulated environment.

Since the main goal of this work is to integrate sensors and actuators, the involved part

of the firmware is the middleware. On the contrary, future applications such as indoor

navigation, will likely require some changes into the flight stack.

3.2.3 Runtime environment

PX4 runs on many different operating systems providing a POSIX-API (NuttX, macOS,

Linux or QuRT). For our application NuttX will be the used RTOS.

The inter-module communication relies on uORB and it is based on shared memory. A

single address space is used to run the entire PX4 middleware, in fact memory is shared

between all modules. Nevertheless, the system is designed such that with minimal changes

it would be possible to execute each module in a private address space [32].

There are 2 different ways to execute a module:

• Task: the module runs on its own task with its own stack and process priority

(this is the most used case). The main advantage in using such approach is that it

requires less RAM, even though the task is not allowed to sleep or poll on messages.

• Work queue: the module runs on a shared task, meaning that it does not own

a proprietary stack. Multiple tasks run on the same stack with single priority per

work queue. Work queues are essentially used for periodic tasks, such as sensor

drivers or the land detector [32].

3.3 NuttX

NuttX is the primary RTOS for running PX4 on a flight-control board. It is open-source

(BSD license), light-weight, efficient and very stable [2]. NuttX, as all RTOSs, is a

collection of various features packed as a library. It is executed in 2 conditions only:

when the application is asking a piece of the NuttX library code, or when an interrupt

occurs [26].

Its most relevant features are:

• Fully preemptible.

• FIFO, round-robin, and “sporadic” scheduling.

• Realtime, deterministic, with support for priority inheritance.

• System logging.

• 30+ supported platforms.

• 22 supported file systems.

Before delving into NuttX, it is necessary to clarify the difference between processes/tasks

and threads. “A thread of execution is the smallest sequence of programmed instructions

that can be managed independently by a scheduler, which is typically a part of the
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operating system” [42]. The differentiation and usage of threads and processes changes

among operating systems, but in most cases a thread is a process component. From the

NuttX guide it is possible to see how a process is defined: it is a protected environment

that hosts one or more threads. By environment it is generally meant the set of resources

set aside by the OS (essentially memory) [26].

“All RTOSs support the notion of ‘tasks’ rather than processes. A task is the RTOS’s

moral equivalent of a process” [26]. Why tasks are so important? Because modules (the

firmware parts we can actually modify and create) are executed as tasks.

Each task is represented by a particular data structure called task control block or TCB,

which is unique. Nevertheless, all tasks share a single address space [26] [27].

Moreover, each task/thread has a fixed-size stack, and there is a periodic task which

checks whether all stacks have enough free space left (based on stack coloring) [32]. The

stack is that portion of the memory used to manage the automatic allocation of memory;

stack may contain the CPU registers during context switch or other useful data.

3.3.1 Task states

Why do we need to define task states? Because only one task at a time can be executed,

all the other must wait the CPU to be available. The mechanism that allows to stop

a task execution and start/restore another one is called context switch. Context switch

implements 6 basic operations: it sets the current running task as ready (all resources

available but the CPU), it saves the context (progress made by the task i.e. the CPU

registers), and it appends this task to the queue list. Then it moves the task on top of

the queue to the running one, and it restore its content, so that the task can start again

from the very same place it was interrupted.

A task state can be indicated both by the task state field of the TCB and by a series

of task lists. Although not being always necessary, most of these lists are prioritized.[26]

[27].

Whenever a new task arrives, it starts in a non-running, uninitialized state:

volatile dq queue t g inactivetasks;

This is the list of all tasks that have been initialized, but not activated yet. An important

remark is that this is the only list that is not prioritized.

Whenever the task is initialized, it is moved from the non-running list to a ready-to-run

list, that is the list containing all the tasks only needing to be given to the CPU to run.

There are two lists representing ready-to-run threads and several lists representing blocked

threads. The ready-to-run threads are the following ones:

volatile dq queue t g readytorun;

This is the list of all tasks being actually ready to run. The head of this list is the currently

running task, whereas the tail of this list is always the idle task because whenever all the

other tasks have been completed, the CPU is given to the idle task (lowest priority) to

do nothing until higher priority task arrive.

volatile dq queue t g pendingtasks;

This is the list of all tasks theoretically being ready-to-run, but cannot be placed in the
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g readytorun list because a particular situation takes place: they have a higher priority

than the currently running task, hence they should be given to the CPU, but the running

task, who arrived first, disabled pre-emption. Basically, the lower priority task arrived

before the higher priority task, but it disabled the pre-emption mechanism, so that when

the higher priority task arrived it could not be executed by the CPU. This is a condition

generally used to protect critical sections and it generates the priority inversion problem

(lower priority task blocks a higher priority one) [27].

These tasks will remain in this holding list until pre-emption is again enabled (or the

currently running task voluntarily relieves the CPU for any reason).

Tasks in the g readytorun list may become blocked while needing data coming from other

tasks or peripherals. In this case, they will be moved to one of the blocked lists. When

the blocked task is again ready-to-run, it will be moved back to either the g readytorun

or to the g pendingtasks lists, depending on the situation [27].

Here the blocked task lists:

volatile dq queue t g waitingforsemaphore;

This is the list of all tasks that are blocked waiting for a semaphore.

volatile dq queue t g waitingforsignal;

This is the list of all tasks that are blocked waiting for a signal (signal support must be

enabled to have this list).

volatile dq queue t g waitingformqnotempty;

This is the list of all tasks that are blocked waiting for a message queue to become

non-empty (message queue support must be enabled to have this list).

volatile dq queue t g waitingformqnotfull;

This is the list of all tasks that are blocked waiting for a message queue to become non-full

(message queue support must be enabled to have this list).

volatile dq queue t g waitingforfill;

This is the list of all tasks that are blocking waiting for a page fill (only if on-demand

paging is selected) [26] [27].

3.3.2 Scheduling policy

In order to be a real-time OS, the OS must support SCHED FIFO that is, strict priority

scheduling: the highest priority thread runs (i.e. given to the CPU). The highest priority

thread is always associated with the TCB on the head of the g readytorun list.

As it is possible to read from the official NuttX website, “NuttX supports one additional

real-time scheduling policy: SCHED RR. The RR stands for roundrobin and this is

sometimes called Round-Robin scheduling. In this case, NuttX supports timeslicing:

If a task with SCHED RR scheduling policy is running, then when each timeslice elapses,

it will give up the CPU to the next task that is at the same priority. Note: (1) If there

is only one task at this priority, SCHED RR and SCHED FIFO are the same, and (2)

SCHED FIFO tasks are never pre-empted in this way” [26] [25].
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Task ID

The TCB is not the only structure representing a task, in fact there is a special number

univocally identifying each task named task ID which must be considered dealing with

RTOSs. TCB and task ID are functionally equivalent: given a task ID, the RTOS can find

the associated TCB, given a TCB, the RTOS can find the related task ID. Nonetheless,

only the task ID is exposed at the application interfaces [26] [25].

3.3.3 Virtual File System

NuttX implements a Virtual Files System (VFS) that can be used to communicate with

a number of different entities through the standard open(), close(), read(), write(), etc.

interfaces. Like other VFSs, the NuttX VFS will support file system mount points, files,

directories, device drivers, etc. [26] [25].

3.3.4 NuttX initialization

NuttX initialization sequence can be broken down in three simple phases:

1. The hardware-specific power-on reset initialization.

2. NuttX RTOS initialization.

3. Application initialization.

This initialization sequence is actually quite simple because the system runs in

single-thread mode until the application starts. Essentially, the initialization sequence is

just straight-line function calls. Right before starting the application, the system changes

into multi-threaded mode and things complicate a lot [26] [25].

Power-on reset initialization

Software begins execution whenever the processor is reset. Reset condition takes place in

three situations generally: power-on (standard booting), pressing reset button, or due to

watchdog timer expiration. Anyhow, the software executing when the processor is reset

is specific to the used CPU architecture and is not a standard part of NuttX [26] [25].

However, the high-level operations that the architecture-specific reset should perform are

[26]:

1. Putting the processor in its operational state. This may include operations like

setting CPU modes; initializing co-processors, etc.

2. Setting up clocking so that the software and peripherals operate as expected.

3. Setting up the C stack pointer (and other processor registers).

4. Initializing memory.

5. Starting NuttX.
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NuttX RTOS initialization

When the low-level, architecture-specific initialization is completed, NuttX is started by

calling the function os start(). This function is located in the file nuttx/sched/os start.c.

The operations performed by such a function are summarized below. Many of these

features can be disabled from the NuttX configuration file; in those cases the operations

are not performed [26] [25]:

1. Initialize some NuttX global data structures.

2. Initialize the TCB for the IDLE (i.e, the thread that the initialization is performed

on).

3. kmm initialize(); initialize the memory manager (in most configurations

kmm initialize() is an alias for the common mm initialize()).

4. irq initialize(); initialize the interrupt handler subsystem. This initializes only data

structures; CPU interrupts are still disabled.

5. wd initialize(); initialize the NuttX watchdog timer facility.

6. clock initialize(); initialize the system clock.

7. timer initialize(); initialize the POSIX timer facilities.

8. sig initialize(); initialize the POSIX signal facilities.

9. sem initialize(); initialize the POSIX semaphore facilities.

10. mq initialize(); initialize the POSIX message queue facilities.

11. pthread initialize(); initialize the POSIX pthread facilities.

12. fs initialize(); initialize file system facilities.

13. net initialize(); initialize networking facilities.

So far, all of the performed steps have been software initializations only; no hardware

was involved. Actually, all of these steps simply prepared the environment so that

features like interrupts and threads can properly work.

14. up initialize(); the processor-specific details for running the operating system will

be managed here. Such operations as setting up interrupt service routines depend

on the used processor and hardware platform.

15. lib initialize(); initialize the C libraries. This is done at the end because libraries

may depend on the previous steps.

16. sched setupidlefiles(); this is the logic that opens /dev/console and creates stdin,

stdout, and stderr for the IDLE thread. All tasks subsequently created by the IDLE

thread will inherit these file descriptors.

17. os bringup(); create the initial tasks.
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18. Finally enter the IDLE loop. After completing the initialization, the IDLE thread

becomes the thread executing only when there is nothing else to do in the system

(from where, the name IDLE thread).

As previously mentioned, the IDLE thread is that specific thread that executes only when

nothing else can be done. It has the lowest priority in the system (priority 0) and it is

the only thread being able to have such a priority. IDLE thread can never be blocked

(otherwise, what would run then?). As a consequence, the IDLE thread is always in the

g readytorun list and, in particular, being this list a prioritized one, and having the

IDLE thread lowest priority, it will always be the tail of the g readytorun list.

The IDLE thread appears as an infinite loop (doing nothing). Nonetheless, it never

saturates CPU because having the lowest priority, whenever new task arrive (any task),

it will always pre-empt the IDLE thread [26] [25].

3.4 uORB

uORB is the core of all the communications between the drone internal components

(modules). It consists in an asynchronous publish() / subscribe() messaging API used for

inter-thread/inter-process communication automatically started early on bootup (uorb

start command) as many applications rely on it [46].

The list of the built-in topics (more than 100) can be found at https://github.

com/PX4/Firmware/tree/master/msg/, or within the directory Firmware/msg on the

development machine where PX4 firmware is downloaded. An example of message file

(mount orientation.msg) is shown in figure 3.3; it contains two elements: the timestamp

in microseconds and the camera attitude expressed with the Euler angle convention.

Figure 3.3: Message file example (mount orientation.msg). Image source: GitHub
repository.

Although having a lot of built-in topics, it may be needed to add new ones. To add a new

topic, it is required to create a new .msg file in the msg/ directory and add the file name

to the msg/CMakeLists.txt list. From this, the needed C/C++ code is automatically

generated while making the code. Having a look at the existing msg files may be useful

for checking supported types. A message can also be used nested in other messages [46].

“To each generated C/C++ struct, a field uint64 t timestamp will be added. This is used

for the logger, so make sure to fill it in when publishing the message” [46]. To use the

topic in the code, it is enough to include the header:

1 #include <uORB/uORB.h>

2 #include <uORB/topics/topic_name.h>

Figure 3.15 represents the connection between modules (threads/processes) and topics.

Modules are represented in grey rounded boxes, topics in coloured squared containers.

Modules can either subscribe or publish to topics: dashed lines represent a module

publishing on a topic, solid lines subscribing to it.

https://github.com/PX4/Firmware/tree/master/msg/
https://github.com/PX4/Firmware/tree/master/msg/
https://github.com/PX4/Firmware/blob/master/msg/mount_orientation.msg
https://github.com/PX4/Firmware/blob/master/msg/mount_orientation.msg
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Figure 3.4: uORB schematic. Image source: PX4 developer guide.

How to add a module communicating with others?

1. The first operation is to create the module. For this simple tutorial

I’m going to use the built-in module template available on directory

Firmware/src/templates/module or https://dev.px4.io/master/en/apps/

module_template.html. Any module is composed by 3 fundamental components:

the .cpp file, implementing the actual code, the .h file containing all the class

declarations and libraries, and lastly the CMakeLists.txt file needed to build the

code.

2. The second operation is to place the module folder, composed by the 3 above

mentioned file, inside the correct directory. The directory depends on the kind of

module that have been created (driver, module, example, system commands etc.),

nevertheless, the starting point is always the same: Firmware/src. For instance, if

a driver have been created, it should be placed in Firmware/src/drivers.

3. The third operation is to let the system know the new module is available. In order

to do it, go into Firmware/boards/px4 and add to the target platform default.cmake

file the name of the module within the associated list (in our example under the

drivers list).

4. Finally, test the module (make px4 sitl gazebo if you are working in SITL).

Typing help inside the simulation shell you should be able to find the name of

the new module. For testing it, just use the command module start.

https://dev.px4.io/v1.9.0/en/middleware/uorb_graph.html
https://dev.px4.io/master/en/apps/module_template.html
https://dev.px4.io/master/en/apps/module_template.html
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actuator outputs

The actuator outputs topic contains the PWM values that are passed to the different

ports on the autopilot board (e.g. Pixracer). It is generally a value between 1000 and

2000, whereas 900 is the default value for disarmed condition. The number of PWM

values depend on the specific autopilot board, for instance, using Pixracer only 6 signals

are passed (4 motors plus 2 other pins). Unfortunately, it is not possible to directly write

the PWM value on a specific pin without interfering with the others; the only solution is

to pass through actuator controls topic.

Which modules publish on actuator outputs topic? Essentially fmu, uavcan, px4io.

The most important one for our purposes is fmu, because it is used to convert values

coming from actuator controls into suitable PWM outputs.

Which modules subscribe to actuator outputs topic? Mavlink, simulator.

actuator controls

The actuator controls topic contains the control values of all the possible control

groups. It is more than just a topic, because it contains all the “sub-topics” regarding

the different control groups (a detailed overview about the control groups can be found

in section 3.8.3). For instance, actuator controls 0 contains the control values of the

control group 0 (roll, pitch, yaw and thrust) [19].

• actuator controls 0: roll, pitch, yaw and thrust (multicopter).

• actuator controls 1: roll, pitch, yaw and thrust (VTOL).

• actuator controls 2: roll, pitch, yaw and shutter (gimbal). This topic can be

used only in the presence of the AUX ports, i.e. no with Pixracer autopilot.

• actuator controls 3: manual passthrough. Useful values are 6th and 7th (number

5 and 6 respectively), since they allow to exploit the original mixer files and tune

PWM output on pin 5 and 6.

• actuator controls virtual fw

• actuator controls virtual ms

Which modules publish on actuator controls topic? Essentially mc att controller.

Which modules subscribe to actuator controls topic? fmu, uavcan, px4io,

commander, mavlink, sensors. fmu is the module connecting control inputs with PWM

outputs.

input rc

The input rc topic contains information about the radio commands passed by the user,

plus additional flags such as lost signal or failsafe mode. This topic is a sort of informative

topic. The module actually responsible for this update is rc update.

Which modules publish on input rc topic? Essentially fmu, px4io, simulator,

rc receiver. The most important one is the receiver driver.

Which modules subscribe to input rc topic? Mavlink, sensors.
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sensor combined

The sensor combined topic is a sort of hub for sensor values. It contains two main

elements:

• gyro rad: average angular rate measured in the XYZ body frame in rad/s over the

last gyro sampling period (the sampling period is defined within this topic, variable

gyro integral dt measured in us) [35].

• accelerometer m s2: average value acceleration measured in the XYZ body frame

in m/s/s over the last accelerometer sampling period (the sampling period is defined

within this topic, variable accelerometer integral dt measured in us) [35].

The sensor combined topic receives data from the module sensors and it sends them

to navigator, commander, frsky telemetry and mavlink [35].

sensors module

The sensors module assumes a key role to the entire system. It takes low-level output

from drivers, turns them into a more valuable form (filtering), and publishes them, letting

the other modules to take benefit of the clean measurements.

The provided functionality includes:

• Read the output from the sensor drivers (sensor gyro, sensor accel,

sensor baro, sensor mag, differential pressure). If there are multiple of the

same type, do voting and failover handling. Then apply the board rotation and

temperature calibration (if enabled). And finally publish the data; one of the topics

is sensor combined, used by many parts of the system [36].

• Make sure the sensor drivers get the updated calibration parameters (scale and

offset) when the parameters change or on startup. The sensor drivers use the ioctl

interface for parameter updates. For this to work properly, the sensor drivers must

already be running when ‘sensors’ is started [36].

• Do preflight sensor consistency checks and publish the sensor preflight topic [36].

vehicle attitude

The vehicle attitude topic contains two important parameters:

• q: quaternion rotation from XYZ body frame to NED earth frame.

• delta q reset: quaternion variation from the last reset.

Which modules publish on vehicle attitude topic? Only ekf2, because it provides

filtered data based on the measured ones.

Which modules subscribe to vehicle attitude topic? Mavlink and most of the

controllers.
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vehicle gps position

The vehicle gps position topic contains all the information coming from gps sensor,

such as velocity with respect to ground, accuracy etc.

Which modules publish on vehicle gps position topic? Only gps, because it

implements driver functionality.

Which modules subscribe to vehicle gps position topic? Mavlink, EKF2,

commander, navigator.

vehicle control mode

The vehicle control mode topic contains a list of boolean values used to define the kind

of control mode that is implemented (complete list available at https://docs.px4.io/

master/en/flight_modes/).

Which modules publish on vehicle control mode topic? Only gps, because it

implements driver functionality.

Which modules subscribe to vehicle control mode topic? Mavlink, ekf2,

commander, navigator.

vehicle status

The vehicle status topic contains information about the drone status, in particular

about the arming condition, vehicle type, navigation state etc. As it is a sort of

information hub, a lot of modules are subscribed to it. The most relevant ones are:

mavlink, commander, navigator.

vehicle command

The vehicle command topic contains a huge list of commands (each identified with a

specific number) to be given to the drone in order to perform specific operations. A

complete list of all the available commands can be found at: https://mavlink.io/en/

messages/common.html. As it contains such a number of commands, a lot of modules are

subscribed to this topic. The most relevant ones are: mavlink, fmu, px4io, uavcan,

camera trigger, commander, navigator.

mount orientation

The mount orientation topic contains information about the mount:

• attitude euler angle: mount attitude/direction written as Euler angles (rad).

mount orientation receives data from vmount module and publish them on mavlink.

This topic is only used in the presence of AUX pins, i.e. no Pixracer autopilot.

camera trigger

The camera trigger topic contains information about camera functionalities:

• seq: image sequence number.

https://docs.px4.io/master/en/flight_modes/
https://docs.px4.io/master/en/flight_modes/
https://mavlink.io/en/messages/common.html
https://mavlink.io/en/messages/common.html
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• feedback: boolean value for checking capture was right.

camera trigger receives data from camera trigger module and publish them on

mavlink and camera feedback.

3.5 MAVLink

While uORB is responsible for the communication between drone internal components,

MAVLink is the messaging protocol that has been designed for the entire drone ecosystem,

made of the drone and the ground control station. In particular, “PX4 uses MAVLink

to communicate with QGroundControl, and as the integration mechanism for connecting

to drone components outside of the flight controller: companion computers, MAVLink

enabled cameras etc” [17].

MAVLink protocol defines both the message structure and the serialization criterion at

the application layer (it basically defines how information should be passed through the

network). These messages are then forwarded to the lower layers (i.e., transport layer,

physical layer) to be transmitted to the network. One of the biggest advantages using

MAVLink is that due to its lightweight structure it supports different types of transport

layers and mediums. In fact, it can be transmitted both through serial telemetry low

bandwidth channels, operating in the MHz range, namely 433 MHz, 868 MHz or 915

MHz, or through WiFi and Ethernet (TCP/IP networks). Using sub-GHz frequencies

guarantees to reach wide communication ranges to handle the unmanned system [16].

On the other hand, using WiFi or Ethernet interface, MAVLink messages are streamed

through IP networks. Both the TCP and UDP connection protocols can be used,

depending on the required reliability of the application [16].

First MAVLink version (1.0) was released by Lorenz Meier in 2009, whereas a second

version with important improvements was released in 2017 (MAVLink 2.0). In the

following section the second version will be elaborated as it is the recommended one.

3.5.1 MAVLink 2.0 frame

As shown in figure 3.5, 11 important fields are present in a MAVLink frame:

1. STX is the symbol representing MAVLink start of frame. In MAVLink 1.0 STX is

0XFE, whereas in MAVLink 2.0 STX is 0xFD.

2. LEN represents the message length in bytes. It is encoded in 1 Byte.

3. INC FLAGS are incompatibility flags: flags affecting the message structure. The

flags indicate whether the packet contains some features that must be considered

when parsing the packet. This flag is not present in MAVLink 1.0.

4. CMP FLAGS are compatibility flags. It indicates flags that can be ignored if not

understood and it does not prevent the parser from processing the message even if

the flag cannot be interpreted. This flag is not present in MAVLink 1.0.

5. SEQ denotes the sequence number of the message. It is encoded into 1 Byte and

takes values from 0 to 255. Once it reaches 255, the sequence number is reset again

to 0 and incremented in each generated message.
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6. SYS ID represents the System ID. Every unmanned system should have its System

ID, in particular, if they are managed by one ground station. The System ID 255

is typically allocated for ground stations.

7. COMP ID is the component ID, and it identifies the component of the system

that is sending the message. There are 27 hardware types (i.e., components) in

MAVLink 1.0.

8. MSGID is the message ID: it refers to the type of the message embedded in the

payload. In MAVLink 2.0 it is encoded with 24 bits instead of 8, like in the first

version.

9. PAYLOAD is the actual message. It can contain up to 255 bytes.

10. CHECKSUM contains two bytes dedicated for checking the message correctness

(1 byte for CKA and 1 byte for CKB). [16].

11. SIGNATURE: finally, MAVLink 2.0 uses an optional Signature field of 13 bytes

to ensure that the link is tamper-proof. This features significantly improve security

aspects of the MAVLink 1.0 as it allows the authentication of the message and

verifies that it originates from a trusted source.

The minimum message length using MAVLink 1.0 is 8 bytes (packets without the payload).

On the other hand, the maximum length of a MAVLink 1.0 message is 263 bytes (full

payload). As far as MAVLink 2.0 is concerned, the minimum length is 11 bytes, whereas

the maximum one is 279 bytes [16].

Figure 3.5: MAVLink 2.0 frame. Image source: MAVLink developer guide.

The over-the-wire format for a MAVLink v2 packet looks like the one in figure 3.6.

Figure 3.6: MAVLink 2.0 packet structure. Image source: MAVLink developer guide.

https://mavlink.io/en/guide/serialization.html
https://mavlink.io/en/about/overview.html
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3.5.2 QGroundControl

“QGroundControl is the ground control station (GCS) providing full flight control and

vehicle setup for PX4 or ArduPilot powered vehicles. It provides easy and straightforward

usage for beginners, while still delivering high end feature support for experienced users”

[34]. Key features are:

• Full setup/configuration of ArduPilot and PX4 Pro powered vehicles.

• Flight support for vehicles running PX4 and ArduPilot (or any other autopilot that

communicates using the MAVLink protocol).

• Mission planning for autonomous flight.

• Flight map display showing vehicle position, flight track, waypoints and vehicle

instruments.

• Video streaming with instrument display overlays.

• Support for managing multiple vehicles.

• QGC runs on Windows, OS X, Linux platforms, iOS and Android devices.

In practice it allows to configure on the go the entire drone. On the left side of figure 3.7

it is possible to see all the different categories that can be modified.

• Airframe: it allows to customize the airframe of the specific vehicle to be used.

Changing the airframe will change the booted files (vehicle configuration and

mixers).

• Radio: it allows to both calibrate the RC and feed the drone with commands

directly from the GCS.

• Sensors: it allows to calibrate all sensors. It is required before flying.

• Flight modes: it allows to select the flight mode to be used.

• Power: it provides power details.

• Tuning: it allows to tune some parameters changing on the fly the drone

responsiveness (PID tuning).

• Camera: it allows to tune camera settings.

• Parameters: it allows to configure any parameter just by typing its name and

choosing the desired value.
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Figure 3.7: PX4 airframes available in QGroundControl.

3.6 Entire software architecture

The goal of this part of the thesis is to delve into the software architecture in order to

be able to customize the firmware adding functionalities. Figure 3.10 provides a precise

overview of the main PX4 building blocks. As previously mentioned, PX4 architecture

can be divided in 2 different parts: the middleware and the flight stack. Middleware

blocks are illustrated in the top part of the diagram, while the flight stack components

are shown in the lower section. An elaboration of the most relevant parts is now shown.

3.6.1 Storage

Database

Dataman is the module exploited to provide permanent storage for the entire system

through a simple database accessible by means of a C API [24]. Multiple backends are

supported:

• a file (on the SD card)

• FLASH (if the board supports it)

• FRAM

• RAM (obviously not persistent)

It is used to store structured data of different types, such as mission waypoints, mission

state and geofence polygons. Each structure has a specific type and a fixed maximum

amount of storage items, so that fast random access is possible [24].
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Missions and plans are physically stored within the drone internal memory. In particular,

plans are stored in JSON files containing basic information about mission goals and

step to be performed (Home position, Rally Points, Geo-fence, Waypoints and mission

commands) [37]. A detailed guide about .plan files can be found at: https://dev.

qgroundcontrol.com/en/file_formats/plan.html. Moreover, SD card allows to store

captured images/video to be elaborated afterwards.

Parameters

Configuration parameters are fundamental since they allow to customize drone behaviour.

Each module composing the firmware is equipped with a params.c file containing all the

parameters that can be modified within that specific module. QGroundControl allows to

set these parameters in a user-friendly way, without browsing into all the directories to

find the correct param file, just typing the name of the parameter to be modified.

Logging

Every flight is registered and saved as a log file on the microSD mounted on the Pixracer.

The PX4 log file came in the .ulg file format, a proprietary one that can be managed in

different ways:

• pyulog: a set of python scripts made available directly from PX4 Github repository

permits (after correct installation and configuration) to convert .ulg files into more

common and manageable ones. This tool is particularly useful for topics log; I wrote

a short guide on how to log a topic on the SD and how to visualize the .ulg files

converting them into csv.

• Online PX4 Flight Review: this online tool permits to upload directly the .ulg flight

log and after couple seconds visualize various Graphs representing almost all the

parameters necessary to a good analysis of the flight and drone attitude behaviour

[37].

The module responsible for logging is logger [24].

3.6.2 External connectivity

MAVLink

MAVLink, as explained in section 3.5, is the communication protocol used to guarantee

the communication between the drone and the GCS.

https://dev.qgroundcontrol.com/en/file_formats/plan.html
https://dev.qgroundcontrol.com/en/file_formats/plan.html
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FastRTPS

Figure 3.8: Most generic

architecture including Fast

RTPS. Image source: PX4

developer guide.

“The PX4-FastRTPS Bridge adds a Real Time

Publish Subscribe (RTPS) interface to PX4, enabling

the exchange of uORB messages between PX4

components and (offboard) Fast RTPS applications

(including those built using the ROS2/ROS

frameworks)” [10].

RTPS should be considered when real-time or

time-critical information need to be exchanged

between the flight controller and the off-board

components (perception computer) in a reliable

manner. One of the best RTPS applications is

when off-board applications (i.e. running on the

perception computer) need to become a peer of

software components running on PX4 (i.e. internal

modules) by sending and receiving uORB topics. It is

essentially used to allow a companion application to

be subscribed to a uORB topic in order to use those

data.

Computer vision is one of the standard cases where

RTPS can be the best solution to handle real-time

data flow [10].

It is important to remark how Fast RTPS was not designed to be a MAVLink replacement.

MAVLink remains the most suitable communication protocol for sharing information with

GCSs, gimbals, cameras, and other off-board components. Nevertheless, FastRTPS could

be used to handle particular peripherals needing to interact with PX4 in specific ways

with real-time constraints [10].

For our application no perception computer was needed, due to the law limit for ultralight

drones fixed at 250g. All the image processing and other complex operations are performed

after the mission, analysing data stored inside the onboard SD card.

3.6.3 Drivers

Drivers allow to program physical components, like camera, gimbal, GPS and all the other

peripherals. They are fundamental for a correct navigation and mission.

Camera control

Camera control handles the camera trigger (no gimbal). Most useful parameters are:

• TRIG PINS: selects which FMU pin is used. “The PWM interface takes two pins

per camera, while relay triggers on every pin individually. Example: Value 56 would

trigger on pins 5 and 6. For GPIO mode Pin 6 will be triggered followed by 5. With

a value of 65 pin 5 will be triggered followed by 6. Pins may be non contiguous. I.E.

16 or 61. In GPIO mode the delay pin to pin is smaller than 0.2 uS” [12]. Reboot

required.

https://dev.px4.io/master/en/concept/dronecode_architecture.html
https://dev.px4.io/master/en/concept/dronecode_architecture.html
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• TRIG INTERFACE: selects the trigger interface; allowed values are:

– 1: GPIO

– 2: Seagull MAP2 (over PWM)

– 3: MAVLink (forward via MAV CMD IMAGE START CAPTURE)

– 4: Generic PWM (IR trigger, servo)

• TRIG POLARITY: set trigger polarity, 0 means Active low, 1 Active high. This

parameter cannot be changed into QGC [12].

• TRIG ACT TIME: Camera trigger activation time. It sets the time the trigger

needs to pulled high or low [12].

• TRIG MODE : Camera trigger mode [12]. Allowed values are:

– 0: Disable

– 1: Time based, on command

– 2: Time based, always on

– 3: Distance based, always on

– 4: Distance based, on command (survey mode)

Gimbal/Mount

Whenever willing to control a gimbal (or any payload) connected to the vehicle, it is

necessary to specify how PX4 can interact with it.

“PX4 contains a generic mount/gimbal control driver with different input and output

methods. The input defines how you control the gimbal: via RC or via MAVLink

commands (for example in missions or surveys). The output defines how the gimbal

is connected: some support MAVLink commands, others use PWM (described as AUX

output in the following). Any input method can be selected to drive any output. Both

have to be configured via parameters” [13].

The most important parameters are:

• MNT MODE IN: mount input mode. It selects how gimbal inputs are given [12]

allowed values are:

– -1: DISABLED

– 0: AUTO

– 1: RC

– 2: MAVLINK ROI

– 3: MAVLINK DO MOUNT

• MNT MODE OUT: mount output mode. It defines how the gimbal is moved

[12]; allowed values are:

– 0: AUX

– 1: MAVLINK
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More information can be found at https://dev.px4.io/v1.9.0/en/advanced/gimbal_

control.html

GPS

The GPS driver is responsible for the position publication via uORB read from the GPS

sensor. Depending on the sensor vendor, it may support different protocols; however, by

default it autonomously selects the most suitable one. It is possible to specify a secondary

GPS device through the -e parameter. Information coming from this secondary sensor

will not be used to handle the drone position, they will be only logged to be analysed in

post-production checking whether the main GPS was right or not [22].

GPS values are directly used for the position and attitude estimation, without passing

trough the sensor hub.

Airspeed, telemetry and distance sensors

Airspeed is correlated with the wind speed estimation, necessary for stability and control

purposes. Before being processed, it needs to be corrected, that is why it is sent to the

sensor hub. Equivalent Airspeed (EAS) data can be used to reduce drift when GPS is

lost by setting EKF2 ARSP THR to a positive value [23].

Telemetry is used to communicate the drone measurement to the GCS and for logging

completeness.

Distance sensors are generally laser or ultrasonic, a light or sound impulse is sent from

the transmitting apparatus to the outside of the drone, in the desired direction, and the

Time Of Flight of the signal bouncing back on the eventual barrier surface determines

the distance from the object to be avoided. Also Laser Imaging Detection and Ranging

(LIDAR) sensors may be used. LIDAR is a planar laser distance sensor; a prisma rotating

360° takes the distance of objects on the LIDAR plane on N points during the complete

rotation, where the number of samples is determined by manufacturer and then by the

software. Distance sensor output are directly used by the estimators [37].

RC input

RC input is a fundamental module responsible for reading the input pins and driving the

output. As far as the Pixracer is concerned, the MAIN channels are used, since the AUX

ones are not present.

It listens on the actuator controls topics, does the mixing and writes the PWM outputs

on actuator outputs [22].

“The module is configured via mode * commands. This defines which of the first N pins

the driver should occupy. By using mode pwm4 for example, pins 5 and 6 can be used by

the camera trigger driver or by a PWM rangefinder driver” [22].

IMU

An inertial measurement unit (IMU) is a device that integrates multi-axes, accelerometers,

gyroscopes, and other sensors to provide estimation of an objects orientation in space.

https://dev.px4.io/v1.9.0/en/advanced/gimbal_control.html
https://dev.px4.io/v1.9.0/en/advanced/gimbal_control.html
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Measurements of acceleration, angular rate, and attitude are typical data outputs [12].

Pixracer comes with the following sensors:

• Gyro/Accelerometer: Invensense MPU9250 Accel / Gyro / Mag (4 KHz)

• Gyro/Accelerometer: Invensense ICM-20608 Accel / Gyro (4 KHz)

• Barometer: MS5611

• Compass: Honeywell HMC5983 magnetometer with temperature compensation

IMU output are necessary for the position and attitude estimation as well as the

autonomous flight, position controller and attitude and rate controller. Nevertheless,

raw data must be adapted before being used for the estimation.

3.6.4 Flight control

Sensors Hub

The sensors module assumes a key role to the entire system. It takes low-level output

from drivers, turns them into a more valuable form (filtering), and publishes them, letting

the other modules to take benefit of the clean measurements [24].

The provided functionality includes:

• Read sensor drivers output (sensor gyro, etc.). If there are multiple of the

same type, do voting and failover handling. Then apply the board rotation and

temperature calibration (if enabled). And finally publish the data; one of the topics

is sensor combined, used by many parts of the system [24].

• Do RC channel mapping: read the raw input channels (input rc), then apply the

calibration, map the RC channels to the configured channels and mode switches,

low-pass filter, and then publish as rc channels and manual control setpoint [24].

• Read the output from the ADC driver (via ioctl interface) and publish battery status

[24].

• Make sure the sensor drivers get the updated calibration parameters (scale and

offset) when the parameters change or on startup. The sensor drivers use the ioctl

interface for parameter updates. For this to work properly, the sensor drivers must

already be running when sensors is started [24].

• Do preflight sensor consistency checks and publish the sensor preflight topic [24].

Position and attitude estimators

EKF2 and LPE are the two main attitude and position estimators involved within the

PX4 architecture. The Estimation and Control Library (ECL) relies on Extended Kalman

Filter algorithm to process sensor measurements in order to provide an estimation of these

states [9]:

• Quaternion defining the rotation from North, East, Down local earth frame to X,Y,Z

body frame
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• Velocity at the IMU - North,East,Down (m/s)

• Position at the IMU - North,East,Down (m)

• IMU delta angle bias estimates - X,Y,Z (rad)

• IMU delta velocity bias estimates - X,Y,Z(m/s)

• Earth Magnetic field components - North,East,Down (gauss)

• Vehicle body frame magnetic field bias - X,Y,Z (gauss)

• Wind velocity - North,East (m/s)

EKF2 is one of the most difficult concept dealing with PX4, this is why I remind to

the official website for more information https://docs.px4.io/v1.9.0/en/advanced_

config/tuning_the_ecl_ekf.html

An important consideration about the modules involved in each category is summarized

in figure 3.9

Figure 3.9: Modules associated with each airframe. Image source: how to customize
pixhawk in your own project.

State machine

Commander module is used to change the drone state, for instance from armed to

disarmed, or to perform basic operations like taking off or land. It is able to receive input

both from the sensor hub (RC input) and MAVLink. Data coming from the commander

module and position and attitude estimators are then used as inputs for the autonomous

flight, position controller and attitude/rate controller [24].

Autonomous flight, position controller, attitude and rate controller

The navigator module, based on the commander input, the mission plan (SD card) and

the estimated states, creates position setpoints. Such a setpoints are the inputs for the

position controller (as well as the RC input and the estimated states). The position

controller, as explained in section 3.2.1, creates attitude setpoints, that are used by the

attitude and rate controller to create the actuator controls [21].

Actuator controls are then converted into suitable values to be applied to the actuators

(PWM/UART/CAN).

In figure 3.10 grey lines represents raw data, brown lines stand for estimated data and

light-blue lines shows RC input.

https://docs.px4.io/v1.9.0/en/advanced_config/tuning_the_ecl_ekf.html
https://docs.px4.io/v1.9.0/en/advanced_config/tuning_the_ecl_ekf.html
http://nutshellking.com/articles/xue-xi-zong-jie/customize_Pixhawk/
http://nutshellking.com/articles/xue-xi-zong-jie/customize_Pixhawk/
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Figure 3.10: PX4 software architecture. Image source: PX4 developer guide.

https://dev.px4.io/master/en/concept/architecture.html
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3.6.5 Flight modes

“Flight Modes define how the autopilot responds to user input and controls vehicle

movement. They are essentially grouped into three categories: manual, assisted or

autonomous modes, depending on the level of control the autopilot should produce. The

pilot transitions between flight modes may be performed using switches on the remote

control or with a ground control station” [11].

Manual modes

“Manual” modes are those where the RC control can be used to entirely control the

drone by the user: any stick movement is associated to a specific vehicle movement.

Nevertheless, changing the manual mode it is possible to change the level of response

assigned to specific movements. For instance, skilled fliers shall use modes providing

direct passthrough of the stick positions to actuators, while beginners should choose modes

guaranteeing less responsiveness to any stick changes [11]. As far as the manual modes is

concerned, 3 subsections can be defined:

• MANUAL/STABILIZED: throttle is passed directly to the output mixer,

meaning that the pilot should always tune the throttle to keep the drone on flight.

Pilot’s inputs are passed as roll and pitch angle commands and a yaw rate command.

In this mode the autopilot controls the attitude, regulating the roll and pitch angles

to zero when the RC sticks are centred. Nonetheless, the autopilot can not control

the vehicle position, therefore drone can move due to wind [11].

• ACRO: as in the manual mode, the throttle is directly passed to the output mixer.

Conversely with respect to the previous mode, pilot’s inputs are introduced as roll,

pitch, and yaw rate commands to the autopilot, while in the previous case roll

and pitch were introduced as angle commands (not rate). Angular rates can be

controlled by the autopilot, but not the attitude. As a consequence, if the RC sticks

are centred, the vehicle will not level-out. This allows the multirotor to perform

acrobatic moves such as a complete inversion [11].

• RATTITUDE: as in the previous modes, throttle is directly passed to the output

mixer. Pilot’s inputs are introduced as roll, pitch, and yaw rate commands to the

autopilot (like in the ACRO mode) only if they are greater than a specific threshold,

namely if the RC sticks are a certain distance away from the centre position. If not,

inputs are introduced as roll and pitch angle commands and a yaw rate command

as in the manual mode. Such a mode is a hybrid between the two previous ones:

up to a certain point it behaves like in the STABILIZED mode, whereas overcome

a certain threshold it turns in ACRO mode [11].

Assisted modes

“Assisted” modes are an improvement with respect to manual modes offering “automatic”

assistance in specific situations, like holding position/direction against wind. One of the

advantages of assisted modes is the capability of restoring controlled flight [11].
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• ALTCTL (altitude control): roll, pitch and yaw inputs are analogous to the

STABILIZED mode. Throttle inputs indicate going up or down at a predetermined

maximum speed. Centred Throttle holds altitude steady. The autopilot only

controls altitude, hence wind can change the vehicle position [11].

• POSCTL (position control): roll controls left-right speed, pitch controls front-back

speed with respect to ground and yaw controls the yaw rate similarly to MANUAL

mode. Throttle handles climbing/descending rate as in ALTCTL mode. As a

consequence vehicle position is held steady by the autopilot against any wind

disturbances [11].

Automatic modes

“Auto” modes are the smartest ones, since the controller requires little to no user input

[11].

• AUTO LOITER (loiter): the multirotor hovers maintaining the current position

and altitude [11].

• AUTO RTL (return to land): the multirotor returns following a straight line either

on the current altitude or at a pre-defined one [11].

• AUTO MISSION: the aircraft performs the programmed mission sent by the

GCS. If no mission is received, aircraft will LOITER at current position, unless

battery drops; in that case, depending on the failsafe mode, it will either return to

the home position or simply land wherever it is [11].

3.7 Firmware structure

Once explained all the firmware features, a deep analysis of its components is required.
The most relevant parts of the tree structure are proposed in the following tree-like
structure:

1 Firmware

2 cmake

3 msg

4 templates

5 px4

6 uorb

7 ROMFS

8 px4fmu_common

9 init.d

10 logging

11 mixers

12 px4fmu_test

13 init.d

14 mixers

15 unit_test_data

16 src

17 drivers

18 examples

19 modules

20 attitude_estimator_ekf

21 attitude_estimator_q

22 bottle_drop

23 commander

24 controllib_test
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25 dataman

26 ekf2

27 ekf2_replay

28 ekf_att_pos_estimator

29 fw_att_control

30 fw_pos_control_l1

31 gpio_led

32 land_detector

33 local_position_estimator

34 mavlink

35 mc_att_control

36 mc_att_control_multiplatform

37 mc_pos_control

38 mc_pos_control_multiplatform

39 muorb

40 navigator

41 param

42 position_estimator_inav

43 px4iofirmware

44 sdlog2

45 segway

46 sensors

47 simulator

48 systemlib

49 uavcan

50 unit_test

51 uORB

52 vtol_att_control

53 systemcmds

54 bl_update

55 config

56 dumpfile

57 esc_calib

58 i2c

59 mixer

60 motor_test

61 mtd

62 nshterm

63 param

64 perf

65 pwm

66 reboot

67 reflect

68 tests

69 top

70 topic_listener

71 usb_connected

72 ver

Main components are summarized in the following table [29]:

cmake make files

msg uORB msg template, the uORB msg headers are generated from this folder

ROMFS startup scripts, airframe configuration files and mixers

src/drivers it contains all the drivers (pwm, gyro, gps etc.)

src/examples some simple examples help you understand the code

src/modules estimators, controllers, mavlink, vmount etc.
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3.7.1 System commands (systemcdms)

config

It allows to configure a sensor driver (parameters like sampling and communication rate,

range etc.). Allowed sensors are: gyro, accelerometers and magnetometer [24].

Figure 3.11: Config arguments. Image source: PX4 developer guide.

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_command.

html#config

ESC calibration (esc calib)

This is a tool for ESC calibration. Calibration procedure (running the command will

guide you through it):

• Remove props, power off the ESC’s

• Stop attitude controllers: mc att control stop, fw att control stop

• Make sure safety is off

• Run the command

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_command.

html#esccalib

Topic listener (listener)

This is a tool to listen to uORB topics printing data to the console [24].

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_command.

html#listener

https://dev.px4.io/master/en/middleware/modules_system.html
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#config
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#config
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#esccalib
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#esccalib
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#listener
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#listener
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Figure 3.12: ESC calibration arguments. Image source: PX4 developer guide.

Figure 3.13: Listener arguments. Image source: PX4 developer guide.

Parameters configuration (param)

This is a command to access and manipulate parameters via shell or script. For instance,

it is used in the startup script to set airframe-specific parameters. Such parameters are

typically stored to SD card or FRAM; command param select can be used to change

the storage location for sequential savings [24].

Parameter configuration can be easily performed by means of QGC just typing the name

of the parameter to be set and setting the value to be assumed by the parameter.

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_command.

html#param

PWM (pwm)

This is the command used to configure PWM outputs for servo and ESC control.

The default device /dev/pwm output0 are the Main channels, AUX channels are on

/dev/pwm output1 (-d parameter). Remember that in the Pixracer board there are no

AUX ports [24].

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_command.

html#pwm

Running processes (top)

Monitor running processes and their CPU, stack usage, priority and state [24].

https://dev.px4.io/master/en/middleware/modules_system.html
https://dev.px4.io/master/en/middleware/modules_system.html
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#param
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#param
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#pwm
https://dev.px4.io/v1.9.0/en/middleware/modules_command.html#pwm
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Figure 3.14: Top arguments. Image source: PX4 developer guide.

3.7.2 Communication

MAVLink

This is the module implementing the MAVLink protocol. It is able to communicate with

the system through uORB: some messages are handled directly within the module (an

example is the mission protocol), others need to be published via uORB (an example is

the vehicle command) [20].

“The implementation uses 2 threads, a sending and a receiving thread. The sender runs at

a fixed rate and dynamically reduces the rates of the streams if the combined bandwidth

is higher than the configured rate (-r) or the physical link becomes saturated. This can

be checked with mavlink status, see if rate mult is less than 1” [20].

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_

communication.html#mavlink

uORB

The module implementing the uORB publication/subscription communication mechanism

is uorb. Such a module is started when booting the system up, since most of the other

modules need it to run properly. Since the communication is performed using shared

memory, “no thread or work queue is needed, the module start only makes sure to initialize

the shared global state. The implementation is asynchronous and lock-free, ie. a publisher

does not wait for a subscriber and vice versa. This is achieved by having a separate buffer

between a publisher and a subscriber” [20].

Messages are defined in the /msg directory. They are converted into C/C++ code at

build-time.

Top instance can be used with uorb as well, and it is very useful to check the topic

publication rate.

uorb top

Figure 3.15: uORB arguments. Image source: PX4 developer guide.

https://dev.px4.io/master/en/middleware/modules_system.html
https://dev.px4.io/v1.9.0/en/middleware/modules_communication.html#mavlink
https://dev.px4.io/v1.9.0/en/middleware/modules_communication.html#mavlink
https://dev.px4.io/master/en/middleware/modules_communication.html
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Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_

communication.html#uorb

3.7.3 Controllers

The following controllers are all within the module directory and the only allowed

arguments are: start, stop, status.

Figure 3.16: Controller arguments. Image source: PX4 developer guide.

Fixed wing controllers

Fixed wing controllers are divided in two different categories [21]:

• fw att control: fixed wing attitude controller.

• fw pos control l1: fixed wing position controller.

High level controller description can be found here: https://dev.px4.io/v1.9.0/en/

flight_stack/controller_diagrams.html

Multicopter controllers

Multicopter controllers are divided in two different categories [21]:

• mc att control: multicopter attitude controller.

• mc pos control: multicopter position controller.

High level controller description was elaborated in section 3.2.1.

Navigator

Navigator is the module responsible for autonomous flight modes. Examples of such a

flight modes are missions, takeoff and RTL. Moreover, navigator is in charge for geo-fence

violation monitoring. “The different internal modes are implemented as separate classes

that inherit from a common base class NavigatorMode. The member navigation mode

contains the current active mode” [21].

The navigator output is a position setpoint triplets (position setpoint triplet s), required

as input by the position controller” [21].

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_controller.

html#navigator

https://dev.px4.io/v1.9.0/en/middleware/modules_communication.html#uorb
https://dev.px4.io/v1.9.0/en/middleware/modules_communication.html#uorb
https://dev.px4.io/master/en/middleware/modules_controller.html
https://dev.px4.io/v1.9.0/en/flight_stack/controller_diagrams.html
https://dev.px4.io/v1.9.0/en/flight_stack/controller_diagrams.html
https://dev.px4.io/v1.9.0/en/middleware/modules_controller.html#navigator
https://dev.px4.io/v1.9.0/en/middleware/modules_controller.html#navigator
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Figure 3.17: Navigator arguments. Image source: PX4 developer guide.

3.7.4 Drivers

FMU driver (px4fmu)

This is the module driving the output based on the received inputs. As far as the boards

without a separate IO chip (like Pixracer) is concerned, it leverages the main channels.

On the other hand, boards with an IO chip (like Pixhawk), it exploits the AUX channels,

while the px4io driver is used for main ones.

It listens on the actuator controls topics (Firmware/build/px4 fmu-v4 default/

uORB/topics), does the mixing (according to the mixer files in the micro SD)

and writes the PWM outputs [22].

“The module is configured via mode * commands. This defines which of the first N pins

the driver should occupy. By using mode pwm4 for example, pins 5 and 6 can be used

by the camera trigger driver or by a PWM rangefinder driver. Alternatively, the fmu can

be started in one of the capture modes, and then drivers can register a capture callback

with ioctl calls.

By default the module runs on the work queue, to reduce RAM usage. It can also be

run in its own thread, specified via start flag -t, to reduce latency. When running on the

work queue, it schedules at a fixed frequency, and the pwm rate limits the update rate

of the actuator controls topics. In case of running in its own thread, the module polls on

the actuator controls topic. Additionally the pwm rate defines the lower-level IO timer

rates” [22].

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html#

fmu

GPS

The GPS driver is responsible for the position publication via uORB read from the GPS

sensor. Depending on the sensor vendor, it may support different protocols; however, by

default it autonomously selects the most suitable one. It is possible to specify a secondary

GPS device through the -e parameter. Information coming from this secondary sensor

will not be used to handle the drone position, they will be only logged to be analysed in

post-production checking whether the main GPS was right or not [22].

GPS values are directly used for the position and attitude estimation, without passing

trough the sensor hub.

https://dev.px4.io/master/en/middleware/modules_controller.html
https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html#fmu
https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html#fmu
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There is a thread for each device polling for data. The GPS protocol classes are

implemented with callbacks so that they can be used in other projects as well (eg.

QGroundControl uses them too).

Figure 3.18: GPS arguments. Image source: PX4 developer guide.

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html#

gps

Simulation PWM signals (pwm out sim)

Driver for simulated PWM outputs. “Its only function is to take actuator control uORB

messages, mix them with any loaded mixer and output the result to the actuator output

uORB topic” [22].

It is used both in SITL and HITL.

Reference link: https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html#

pwmoutsim

Gimbal control

Mount (Gimbal) control driver. It maps several different input methods (eg. RC or

MAVLink) to a configured output (eg. AUX channels or MAVLink). This makes sure

that each input method can be used with each output method and new inputs/outputs

can be added with minimal effort [22].

Boot process

When powering on the board, the bootloader will run first. Bootloader is like BIOS in a

general purpose PC. And it’s already in the board when you buy it. The bootloader will

https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html
https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html#gps
https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html#gps
https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html#pwmoutsim
https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html#pwmoutsim
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Figure 3.19: Vmount arguments. Image source: PX4 developer guide

launch the Nuttx Operating System. After some initialization of the hardware, memory,

peripherals etc [41]. During the boot process the main performed steps are the following

ones:

• Read the parameter file

• Start the sensor drivers (script rc.sensors)

• Set and load the mixer corresponding to the airframe parameter SYS AUTOSTART,

set the pwm channel (script rc.autostart, this file is generated after you build the

code)

• Start the flight tasks corresponding to the airframe parameter SYS AUTOSTART

(script rc.fw apps, rc.mc apps, etc.) [41].

3.8 Mixing and actuators

3.8.1 Autopilot hardware architecture

Before delving into the mixing and actuator section, it is necessary to elaborate the

autopilot hardware architecture. Figure 3.20 shows the generic structure of a Pixhawk

flight controller underlying differences between the FMU and I/O boards [14]. The I/O

ports are used to handle the drone motors, whereas the FMU ports (AUX) are used to

handle payload and gimbal. Unfortunately, the Pixracer board does not have the I/O

component and it is only equipped with 6 PWM output pins (MAIN ones).

Flight controllers without an I/O board have MAIN ports (the number depend on the

specific board, for instance Pixracer has only 6 pins), but they do not have AUX ports. As

a consequence, they should be involved in those airframes not relying on AUX ports. The

typical scenario is related to standard multicopters and fully autonomous vehicles, as these

applications only need MAIN ports for motor controls and other basic peripherals (such

as camera and single-axis gimbal) [14]. It is clear how the ports number may be a strong

limitation: assuming to use the Pixracer board (6 pins) for a hexacopter application, no

camera or single-axis gimbal could be connected since no port is available (all used to

handle the 6 motors). Why using Pixracer boards then? Because they are extremely

powerful considering the poor weight.

Figure 3.21 shows standard outputs for a generic quadrocopter like the one we are using.

https://dev.px4.io/v1.9.0/en/middleware/modules_driver.html
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Figure 3.20: Generic autopilot hardware architecture. Image source: PX4 developer
guide.

Figure 3.21: Generic quadrocopter outputs. Image source: PX4 developer guide.

3.8.2 Mixing and actuators

Mixing means translating high-level commands (i.e. torque commands such as yaw about

30 degrees), into actuator inputs.

Separating the mixer logic from the attitude controller strongly improves reusability, since

the same attitude controller can be used to handle different airframes, where each airframe

has a specific mixer file, namely a custom way to convert high-level inputs to actuator

commands.

Control pipeline

The control pipeline can be summarized in this way: a particular controller (piece of

software) sends a specific normalized force or torque query (scaled within the range -1 to

+1) to the mixer, which then converts the input value into individual actuator commands.

https://dev.px4.io/master/en/hardware/reference_design.html
https://dev.px4.io/master/en/hardware/reference_design.html
https://dev.px4.io/master/en/airframes/airframe_reference.html
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Right after, the output driver (generally UART, UAVCAN or PWM) will scale it to the

actuators specific units, for instance, considering a PWM driver, it may be a value of 1300

[19], which is sent to the actual actuator after being converted in a compatible signal.

Figure 3.22: Control pipeline. Image source: PX4 developer guide.

3.8.3 Control Groups

PX4 uses control groups and output groups to manage inputs and outputs respectively. A

control group is used for the flight controls (attitude), or payloads (gimbal for instance).

On the other hand, an output group is a physical bus. Each of these groups has 8

normalized (from -1 to +1) command ports, that can be mapped and scaled through the

mixer. A mixer defines how each of these 8 signals of the controls are connected to the 8

outputs [19].

Examples of control groups are the following ones:

Figure 3.23: Flight Control Group. Image source: PX4 developer guide.

https://dev.px4.io/v1.9.0/en/concept/mixing.html
https://dev.px4.io/v1.9.0/en/concept/mixing.html
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Figure 3.24: Gimbal Control Group. Image source: PX4 developer guide.

Figure 3.25: Manual passthrough Control Group. Image source: PX4 developer guide.

https://dev.px4.io/v1.9.0/en/concept/mixing.html
https://dev.px4.io/v1.9.0/en/concept/mixing.html
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3.8.4 Output Group/Mapping

An output group is one physical bus (e.g. FMU PWM outputs, IO PWM outputs,

UAVCAN etc.) that has N (usually 8, unless using Pixracer, which has 6) normalized

(-1..+1) command ports mapped and scaled using mixer files.

The mixer file does not explicitly define the actual output group (physical bus) where the

outputs are applied. Yet, its purpose (that may be to control MAIN or AUX outputs)

is deduced from the mixer filename; the rc.interface module will perform the mapping to

the correct physical bus.

This approach is needed because the physical bus used for MAIN outputs is not always

the same; it depends on whether or not the flight controller has an IO Board or uses

UAVCAN for motor control [19].

Figure 3.26: Input-Output relationships. Image source: PX4 developer guide.

In practice, the startup scripts only load mixers into a single device (output group). This

is a configuration rather than technical limitation; you could load the main mixer into

multiple drivers and have, for example, the same signal on both UAVCAN and the main

pins [19].

At the end of the day, what should we do if we want to command a specific pin? We need

to write a piece of code that publishes the right value on the right topic (control group),

then, depending on the mixer file that is loaded, which could be either the default one,

or a modified version (according to your needs), the firmware will convert the received

control value to the corresponding output, suitable for the actuator connected to the pin.

As an example, if someone needs to publish the maximum value of pin 5 (in PWM mode),

he will first write a piece of code publishing the value 1 to the control group number 3 (in

the 6th value of the array, according to the definition in figure 3.25). Then, the mixer file

will be written so that 6th value of control group 3 will drive pin 5 on the main outputs.

In such a way, any control value published on the 6th value of the control group 3 will be

mapped with pin 5 on the board.

3.8.5 Mixer definition

Mixer files

A mixer file must be named XXXX.main.mix if it is responsible for the mixing of

MAIN outputs or XXXX.aux.mix if it mixes AUX outputs. In our specific case, only

XXXX.main.mix files will be used, because Pixracer board does not have them [19].

https://dev.px4.io/v1.9.0/en/concept/mixing.html
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Mixer loading

The default set of mixer files (in Firmware) are defined in

px4fmu common/init.d/airframes/. These can be overridden by mixer files with

the same name in the SD card directory /etc/mixers/ (SD card mixer files are loaded by

preference).

PX4 loads mixer files named XXXX.main.mix onto the MAIN outputs and

YYYY.aux.mix onto the AUX outputs, where the prefixes depend on the airframe and

airframe configuration. Commonly the MAIN and AUX outputs correspond to MAIN

and AUX PWM outputs, but these may be loaded into a UAVCAN (or other) bus when

that is enabled [19].

How to find the prefix of the main mixer you have to use?

1. You need to know the airframe you are using: go on page https://dev.px4.

io/master/en/airframes/airframe_reference.html. Remember that if you are

using a board without I/O component, you cannot select an airframe with the

gimbal, because the built-in airframe considers using the AUX pins that you do not

have on your board.

2. Go on page https://github.com/PX4/Firmware/tree/master/ROMFS/px4fmu_

common/init.d/airframes and open the airframe you chose.

3. Within the file, at the end, there will be a line similar to ‘set MIXER quad x’.

The name you see after ‘MIXER’ is the prefix. In this case the name would be:

quad x.main.mix.

Loading a custom mixer

By default PX4 loads properly named mixer files from the SD card directory /etc/mixers/.

To load a custom mixer, it is enough to give it the same name as a “normal” mixer file

(that is going to be loaded by the chosen airframe) and put it in the etc/mixers directory

on the flight controller’s SD card [19].

Syntax

Mixer definitions are text files; lines beginning with a single capital letter followed by

a colon are significant. All other lines are ignored, meaning that explanatory text can

be freely mixed with the definitions, there is no need to add special characters at the

beginning of the line [19].

A mixer begins with a line of the form:

<tag>: <mixer arguments>

The tag defines the mixer type; ‘M’ for a simple summing mixer, ‘R’ for a multirotor

mixer, etc. the mixer arguments specifies the kind of operations that should be done with

the input value.

https://dev.px4.io/master/en/airframes/airframe_reference.html
https://dev.px4.io/master/en/airframes/airframe_reference.html
https://github.com/PX4/Firmware/tree/master/ROMFS/px4fmu_common/init.d/airframes
https://github.com/PX4/Firmware/tree/master/ROMFS/px4fmu_common/init.d/airframes
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Null mixer

A null mixer receive no controls and produces a single actuator output whose value is

always zero. Typically a null mixer is used as a placeholder in a collection of mixers in

order to achieve a specific pattern of actuator outputs (there may be situations where, for

whatever reason, an output group is skipped, like in the wing-wing configuration) [19].

The null mixer definition has the form:

Z:

Simple mixer

A simple mixer combines zero or more control inputs into a single actuator output. Inputs

are scaled, and the mixing function sums the result before applying an output scaler [19].

A simple mixer definition begins with:

M: <control count>

O: <-ve scale> <+ve scale> <offset> <lower limit> <upper limit>

If <control count> is zero, the sum is effectively zero and the mixer will output a fixed

value that is <offset> constrained by <lower limit> and <upper limit>.

The second line defines the output scaler with scaler parameters as discussed above.

Whilst the calculations are performed as floating-point operations, the values stored in

the definition file are scaled by a factor of 10000; as an example an offset of -0.5 is encoded

as -5000 [19].

The definition continues with <control count> entries describing the control inputs and

their scaling, using the form:

S: <group> <index> <-ve scale> <+ve scale> <offset> <lower limit>

<upper limit>

The S: lines must be below the O: line.

The <group> value identifies the control group to be considered, and the <index> value

represents the element to be considered within that group. When used to mix vehicle

controls, mixer group zero is the vehicle attitude control group, and index values from

zero to three are normally roll, pitch, yaw and thrust respectively [19].

Wing wing example

The example refers to the Wing Wing architecture. The original file name is

wingwing.main.mix and can be found at https://github.com/PX4/Firmware/blob/

master/ROMFS/px4fmu_common/mixers/wingwing.main.mix

The mixer file contains several blocks of code, each of which refers to one actuator or

ESC. So if you have e.g. two servos and one ESC, the mixer file will contain three blocks

of code [1].

According to the specifications, MAIN1 would be the left aileron, MAIN2 the right aileron,

MAIN3 is empty (note the Z: zero mixer) and MAIN4 is throttle (to keep throttle on

output 4 for common fixed wing configurations).

A mixer is encoded in normalized units from -10000 to 10000, corresponding to -1..+1.

The first block (first servo) is shown and commented below [1] [19].

https://github.com/PX4/Firmware/blob/master/ROMFS/px4fmu_common/mixers/wingwing.main.mix
https://github.com/PX4/Firmware/blob/master/ROMFS/px4fmu_common/mixers/wingwing.main.mix
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Figure 3.27: Wing Wing airframe specifications. Image source: PX4 developer guide.

M: 2

O: 10000 10000 0 -10000 10000

S: 0 0 -6000 -6000 0 -10000 10000

S: 0 1 6500 6500 0 -10000 10000

Where each number from left to right means:

• M: Indicates two scalers for two control inputs. It indicates the number of control

inputs the mixer will receive. Having M = 2 means having two different S:

declarations [1].

• O: Indicates the output scaling (*1 in negative, *1 in positive), offset (zero here),

and output range (-1..+1 here). If you want to invert your PWM signal, the signs

of the output scalings have to be changed (as it was done in the first S: inside the

previous declaration) [1]:

O: -10000 -10000 0 -10000 10000

• S: Indicates the first input scaler: it takes input from control group 0 (Flight Control)

and the first input (roll). The first 0 represents the group number (in this case it is

the flight control, i.e. group 0), the second 0 represents the component inside the

group control (0 means roll according to figure 3.28) [1].

It scales the roll control input * 0.6 and reverts the sign (because there is negative

sign -0.6 becomes -6000 in scaled units). It applies no offset (0) and outputs to the

full range (-1..+1) [1].

• S: Indicates the second input scaler: it takes input from control group 0 (Flight

Control) and the second input (pitch, because the second component of the control

group 0 is pitch). It scales the pitch control input * 0.65 (here there is no negative

sign). It applies no offset (0) and outputs to the full range (-1..+1) [1].

The bottom line is that this mixer output would be SERVO = ( (roll input * -0.6 + 0) *

1 + (pitch input * 0.65 + 0) * 1 ) * 1 + 0 [1].

More detail about mixer file examples at https://dev.px4.io/master/en/airframes/

adding_a_new_frame.html#mixer-file

Multirotor mixer

As far as the multirotor mixers is concerned, things are a bit different from the simple

example seen above, because roll, pitch and yaw cannot be controlled directly acting on

a single motor.

https://dev.px4.io/master/en/airframes/airframe_reference.html
https://dev.px4.io/master/en/airframes/adding_a_new_frame.html#mixer-file
https://dev.px4.io/master/en/airframes/adding_a_new_frame.html#mixer-file
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Figure 3.28: Flight Control Group. Image source: PX4 developer guide.

The multirotor mixer combines four control inputs (roll, pitch, yaw, thrust) within the

range -1 to +1, except thrust that is between 0 and 1, into a bundle of actuator outputs

intended to drive motor speeds [19].

The mixer definition is a single line of the form:

R: <geometry> <roll scale> <pitch scale> <yaw scale> <idlespeed>

Supported geometries are:

• 4x - quadrotor in X configuration

• 4+ - quadrotor in + configuration

• 6x - hexacopter in X configuration

• 6+ - hexacopter in + configuration

• 8x - octocopter in X configuration

• 8+ - octocopter in + configuration

Each of the roll, pitch and yaw scale values determine scaling of the roll, pitch and

yaw controls relative to the thrust control. Whilst the calculations are performed as

floating-point operations, the values stored in the definition file are scaled by a factor of

10000; i.e. a factor of 0.5 is encoded as 5000 [19].

Roll, pitch and yaw inputs are expected to range from -1.0 to 1.0, whilst the thrust input

ranges from 0.0 to 1.0. Output for each actuator is in the range -1.0 to 1.0.

Idlespeed can range from 0.0 to 1.0. Idlespeed is relative to the maximum speed of motors

and it is the speed at which the motors are commanded to rotate when all control inputs

are zero [19].

Whenever an actuator saturates, all actuator values are rescaled so that the saturating

component is limited to 1.0.

https://dev.px4.io/v1.9.0/en/concept/mixing.html
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A real example is the one associated with the standard quadrocopter quad x.main.mix:

1 R: 4x 10000 10000 10000 0

2

3 AUX1 Passthrough

4 M: 1

5 S: 3 5 10000 10000 0 -10000 10000

6

7 AUX2 Passthrough

8 M: 1

9 S: 3 6 10000 10000 0 -10000 10000

10

11 Failsafe outputs

12 The following outputs are set to their disarmed value

13 during normal operation and to their failsafe falue in case

14 of flight termination.

15 Z:

16 Z:

The first line defines the geometry (4x) and the scaling factor for the three allowed motions

(roll, pitch and yaw), plus the idle speed (0), so no motor speed = 0 whenever there is no

other input [19].

AUX1 Passthrough is defined with a single input (M: 1), therefore only one S: is defined.

In this case S: 3 5 points at control group 3 (manual passthrough, figure 5.1) element 5

(RC aux1, mapped by parameter RC MAP AUX1). If you want to associate a specific RC

channel to aux1 you should change parameter RC MAP AUX1. What does this mean?

That pin 5 will follow the RC command associated with the selected channel, for instance,

choosing channel 12, pin 5 will follow RC movements in channel 12. Then the following

numbers define the mapping between the input and the output. Both the first and the

second ones are 10000, meaning that no sign inversion is needed (since it is a positive

value), and that the slope is standard. The third value is the offset; being it 0, nothing

shall be added. Last two values are -10000 and 10000, therefore the output range is

maximum (1000 to 2000).

AUX2 Passthrough is defined with a single input (M: 1), therefore only one S: is defined.

In this case S: 3 6 points at control group 3 (manual passthrough, figure 5.1) element 6

(RC aux2, mapped by parameter RC MAP AUX2). If you want to associate a specific RC

channel to aux2 you should change parameter RC MAP AUX2. What does this mean?

That pin 6 will follow the RC command associated with the selected channel, for instance,

choosing channel 10, pin 6 will follow RC movements in channel 10.

Figure 3.29: Manual Passthrough Control Group. Image source: PX4 developer guide.

https://dev.px4.io/v1.9.0/en/concept/mixing.html
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How to link a new mixer to an existing airframe?

Before solving this problem it is necessary to understand how a mixer file is linked to

an airframe, or better to its configuration file. PX4 uses canned airframe configurations

as starting point for airframes. The configurations are defined in config files that are

stored in the ROMFS/px4fmu common/init.d folder. The config files reference mixer

files that describe the physical configuration of the system, and which are stored in the

ROMFS/px4fmu common/mixers folder [1].

Mixers are specified within the configuration file in a line similar to this:

set MIXER quad x

In this specific case, the linked mixer is quad x.main.mix located in

ROMFS/px4fmu common/mixers folder.

Different options are possible now:

1. Assuming that you want to just modify the original mixer file quad x.main.mix,

you can create a copy of it inside the directory /etc/mixers and modify it. Then,

in order to use it, you have to create a file named config.txt inside directory /etc

containing the line

set MIXER quad x

More information about this operation can be found at: https://dev.px4.io/v1.

9.0/en/concept/system_startup.html#starting-a-custom-mixer

2. Assuming that you created a new airframe in the folder

ROMFS/px4fmu common/init.d named 4003 quad x v2 and a new mixer

quad x v2.main.mix, you just have to place the correct name inside the

configuration file:

set MIXER quad x v2

Then, setting the new airframe within QGC, the correct mixer file will be loaded.

More information about adding new airframes at: https://dev.px4.io/v1.9.0/

en/airframes/adding_a_new_frame.html#mixer-file

3.8.6 MAVLink commands

In previous sections inputs were given through RC, nevertheless, this is not the only

possibility to accomplish tasks, in fact it is possible to write a text file containing a

pre-defined mission to be completed by the drone. These text files are named plan files.

Plan files are stored in JSON file format and contain mission items and (optional) geo-fence

and rally-points components. An example plan file is shown and discussed below; it is a

customization of the mission implemented by Simone Silvestro in its thesis [37].

https://dev.px4.io/v1.9.0/en/concept/system_startup.html#starting-a-custom-mixer
https://dev.px4.io/v1.9.0/en/concept/system_startup.html#starting-a-custom-mixer
https://dev.px4.io/v1.9.0/en/airframes/adding_a_new_frame.html#mixer-file
https://dev.px4.io/v1.9.0/en/airframes/adding_a_new_frame.html#mixer-file
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1 {

2 " fileType ": " Plan ",

3 " geoFence ": {

4 " circles ": [

5 ],

6 " polygons ": [

7 ],

8 " version ": 2

9 },

10 " groundStation ": " QGroundControl ",

11 " mission ": {

12 " cruiseSpeed ": 15,

13 " firmwareType ": 12,

14 " hoverSpeed ": 1,

15 " items ": [

16 {" autoContinue ": true ," command ": 530," doJumpId ": 1,

17 " frame ": 2," params ": [0, 0, null , null , null ,

18 null , null ]," type ": " SimpleItem "

19 },

20 {" autoContinue ": true ," command ": 2000," doJumpId ": 2,

21 " frame ": 2," params ": [0, 0, 1, null , null , null ,

22 null ]," type ": " SimpleItem "

23 },

24 { " AMSLAltAboveTerrain ": null , " Altitude ": 5, "

25 AltitudeMode ": 1, " autoContinue ": true , " command "

26 : 22, " doJumpId ": 3, " frame ": 3, " params ": [ 15,

27 0, 0, null , 45.061850921636996 , 7.662915040275976 , 5],

28 " type ": " SimpleItem "

29 },

30 { " autoContinue ": true , " command ": 203, " doJumpId ":

31 4, " frame ": 2, " params ": [ 0, 0, 0, 0, 1, 0, 0 ],

32 " type ": " SimpleItem "

33 },

34 { " autoContinue ": true , " command ": 93, " doJumpId ":

35 5, " frame ": 2, " params ": [ 20, 0, 0, 0, 0, 0, 0 ],

36 " type ": " SimpleItem "

37 },

38 { " autoContinue ": true , " command ": 203, " doJumpId ":

39 6, " frame ": 2, " params ": [ 0, 0, 0, 0, 1, 0, 0 ],

40 " type ": " SimpleItem "

41 },

42 { " autoContinue ": true , " command ": 20, " doJumpId ":

43 7, " frame ": 2, " params ": [ 0, 0, 0, 0, 0, 0, 0 ],

44 " type ": " SimpleItem "

45 }

46 ],

47 " plannedHomePosition ": [45.06184801299343 , 7.6629065558

48 804825 , 247],

49 " vehicleType ": 2,

50 " version ": 2

51 },

52 " rallyPoints ": {

53 " points ": [],

54 " version ": 2

55 },

56 " version ": 1

57 }

Listing 3.1: Plan file example taken from Simone Silvestro’s work.
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Plan files are essentially divided in 3 different sections:

• Geofence: define the eventual boundaries in therms of circles and/or polygons. It

is optional.

• Mission: here the real mission plan is defined, with SimpleItems (basically points

or timing where commands have to be executed) or ComplexItems (such as Surveys,

Corridor Scan, Structure scan, automatized by the ground station) [37] [30].

SimpleItems are divided into two main fields:

– Waypoints: points of the path between the takeoff and the land used one by

one as position setpoints by the vehicle running the mission.

– Commands: actions to be executed during the mission, like maintaining hover

for a certain amount of seconds or trigger a camera for example.

At the end of the mission string is present the position in terms of latitude, longitude

and heights in MAMSL. Mission must contain at least one item [30].

Before defining the items, some parameters are initialized:

– cruiseSpeed: the default forward speed for Fixed wing or VTOL vehicles (i.e.

when moving between waypoints) in m/s.

– firmwareType: it defines the autopilot type. A complete list can be found

at https://mavlink.io/en/messages/common.html#MAV_AUTOPILOT. 12 is

related to PX4.

– hoverSpeed: the default forward speed for multi-rotor vehicles.

– vehicleType: the vehicle type for which this mission was created. A complete

list can be found at https://mavlink.io/en/messages/common.html#MAV_

TYPE. 2 is related to quadrorotor [30].

• Rally points: optional safe points where vehicle can land in case of failsafe before

the completion of the mission [37][30].

Mission items

Mission items are the core of the mission plan. The example 3.1 allows to describe the

main components of a mission item:

• type: SimpleItem for a simple item, ComplexItem for a complex item.

• autoContinue: Autocontinue to next waypoint.

• command: This is the actual command that will be performed. The command list

can be found at https://mavlink.io/en/messages/common.html

• doJumpId: The target id for the current mission item in DO JUMP commands.

These are auto-numbered starting from 1.

• params: Parameters needed by the specific command.

https://mavlink.io/en/messages/common.html#MAV_AUTOPILOT
https://mavlink.io/en/messages/common.html#MAV_TYPE
https://mavlink.io/en/messages/common.html#MAV_TYPE
https://mavlink.io/en/messages/common.html
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In example 3.1 the first command is 22, corresponding to quadrocopter takeoff. Then it is

followed by command 203 that starts the camera recording. Then the vehicle is forced to

hold position for 20 seconds with ”command” = 93, to have a small footage of 20 second

flight, and then again the camera control to stop the recording just before the Return to

Land command send with the MAVLink message number 20 [37].

The following table contains a short connection with all the used commands:

22 Takeoff https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_TAKEOFF

203 Camera trigger https://mavlink.io/en/messages/common.html#MAV_CMD_DO_DIGICAM_CONTROL

93 Hold position https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_DELAY

20 RTH https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_RETURN_TO_LAUNCH

3.9 Supported communication protocols

In order to analyse the communication protocols involved in PX4 it is necessary to

understand the basic hardware architecture, as shown in figure 3.30.

Figure 3.30: Top and bottom views of Pixracer board. Image source: PX4 user guide

https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_TAKEOFF
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_DIGICAM_CONTROL
https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_DELAY
https://mavlink.io/en/messages/common.html#MAV_CMD_NAV_RETURN_TO_LAUNCH
https://docs.px4.io/master/en/flight_controller/pixracer.html
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Power module

The power module is connected to the battery and provides power to the entire board.

Arm buzzer

The arm buzzer is a safety switch that can be connected to a button to arm/disarm the

drone physically.

I2C

I2C is a packet-switched serial communication protocol allowing multiple master devices

to be connected to multiple slave devices using only 4 wires per connection (SDA, SCL,

VCC and GND). It is mainly intended for connecting lower-speed peripheral ICs (generally

within the range 100 kHz to 400 kHz) to processors and microcontrollers in short-distance

or intra-board communication [15].

PX4 can use it for:

• Connecting off board components requiring higher data rates than provided by a

direct serial UART; an example may be rangefinders.

• Connecting peripheral devices supporting I2C only.

• Allowing multiple devices to attach to a single bus (mainly to preserve the port

number).

Important remark: IMUs (accelerometers/gyroscopes) should not be attached via I2C

(typically the SPI bus is used). The bus is not fast enough even with a single device

attached to allow vibration filtering (for instance), and the performance degrades further

with every additional device on the bus [15].

Figure 3.31 shows the I2C communication schematic.

Figure 3.31: I2C communication schematic. Image source: ArduPilot guide

MicroSD

It allows to connect a MicroSD card necessary for logging purposes and loading custom

mixer files.

Debug

The debug port is used for debugging purposes; it requires specific hardware for

interacting with the firmware. More information at https://dev.px4.io/v1.9.0/en/

debug/system_console.html

https://ardupilot.org/dev/docs/code-overview-sensor-drivers.html
https://dev.px4.io/v1.9.0/en/debug/system_console.html
https://dev.px4.io/v1.9.0/en/debug/system_console.html
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FrSky Telem

It allows the connection to the telemetry receiver.

WiFi board

Our platform embeds the ESP8266 component, which is a tiny WiFi module to create an

access point on the drone to exchange data with companion computer.

PWM out

It sends PWM signals to be elaborated by the ESC. It has 6 ports, 4 are used by the

rotors, 2 can be used for camera and gimbal.

UART

“A universal asynchronous receiver-transmitter (UART) is a computer hardware device

for asynchronous serial communication in which the data format and transmission speeds

are configurable” [44]. Being it an asynchronous communication, the data consistency

is guaranteed specifying the correct baud rate (which must be the same for both the

transmitter and the receiver). It generally requires 4 pins (GND, VCC, TX, RX). A

practical example is the Arduino serial port used for debugging purposes.

Its main features are:

• Master-slave communication.

• Character-based protocol suitable for longer connections with respect to I2C and

SPI.

• Intermediate speed: up to 1.5 Mbps.

• 4 pin required.

UAVCAN

“UAVCAN is an open lightweight protocol designed for reliable intravehicular

communication in aerospace and robotic applications over CAN bus, Ethernet, and

other robust transports. It is created to address the challenge of deterministic on-board

data exchange between systems and components of next-generation intelligent vehicles:

manned and unmanned aircraft, spacecraft, robots, and cars” [45]. Main features are:

• Multimaster bus.

• Long distance, even at maximum rate.

• 1 Mbps is the standard rate.

• 3 pin needed (CAN HI, CAN LO, GND).

More detail at https://forum.uavcan.org/t/uavcan-v1-crash-course/778.

https://forum.uavcan.org/t/uavcan-v1-crash-course/778
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Figure 3.32: UAVCAN communication schematic. Image source: ArduPilot guide

PPM

Pulse-position modulation (PPM) is a form of signal modulation where M message bits

are encoded by transmitting a single pulse in one of 2M possible required time shifts. This

is repeated every T seconds, such that the transmitted bit rate is M/T bits per second.

It is primarily useful for optical communications systems, which tend to have little or no

multipath interference [31].

SPI

The Serial Peripheral Interface (SPI) is a synchronous serial communication interface

specification used for short-distance communication (10 cm max), primarily in embedded

systems. Full duplex communication is used to connect SPI devices using a master-slave

architecture with a single master and up to 4 slaves. Multiple slave-devices are supported

through specific selection lines (SS: slave selection line). Moreover, a clock line SCLK

is needed for synchronization purposes. The actual data exchange takes place over two

different buses: MOSI (master output slave input - from master to slave) and MISO

(master input slave output - from slave to master) [39]. SPI is much faster than I2C

(20 MHz compared to 400 kHz), but it requires more wires and it has limitations on the

maximum number of slaves. Figure 3.33 shows SPI schematic.

Figure 3.33: SPI communication schematic. Image source: ArduPilot guide

https://ardupilot.org/dev/docs/code-overview-sensor-drivers.html
https://ardupilot.org/dev/docs/code-overview-sensor-drivers.html


ArduPilot overview and comparison

with PX4

4.1 ArduPilot main features

“ArduPilot is an open-source autopilot that enables the creation and use of trusted,

autonomous, unmanned vehicle systems for the peaceful benefit of all” [3]. ArduPilot can

be used to drive almost any vehicle and application. Being an open-source project, it is

constantly improving relying on feedback from a large active community of users. Both

the community and the commercial partners work with the development team adding

functionalities and enhancing stability [3]. The three main features are:

• Versatility: although ArduPilot does not manufacture any hardware (conversly

with respect to PX4), ArduPilot firmware works on a wide variety of different

hardware to control unmanned vehicles of all types (PX4 boards included).

• Real-time features: coupled with ground control software, unmanned

vehicles running ArduPilot can have advanced functionality including real-time

communication with operators.

• Strong community: ArduPilot has a huge online community dedicated to helping

users with questions, problems, and solutions [3].

4.2 ArduPilot architectural overview

The ArduPilot basic structure can be broken down into 5 main parts:

• Vehicle code

• Shared libraries

• Hardware abstraction layer (AP HAL)

• Tools directories

• External support code (mavlink, dronekit)

57
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4.2.1 Vehicle code

The vehicle directories are the top level directories that define the firmware for each

vehicle type. Currently there are 4 vehicle types: Plane, Copter, APMrover2 and

AntennaTracker. Although having different vehicle types, there are a lot of common

elements between them. Our elaboration will be mainly about copter type [4], since this

thesis is based on such a typology.

Along with the *.cpp files, each vehicle directory contains a make.inc file which lists library

dependencies. The Makefiles read this to create the -I and -L flags for the build [4].

4.2.2 Libraries

The libraries are shared amongst the four vehicle types Copter, Plane, Rover and

AntennaTracker. These libraries include sensor drivers, attitude and position estimation

(aka EKF) and control code (i.e. PID controllers) [4].

4.2.3 Hardware abstraction layer

The AP HAL layer (Hardware Abstraction Layer) is how ArduPilot is made portable

to lots of different platforms. There is a top level AP HAL in libraries/AP HAL that

defines the interface that the rest of the code has to specific board features, then there is

a AP HAL XXX subdirectory for each board type, for example AP HAL AVR for AVR

based boards, AP HAL PX4 for Pixhawk boards and AP HAL Linux for Linux based

boards [4]. The goal is to abstract the low level details so that the top level can work

irrespective of the used board.

4.2.4 Tools directories

The tools directories are miscellaneous support directories. For examples, tools/autotest

provides the autotest infrastructure behind the autotest.ardupilot.org site and

tools/Replay provides our log replay utility [4].

4.2.5 External support code

On some platforms we need external support code to provide additional features or board

support [4]. Currently the external trees are:

• PX4 NuttX - the core NuttX RTOS used on Pixhawk boards

• PX4 Firmware - the base PX4 middleware and drivers used on Pixhawk boards

• UAVCAN - the uavcan CANBUS implementation used in ArduPilot

• MAVLink - the mavlink protocol and code generator

Figure 4.1 shows the ArduPilot software architecture. The GCS and the companion

computer (if present) communicate with the drone by means of MAVLink. The

abstraction layer abstracts hardware functionalities allowing the flight code to control

peripherals by means of services. The RTOS suitable for our application would be

autotest.ardupilot.org


CHAPTER 4. ARDUPILOT OVERVIEW AND COMPARISON WITH PX4 59

ChibiOS, since our board is a Pixhawk hardware, nevertheless, depending on the specific

hardware, different solutions may be implemented.

Figure 4.1: ArduPilot software architecture. Image source: ArduPilot website.

A more detailed schematic, containing all the involved scripts of the overall architecture

is shown in figure 4.2. ‘Background thread’ groups together IMU, barometer and GPS

measurements so that EKF can be used to correctly estimate current position and attitude.

This part is very similar to the Sensor Hub seen in PX4. Estimated states are then used

along with the flight mode for the navigation stack, the position control and the attitude

control. Lastly, outputs are sent to the correct motors in order to apply the control

strategy.

The overall structure is very similar to the one presented in figure 3.10.

Copter position and attitude controllers

Position controller is very similar to the one explained in PX4 overview, as noticeable in

figure 4.3. Nevertheless, the proportional part used to transform the target position into

a target velocity is implemented as a square root controller (instead of a linear one). The

same consideration holds for the attitude controller.

https://ardupilot.org/dev/docs/learning-ardupilot-introduction.html
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Figure 4.2: ArduPilot software architecture. Image source: ArduPilot website.

4.2.6 ChibiOS

ChibiOS is a complete development environment for embedded applications including

RTOS, an HAL, peripheral drivers, support files and tools. ChibiOS is divided into

different products, in particular 2 RTOS: RT and NIL [8].

RT is the high performance RTOS part of the ChibiOS embedded collection. It has been

designed with the idea of creating a very feature-complete RTOS that could excel in

performance and code size.

NIL has been created with the idea to bring RTOS functionalities to very small devices

and yet to be a full-fledged RTOS.

RT is the version implemented by ArduPilot; its main features are:

• Extremely high performance RTOS.

• Fully static architecture.

• Very complete set of features.

• Strong debug support.

• Clean code base.

• Compatibility layer with CMSIS RTOS.

• Preemption.

• FIFO and Round Robin scheduler compatible.

Only 11 architectures are officially supported, 10 unofficially.

https://ardupilot.org/dev/docs/apmcopter-code-overview.html
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Figure 4.3: Copter position controller. Image source: ArduPilot website

4.2.7 ArduPilot threading

ArduPilot code is based on a setup() / loop() structure inherited from Arduino: the

setup() function is executed only once whenever the system is booted, whereas the loop()

part implements the actual functionalities and it is continuously executed. Although

having such a structure similar to a single threaded system, in fact it is not. The threading

approach strongly depends on the involved board. Some boards, like APM1 and APM2,

do not support threads, therefore they are handled through timers and callbacks. On

the contrary, some other boards such as PX4, supports a POSIX threading model with

real-time features [6].

4.2.8 MAVLink

MAVLink is the communication protocol used in ArduPilot for the communication

between the drone and the GCS. A more detailed overview can be found in section 3.5.

4.2.9 Mission Planner

Mission Planner is a ground control station for Plane, Copter and Rover, and it is

the reference GCS for ArduPilot. Conversely to QgroundControl it is compatible with

Windows only. Being Mission Planner a GCS, it can be used both as a configuration utility

or as a dynamic control add-on for autonomous vehicles. A simple list of operations that

can be performed using Mission Planner is shown below:

• Load the firmware on the flight controller board chosen to control the vehicle.

• Setup and tune vehicle parameters for optimal performance.

• Create plans for autonomous missions to be deployed on the vehicle.

• Download and analyse mission logs created by the flight controller.

• Perform HITL simulations.

https://ardupilot.org/dev/docs/code-overview-copter-poscontrol-and-navigation.html
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• If using appropriate telemetry hardware it is possible to do the following operations:

– Monitor the vehicle status during the operation.

– Record telemetry logs containing much more details than the on-board

autopilot logs.

– Operate your vehicle in FPV (first person view)

4.2.10 Flight modes

Copter has 23 flight built-in flight modes, 10 of which are regularly used. Some modes

support different levels/types of flight stabilization, some other a sophisticated autopilot

and other smart features [5].

Flight modes can be controlled in different ways: using RC (through a transmitter switch),

using mission commands, or commands from a ground station (GCS).

The following table summarizes all the ArduPilot flight modes [5].

Acro Holds attitude, no self-level

Airmode Actually not a mode, but a feature,see below

Alt Hold Holds altitude and self-levels the roll and pitch

Auto Executes pre-defined mission

AutoTune Automated pitch and bank procedure to improve control loops

Brake Brings copter to an immediate stop

Circle Automatically circles a point in front of the vehicle

Drift Like stabilize, but coordinates yaw with roll like a plane

Flip Rises and completes an automated flip

FlowHold Position control using Optical Flow

Follow Follows another vehicle

Guided Navigates to single points commanded by GCS

Heli Autorotate Used for emergencies in traditional helicopters. Helicopter only. Currently SITL only

Land Reduces altitude to ground level, attempts to go straight down

Loiter Holds altitude and position, uses GPS for movements

PosHold Like loiter, but manual roll and pitch when sticks not centered

RTL Retruns above takeoff location, may aslo include landing

Simple/Super Simple An add-on to flight modes to use pilot’s view instead of yaw orientation

SmartRTL RTL, but traces path to get home

Sport Alt-hold, but holds pitch and roll when sticks centered

Stabilize Self-levels the roll and pitch axis

SysID Special diagnostic/modeling mode

Throw Holds position after a throwing takeoff

ZigZag Useful for crop spraying

4.3 PX4 vs ArduPilot

A detailed comparison about the main aspects of the two firmware is now carried on.
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4.3.1 Airframes

• PX4 firmware can be used to control 4 different vehicle frames/types: planes,

multicopters, VTOL airframes and UGVs/rovers.

• Ardupilot firmware can be used to control 6 different vehicle frames/types: planes,

copters, VTOL airframes, rovers, subs and antenna trackers.

As far as the subs is concerned, PX4 is currently working on the autopilot extension to

this category, while antenna trackers are not intended to be adopted.

Although ArduPilot has more categories, it is worth to be said that within multicopter

and VTOL airframes categories PX4 relies on a wider range of frames, in fact, considering

multicopter category, PX4 has 18 frames, whereas Ardupilot only 7. Anyhow, new

airframes can be added in both software.

Figure 4.4: PX4 airframes available in QGroundControl.

More information about the supported frames can be found at the following links:

PX4: https://dev.px4.io/v1.9.0/en/airframes/airframe_reference.html

ArduPilot: https://ardupilot.org/copter/docs/common-loading-firmware-onto-pixhawk.

html

https://dev.px4.io/v1.9.0/en/airframes/airframe_reference.html
https://ardupilot.org/copter/docs/common-loading-firmware-onto-pixhawk.html
https://ardupilot.org/copter/docs/common-loading-firmware-onto-pixhawk.html
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Figure 4.5: ArduPilot airframes available in Mission Planner.

4.3.2 Position and attitude controllers

Flight control stacks are very similar: IMU, GPS and other sensor’s outputs are provided

either directly to the navigation stack, or to the EKF module to estimate current position

and attitude, and then to the navigation stack. Here position setpoints are created and

sent to the position controller, which creates attitude setpoints to be sent to the attitude

controller. Lastly, outputs are converted into suitable motor commands (PWM signals),

in order to apply the correct control strategy.

Both the position and attitude controllers for the two autopilots rely on the same structure,

which is a first P loop converting position/angle target into velocity/rate target, then a

second PID loop creating the correct commands for the next block. Figures 3.2 and 4.3

show the two structures taken from the official websites.

Both ArduPilot and PX4 run at 400 Hz the position and attitude controllers if the same

board is used. Obviously, using different boards with different processors, such a rate may

change (no less than 100 Hz).

4.3.3 Control inputs

Both ArduPilot and PX4 use control inputs with the same values:

• Roll, pitch and yaw range: -1 to 1.

• Throttle range: 0 to 1.

Then, the conversion in PWM output values is performed differently:

• PX4 relies on mixer files. The final range is from 1000 to 2000.

• ArduPilot scales the control value to the range -4500 to 4500 by means of the

hardware abstraction layer.
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4.3.4 Flight modes

ArduPilot has 23 flight built-in flight modes, whereas PX4 only 13. Nevertheless, basic

features such as automatic take off and landing, return to home etc. are provided in both

cases. ArduPilot implements more difficult maneuver, such as the flip and ZigZag. In

both firmware it is possible to add new flight modes easily.

More details can be found at the official webpage for both systems:

PX4: https://docs.px4.io/v1.9.0/en/flight_modes/

ArduPilot: https://ardupilot.org/copter/docs/flight-modes.html

4.3.5 RTOS

The RTOS used by ArduPilot is ChibiOS, whereas PX4 relies on NuttX. Both operating

systems share the same key features, like preemption and Round Robin and FIFO

schedulers. Nevertheless, NuttX supports a wider range of platforms, although some

community members complained about NuttX not being fully real-time in the past, and

a bit slower. It is worth to be said that ChibiOS is a relatively new OS, in fact before its

introduction NuttX was used. Nowadays it is still possible to use NuttX with ArduPilot,

although not recommended.

4.3.6 Ground Control Station

While PX4 is mainly used with QGroundControl, ArduPilot supports different ground

control stations:

• Mission Planner: it is the most used GCS by ArduPilot users. Unfortunately, it is

only Windows compatible but very user-friendly.

• QGroundControl: it is the same GCS seen in PX4, multi-platform (Windows, Mac

OS X, Linux, Android and iOS), but slightly less intuitive.

• APM planner 2: it tries to merge the two good aspects of both QGroundControl

and Mission Planner (multi-platform and user-friendliness), nevertheless it is not as

known as the first two options.

The bottom line is that all GCS provide the same functionalities, what actually change

is the GUI and the platform compatibility.

4.3.7 Simulation and testing

Both autopilots support and recommend Gazebo as simulator. Nevertheless, while PX4

performs both SITL and HITL on Gazebo, ArduPilot allows only SITL in Gazebo; HITL

is not implemented yet for copters, only for planes.

4.3.8 License

License is one of the main differences between the two software; actually, considering the

huge similarities, both in terms of hardware compatibility and software structure, it may

be the final criterion to make a choice about the autopilot to be used.

https://docs.px4.io/v1.9.0/en/flight_modes/
https://ardupilot.org/copter/docs/flight-modes.html
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• ArduPilot license is GPL, meaning that people modifying and then selling ArduPilot

are obligated to make their modifications open.

• PX4 license is BSD, meaning that any company who forks the PX4 code can modify

and sell products without making the modifications open.

4.3.9 Final comment

After a detailed comparison, I would like to make a short personal comment about the two

communities that I developed during this period. It is worth to mention that ArduPilot

community appears more active than PX4 one, since most of the questions from users

are plenty of advises either from developers or from users themselves. Nonetheless, users

seem to be working on easier projects, for instance it is rare to found questions about

vision-based systems or swarm navigation. On the other side, PX4 community seems to

be working on more complex projects, including any possible field aimed at improving

autonomous vehicles. Unfortunately, it is rare to get answers from experts in a short

period. However, PX4 represents the best autopilot for professional research-oriented

projects due to its versatile structure suitable for many different systems.



Customization

5.1 Current built

The platform on which the customization will take place is the one developed by Simone

Silvestro at PIC4SeR during the previous year [37]. The components are:

• PixRacer autopilot: small Flight Controller capable to run complete autopilot

stack firmware like PX4 and run complex mission task with precise waypoints and

fully autonomous navigation. Equipped with 32-bit STM32F427 microcontroller,

MPU-9250 9-axis IMU, ST LIS3MDL magnetometer, MEAS MS5611 barometer,

microSD slot, many standard protocols like I2C, SPI, UART, PPM, PWM and

others, ESP8266 WiFi module included to exchange data with companion computer.

• ESP8266: tiny WiFi module to create an access point on the drone to exchange

data with companion computer.

• Tattu 800mAh 2S LiPo Battery: 7.4V, 45C rated, the right compromise between

weight and a total Time Of Flight around 10 min.

• ACSP5 Power module: Up to 42V voltage input (10S LiPo batteries), Up to 80A

current sensing with built in INA1x9 High-Side Current Monitor, 17 mm x 17 mm

package, JST-GH connector.

• BLHeli 4-in-1 ESC: Integrate BusyBee2 controller running Up to 48MHz, FD6288

MOSFET Drivers and Dual N-Channel 30V 12A MOSFET for phase legs. The

4-in-1 solution is common for space saving, without compromise performance in the

case of a small build.

• FrSky X4R Telemetry receiver: 16 channel S-BUS and 3 channels PWM.

• T-Motor MT-1306-10 3100KV: tiny and efficient motors, only 11.2 g each,

capable of a max thrust of 218 g each with 6020 props (872 g total), more than the

double of the total mass of the drone, so enough for this application.

• T-Motor 6020 carbon fiber propellers: 2-blades lightweight propellers, better

than 3-blades solutions when goal is not thrust but Time Of Flight.

• ImmersionRC 5.8GHz Video Tx: 600mW output power, SMA connector for

external antenna, 7 bands.

• Triumph 5.8GHz FPV Antenna Set: TBS circular antenna, SMA connector.

67
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• mRo uGPS ublox SAM M8Q + Compass: micro GPS, supports GPS

and GLONASS constellations with built-in LIS3MDL compass, standard JST-GH

connectors PixRacer compatible.

• Caddx Turtle V2 HD Camera: 1080p 60fps mp4 High Definition video

recording, 155° Field Of View angle on the horizontal axis, microSD card slot up to

64GB, Input power accepted from 4.5 to 20 V, 20x20 cm standard mounting holes.

5.2 Servomotor integration

The first customization goal consists in adding a servomotor able to control and/or

stabilize the camera pitch. Before diving into the firmware modification, a brief context

is required. As deeply described in previous sections, the drone used for this part of the

thesis is equipped with Pixracer flight controller, therefore only 6 PWM output pins are

available. Unfortunately, 4 of them are needed for the motors, hence both the remaining

2 pins must be employed for the camera and the servomotor implementation. The chosen

configuration is the basic one: the first 4 pins (1, 2, 3, 4) are used to drive the drone

motors, the 5th pin is given to the servomotor, whereas the last one is used for the

camera trigger.

The camera is intended to start recording in specific waypoints, therefore the following

configuration should be adopted:

• TRIG PINS = 6: specifying which pin is used for the camera.

• TRIG INTERFACE = 1: setting GPIO mode for pin 6.

• TRIG POLARITY = 0: set trigger polarity, 0 means Active low, 1 Active high.

• TRIG ACT TIME = 1000: set active trigger time at 1s (1000ms) since

manufacturer of the Caddx HD camera declare 1 sec press on the button to start.

• TRIG MODE = 1: this set the camera trigger mode to on command.

Unfortunately, due to Pixracer architecture, it is not possible to use pin 5 as PWM and

pin 6 as GPIO, therefore the camera will start recording at the beginning of the flight

mission (pressing a specific button) and will have to be stopped manually after landing.

This limitation is discussed deeply in section 6.4.1.

More details about the camera options can be found at http://docs.px4.io/master/

en/advanced_config/parameter_reference.html#TRIG_POLARITY.

As far as the servomotor is concerned, it must be tuned using the PWM output value

on pin 5. The first idea was to directly influence that specific parameter publishing

a message on the actuator outputs topic, which contains PWM outputs of each port

(value between 1000 and 2000, 900 in disarmed condition). Unfortunately, this message

created conflict with the position and attitude controller running in background, making

the drone unstable. A simple way to overcome this problem was to act indirectly on that

parameter, publishing information into the actuator controls topic, which is linked to

the PWM values passing through fmu module and the mixer files. In particular, publishing

a suitable value into the 6th component of the third control group (RC passthrough,

http://docs.px4.io/master/en/advanced_config/parameter_reference.html#TRIG_POLARITY
http://docs.px4.io/master/en/advanced_config/parameter_reference.html#TRIG_POLARITY
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figure 5.1) it is possible to obtain the desired output on the 5th pin of the Pixracer board.

Such a mapping mapping is hidden inside mixer files. Using the standard configuration

(quad x.main.mix), the relevant line is:

S: 3 5 10000 10000 0 -10000 10000

Meaning that the 6th element (mapped with number 5 since numbering starts from 0) of

the control group number 3, will be scaled within the full range (from 1000 to 2000) with

uniform slope, as shown in figure 5.2. An important consideration about the servomotor

behaviour is the following one: any output value is related to a specific angle, not to a

speed rate. This means that having 1600 as output value, the servomotor will remain in

a position proportional to 1600, and it will not reach the end of the motion range.

A detailed overview about the conversion from an actuator controls value to a real

output was explained in section 3.8.4.

Figure 5.1: Manual passthrough Control Group. Image source: PX4 developer guide.

Figure 5.2: Relationship between control input and PWM output.

5.2.1 Controlling servo using RC

The first target to control the servomotor is to use it by means of the RC. The idea is

very simple: a specific RC channel is associated to pin 5, so that manual passthrough is

https://dev.px4.io/v1.9.0/en/concept/mixing.html
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automatically performed. The settings needed to work in this fashion are:

1. Connect the camera to pin 6 and the servomotor to pin 5.

2. Build the code and open QGC.

3. Use an airframe without built-in camera gimbal. Unfortunately, built-in camera

airframes rely on the aux.mix mixers (real AUX ports) which are not consistent

with our platform (Pixracer has only 6 PWM output and no AUX).

4. In QGC map AUX1 (pin 5) with the chosen channel (for instance 7) through

RC MAP AUX1 parameter.

5. Arm before using it (in principle only AUX2 (pin 6) requires being armed, AUX1

should work anyway).

With this settings camera pitch can be controlled directly using the RC selecting the

desired channel. At any stick position corresponds a specific servomotor position.

Holding the stick in a certain place will set the servomotor in a specific position.

A graphical representation of the involved topics and modules can be seen in figure 5.3.

The RC stick position is published by rc update module on actuator controls topic,

in particular on group 3, as it consists in manual passthrough.

Figure 5.3: Modules and topics involved in RC passthrough chain.

5.2.2 Pitch stabilization

The second target is to stabilize the camera pitch based on the drone attitude. The idea

is to create a module which reads attitude information, elaborates them and publishes a

suitable control value on control group 3, creating a counter action with respect to the

drone current pitch.

Attitude information can be sensed from vehicle attitude topic, which contains the

quaternion q representing the drone orientation. Such a quaternion must be converted

into Euler angles in order to be both understood by developers and used by the code itself

to create a counter action to the orientation variation. The conversion from quaternion

to Euler angles is based on trigonometric considerations, and the mapping is shown in

figure 5.4. Once converted the drone attitude, it is necessary to create the correct control

input that allows to maintain constant the camera orientation. Such a control input is

inversely proportional to the current drone pitch, therefore it is obtained inverting the

pitch sign and rescaling it within the range -1 +1. Each control input between -1 and +1

will be converted through the mixer into an output value between 1000 and 2000, where

any output represents a specific angular position.
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The update rate is 250 Hz (4 ms), hence no significant variation can be assessed in such

a small amount of time. A possible solution is to add a counter allowing to extend the

time spanning between two consecutive corrections. The smaller the counter value, the

faster will be the correction, nevertheless, servomotors needs some time to perform the

desired move, consequently having a too small counter threshold is useless. On the other

hand, the bigger the counter value, the slower will be the pitch correction, causing a delay

between the required action and the actual one. Depending on the final application, the

counter value must be chosen accordingly.

Figure 5.4: Relationship between quaternion and Euler angles. Image source: Wikipedia

It is clear how the control strategy used to stabilize the camera pitch is a simple

proportional controller. The default value is 40. This choice is a consequence of simulation

measurements where, during standard missions, the maximum pitch assumed by the drone

was about 33 degrees (absolute value); adding a reasonable safety factor around 7 degrees,

40 is obtained. It basically converts the drone pitch (value generally between -40 to 40

degrees) into a control input within the range -1 to 1. In case of drone pitch greater than

40 degrees (absolute value), the servomotor saturates.

Moreover, an additional feature is added: it is possible to set an initial offset acting as

the reference around which the stabilization is performed. The procedure is very simple:

module servo control is started with a parameter indicating the offset (in degrees) using

indicator -p. For instance, using the following command the stabilization will take place

around 15 degrees.

servo control start -p 15

Module servo control publishes specific values on topic actuator control so that the

actual output is a counter action with respect to the drone pitch variation.

Figure 5.5: Modules and topics involved in servo control chain.

The last needed step is to allow the simultaneous presence of both the RC passthrough

and the stabilization effect, so that the operator can change the camera pitch having

always stable images. Although being very simple in principle, in practice, the

presence of two modules (rc update and servo control) publishing on the same

topic (actuator control) causes a conflict, resulting in a useless application. The

proposed solution relies on a support topic: rc update instead of publishing directly

on actuator control, publishes on a brand new topic, actuator control rc, that

is read by servo control and integrated with its control strategy adding the RC

https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
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contribution to the pitch variation one. In such a way, only one module is publishing

on actuator control and no conflict holds.

A simple schematic is shown in figure 5.6.

Figure 5.6: Topics involved in the final version of servo control module.

Transformation from control value to pitch angle

To summarize, the control input is obtained scaling the drone pitch through a specific

gain (40, but it can be changed). Such a control input can be a value between -1 and 1,

and it is converted into a specific angle by means of the mixer file. The angle depends

on the servomotor: in this case a cheap and light component is used, it has about 90° of

motion, therefore -1 is mapped with 0° whereas 1 corresponds to 90°. Then, depending

on how it is mounted, different orientations can be obtained.

Pixhawk

Dealing with Pixhawk boards things are much easier: the 6 AUX ports allow the usage of

a 3-axis gimbal and PX4 is already structured to serve this purpose. The control group to

be used is the second one (figure 5.7) and the mixer file used to convert the control input

into a PWM output value is mount.aux.mix. The defaul conversion is the one discussed

before (between 1000 and 2000 with unitary slope figure 5.2).

Figure 5.7: Control group 2: gimbal. Image source: PX4 developer guide.

Using the command listener actuator outputs it is possible to see the output values

on each channel. Dealing with Pixhawk boards, there are 6/8 channels dedicated to the

motors and 6 channels to manage the mount. Figure 5.8 shows the mapping between each

channel and the corresponding action.

https://dev.px4.io/master/en/concept/mixing.html
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Figure 5.8: AUX port settings using Pixhawk boards.

Using Pixhawk boards a second module must be created because the publication topic is

actuator controls 2, not actuator controls 3.

5.2.3 Servomotor position in specific waypoints

The third target is to set specific positions whenever the drone reaches specific waypoints.

For doing this, a custom mission plan must be created. A simple approach consists in

creating a sketch of the waypoints in QGC, saving the plan file, integrating additional

features like camera trigger and servo input on the local .plan file, and finally loading it

again on QGC.

The MAVLink command to be added to control the servo input is MAV CMD DO SET SERVO

(number 183). Unfortunately, it is not publishing the value to the correct topic, in fact it

publishes on actuator controls 2, which can not be used with Pixracer flight controller

as not equipped with AUX ports, therefore a firmware modification is needed.

The .cpp and .h file where MAV CMD DO SET SERVO is defined are mission block.cpp and

mission block.h, placed in directory Firmware/src/modules/navigator.

The first operation to be done is to change the publication topic from

actuator controls 2 to actuator controls 3, hence into mission block.h it is enough

adding the last two lines shown below. We decided to add two lines instead of modifying

them because this small change will only affect Pixracer boards; Pixhawk boards will use

the previous publication topic.

1 uORB:: Publication <actuator_controls_s >

2 _actuator_pub{ORB_ID(actuator_controls_2)};

3

4 uORB:: Publication <actuator_controls_s >

5 _actuator_pub3{ORB_ID(actuator_controls_3)};

Then a modification of the original MAV CMD DO SET SERVO implementation is needed

(mission block.cpp file) because the original conversion did not work properly.

According to MAVLink guide the parameters to be set for this command are 2: the pin

number (between 0 and 7) and the PWM value (from 1000 to 2000). Such values are saved

respectively into item.param[0] and item.param[1] variables. The conversion should

create a value between -1 and 1 to be sent to actuator controls 3 so that the desired

PWM output value is achieved on the desired pin. Nonetheless, the original formula was

generating values between -1 and -0.5, which is only a part of the entire variation range.

The new conversion is based on figure 5.2 and it allows to obtain any PWM value within

the allowed range.

https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_SERVO
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1 if (item.nav_cmd == NAV_CMD_DO_SET_SERVO) {

2 PX4_INFO("DO_SET_SERVO command");

3

4 actuator_controls_s actuators = {};

5 actuators.timestamp = hrt_absolute_time ();

6

7 // params [0] actuator number to be set 0..5

8 // (corresponds to AUX outputs 1..6)

9 // params [1] new value for selected actuator in ms 900...2000

10

11 // Original

12 // actuators.control [(int)item.params [0]] =

13 //1.0f / 2000 * -item.params [1];

14

15 // New

16 actuators.control [(int)item.params [0]] =

17 1.0f / 500 * (item.params [1] -1500);

18

19 _actuator_pub3.publish(actuators);

Since any output value is associated with a specific servomotor position, it is enough to

specify the pin we want to set followed by the desired output value. For instance, needing

a PWM value of 1800 on pin 5, just launch the command MAV CMD DO SET SERVO with

parameters 5 and 1800, as shown in figure 5.9.

Figure 5.9: Simulation results. A simple plan was created: three waypoints, when reached
the second one, the command DO SET SERVO is launched setting 1800 as output.

Dealing with Pixhawk boards things are easier because the standard

MAV CMD DO SET SERVO configuration shall be used.

5.3 UWB sensor integration

The second main goal of this thesis is to integrate a UWB sensor to the current built.

The standard approach (mostly used in literature and suggested by the developer guide)

is to add it by means of a companion PC (like Raspberry Pi). Nevertheless, our goal is

to try to directly connect the module to the Pixracer/Pixhawk board creating a custom

new driver. The main difference between the two approaches is that using a custom

driver implies interfacing the flight board directly to the module, whereas leaning on a

companion PC means abstracting the sensor, since the flight controller will only receive

messages containing data. Both scenarios have their own advantages: a custom driver

reduces the weight of the drone and the number of involved components, causing a higher

reliability of the entire system, decreasing the failure possibilities. On the other side,

a companion PC allows the integration of more complex features, such as vision-based

systems, and provides better re-usability due to the intrinsic abstraction. Nonetheless,

using a companion PC only to read UWB measures is a wrong design choice as it
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introduces a complex and heavy system to perform an easy task that could be managed

directly introducing a custom driver.

Before starting with the technical details, a brief introduction about ultra wideband

sensors is needed.

5.3.1 UWB technology at a glance

“Ultra wideband is a wireless technology intended for digital data transmission over short

distances at low power density” [47]. The approach behind such a technology is clearly

noticeable in figure 5.10: instead of using a narrow frequency range at a high power density

(like most of the standard technologies), the UWB relies on a wide frequency range (3.1

GHz to 10.6 GHz) used at a low power spectral density.

Figure 5.10: UWB technology compared to the standard ones. Image source: ELIKO

The field where UWB technology plays a key role is indoor positioning, since it allows to

reach a localization precision down to 10 cm. Its main features against the competitors

are:

• Obstacle penetration: standard technologies such as GPS (that relies on longer wave

length) cannot penetrate obstacles, therefore they do not allow non-line-of-sight

missions. UWB due to the wide frequency range enables such missions with

relatively high precision and reliability.

• Reduced noise: having a low power spectral density it is a noise-free oriented

technology. Moreover, its low power spectral density allows to coexist with other

signals causing no interference.

• High precision ranging and reliability: its working principle is based on TOF (time

of flight) measurements. Short pulses are sent by modules, then measuring the time

difference between the sent and received instants it is possible to estimate distance

between sender and receiver very precisely.

Working with UWB sensors is quite simple: given at least 3 fixed anchors the position

of a tag (mounted on the device to be located) is estimated measuring the time of flight

between each anchor and the tag. Using more anchors means introducing redundancy

causing higher precision (true up to a maximum number of redundant elements). For this

https://www.eliko.ee/uwb-technology-indoor-positioning/
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project Decawave UWB sensors will be used, in particular the model DWM1001-DEV,

since it allows to be programmed on the fly either as a tag or an anchor, other than having

multiple interfaces to share data.

Figure 5.11: DWM1001-DEV picture. Image source: Decawave website

5.3.2 System configuration

As previously mentioned, modules can be programmed either as tag or as anchors.

Depending on the working scenario, different settings could be used, nonetheless, some

key points can be stated:

• At least one active tag is necessary. Tags represent devices to be tracked based on

specific references.

• At least one active anchor is needed. Anchors represent reference points to define

the tag position. Between all the anchors, at least one must be set as initiator.

The simplest scenario is when one tag and one anchor are present; in such a condition,

the only parameter to be tracked is the relative distance between the two components. In

general, the active tag should be connected to the drone, as it is the device to be tracked

in space. The connection is performed with just 3 cables (Tx, Rx and GND) plus power

cables:

• (DMW1001) Tx to Tx (Pixracer/Pixhawk).

• (DMW1001) Rx to Rx (Pixracer/Pixhawk).

• (DMW1001) GND to GND (Pixracer/Pixhawk).

Power side, DWM1001 requires 3.3V, not 5V and J13 do not need to be desoldered. The

module configuration is performed by means of the DRTLS manager app (Android) from

Decawave (downloadable from this link). The procedure is stated at pages 15 and 16 of

the Firmware user guide downloadable from the same link as before.

The connection is performed using one of the serial ports of the Pixracer/Pixhawk boards

according to figure 5.13. Port choice is relevant because it must be specified within the

code in order to open the correct serial communication.

https://www.decawave.com/product/dwm1001-development-board/
https://www.decawave.com/product-documentation/
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Figure 5.12: DWM1001-dev pin layout from Decawave datasheet.

Figure 5.13: Pixracer/Pixhawk serial port breakdown. Image source: PX4 forum.

5.3.3 Driver breakdown

Drivers in PX4 are implemented as modules. Modules can be written according to 2

different principles:

1. Tasks having their own stack and priority process.

2. Work queue tasks running on work queue thread and sharing the priority and the

stack with other modules on the work queue.

Using work queue tasks allows to save a bit of RAM performing also fewer task switches.

Though, these tasks are not allowed to sleep or poll on messages, which may be a

limitation. Based on the current firmware state of the art, most of the standard drivers

are designed to be work queue tasks, nevertheless, the GPS (one of the main drivers)

is written as a stand alone task. Being this application essentially developed for indoor

positioning, namely comparable to the GPS relevance, the driver is developed as a simple

task.

https://github.com/PX4/px4_user_guide/issues/417
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Driver functions

The driver execution is very simple: whenever started with command dwm1001 start, the

main function is launched: a task named dwm1001, with default priority and stack equal to

3000 is created. Such a task points at the function dwm1001 thread main implementing

the actual module as a basic task, namely composed by a first initialization part and then

an endless loop collecting data and publishing them on a specific topic.

During the initialization part three functions are called for setting the DWM1001 module

up:

1. uart init: responsible for opening the serial communication with the correct port

(specified within the header file, for instance in case of TELEM2 it is /dev/ttyS2).

2. set uart baudrate: responsible for the configuration of the serial communication

parameters: 115200-8N1, namely 115200 as baudrate, start bit, 8 bit data length,

no parity bit, 1 stop bit.

3. dwm1001 programming: responsible for programming the DWM1001 module so that

it will send back the correct information to the drone.

Then, during the endless loop, the read information are parsed, anchor distances and tag

position are isolated and published on a new topic named dwm1001.h according to the

custom message definition dwm1001.msg.

uart init

It is basically aimed at opening the serial port with the correct interface (TELEM2). The

standard open function is used and the parameter to be set are:

• O RDWR: to open the the communication in read and write mode.

• O NOCTTY: needed to be portable.

• O SYNC: to not cause problems with the writing operations during the module

programming phase.

1 int serial_fd = open(uart_name , O_RDWR | O_NOCTTY | O_SYNC);

set uart baudrate

It follows the standard C configurations for setting the communication up (115200-8N1).

The only relevant command to be added is tcflush in order to flush both the received

data but not read and the written data but not transmitted (using parameter TCIOFLUSH).

dwm1001 programming

This is the non-standard component of the code since it needs to directly interact with

the module, programming it to respond with specific commands.

The first operation to be performed is the module reset, because the initial condition is not

known, although required. According to the module datasheet, the command reset\r is
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needed. The main issue with writing operation is that it requires some time to actually

write the desired bits, this is why the function tcdrain must be involved. Nevertheless,

the module itself needs some time to digest the incoming reset command, therefore an

escamotage should be used to let some time pass without freezing the application (so no

px4 sleep command can be used, otherwise the application would be moved to pending

state). This is why the absolute time is called and a fixed amount of time is added to

the absolute time, so that a loop can continuously run (and so all the other real time

parallel processes) until the next absolute time is the one given by the previous, plus the

threshold; at that time the code can continue.

1 num_bytes = :: write(_fd , "reset\r", 6); // \r is working , it counts as 1 char

2 tcdrain(_fd);

3

4

5 hrt_abstime time_now = hrt_absolute_time ();

6 const hrt_abstime timeout_usec = time_now + 2000000; // us

7 while (time_now < timeout_usec) {

8 time_now = hrt_absolute_time ();

9 }

10

11

12 if(num_bytes != 6) {

13 PX4_ERR("Something went wrong with writing reset!");

14 return false;

15 }

After the reset command, two consecutive enter commands are passed to land into the

programming mode, according to the DWM1001 datasheet. Before continuing with next

instructions some time must be waited.

1 num_bytes = :: write(_fd , "\r\r", 2); // \r is working

2 tcdrain(_fd);

3

4

5 time_now = hrt_absolute_time ();

6 const hrt_abstime timeout_usec_2 = time_now + 2000000; // us

7 while (time_now < timeout_usec_2) {

8 // PX4_INFO (" time_now: %llu\ntimeout_usec: %llu", time_now , timeout_usec);

9 time_now = hrt_absolute_time ();

10 }

11

12

13 if(num_bytes != 2) {

14 PX4_ERR("Something went wrong with writing enter twice!");

15 return false;

16 }

Once the board is in the programming mode, it is possible to write the ultimate command

used to extract data from the module. In this case, the command is lec.

1 num_bytes = :: write(_fd , "lec\r", 4); // \r is working

2 tcdrain(_fd);

3

4 if(num_bytes != 4) {

5 PX4_ERR("Something went wrong with writing lec!");

6 return false;

7 }

8

9 PX4_INFO("The dwm1001 module should be programmed with lec");

The lec command is going to return a message containing 3 relevant information:

• The number of anchors being detected and used to estimate the position of the

tag.
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• The position of the i-th anchor with respect to the coordinate system’s origin

(this is actually defined by the environment designer using the DWM1001 app) plus

the distance between the tag and the i-th anchor (measured).

• The tag position estimation plus the quality level of the estimation. This

part of the message is present only if there is a sufficient number of anchors.

An example of message could be:

DIST,4,AN0,1151,5.00,8.00,2.25,6.44,AN1,0CA8,0.00,8.00,2.25,6.50,AN2,111C,

5.00,0.00,2.25,3.24,AN3,1150,0.00,0.00,2.25,3.19,POS,2.55,2.01,1.71,98\r\n

Where:

• DIST: indicator for the first part of the message containing the location of the anchors

in the reference system. These coordinates are defined by the environment designer

and set by means of the Android app.

• 4: number of anchors detected.

• AN0,1151: number of the anchor + anchor’s ID.

• 5.00,8.00,2.25: anchor position coordinates into the reference frame defined a

priori.

• 6.44: distance between the i-th anchor and the tag (measured).

• POS: indicator for the second part of the message containing the estimated position

of the tag into the reference system.

• 2.55,2.01,1.71: X, Y and Z estimated coordinates of the tag into the reference

system.

• 98: quality level of the estimation.

• \r\n: end of the message.

Driver’s main function

The main challenges to be managed by this driver were two:

1. The capability of reading a serial message with dynamic length.

2. The capability of adapting to the presence of different number of anchors.

To handle the first requirement, the design choice was to read serial characters 1 by 1,

store them in a specific container, and parse the entire message in a second instance.

In particular, the driver will spot DIST over the serial bus and it will start storing all

components into a char array until the end of the message is detected (\r\n). Once the

message is stored in this array, it will be split into its relevant components in order to be

published on the topic of interest.

Managing the second requirement was a bit more difficult due to the PX4 architecture. In

an ideal condition it would be enough to read the number of anchors being detected, and
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to publish a topic containing a float array with a length proportional to the number of

anchors (in fact the number of distances is proportional to such a number). However, PX4

requires topic messages to be with a fixed length. As a consequence, there was the need

of constraining the maximum number of anchors so that the message will be published

always with a fixed length equal to the established one. Before a cycle starts, the driver

will set to 0 the entire array and it will fill it only with the detected components (that is

proportional to the number of anchors read); the remaining ones will be set to 0.

The application subscriber will read the at least two values: the number of anchors and

the float containing the distances. Knowing the number of anchors, it will read the array

containing the distances only until the correct value, discarding the remaining ones.

If the POS indicator is detected within the message, a boolean variable will be set to true

and the estimated position will be delivered in the topic, otherwise the published array

will be made of zeros. Similarly to what described before, the user application will read

both the array and the boolean variable deciding what to do based on the values of these

variables.
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Testing and troubleshooting

6.1 Introduction about testing

Testing is generally one of the biggest challenges in engineering projects, as it provides a

real feedback about the work done. Furthermore, it is a great opportunity to stress the

entire system or the single units understanding their behavior in non-standard operating

conditions. According to the Verification-Validation model (V model, figure 6.1), there

are different layers of testing in software engineering, each of them corresponding to a

specific development stage. The layer carried on this thesis is mainly the first one: the

unit testing, where the integrated unit is tested with the board alone, so that other

components cannot create interference.

Figure 6.1: Graphical representation of the Verification-Validation model. Image source:
Geeksforgeeks.

83

https://www.geeksforgeeks.org/software-engineering-sdlc-v-model/
https://www.geeksforgeeks.org/software-engineering-sdlc-v-model/
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6.2 Servo testing

Testing the servo means connecting it to the Pixracer, moving the board simulating a

pitch variation, and then watching the servo rotation that should be opposite to the pitch

variation. However, this is only the final testing stage, because there are many different

steps to be checked before being able to say that the test was successful, even though

the motion was ”correct”. As described in the previous chapters, the module should

read the drone pitch from vehicle attitude, create a counteraction to be published

in actuator controls so that the mixer file will convert it into actuator outputs.

The first testing level consists in understanding whether each topic was published in

the correct manner or not; if it wasn’t, for sure the test did not succeed. For doing this,

the listener command is very useful because it allows to list the last published message on

a topic. Within the created module (servo control), 4 topics are involved: input rc,

vehicle attitude, actuator controls and actuator outputs. As far as the the first

two is concerned, they are only used in subscription mode, therefore if any problem occurs

within the read message, it is not caused by the new module, but by the publisher of such

a topic. A different scenario happens if the read message is correct, but the module is

not behaving as expected, which means actuaor controls is not publishing the right

values. In this scenario there could be either a problem into the subscription/publication

mechanism or into the module logic. Lastly, if actuator controls is published correctly,

but actuator outputs is not responding accordingly, it probably means there is a problem

with the mixer file or the airframe configuration.

Once topics are correctly published according to the different scenarios, it is possible

to continue with the real implementation, connecting the Pixracer board with the

servomotor. The expected result is that a positive drone pitch position corresponds to a

negative servo position and vice versa. Moreover, setting the radio controller to a specific

channel and moving the knob, the position of the servo should change accordingly (while

maintaining active the stabilization).

6.2.1 Test description

Goal and expected result

The goal of this test is to check the servomotor behavior with respect to the pitch variation

of the Pixracer. The expected result is a servomotor movement opposite to the pitch

variation of the flight controller. Moreover, setting AUX1 passthrough to channel 7 and

moving the knob it is possible to see a variation of the stabilization point.

Needed gear

• Pixracer.

• Servomotor.

• 5V source (Arduino in my case, but it could be whatever source able to provide 5V).

• Radio controller.
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Setup

The first step is the connection between the servo and the Pixracer using the 3 equipped

cables. According to my setup:

• Orange cable: 5V.

• Yellow cable: signal carrying the position.

• Brown cable: ground.

Figure 6.2: Connections between Pixracer and servomotor.

The orange cable should be connected to the 5V source. In my case such a voltage

is provided by the Arduino board, so it is directly connected to the 5V pin available

on Arduino. The brown cable must be connected with both the source GND and the

Pixracer GND, so that the three devices (flight controller, servomotor and source) will

have the same reference (this is a key point, if missed the test won’t work). Lastly,

the yellow cable must be connected with the Pixracer signal pin, that is the top one

(according to the figure). Once the connection between the servo and the Pixracer is

performed, it is possible to plug the flight controller to the PC with the micro USB cable

and to open QGC. Running the command << make px4 fmu-v4 default upload >> the

firmware will be loaded into Pixracer and the module servo control will automatically

start. As a consequence, after a few seconds it will be possible to manually change the

Pixracer pitch observing the variation of the servo position.

The next two figures are an useful representation of the communication layout.

Figure 6.3: Pixracer interfaces. The 6 pins on the right represent the 6 PWM outputs;
white is the signal, red is the 5V (present only if there is a battery connected to Pixracer)
and black is ground.
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Figure 6.4: Pixracer port schematic.

Lastly, for testing the RC contribution, go on Radio setup in QGroundControl and set

channel 7 as AUX1 passthrough (figure 6.5). Switch the RC on and after a while start

moving the associated knob; you should start seeing the servo changing its stationary

point.

Figure 6.5: QGroundControl AUX1 configuration for RC passthrough.

6.3 Driver testing

Testing phase was highly affected by the COVID-19 pandemic, which strongly constrained

the access to the research lab for master thesis students. Instead of giving up, postponing

such a challenging and important part of the work, I decided to find an alternative way to

carry the testing part. Being this driver based on a serial communication, I programmed

an Arduino MEGA board to publish specific messages over one of its serial ports so that

the autopilot could be connected to this port, simulating a connection to a DWM1001

module. The actual features to be tested were mainly 2: the capability of adapting to

different number of anchors without losing consistency, and the capability of recognizing

the presence of the estimated tag position within the payload.

Before delving into the test details, it is worth to mention the actual message sent over

the topic dwm1001.

1 uint64 timestamp # time since system start (microseconds)

2 float32 [98] distances # Distances between anchors and tag , each

3 anchor provides 4 measurements (x,y,z

4 coordinate of the anchor with respect

5 between the anchor and the tag).

6 float32 [4] positions # Position of the TAG into the reference

7 system defined by the anchors (x,y,z,Quality)

8 uint16 anchor_num # Number of anchors

9 bool pos_detected # Is POS present into the payload?

Arduino was programmed to send the following messages, each 4 second spaced:



CHAPTER 6. TESTING AND TROUBLESHOOTING 87

1. DIST,1,AN0,1151,5.00,8.00,2.25,6.44\r\n

Here the driver should set anchor num equal to 1 and distances should have the

first 4 values different from 0, whereas the remaining ones equal to 0. POS is not

detected, therefore pos detected should be false and positions set to 0.

2. DIST,4,AN0,1151,5.00,8.00,2.25,6.44,AN1,0CA8,0.00,8.00,2.25,6.50,AN2,

111C,5.00,0.00,2.25,3.24,AN3,1150,0.00,0.00,2.25,3.19,POS,200.55,2.01,

100.24,100\r\n

Here the driver should set anchor num equal to 4 and distances should have the

first 16 values different from 0, whereas the remaining ones equal to 0. POS is

detected, therefore pos detected should be true and positions set to components

read into the message.

3. DIST,4,AN0,1151,5.00,8.00,2.25,6.44,AN1,0CA8,0.00,8.00,2.25,6.50,AN2,

111C,5.00,0.00,2.25,3.24,AN3,1150,0.00,0.00,2.25,3.19\r\n

Here the driver should set anchor num equal to 4 and distances should have the

first 16 values different from 0, whereas the remaining ones equal to 0. POS is not

detected, therefore pos detected should be false and positions set to 0. This test

was made to check the ability of adapting to POS variations. For whatever reason,

modules could stop estimating the position and the drone should be able to detect

such a condition.

4. DIST,3,AN0,1151,5.00,8.00,2.25,6.44,AN1,0CA8,0.00,8.00,2.25,6.50,AN2,

111C,5.00,0.00,2.25,3.24,POS,300.55,1.01,6.24,100\r\n

Here the driver should set anchor num equal to 3 and distances should have the first

12 values different from 0, whereas the remaining ones equal to 0. POS is detected,

therefore pos detected should be true and positions set to read components. This

test was made to check the ability of adapting to number of anchor variations; in a

real application it could happen that an anchor stops working or just go outside of

coverage, the driver should detect this variation and clear the previous values.

5. DIST,3,AN0,1151,15.00,800.25,2.25,6.44,AN1,0CA8,100.00,8.00,2.25,

600.50,AN2,111C,5.00,0.00,2.25,3.24\r\n

Here the driver should set anchor num equal to 3 and distances should have the

first 12 values different from 0, whereas the remaining ones equal to 0. POS is not

detected, therefore pos detected should be false and positions set to 0. This

test was made to check the ability of adapting to variable distances (more than 100

meters, even though it is very unlikely that an anchor has such a high coverage).

Tests highlighted the driver capability of adapting to different number of anchors, the

presence of POS and the variability of the detected distance.

The used setup is shown in figure 6.6. It is worth to say that contrarily to the connection

between Pixracer and DWM1001, the serial link between Pixracer and Arduino was made

in a standard approach: Arduino TX connected to Pixracer RX, Arduino Rx connected

to Pixracer Tx.
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Figure 6.6: Driver testing setup using Arduino.

6.3.1 DWM1001 testing description

Goal and expected results

The goal of this test is to check the driver functionalities using two real DWM1001-dev

modules. The expected result is that once the driver is started, the active tag will be

programmed to send the relative distance from the anchor publishing this value to the

topic dwm1001.

Needed gear

• 2 DWM1001-dev modules.

• Android phone or tablet (not too old) with Decawave app installed.

• Pixracer/Pixhawk board.

• PC with my version of the PX4 Firmware

(https://github.com/francimala/Firmware) and QGC.

• 2 micro USB cables.

Setup

The first operation is setting up the 2 DWM1001-dev modules using the Decawave

Android App. If you haven’t installed it yet, you can download it from this link:

https://www.decawave.com/source-code-for-the-android-application/. I highly

recommend using an up-to-date smartphone because I tried on a 2015 Huawei model and

I was not able to complete the setup, although having full compatibility. One module

should be set as an active tag (left picture), whereas the other one should be set as an

active anchor (initiator, right picture). The anchor should be plugged to a fixed position

(like the main network) whereas the tag to the flight controller, supplied by whatever

source, either a PC through micro USB cable, or a power bank or a battery (in this case

pay attention to the voltage, it must be 3.3V, not 5V!!). My suggestion is to connect it

https://www.decawave.com/source-code-for-the-android-application/
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to a PC through micro USB cable so that PuTTy can be used to check what is going on

over the serial port.

Important note: if you have any problem with the DRTLS app (you don’t see a tag

or an anchor) you should try to flash again the firmware on the DWM1001 modules. It

happens that if you use a different smartphone from one test to another, it somehow

remember the old configuration and the new smartphone will not detect the modules in

the correct way. If you need to flash again the firmware, follow page 15 and 16 of the

guide that you can find here: https://www.decawave.com/wp-content/uploads/2019/

01/DWM1001-Firmware-User-Guide-2.1.pdf.

Figure 6.7: Decawave app configuration needed to run the test.

Connect flight controller to the DWM1001-dev module using the TELEM2 port of the

Pixracer/Pixhawk (within the code the default port I used is /dev/ttyS2, but you can

change it if you need it). Figures 6.4, 6.3 and 5.13 may help you finding the right port on

the board, especially Pixracer, because Pixhawk is pretty clear.

The connection should be the following one:

• Black cable is the Pixracer/Pixhawk ground and must be connected to

DWM1001-dev GND (third pin starting from above).

• Yellow cable is Pixracer/Pixhawk TX and must be connected to DWM1001-dev TX

(fourth pin).

• Green cable is Pixracer/Pixhawk RX and must be connected to DWM1001-dev RX

(fifth pin).

Now it is possible to start powering devices up.

1. Plug the anchor to the main net.

2. Plug the tag to the PC.

https://www.decawave.com/wp-content/uploads/2019/01/DWM1001-Firmware-User-Guide-2.1.pdf
https://www.decawave.com/wp-content/uploads/2019/01/DWM1001-Firmware-User-Guide-2.1.pdf
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Figure 6.8: TELEM2 focus on Pixracer.

Figure 6.9: DWM1001-dev connection with Pixracer.

3. Plug the flight controller to the PC.

If you don’t need PuTTy you can jump to point 4, otherwise If you want to use

PuTTy to monitor what’s going on the DWM1001-dev module you can open a serial

communication following these 3 steps:

(a) Open PuTTy and click on “Serial”. Then, if you don’t know the device name

follow point 2, otherwise jump to point 3.

(b) Open a new terminal and launch command << dmesg | grep tty >>: the

last two devices should be the flight controller and the DWM1001-dev module;

in principle you should use the last-but-one, but if you want to be sure you can

unplug the flight controller and launch again the command << dmesg | grep

tty >>, the last device should be the correct one (ACM. . . or ttyS. . . ).

(c) Write the name you discovered and set the baudrate to 115200.

4. Open QGroundControl.

5. Go into the MAVLINK console.
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Figure 6.10: PuTTy settings to monitor DWM1001-dev serial communication.

6. Type << dwm1001 start >> to start the driver. You should see something

happening on PuTTy if you have prepared it. If you read on the MAVLink console

Got the beginning! it means that the module was programmed correctly and the

serial messages started to flow.

7. Type << listener dwm1001 >> to check whether the driver is working correctly.

The test is now complete and it should be possible to see results similar to the ones in

figures 6.11 and 6.12.

Testing 4 anchors and 1 tag

Only at the end of my working period I had the opportunity to test the basic system

on the complete setup (4 anchors and 1 tag). Testing setup is basically the same as

the one presented in this subsection, but with more anchors. The tag should be always

connected to the drone and set as active tag. One anchor should be set as active and

initiator, whereas the 3 other anchors shall be set as simple active anchors (no initiator).

Moreover, indications about the relative position between anchors should be set by means

of the DRTLS Android App; this is an important step, as all the measurements will

depend on this setting. For doing this in the best way, it is convenient to place them in a

rectangular shape all at the same level. However, the Android app will guide you through

the installation step, so do not worry. The test starts again with the same command: <<

dwm1001 start >> and the result should be the same as the one obtained in the Arduino

testing subsection.

For testing purposes I forced logging on SD of the dwm1001 topic so that the estimated

position could be seen and compared with visual measurements taken with another drone

placed above the entire system. A real complete test was carried out in a flight field out of

Turin. During such a test, a square path was drawn, as shown in figure 6.13. The test was

a complete success because the estimated position is not only reliable (almost no missing

data), but also very close to the real movements if compared with the video coming from

the drone. Nevertheless, the maximum working range was a square of 5 meters by 5

meters since when we doubled the square dimension, the result was a complete failure as

only one anchor was found. Further test will be done to investigate about this problem.
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Figure 6.11: Test output.

Figure 6.12: Example of PuTTy output during a test.

Figure 6.13: Real test of the UWB driver performing a square path.
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To summarize:

1. Make sure the firmware is correctly uploaded on Pixracer (make

px4 fmu-v4 default upload).

2. Power on all the modules and program them with the DWM app: set all the initial

positions (measuring them) and check that one anchor is the initiator (active), and

the tag is an active tag.

3. Power on the Pixracer and the stabilization module servo control will

automatically start. The driver will not be initialized automatically, it must be

started manually using a specific command within the MAVLink console. However,

before starting it, the logger shall be started.

4. Start the logger using logger on.

5. Start the driver using dwm1001 start. You will be sure about the initialization

when you see ”Got the beginning” on the MAVLink console. If you don’t, the

driver did not recognize the serial message coming from the tag, which probably

means that the connection is not correct.

6. When the flight mission is over, you can read the log file accessing the microSD

log directory. For the conversion use pyulog (https://github.com/PX4/pyulog).

Copy the correct .ulg file in a directory you know and run the command ulog2csv

ulog file.ulg in a new terminal. This procedure will create a csv human-friently

document in that folder containing all the logs.

6.3.2 Fault tolerance testing using Arduino

Goal and expected results

The goal of this test is to make a sort of fault tolerance test of the system simulating wrong

messages sent over the serial port. The expected result is a the same as the DWM1001-dev:

PX4 should think of being receiving messages coming from DWM1001-dev.

Needed gear

• Arduino MEGA (or whatever Arduino having more than 1 RX-TX channels,

Arduino UNO cannot be used).

• Pixracer

• PC with my version of the PX4 Firmware

(https://github.com/francimala/Firmware) and QGC.

Setup

Before plugging anything to the PC, it is necessary to connect Arduino and PX4. For

doing this, only three cables are needed: TX, RX and GND (the same GND must be

guaranteed linking them together). Conversely with respect to the previous test where

TX cables had to be linked together, here the connection is slightly different:

https://github.com/PX4/pyulog
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• Black cable is the Pixracer/Pixhawk ground and must be connected to Arduino

MEGA GND.

• Yellow cable is Pixracer/Pixhawk TX and must be connected to Arduino MEGA

RX.

• Green cable is Pixracer/Pixhawk RX and must be connected to Arduino MEGA

TX.

Figure 6.14: Connection between Arduino and Pixracer.

Once completed the connection, both Arduino and PX4 can be plugged to the PC using

their specific cables. Arduino should be programmed with the sketch I wrote that is

downloadable at this link. Whereas Pixracer must be equipped with my PX4 version.

Once everything is uploaded, it is possible to start the test by opening QGC and starting

the driver into the MAVLINK console (using the same command used in the previous

test << dwm1001 start >>). The result should be the same as before, but with different

payloads periodically.
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6.4 Troubleshooting

6.4.1 Camera and servo coexistence

The first part of the work was focused on writing a module able to stabilize camera pitch

while flying on Pixracer, since it is not implemented by default. Having 6 pins available,

the idea was to use the first 4 in PWM mode to control the 4 motors, the 5th one in PWM

mode to stabilize servo, and the last one in GPIO mode to switch on/off the camera when

needed. Unfortunately, as stated in developer guide, it is not possible to set pins 5 and 6

to different modes, because pins 5 and 6 are managed by the same timer. In fact, setting

pin 5 as PWM output and pin 6 as GPIO, the result is a conflict, freezing either the

stabilization or the camera (no values published on topics). One of the first solutions was

to try simulating a GPIO using PWM, setting duty cycle to 1 or 0 depending on the value

to be simulated (high or low). Unfortunately, this solution was not feasible, because the

actual output value was never a real high or low.

Another idea was to change the output on the fly, that is setting pins 5 and 6 as GPIO

only when camera needed to start (removing stabilization for a certain time). Again,

such an approach was not feasible because changing this parameter requires rebooting

the drone.

The only solution using the selected camera is to start recording manually before mission

starts and then select interesting parts in post-production.

Figure 6.15: TRIG PINS parameter constraint.

6.4.2 actuator control conflict

In the last part of section 5.2.2 the goal was to achieve the simultaneous presence of

the RC passthrough and stabilization contributions. However, without introducing a

support topic, the two involved modules, rc update and servo control, were publishing

on the same topic (actuator control) making the application unusable due to continuous

conflicts (figure 6.16).
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Figure 6.16: Modules and topics involved when creating conflict between RC passthrough
and pitch stabilization.

The proposed solution rely on a support topic, actuator control rc, that is used as

intermediate step between rc update and actuator control. The module rc update

now publishes on actuator control rc instead of actuator control, so that the

stabilization module (servo control) can read the information coming from the

operator, integrate them with the stabilization strategy and publish the resulting value

to actuator control topic. Through this approach only one module publishes on

actuator control, therefore no conflict holds. Figure 6.17 shows the final chain.

Figure 6.17: Topics involved in the final version of servo control module.

6.4.3 Work queue driver

As previously stated, in PX4 drivers are contained in modules which could be either

developed as stand alone tasks or as part of a work queue. The original idea was to make

two versions of the same driver, one for each of the two approaches, so to compare them

and use the most efficient one. Unfortunately, developing it as a part of a work queue

was not successful, as the driver was never scheduled, despite being correctly compiled

and initialized. After several days spent trying to understand what was going wrong, we

decided to give up, since the first approach was returning quite good performances both

in terms of reliability and memory usage.

6.4.4 The carriage return dilemma

Carriage return is a control character used to reset line going back to the beginning.

Given this definition it may seem very similar to new line character (\n), though they are

different. In fact, carriage return is represented by a different character: \r. However,

depending on the used system, they may be used in some peculiar ways to represent the

ENTER key.
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Developing the UWB application I faced this problem twice:

1. When programming the DWM1001-dev board using command reset plus ENTER.

2. When detecting the ENTER command into messages sent by DWM1001-dev over

the serial port.

When dealing with reset command I discovered that ENTER was considered valid if

represented as \r. In order to understand it, since the application did not want to start, I

used PuTTY to program the board using the keyboard (where ENTER is unequivocally

defined) seeing what was printed on console; after some tests I figured out that the correct

character was \r. On the other side, when parsing the message sent over the serial port, I

had to understand the ending character to spot it and define the end of the instance. In

this case, the ENTER command was represented by the sequence \r\n; I figured it out

following a similar approach to the one presented in the first case.

6.4.5 Maximum dw1001 area coverage

When I finally had the opportunity to test the real system with 5 different modules (1

tag and 4 anchors) I noticed a problem that needs to be investigated a little more. When

performing a test with 4 anchors placed in a square shape of 5 meters length, everything

worked fine: the tag was able to get information from all the anchors and the estimated

position was reliable. However, when increasing the square dimension to 10 meters, only

one anchor was detected by the tag. This problem could be either related to a coverage

constraint or to a wrong environment setting (DRTLS app).



6.4. TROUBLESHOOTING 98



Conclusions and further development

7.1 Conclusions

The goal of this thesis was to customize the open-source autopilot PX4 in order to

introduce non-standard components focusing on ultralight gimbal and UWB modules.

As demonstrated by this work, it is possible to integrate both technologies on any

drone, including ultralight builds. In particular, the gimbal can be implemented using

a lightweight servomotor, controlled by a firmware module able to both set the desired

camera orientation according to RC inputs and stabilize images. On the other side, UWB

modules can be integrated leveraging a custom serial driver that programs the tag, parses

the received message and publishes the correct information in specific topics to be used

by the flight stack.

7.2 Future development and use cases

This work was only the first step of many other projects for service robotics under

development at PIC4SeR. Here some examples of applications that will take place in

the near future.

7.2.1 Indoor navigation

Indoor navigation is definitely one of the main use cases under development, since all

GPS-based applications cannot implement such a feature, although being very important

for safety and rescue operations. The idea behind indoor navigation is to have anchors

placed in a pre-defined position inside a building, creating a set of known reference points

to be used to localize the drone (equipped with a UWB tag). Then, the flight stack

should be modified so that the GPS is bypassed and the drone can fly relying only on

UWB technology. This application can be implemented in a relatively easy way, since

the Decawave firmware is already prepared to provide position estimation given a set of

known anchors, hence only the flight stack should be modified and tested.

7.2.2 Swarm navigation in harsh conditions

On the other side, one of the final and most futuristic use cases of such a study, is to

replace fixed anchors with mobile ones mounted on drones. The idea is to create a swarm

composed by a set of reference drones (mounting UWB anchors) and a set of drones to be

localized (mounting UWB tags). This technology could be used in all those environments
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where buildings are no longer available (fires, post earth quake scenarios) and no GPS

signal is present. This working conditions require anchor positions to be variable, therefore

the algorithm should be able to define the coordinate system in a dynamic fashion on the

fly. Unfortunately, at the moment this thesis was written, the anchors positions had to be

set manually in a static way. However, a project under development at PIC4SeR, is aimed

at solving this problem so that the application could really take place. Once the UWB

algorithm will be prepared, the two projects could be merged together creating such an

incredible and useful technology.

7.2.3 Development of new drivers

This work represented only the starting point for the customization of the autopilot

PX4, paving the way for any further development concerning new sensors integration and

firmware customization. In fact, concurrently to the development of this thesis, I created

a short guide for the introduction of new firmware modules (like the one I developed for

the stabilization) and new drivers. Such a guide is intended to help all the students and

researchers willing to delve into PX4-based projects.

Figure 7.1: Guidelines table of contents
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Acronyms

Acronyms

BSD Berkeley Software Distribution.

EKF Extended Kalman Filter.

ESC Electronic Speed Control.

GCS Ground Control Station.

GPL General Public License.

IMU Inertial Measurement Unit.

LPE Local Position Estimator.

NED North East Down coordinate system.

PWM Pulse Width Modulation.

RC Radio Controller.

ROS Robotic Operating System.

RTOS Real-Time Operating System.

UWB Ultra Wide Band.

VTOL Vertical Take-Off and Landing.
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