

POLITECNICO DI TORINO

DEPARTMENT OF ENVIRONMENTAL AND LAND ENGINEERING MASTER OF SCIENCE IN PETROLEUM ENGINEERING

MASTER'S THESIS

ANALYSIS OF OIL TRANSPORTATION PIPELINE USING ASPEN PLUS AND OLGA SOFTWARE

ALIREZA DADASHPOUR

SUPERVISOR: PROF. GUIDO SASSI ACADEMIC YEAR 2019-2020

Abstract

The target of this thesis is to simulate the hydrocarbon transportation system and the behavior of the pressure profile, during the movement through a pipeline. This work includes Aspen and Olga software to plan the model and dive deep into the process factors to anticipate the capacity of our system and examine the different variables that influence the pressure profiles.

My vision in this thesis is to examine the different factor can cause energy loss along the hydrocarbon pipeline, I will concentrate on four primary elements, Hydrocarbon flow rate, intel and ambient temperature, pipeline diameter and pipeline material, these components are investigated in Aspen and Olga software that every one of them has its exceptional computation parameter, I will investigate the experimental information to compare the outcome with software. In order to characterize the oil properties in Software condition and plan precisely the development which included different conditions, geography of the site, Proper property technique and examining the ideal activity that change in pressure drop profiles which are influenced by various factors such as hydrocarbon flow rate, pipeline diameter and material, inlet temperature, pump head requirement have been considered.

Acknowledgements

I like to express my thanks to my professor Guido Sassi for his significant help during this thesis, I want to give an extraordinary thank you to the Petroleum department staff for all their assistance and backing.

Finally, I wish to offer my genuine thanks to my family, and friends for their love. Without their steady help I would not be the place I am today.

Table of Contents

Abstract	2
Acknowledgements	3
Table of Contents	4
List of Tables	6
List of Figures	7
Chapter One: Introduction	8
Chapter Two: Literature Review	11
2.1 Topography of the pipeline route	11
2.2 Oil Characterization	12
2.2.1 Specific Gravity or Density	12
2.2.2 Distillation Curve	13
2.2.3 Bubble Pressure	14
2.2.4 Fluid Phase Behavior	14
2.3 Pipeline flow profile	15
2.4 pipeline characterization	16
2.4.1 Pipeline material	17
2.4.2 Pipeline sizing	17
2.4.3 Absolute and Relative Roughness of pipe	
2.5 Pressure profile in pipes	18
2.5.1 Friction Factor	19
2.5.2 Head Loss (Momentum Balance equation)	21
2.5.3 Energy Balance Equation	21
Chapter Three: Case Study	23
3.1 Pipeline Coordinate and length	23
3.2 Oil Properties	25
3.3 Average Temperature in pipeline	
3.4 Fluid velocity	
3.5 Pipeline Diameter	29
3.6 Maximum Allowable Pressure in the Pipeline	

3.7 Minimum Allowable pressure in the Pipeline	30
Chapter Four: Simulation Parameters	31
4.1 Component Properties	31
4.2 Property Method	
4.3 pipeline segment operation	
4.4 Pumps	40
4.5 valves	42
Chapter Five: Pipeline Design Measurement	44
5.1 Friction Factor Calculation	44
5.2 Reynolds Number Calculation	45
5.3 Pressure drop per unit of length	47
5.3.1 Comparison of Experimental data and Simulation data	47
5.3.2 Different Ambient Temperature	
5.3.3 Different Inside Diameter	49
5.3.4 Different Pipeline Material	51
5.4 Pressure Profile	52
Chapter Six: Summary and Conclusion	

List of Tables

Table 3.1 Pipeline Length and Coordinates	23
Table 3.2 Oil properties of Assay 1	25
Table 3.3 Oil properties of Assay 2	26
Table 3.4 Properties of Mix oil	26
Table 3.5 Minimum and Maximum Diameter of Pipeline	29
Table 3.6 Maximum Allowable Pressure in the Pipeline	29
Table 4.1 Property Methods in Aspen	36
Table 5.1 Friction Factor Calculation	44
Table 5.2 Reynolds Number Calculation	45
Table 5.3 Relative point error of pressure drop per unit of length	48
Table 5.4 Pressure drop per unit of length for different ambient Temperature	48
Table 5.5 Pressure drop per unit of length for different Inside Diameter	49
Table 5.6 Pressure drop per unit of length for different Material of Pipeline	51

List of Figures

Figure 2.1 Moody diagram	20
Figure 3.1 Distance between Tehran and Semnan	23
Figure 3.2 Intended Elevation	23
Figure 3.3 Pressure-Temperature Diagram of Mix oil	30
Figure 4.1 Selection of Component in Aspen	31
Figure 4.2 True boiling point properties of Assay 1 in Aspen	32
Figure 4.3 True boiling point properties of Assay 2 in Aspen	32
Figure 4.4 Light-ends fraction of Assay 1 in Aspen	33
Figure 4.5 Light-ends fraction of Assay 2 in Aspen	33
Figure 4.6 API gravity data of Assay 1 in Aspen	34
Figure 4.7 API gravity data of Assay 2 in Aspen	34
Figure 4.8 Standard Volume fraction of Mix oil in Aspen	35
Figure 4.9 Oil characterization in OLGA	35
Figure 4.10 Selection of first pipeline segment length and Coordinate	38
Figure 4.11 Configuration of Pipeline segment in Aspen	39
Figure 4.12 Representation of Connectivity of Pipeline segment in Aspen	39
Figure 4.13 Representation of Segment input parameters in Aspen	40
Figure 4.14 Representation of Segment input parameters in Olga	40
Figure 4.15 Specification of pump in Aspen and Olga	41
Figure 4.16 Specification of Valve in Aspen and Olga	43
Figure 4.17 Schematic of pipeline design in Aspen and Olga flow sheet	43
Figure 5.1 Friction Factor-Relative Roughness	45
Figure 5.2 Friction Factor-Reynolds Number of maximum flow rate	46
Figure 5.3 Friction Factor-Reynolds Number of minimum flow rate	46
Figure 5.4 Pressure drop per unit of length of different simulation method	48
Figure 5.5 Pressure drop per unit of length for different ambient Temperature	49
Figure 5.6 Pressure drop per unit of length for different Inside Diameter	50
Figure 5.7 Pressure drop per unit of length for different Material of Pipeline	51
Figure 5.8 Pressure Profile 15.624 in, Stainless Steel Pipeline	54

Chapter One: Introduction

1.1 Background of Study

Hydrocarbon transportation system comprised of various methods and each method has its specific equipment, Petroleum extracted site is generally far from the refinery processing region, according to geography of this distance various transportation method has been considered.

one the most common and safest method is Transportation of oil through the pipeline and is required much less energy and cost compare with others method' [1] climate change does not much affect in this method of transportation and it goes on continuously, also a rapid movement of fluid and carry large volume of hydrocarbon are another advantages of pipeline, the pipeline has a less harmful effect for the environment with respect to the other methods' [2],

In 2013 the pipeline under construction is about 188,108 km and the length of complete building is 53,180 and this is 11.4 percent more than previous year, though the global economy has undergone a slowdown, the construction of oil-gas pipelines continues to flourish around the world. [3].

In order to set up the oil transportation system, designer should consider proper material of pipeline which is vary in inside diameter and wall thickness, Sizing a pump station is essential process to compensate energy loss and head requirement in our system and respectively to control the flow valve installation is necessary for our system, topography of the site represents the different elevation in a pipeline route which has huge effect on pressure profile and the flow rate and velocity of petroleum also should be considered.

In the last few decades, a lot of work have been dedicated by researchers to design the pipeline system and optimizing the equipment so there are several pipeline modeling tools that developers have created to build and analyze the oil and gas distribution pipeline like Aspen plus and Olga Software.

Simulation modeling Software such as Aspen plus and Olga are a mathematical Modeling devices for an analyzer to anticipate the behavior of the system, these two software are provide easy access environment and simulate and optimize a complex system that comprise of modeling, development and improves operation within a short time, also the design briefly thorough process is another outstanding feature of these two software.

9

In other words, energy, momentum and continuity equation for each phases have been solved in Aspen and Olga software provide huge, in addition they suggest various methods proper to your process, physical and chemical properties of compositions have been obtained, and also they predict phase behavior of fluids, design, and size the plant to get the desired purpose, and in order to regulate the pressure of system they offer and determine process optimization and equipment configuration.

Specifically, in our simulation model aspen plus allows us to determine the oil properties as a complex oil characterization or assay that required the numerous properties such as true boiling point, API gravity, light end fraction, this information which obtain from Aspen oil characterization should be an input of Olga software. in addition, we can choose the best property method in wide variety options in order to have convenient thermodynamic and transport equations for our system, also flow sheet in aspen plus and Olga provide streams that we can input oil composition, flow rate, inlet pressure, and temperature and specific equipment such as a pipeline that contains the pipe parameters such as length, diameter, material and grade of the pipe, the elevation of pipes, etc., another options that we are dealing with in this thesis are pump and valves that each of them required the special configuration.

1.2 Problem Statement

During hydrocarbon transport in pipeline due to fraction factor, elevation, and fittings pressure drop in the pipeline may occur. Pressure drop is a major problem to remember when constructing the transport pipeline. Designer will not be able to do the requisite studies on pressure drop If this is not researched, it may fail to generate the amount of pressure and flow needed by customers which may result in a loss of the significant amount of project benefit. This project proposes variables to be explored such as pipeline configuration (pipeline wall thickness, pipeline type, and material), phase envelope, different equations to estimate pressure drops.

Chapter Two: Literature Review

2.1 Topography of the pipeline route

Constructing the pipeline is the first step to determine the topography of the pipeline route; It could be very complicated to evaluate various areas simultaneously and requiring many different criteria.

The open source model of Digital Elevation Model (DEM) data provided through the Google Shuttle Radar Topography Mission (SRTM) model. The accurate, high-quality, near-global elevation data provided by digital elevation data and collection of the Shuttle Radar Topography Mission (SRTM). This version of SRTM digital elevation data was processed to fill data voids and promote their user-friendliness.

2.2 Oil Characterization

Crude oil appearance and properties differ from each other and they are not treated equally, in order to recover from the reservoir and convert it to the saleable product in the refinery it is not follow the same rule, black or dark brown are the general color of oil although it may be yellowish or even greenish, because of the degree of processing and conversion for achieve what a refiner sees as an optimal product is very important to identify crude oil mixture, because of the natural qualities of crude oils, their density measured as American Petroleum Institute or API gravity and their sulfur content typically distinguish between crude oil types different types of crude oil yield a different product mix.

2.2.1 Specific Gravity or Density

Based on SG (specific gravity), the gravity of API (American Petroleum Institute), and the percentage of sulfur Crude oil classified differently. To assess crude oil performance, the specific gravity has been evaluated which is the most critical of commercial criteria. The low specific gravity gives the lighter fractions of crude oil quality and vice versa. Gravity of measured API can be classified crude oil into light, medium, or heavy. API gravity below 10 is considered to Bitumen and extra heavy oil. API normally describes heavy oil from 10 to 22.3, medium oil from 22.3 to 31.1 and light oil higher than 31.1. [4] The crude oil SG (Specific gravity) is reversed by the API values and gives an initial estimation of the (heavy or light) hydrocarbon forms, the lower the specific gravity has a higher quality and the higher gravity of the API. The API gravity formula can be stated as [5]

$$API = \frac{141.5}{SG} - 131.5$$
 Eq. 1

2.2.2 Distillation Curve

One of the most significant parameters to assess the complicated fluid mixture is the distillation curve or boiling curve, graphical plot of a fluid boiling point against the volume fraction distilled is represent the distillation curve, and this proportion of the volume is usually represented as a combined portion of the overall amount. [6]

There are several approach in order to investigate distillation curve and one of the usual methods to specify the distillation curve and assess the crude oils is True boiling point (TBP), true boiling point determine the amount of distilled fraction of each component, the composition of crude oil and its fractions is expressed in terms of 'cuts' which is between a range of boiling points and because of the component of crude oil is not be separated into individual chemical compounds we use cut for each specific range. [7] Each cut represents the specific boiling point which demonstrates as the average True Boiling Point.

2.2.3 Bubble Pressure

Maximum pressure of fluid mixture that the first bubble of gas released is represented by bubble pressure; constant composition test can help us experimentally calculated this essential aspect for fluid by. bubble point is a strong function of API, System Temperature, gas and oil gravity, and gas solubility. [8]

2.2.4 Fluid Phase Behavior: Pressure-Temperature Diagram (P-T Diagram)

In a wide range of temperatures and pressures hydrocarbons represent multi-phase behavior. Gaseous, liquid, solid or mixed phase are the various Hydrocarbon state, this different state is essential to predict of the phase behavior of hydrocarbon fluids for designing the optimum transportation process along a pipeline. For the single and pure compound is easier to investigate the phase behavior than mixture of hydrocarbon because of involving more details, although hydrocarbons are predominately composed of a molecule with the same structure, so their phase behavior is not generally complicated. For a multi-component with a fixed overall composition, the phase envelope figure illustrates an idealized P-T diagram. there is a transition zone between the complete liquid phase and the complete vapor phase. In other word go against the pure substance, phase change from liquid to vapor appears.

On a phase envelope line, there is a region that two phases are at equilibrium. Liquid and gaseous regions that is bounded by the bubble point and dew point curves are called "phase envelope". The bubble point and dew point curves meet at a critical point. In Aspen software simulation, bubble point pressure of crude oil can be defined through the pressure-temperature diagram.

2.3 Pipeline flow profile

Fluid behavior can be changed due to the two major parameter, viscosity and velocity of a hydrocarbon through the pipeline; different flow rate generally causes various flow profiles through the pipeline.

To estimate the pattern of the fluid behavior Reynolds numbers play a major part. Reynolds is dimensionless and calculates whether liquid flows are laminar or turbulent, and it depends on various factors, including speed, length, viscosity, and flow kinds. Laminar flow is representing that there are no eddies, current and swirls, and flow goes on a parallel layer.

high speed, light fluids, causing irregular flow patterns, and swirls which characterize by turbulent flow. Reynolds numbers are given as the following:

$$Re = \frac{\rho VD}{\mu} \quad Eq.3$$

The model of laminar flow is Reynolds below the 2300 number. And the turbulent flow is characterized by the number Reynolds greater than 4000.

2.4 pipeline characterization

The main purpose of pipeline is to move fluid from one site to another, the industries usually collect hydrocarbon from wellheads and transport product through the pipeline to processing platform, Pipelines classified into small and large with diameters of up to 48 inches. The main part of pipeline system generally buried underground but some part of it such as pump station is above the ground. Pipeline can be very short or long enough up to 1000 kilometers.

In Selecting and constructing a pipeline must take into consideration many factors such as material and grade of the pipeline, the inner and outer diameter of the pipeline, maximum allowable pressure in the pipeline.

2.4.1 Pipeline material

Due to internal and external pressures and laying techniques and maintenance frequency or impermeability ,the material of the pipeline should be different, Carbon steel and stainless steel are found in most hydrocarbon system, Carbon steel and stainless steel pipes are comprised of bimetallic tubing which has titanium alloy steel, copper or aluminum. high mechanical performance, high corrosion resistance, high operational convenience, and high safety are the properties of this kind of pipes. The properties of material of pipe are standardized by the American Petroleum Institute (API 5L 2004) and other organization. They offer nominal diameter, inside diameter, wall thickness and maximum allowable pressure up to 80 inches pipes. [9]

2.4.2 Pipeline sizing

The amount of the fluid which could be carry through the pipeline is depends on the size of a pipeline. Designer For high mass flow usually consider large diameter of pipes based on intent and application region. The diameter in some region could be large up to 0.5 meter. The maximum and minimum pipeline diameters can be stated with the following formulas:

$$D_{\max} = \sqrt{\frac{4Q}{V_{\min}\pi}} D_{\min} = \sqrt{\frac{4Q}{V_{\max}\pi}} Eq.4$$

2.4.3 Absolute and Relative Roughness of pipe

The pipe wall irregularity is measured by absolute Pipe Roughness (ϵ). The unit of pipe roughness is usually expressed in millimeters or feet. If you have higher number of absolute roughness it leads to the frictional head loss. Another parameter that we are dealing with in this project is a pipe's relative roughness which is the ratio of absolute roughness to the inside diameter of the pipe (ϵ /D). in order to calculate pressure, drop per unit of length in a pipeline we use relative roughness. Based on the amount of Reynolds number for flow in a pipe and relative roughness we can investigate the friction factor.

2.5 Pressure profile in pipes

Flow resistance along the pipeline leads the pressure drop in each section of pipe. Elevation is another factor that arise the pressure drop. In addition, different inside diameter and various flow rate have the major effect on pressure drop, also Loss of energy as the fluid passes through fittings, valves of the pipe, can be occurred. [10]

2.5.1 Friction Factor

Interaction between the fluid and pipe's wall leads to pressure decrease of fluid along the pipeline, in other words movement of a fluid through a pipe cause friction factor changing. There are several approaches to measure the friction factor one of them is graphical diagram. The Moody Diagram or Moody Chart with considering various factor such as Reynolds number to know about the laminar and turbulent flow, relative roughness and absolute roughness of pipe provide a friction factor.

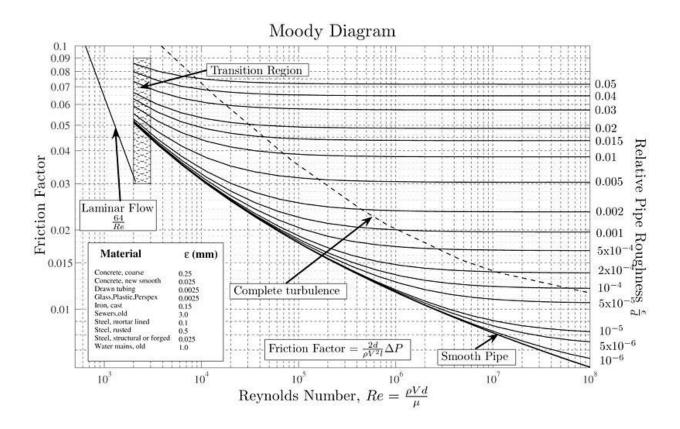


Figure 2.1 Moody diagram

Mathematical approach of moody diagram is the Colebrook correlation in order to calculate the friction factor of turbulent flow, ASPEN and OLGA software also follow this correlation:

$$\frac{1}{\sqrt{f}} = -2 \log_{10} \left[\frac{\mathcal{E}}{3.7} + \frac{2.51}{Re\sqrt{f}} \right]$$
 Eq.5

2.5.2 Pressure drop per unit of length (Momentum Balance equation)

Pressure drop due to the friction in a pipeline system refers to energy loss and it can be calculated with the momentum balance equation. Pressure drop per unit of length accounts for the overall energy loss due to the length of a pipe it could be due to the fittings, valves, and other device structures. In order to develop energy balance equation, it is necessary to investigate momentum balance. General Fanning equation offers the head loss per unit length due to friction as follows:

$$\left(\frac{dp}{dz}\right) = \frac{2
ho fv^2}{144 \, g_c \, D}$$
 Eq. 6

2.5.3 Energy Balance Equation

In order to investigate the energy balance equation in Aspen and Olga software environment, the simplified version known as Bernoulli equation should be defined. Some assumption should be considered to develop Bernoulli Equation.

- The density of fluid remains constant along the pipeline so we follow the incompressible fluid rules even though pressure varies along the pipe.
- 2) If the distance of transportation is short the viscous effects of fluid is minimized so we assume inviscid fluid during movement
- 3) We assume steady state condition, it means that the flow rate does not change during time,[11]

$$P = P_A - g\rho(H - H_a) - \frac{\Delta P}{L} * L \quad Eq.7$$

Multiphase pressure loss is more complex than the single phase, if we want to make the single-phase calculation applicable to wider condition, we should consider each phase hydrostatic pressure differential and use modification to friction pressure loss measurement.

Fluid nature should be considered for each single phases and interaction of each phase leads to have good understanding to multiphase pressure drop. The percentage of gaseous phase should be calculated in order to know about the velocity of each section of the fluid. We consider to phase correlation in order to investigate multiphase behavior. Oil and water include in one pseudo phase and we calculate gas in separate phase. [12]

Beggs and Brill correlation uses three different factors such as frictional, elevation and acceleration in order to calculate pressure drop in our system. This equation is used in Aspen plus software as a one of reliable approach in energy balance equation. Olga also use momentum, continuity, and energy balance for each phase separately [13]. three components friction, elevation and acceleration, it is expressed in the form below:

$$\left(\frac{dp}{dL}\right)_{tp} = \left(\frac{dp}{dL}\right)_{f} + \left(\frac{dp}{dL}\right)_{ele} + \left(\frac{dp}{dL}\right)_{acc} \text{ Eq.8}$$
$$\left(\frac{dp}{dL}\right)_{tp} = \frac{\rho f v^{2}}{2d} + g\rho \sin \theta + \frac{\rho v dv}{dL} \text{ Eq.9}$$

Chapter Three: Case Study

3.1 Pipeline Coordinate and length

Intended area: from Tehran to Semnan in Iran

Length (km)	Elevation (m)	X Easting (m)	Y Northing (m)
0	1019	545124.25	3934755.48
20	1194	564746.49	3932429.41
40	1707	584369.28	3930103.4
60	1632	603992.81	3927777.4
80	1941	623617.27	3925451.37
100	2408	643780.53	3923061.53
120	2508	663138.54	3920767.16
140	1236	683035.76	3918408.99
160	989	702665.78	3916082.27
180	915	722566.57	3913723.52
200	931	741662.53	3911460.11
220	1004	761567.58	3909100.71
240	1069	234847.48	3906367.11
273	1037	267634.48	3900452.94

Table 3.1 Pipeline Length and Coordinates

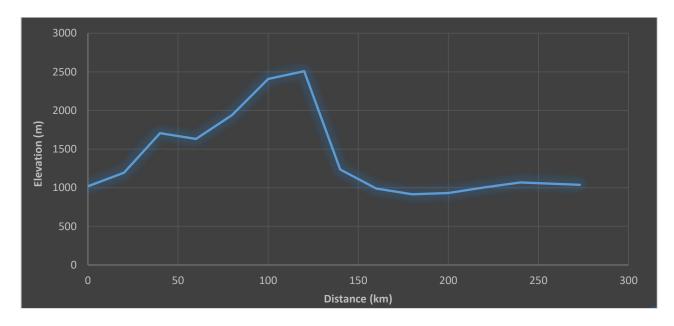



Figure 3.1 Distance between Tehran and Semnan

Figure 3.2 Intended Elevation

3.2 Oil Properties

One of the most reliable approaches, in order to model the petroleum in aspen plus, is to consider laboratory data of crude oil which contains a piece of tested information such as True boiling point for the determination of a distillation curve, Light ends fraction, API gravity, etc., In our case, we are following the official laboratory data of the Light oil that is comprised of two groups with different fractional properties as an assay ("Assay is a Complex characterization of crude oil which comprised of different hydrocarbon component"[14])

Component	Light Ends Fraction	API Gravity		TBP Dis	stillation
Methane	0.001	Distilled Vol. %	Gravity	Liq. Vol. %	Temp. (F)
Ethane	0.0015	5	90	6.8	130
Propane	0.009	10	68	10	180
Isobutane	0.004	15	59.7	30	418
N-butane	0.016	20	52	50	650
2-Methyl-butane	0.012	30	42	62	800
N-pentane	0.017	40	35	70	903
		45	32	76	1000
		50	28.5	90	1255
API = 31.4	Standard volume	60	23		
	fraction of Assay 1 in a mix oil = 0.2	70	18		
		80	13.5		

Assay 1

Table 3.2 Oil properties of Assay 1

Component	Light Ends Fraction	API Grav	vity	TBP Dis	stillation
Methane	0.002	Distilled Vol. %	Gravity	Liq. Vol. %	Temp. (F)
Ethane	0.005	2	150	6.5	120
Propane	0.005	5	95	10	200
Isobutane	0.01	10	65	20	300
N-butane	0.01	20	45	30	400
2-Methyl-butane	0.005	30	40	40	470
N-pentane	0.025	40	38	50	550
Water	0.001	50	33	60	650
		60	30	70	750
		70	25	80	850
		80	20	90	1100
API = 34.8	Standard volume fraction of Assay 2 in a	90	15	95	1300
	mix oil = 0.8	95	10	98	1475
		98	5	100	1670

Assay 2	2
---------	---

Table 3.3 Oil properties of Assay 2

Oil Mixture at 22°C

API	Viscosity (cp)	Density (Kg/m3)	Specific Gravity
34.1	2.33347	742.308	0.854444

Table 3.4 Properties of Mix oil

3.3 Average Temperature in pipeline

Due to annual temperature of intended area from Tehran to Semnan we consider 30°C for the summer months and 16°C for the winter and the average annual temperature of the this site, we assume temperature of 22°C in the pipeline. [15]

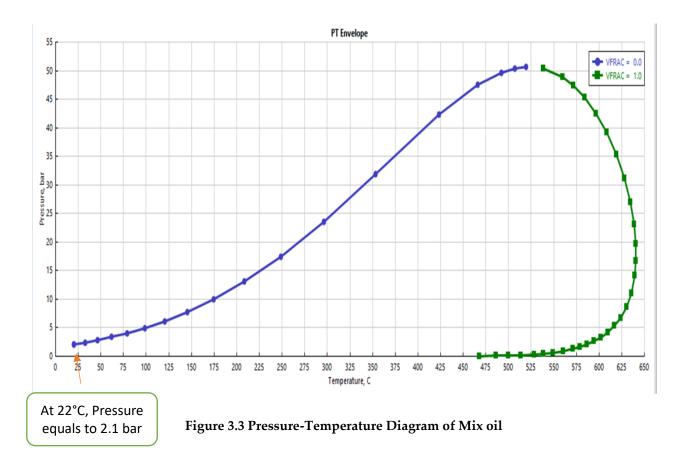
3.4 Fluid velocity

Due to the Different pressure along the pipeline, elevation of the intended area viscosity of oil, flow rate of the fluid and the inside dimeter of pipeline, fluid velocity could be changed during the transportation, for light crude oil usually maximum (2m/s) and minimum (1m/s) velocities has been considered. If the velocity of oil is too high, it causes severe damage such as corrosion in it produces excess noise. and in order to prevent the surging the minimal velocity should be considered

3.5 Pipeline Diameter

Maximum Diameter	Minimum Diameter
Q = 0.1104 m3/s	Q = 0.1288 m3/s
$V_{min} = 1 m/s$	$V_{max} = 2 m/s$
D _{max} = 15.7 in	D _{min} = 10.2 in

Table 3.5 minimum and maximum Diameter of Pipeline


3.6 Maximum Allowable Pressure in the Pipeline

Inner Diameter	Wall Thickness (in)	MAP Carbon Steel	MAP Stainless Steel
(in)		Pipeline (Psi)	Pipeline (Psi)
10.250	1.250	3000	2800
11.500	1.250	3000	2800
12.376	0.812	3000	2090
13.500	1.250	3000	2800
14	1	3000	2250
15.624	1.188	3000	2380

Table 3.6 Maximum Allowable Pressure in the Pipeline according to API 5L

3.7 Minimum Allowable Pressure in the Pipeline

In order to prevent corrosion along the pipeline, it is necessary to determine that in which pressure and temperature fluid is in multi-phase region [16], in this case study 2.1 bar at 22°C is the minimum pressure which lower than this amount, we have two phase hydrocarbon.

Chapter Four: Simulation Parameters

4.1 Component Properties

There are several approaches exist in aspen plus environment in order to select the hydrocarbon composition, in this project we are dealing with light mix oil, thus some definition and parameters should have been considered for this purpose:

"Conventional component: single compound of chemical fraction which characterize by specific properties such molecular weight,

Component ID	Туре	Component name	Alias
C1	Conventional	METHANE	CH4
C2	Conventional	ETHANE	C2H6
C3	Conventional	PROPANE	СЗН8
IC4	Conventional	ISOBUTANE	C4H10-2
NC4	Conventional	N-BUTANE	C4H10-1
IC5	Conventional	2-METHYL-BUTANE	C5H12-2
NC5	Conventional	N-PENTANE	C5H12-1
WATER	Conventional	WATER	H2O
ASSAY1	Assay		
ASSAY2	Assay		
MIXOIL	Blend		

Blend: mixture of assays" [17]

Figure 4.1 Selection of Component in Aspen

Distilled percentage of assays with respect to the various temperature.

True boiling point (liquid volume basis) Pressure 0.01333 bar Bulk gravity value Specific gravity API gravity 31.4 62 800 70 903 76 1000 90 1255	Distillation cu	rve type				Percent	Temperature
Pressure 0.01333 bar Indext (Constraint) Bulk gravity value 30 418 Specific gravity 50 650 API gravity 31.4 62 800 70 903 76 1000 90 1255	True boiling	point (liquid volu	ıme basis)	-		distilled	F
Bulk gravity value 10 180 Specific gravity 30 418 API gravity 31.4 50 650 70 903 76 1000 90 1255	Pressure	0.01333	bar			6.8	130
Specific gravity 50 650 API gravity 31.4 50 62 800 70 903 76 1000 90 1255						10	180
 API gravity 31.4 62 70 903 76 1000 90 1255 						30	418
70 903 76 1000 90 1255				-		50	650
> 76 1000 > 90 1255	API gravity 31.4					62	800
90 1255						70	
				2		76	1000
						90	1255
				•	-		

Figure 4.2 True boiling point properties of Assay 1 in Aspen

Di cil ci	/e							-	
Distillation curv				_		Perce distill		-	erature
True boiling p	oint (liquid	i volum	e basis)	•		distill	cu	F	-
Pressure 0.	.01333		bar	-	Þ.	6.5		120	
					×.	10		200	
Bulk gravity v						20	3	300	
Specific gr					▶.	30		400	
API gravity	/	34.8				40	-	470	
						50		550	
					Þ.	60		650	
					Þ.	70	1	750	
)-	80		850	
						90		1100	
					Þ.	98		1475	
						100		1670	

Figure 4.3 True boiling point properties of Assay 2 in Aspen

Light ends fraction of two assays with consideration of standard volume fraction are represented below:

 ht-ends analysis Component	Fraction	Gravity	Molecular	
component	Stdvol -	onunty	weight	
C1	0.001			
C2	0.0015			
C3	0.009			
IC4	0.004			
NC4	0.016			
IC5	0.012			
NC5	0.017			

Figure 4.4 Light-ends Fraction of Assay 1 in Aspen

Ligl	ht-ends analysis				
	Component	Fraction Stdvol -	Gravity	Molecular weight	
	C1	0.002			-
	C2	0.005			
	C3	0.005			
	IC4	0.01			
	NC4	0.01			
	IC5	0.005			
	NC5	0.025			
	WATER	0.001			

Figure 4.5 Light-ends fraction of Assay 2 in Aspen

Each cut of the petroleum has the specific density and API gravity, we can demonstrate it from TBP [18] here we can see that API gravity of the first assay is 31.4 and for the second on is 34.8

0	Dist Curve	Light-Ends	Gravity/UOPK	Molecular Wt	Options	Information
	a type —			HODY		
03	Specific grav	/ity 💿 API	gravity 🔘	UOPK		
API	gravity curv	/e data				
Bull	k value	31.4				
	Mid perc distille		ity			
	5	90				
	10	68				
	15	59.7				
	20	52				
	30	42				
	40	35				
	45	32				
	50	28.5				
	60	23				
	70	18				
	80	13.5				

Figure 4.6 API gravity data of Assay 1 in Aspen

0	Dist Curve	🕗 L	ight-Ends	Gravity/UOPK	Molecular Wt	Options	Informatio
Dat	ta type —						
	Specific gra	vity		gravity 🔵	UOPK		
0	specific gra	vity	S AFI		OOFK		
API	l gravity cur	ve dat	a				
Bul	lk value	34.8					
	Mid pero distille		API gravi	ity			
	2		150				
	5		95				
	10		65				
	20		45				
	30		40				
	40		38				
	50		33				
	60		30				
	70		25				
	80		20				
	90		15				
	95		10				
	98		5				

Figure 4.7 API gravity data of Assay 2 in Aspen

Next step is to consider each assay as a blending fraction in order to mix this to petroleum fraction and use the unique properties of hydrocarbon,

міхо	MIXOIL - Mixture × +										
ØS	pecifications Information]									
Ass	ay blending fraction		Additional distillation curve reports								
	Assay ID	Fraction	ASTM D86								
		Stdvol 👻	ASTM D1160								
•	OIL-1	0.2	Vacuum (liquid volume)								
	OIL-2	0.8									

Figure 4.8 Standard Volume fraction of Mix oil in Aspen

In OLGA Software environment, in order to select feed characterization, we are dealing with each phase properties; Oil specific gravity, Gas specific gravity, Gas Oil Ratio, Water cut, H2S CO2 N2 Fraction Should be defined.

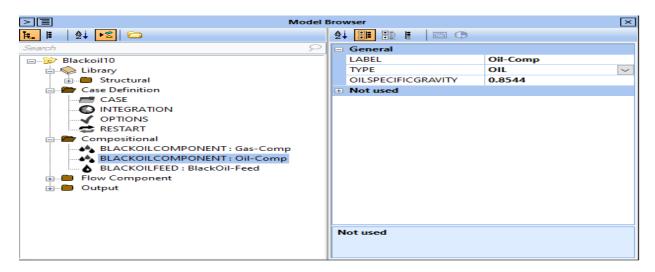


Figure 4.9 Oil characterizations in OLGA

4.2 Property Method

In simulation environment of aspen plus it is important to select proper approach to consider the pure component and the mixture properties of chemical composition. In order to estimate various factor which, effect the chemical composition Aspen offers different method for each specific chemical process. For measuring the thermodynamic data such as enthalpy, entropy , grade of freedom, Aspen introduce property method which is set of calculation in order to have proper process. [19]

One of the most common approach to determine the thermodynamic properties of hydrocarbon during transportation is he Peng-Robinson model which uses for low, medium, and high pressure (e.g. oil, gas, and petrochemical) processes. In fact, it can estimate the multiphase behavior of oil and help designer to investigate vapor liquid equilibrium calculation. Some transport and thermodynamic calculation method which we are dealing with in this project as follows

Equation of State	Peng Robinson
Density	Peng Robinson
Viscosity	Ely and Hanley
Enthalpy	Peng Robinson
Entropy	Peng Robinson

Heat Capacity	Peng Robinson
Thermal Conductivity	Misic, Thodos & Chung
Vapor Isentropic Coefficient	Peng Robinson
Friction Factor	Colebrook-White, Darcy
Energy loss per unit of length	General fanning equation
Energy balance	Beggs and Brill method

Table 4.1 Property Methods in Aspen

	Specification				· · · ·				
🥝 Globa	l Flowsheet	Section	s Refe	renced	Information				
Property	methods & o	ptions -			Method name				
Method		сомм		-	PR-BM	-	- Me	thods Assis	tant.
Base me	thod	PR-BM	•	-					
Henry co	omponents			-	Modify		5000		
	um calculatio	-			EOS Data set		ESPR 1	6	0
	ater method		- <i>TA</i>	-	Liquid gamm	-		2	~
Water	solubility	3		-	Data set	d		G	-
Electro	lyte calculatio	n optio	ns		Liquid molar	enthalpv	HLMX04		-
Chemi	stry ID			-	Liquid molar		VLMX04		-
🔽 Use	e true compon	ents			Heat of m				
					Poynting of the second seco	_	n		
					Use liquid			thalpy	
Configura	tion 🛛 🥑 Connec	tivity	Methods	Property		s Solids C	Conveying	Information]
Solution met	thod	tivity	Methods	Property		s Solids C	Conveying	Information	
Solution met		tivity (3 Methods	Property		s Solids C	Conveying	Information	
Solution met Numerica	thod		Methods	Property		s Solids C	Conveying	Information]
Solution met Numerica	thod		-	Property		s Solids C	Conveying	Information	
Solution met Numerica Integ Closed-Fo	ihod Il integration gration method		method	Property		s Solids C	Conveying	Information	
Solution met Numerica Integ Closed-Fo Clos	thod I integration gration method orm equation ed-Form method	Gear's	method	Property	r Grid SFlash Option:	s Solids C	Conveying	Information	
Solution met Numerica Integ Closed-Fo Clos	thod I integration gration method orm equation ed-Form method	Gear's	method		r Grid SFlash Option:	s Solids C	Conveying	Information	
Integ Closed-Fo	thod I integration gration method orm equation ed-Form method rrelations	Gear's	method nethod	oldup corre	r Grid Flash Option	s Solids C	Conveying	Information	
Solution met Numerica Integ Closed-Fo Closed-F	thod gration method orm equation ed-Form method rrelations Beggs-Brill	Gear's	nethod Ho Do Inc	oldup corre	r Grid SFlash Option	s Solids C	Conveying	Information	

Figure 4.9 Selection of property method and Equations in Aspen

4.3 pipeline segment operation

In order to develop energy balance equation precisely 14 different segments have been selected that each of them has the specific coordinate and length, and for each segment Aspen and Olga provide geometry profile, temperature specification, inside diameter and wall thickness selection, pipeline material and absolute roughness, here we can see the software procedure for calculating the pressure profile;

Figure 4.10 Selection of first pipeline segment length and Coordinate

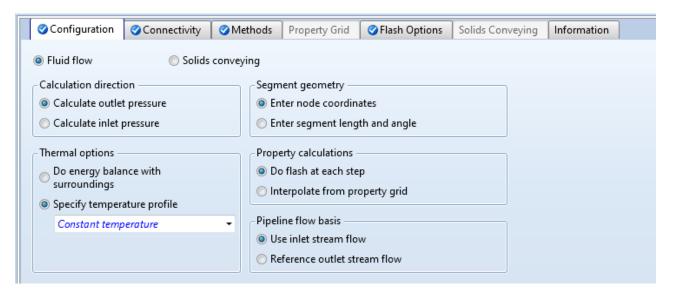


Figure 4.11 Configuration of Pipeline segment in Aspen

ID	In Node	Out Node	Diameter	Units	Length	Units	Angle	Units	Status
1	5	6	7.875	in		meter	0	deg	Complete
2	6	7	7.875	in		meter	0	deg	Complete
3	7	8	7.875	in		meter	0	deg	Complete
4	8	9	7.875	in		meter	0	deg	Complete
5	9	10	7.875	in		meter	0	deg	Complete
6	10	11	7.875	in		meter	0	deg	Complete
7	11	12	7.875	in		meter	0	deg	Complete
8	12	13	7.875	in		meter	0	deg	Complete
9	13	14	7.875	in		meter	0	deg	Complete

Figure 4.12 Representation of Connectivity of Pipeline segment in Aspen

Segment Data									>
Segment No. 🥑 1	-	Inle	et node	5			Outlet	t node	6
Node parameters]
	Inlet n	ode			Outlet	node			
X coordinate	623617	meter	-	64378	11	mete	er •	•	
Y coordinate	3.92545e+0€	meter	-	3.920	77e+0€	mete	er	•	
Elevation	1941	meter	-	2408		mete	er	•	
Fluid temp		С	-			С		-	
C-Erosion	100		-	100			-	-	
Segment parameter	ers								
Diameter 7.875	i in	•	Annul	ar OD	8.625		in		-
Roughness 4.572	e-05 mete	r -	Efficie	ncy	1				-
Close									

Figure 4.13 Representation of Segment input parameters in Aspen

	Browser			
1. 1 1 2 1 1 C				
Search	9	Properties		
Structural Case Definition CASE INTEGRATION OPTIONS RESTART Compositional BLACKOILCOMPONENT : Gas-Comp BLACKOILCOMPONENT : Oil-Comp BLACKOILCOMPONENT : Oil-Comp BLACKOILFEED : BlackOil-Feed Flow Component FLOWPATH : PIPELINE Boundary and Initial Conditions Output Piping Flow Piping GEOMETRY : GEOM-1	^	▲ ROUGHNESS 4.572e-005 [m] WALL WALL-1 NSEGMENT 10 DIAMETER 7.875 [in] ■ General LABEL PIPE-1 ■ Position LENGTH 20 [km] ELEVATION 293 [m]	Y	
PIPE-1		Not used		
NODE : OUTLET	~	×		

Figure 4.14 Representation of Segment input parameters in OLGA

4.4 Pumps

In order to compensate energy loss during the movement along the pipeline, pumping station should be installed, there are various pumps model to discharge pressure into the system, the calculation of pump head which is summarize of head required and fitting is necessary to select the proper pump.

Pump characteristic curve and dynamic and static head loss provide information to investigate the sizing of the pump station, usually several pumps are considered in parallel and series to meet the head requirement for the system

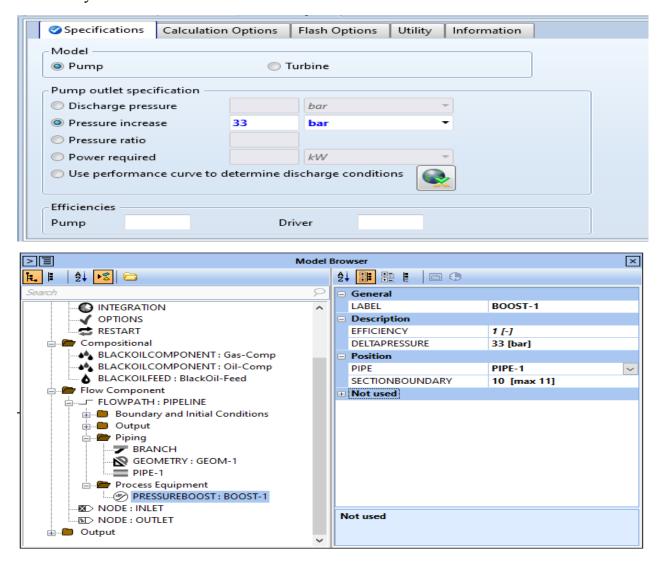
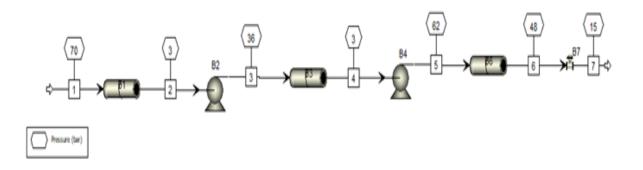



Figure 4.15 Specification of pump in Aspen and Olga

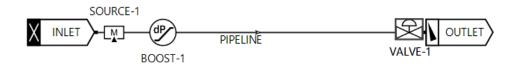
4.5 valves

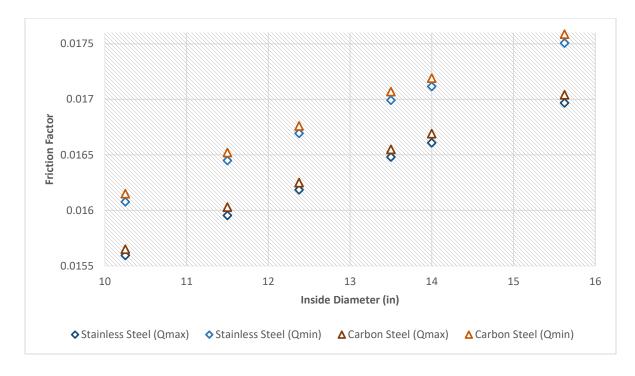
Flow control is a major part of pipeline system for preventing the excess of pressure, when the pressure of the oil goes beyond the maximum allowable pressure we use valve to control the flow, in this project to meet the desired pressure of the end point we use valve to decrease the pressure,

Operation	Valve Parameters	Calculation Options	Pipe Fittings Information					
Calculation type Adiabatic flash for specified outlet pressure (pressure changer) Calculate valve flow coefficient for specified outlet pressure (design) Calculate outlet pressure for specified valve (rating)								
Pressure speci	· ·		Valve operating specification					
Outlet pres	sure 15	bar	 © % Opening 					
Pressure dr	ор	bar	 Flow coef 					
Flash options								
Valid phases	Liquid-Only		 Maximum iterations 30 					
			Error tolerance 0.0001					

	Mo	del Browser		×
1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	i 🔡 🗄 📄 🕒 🕒		
Search 9	E	General		
RESTART ^		LABEL	VALVE-1	
🚊 🗁 Compositional		MODEL	HYDROVALVE	\sim
BLACKOILCOMPONENT : Gas-Comp		VALVEGEOMETRY	ORIFICE	\sim
BLACKOILCOMPONENT : Oil-Comp		EQUILIBRIUMMODEL	FROZEN	\sim
BLACKOILFEED : BlackOil-Feed		THERMALPHASEEQ	NO	\sim
Elow Component		SLIPMODEL	NOSLIP	\sim
		RECOVERY	YES	\sim
Boundary and Initial Conditions	E	Opening		
Dutput		TIME	0 [s]	
E Piping		STROKETIME	0 [s]	
BRANCH		SIZE	5.12 [in]	
GEOMETRY : GEOM-1	E	Position		
Process Equipment		PIPE	PIPE-1	\sim
PRESSUREBOOST : BOOST-1		SECTIONBOUNDARY	11 [max 11]	
√ VALVE : VALVE-1	Œ	Model description		
NODE : INLET	Œ	Not used		
NODE : OUTLET				
⊕ Output				
- · · · · · · · · · · · · · · · · · · ·				
< >				

Figure 4.16 Specification of Valve in Aspen and Olga




Figure 4.17 Schematic representation of pipeline design in Aspen and Olga flowsheet

Chapter Five: Pipeline Design Measurement

5.1 Friction Factor Calculation

Inner	ε/D	Friction	Friction	ε/D	Friction	Friction
Diameter	Stainless	Factor	Factor	Carbon	Factor	Factor
(in)	Steel	(Qmax)	(Qmin)	Steel	(Qmax)	(Qmin)
10.250	5.76147E-	0.015594	0.016077	1.75533E-	0.015595	0.016078
	08			07		
11.500	5.13523E-	0.015955	0.016449	1.56453E-	0.015956	0.016449
	08			07		
12.376	4.77175E-	0.016185	0.016693	1.45379E-	0.016184	0.016694
	08			07		
13.500	4.37445E-	0.01648	0.016991	1.33275E-	0.016481	0.016992
	08			07		
14	4.21822E-	0.016608	0.017116	1.28515E-	0.016608	0.01711
	08			07		
15.624	3.77977E-	0.016967	0.0175061	1.15157E-	0.016967	0.017506
	08			07		

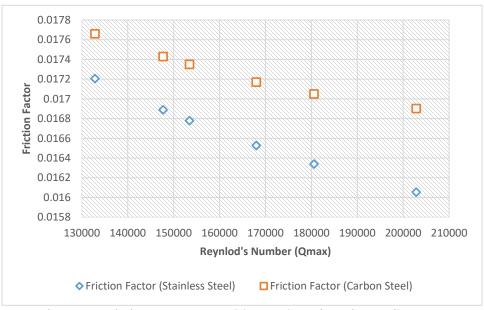

Table 5.1 Friction Factor Calculation

Figure 5.1 Friction Factor-Relative Roughness

5.2 Reynolds Number Calculation

Inner Diameter	Reynolds Number	Reynold's Number	
(in)	(Qmax)	(Qmin)	
10.250	202854.4	173767.42	
11.500	180569.44	154932.34	
12.376	167982.46	143989.3	
13.500	153459.49	131931.004	
14	147694.03	127268.74	
15.624	132866.8	114048.26	

Table 5.2 Reynolds Number Calculation

Figure 5.2 Friction Factor-Reynolds Number of maximum flow rate

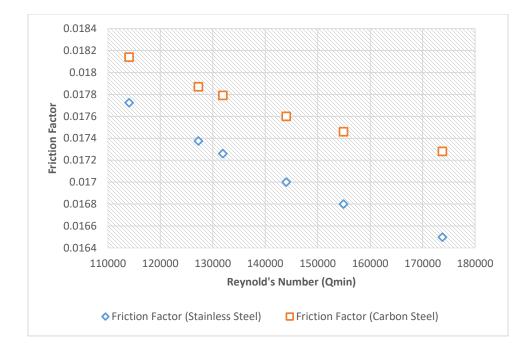


Figure 5.3 Friction Factor-Reynolds Number of minimum flow rate

5.3 Pressure drop per unit of length

5.3.1 Comparison of Experimental data and Simulation data

The second column of the table below is the values of the experimental data to the temperature of 69,8 °C, which were obtained from the hydraulic slope and velocity relationship of heavy crude oil (API 11) through a PVC pipeline taking in consideration the and piping diameter is 0,2m. The friction factor was determined considering constant temperature values and the experimental results obtained.[20]

Q (m3/s)	<i>dp/dz</i> (pa/m)	<i>dp/dz</i> (pa/m)	<i>dp/dz</i> (pa/m)	Relative Point
	Exp	OLG	ASP	Error
0.005	162.13	152.57	160.25	5.9-1.16
0.01	314.03	303.83	302.66	3.2-3.62
0.015	456.72	440.89	419.98	3.4-8.04
0.02	612.11	592.39	567.85	3.2-7.23
0.025	766.57	742.79	734.58	3.1-4.17
0.03	898.4	872.62	862.02	2.9-4.04
0.04	1189.06	1121	1128.02	5.7-5.13
0.044	1297.15	1227.44	1222.1	5.3-5.7

 $E_P = \left| \frac{X_{exp} - X_{sim}}{X_{exp}} \right| .100$ Eq.10

Table 5.3 Relative point error of pressure drop per unit of length

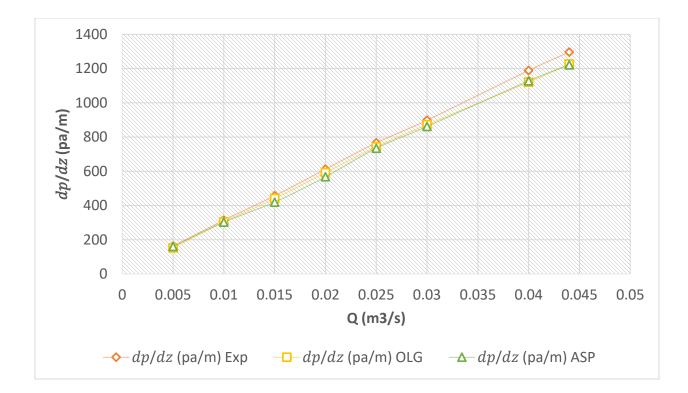


Figure 5.4 Pressure drop per unit of length of different simulation method

5.3.2 Different Ambient Temperature

	T= 16∘C		T=2	22°C	T= 3	30∘C
Flow Rate	ASPEN	OLGA	ASPEN	OLGA	ASPEN	OLGA
(m3/s)	(T=16∘C)	(T=16∘C)	(T=22∘C)	(T=22∘C)	(T=30∘C)	(T=30∘C)
0.1288	0.2305	0.2206	0.2249	0.2133	0.2198	0.2066
0.1104	0.1746	0.1692	0.1703	0.1636	0.1662	0.1583

Table 5.4 Pressure drop per unit of length for different ambient Temperature

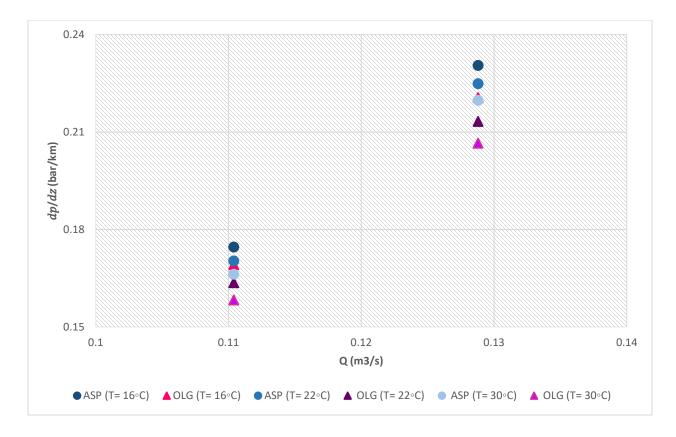


Figure 5.5 Pressure drop per unit of length for different ambient Temperature

5.3.3 Different Inside Diameter

Inside	ASP	ASP	OLG	OLG
Diameter	(Qmax)	(Qmin)	(Qmax)	(Qmin)
(in)				
10.25	1.7319	1.3065	1.7986	1.3627
11.5	0.9906	0.748	1.0593	0.7822
12.376	0.694	0.5243	0.7557	0.5739
13.5	0.4556	0.3444	0.5232	0.3722

14	0.3822	0.2889	0.4569	0.3114
15.624	0.2249	0.1703	0.3133	0.2036

Table 5.5 Pressure drop per unit of length for different Inside Diameter

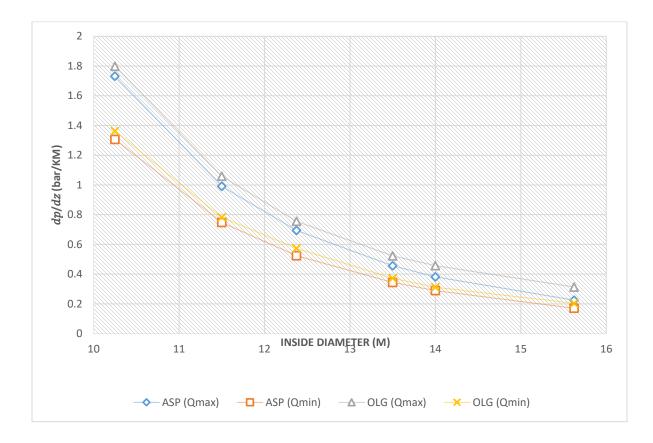


Figure 5.6 Pressure drop per unit of length for different Inside Diameter

5.3.4 Different Pipeline Material

Flow	ASP	ASP	OLG	OLG	
Rate	(CARBON	(STAINLESS	(CARBON	(STAINLESS	
(m3/s)	STEEL) STEEL)		STEEL)	STEEL)	
0.1288	0.232	0.228	0.302	0.298	
0.1104	0.175	0.171	0.233	0.23	

Table 5.6 Pressure drop per unit of length for different Material of Pipeline

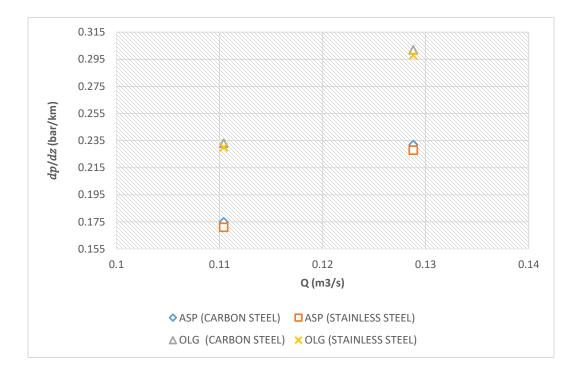
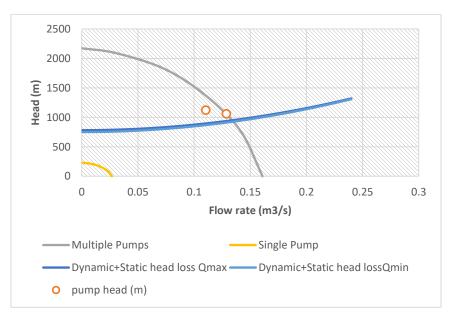
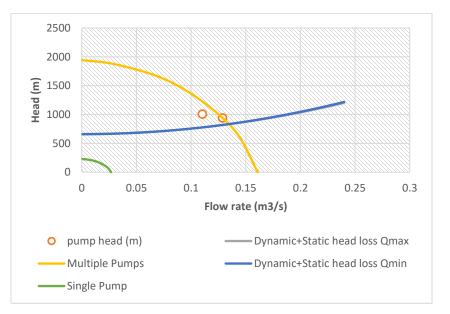



Figure 5.7 Pressure drop per unit of length for different Material of Pipeline

5.3.5 Pump head calculation (ASPEN)

Q(m3/s)	pump
	head (m)
	. ,
0.1104	1120.16
0.1288	1058.08
0.1200	1000000
Pumps in	Pumps in
Parallel 6	Series 9
O(222/2)	Mallinla
Q(m3/s)	Multiple
	Pumps
0	2171.726
0.028391	2099.336
0.066245	1882.163
0.000240	1002.105
0.094635	1592.599
0.100006	1150 054
0.123026	1158.254
0.143846	694.9525
0.16088	0


	Pump characteristic curve					
Q	Total Q	Head	Total Head	Q(m3/s)	Single	
(gpm)	(gpm)	(ft)	(ft)		Pump	
0	0	150	750	0	228.6028	
15	75	145	725	0.004732	220.9827	
35	175	130	650	0.011041	198.1224	
50	250	110	550	0.015773	167.642	
65	325	80	400	0.020504	121.9215	
76	380	48	240	0.023974	73.15289	
85	425	0	0	0.026813	0	

5.3.5 Pump head calculation (ASPEN)

Q(m3/s)	pump
	head (m)
0.1104	1005.55
0.1288	939.087
Pumps in	Pumps in
Parallel 6	Series 8
O(22/2)	Mallinla
Q(m3/s)	Multiple
	Pumps
0	1943.124
0.028391	1878.353
0.066245	1694.04
0.066245	1684.04
0.094635	1424.957
0.123026	1036.333
0.143846	621.7996
0.16088	0

	Pump characteristic curve					
Q	Total Q	Head	Total Head	Q(m3/s)	Single	
(gpm)	(gpm)	(ft)	(ft)		Pump	
0	0	150	750	0	228.6028	
15	75	145	725	0.004732	220.9827	
35	175	130	650	0.011041	198.1224	
50	250	110	550	0.015773	167.642	
65	325	80	400	0.020504	121.9215	
76	380	48	240	0.023974	73.15289	
85	425	0	0	0.026813	0	

5.4 Pressure Profile

Inside Diameter 15.624 in, Stainless Steel Pipeline, Minimum flow rate

Length	Pressure	Pressure	Wall thickness 1.188 in
(km)	(bar)	(bar)	
	ASPEN	OLGA	
0	60	60	
20	43.9195577	44.7205	
40	3.36466194	11.69102	180
60	5.42936652	12.06292	160 × × × × × × × × × × × × × × × × × × ×
60	77	77	
80	51.2098695	52.5463	Pump Pump Pump Pump Pump Pump Pump
100	13.9278498	19.5827	
120	3.39639802	8.97342	
140	92.2996676	96.09732	0 50 100 150 200 250 300 LENGTH (km)
160	106.940137	110.55152	
			→ Pressure (bar) ASPEN
180	108.936926	112.7385	— Minimum Allowable Pressure (Bar) — Maximum Allowable Pressure (Bar)
200	104.513817	108.8445	Figure 5.8 Pressure Profile 15.624 in, Stainless Steel Pipeline
220	95.8042636	100.9505	
240	87.6581757	93.617	
273	82.4579806	86.8809	
273	20	20	

Inside Diameter 15.624 in, Stainless Steel Pipeline, Maximum flow rate

Length	Pressure	Pressure	Wall thickness 1.188 in
	(bar)	(bar)	
	ASPEN	OLGA	
0	60	60	
20	43.8406549	44.64159	
40	2.20717044	10.533528	
60	3.19086339	11.824416	$180 \\ 160 \times \times$
60	80	80	140 120 100 Pump U U Valve
80	53.1318192	54.46825	
100	14.7429336	20.39778	
120	3.15130926	8.728331	
140	90.9548326	94.75248	length (km)
160	104.519081	108.1305	>- Pressure (bar) ASPEN Pressure (bar) OLGA
180	105.428354	109.23	▲ Minimum Allowable Pressure (Bar)
200	99.9632354	104.29394	Figure 5.9 Pressure Profile 15.624 in, Stainless Steel Pipeline
220	90.1674847	95.31372	

240

273

273

80.9258347

74.5903902

20

86.88465

79.01331

20

Length (km)	Pressure (bar) ASPEN	Pressure (bar) OLGA	Wall thickness0.188 in
0	60	60	
20	43.91956	44.7205	
40	3.364662	11.69102	
60	5.429367	12.06292	
60	77	77	
80	51.20987	52.5463	
100	13.92785	19.5827	
120	3.396398	8.97342	40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
140	92.29967	96.09732	
140	62.29967	66.09732	
160	76.94014	80.55152	0 50 100 150 200 250 300 Length (km(
180	78.93693	82.7385	Pressure (bar) ASPEN Pressure (bar) OLGA
200	74.51382	78.8445	$-\Delta$ Minimum Allowable Pressure (Bar) -X Maximum Allowable Pressure (Bar)
220	65.80426	70.9505	
240	57.65818	63.617	Pressure Profile 15.624 in, Stainless Steel Pipeline
273	52.45798	56.8809	
273	20	20	

Inside Diameter 15.624 in, Stainless Steel Pipeline, Minimum flow rate

Length	Pressure (bar) ASPEN	Pressure (bar) OLGA	Wall thickness0.188 in
0	60	60	
20	43.84065	44.64159	
40	2.20717	10.53353	
60	3.190863	11.82442	
60	80	80	
80	53.13182	54.46825	120
100	14.74293	20.39778	100 × × × × × × × × × × × × × ×
120	3.151309	8.728331	
140	90.95483	94.75248	
140	60.95483	64.75248	
160	74.51908	78.1305	
180	75.42835	79.23	0 50 100 150 200 250 300
200	69.96324	74.29394	Length (km)
220	60.16748	65.31372	 Pressure (bar) ASPEN Pressure (bar) OLGA Minimum Allowable Pressure (Bar) Maximum Allowable Pressure (Bar)
240	50.92583	56.88465	Pressure Profile 15.624 in, Stainless Steel Pipeline
273	44.59039	49.01331	ressure rome 15.024 m, Sumiess Steer ripenne

Inside Diameter 15.624 in, Stainless Steel Pipeline, Minimum flow rate

Chapter Six: Summary and Conclusion

In this thesis project, the Oil transportation pipeline from Tehran to Semnan which has a distance 273 kilometers (figure 3.1) has been designed. Aspen plus and Olga software provide simulation environment in order to assess various factors that affect the pressure profile of a light crude oil through a Pipeline.

With respect to the minimum and maximum flow rate and velocity of a light crude oil (table 3.5), Six different inside diameter of carbon steel and Stainless steel pipeline from 10.250 to 15.624 inches have been considered and according to API 5l, maximum allowable pressure (table 3.6) has selected, the phase diagram of a light crude oil (figure 3.3) the minimum allowable pressure inside the pipeline is equal to 2.1 bar at an average temperature 22°C.

With increasing the inside diameter of the pipeline, reynolds number has increased respectively, and the friction factor goes downward, So higher inside diameter causes lower pressure drop through a pipeline. (figure 5.7) In other word the smaller diameter causes higher velocity through a pipeline thus the energy loss is higher because of higher frictional loss.

According to the ambient temperature of a intended area maximum (30°C) and minimum (16°C) temperature are considered, Analysis shows that

Pressure drop per unit of length and total pressure drop respectively for the minimum flow rate and the higher temperature (figure 5.6) is lower than the maximum flow rate and the lower temperature for each specific diameter.

Result obtained from Carbon Steel and Stainless steel (figure 5.8) demonstrates that for both the relative roughness is decreasing with increasing the inside diameter and the total pressure pressure drop for carbon steel is higher than stainless steel.

Comparison of pressure drop per unit of length for experimental data of crude oil through a pipeline with the same hydrocarbon and pipeline properties in Aspen and Olga software environment (table 5.3) demonstrates that relative point error for Olga software is lower than Aspen. Precisely With respect to the experimental data, average relative point error for OLGA software is 4.08 and for Aspen is 4.88. Pressure drop predicted by OLGA fairly matched the experimental data for a wide range of oil flow rates.

Result of 15.624 (in) Stainless steel pipeline represents that the total pressure drop during the movement of oil through a pipeline is much lower than the other selected inside diameter, so there is low energy needed to increase by pump with respect to the other diameters.

[1] Megan E. Hansen, and Ethan Dursteler. "Economic, Environmental, and *U.S.*" Oil and Gas the Safety Impacts of Transporting in Strata Organization, no. 8 (2017)Accessed April 10, 2020. http://www.strata.org/pdf/2017/pipelines.pdf

[2] Tim Williams. "*Pipeline Environmental Considerations*." Library of Canadian Parlemant, Publication no. 2012-37-E, Accessed 10 Apr. 2020. https://Lop.Parl.ca/Sites/PublicWebsite/Default/En_CA/ResearchPublicatio ns/201237E

[3] Zhou, Jun, et al. "*Route Optimization of Pipeline in Gas-Liquid Two-Phase Flow Based on Genetic Algorithm.*" International Journal of Chemical Engineering, vol. 2017, no. 1640303, 19 Jan. 2017, https://doi.org/10.1155/2017/1640303.

[4] Aske, Narve, Harald Kallevik, and Johan Sjöblom. "Determination of Saturate, Aromatic, Resin, and Asphaltenic (SARA) Components in Crude Oils by Means of Infrared and Near-Infrared Spectroscopy." Energy & Fuels 15, no. 5 (2001): 1304–12. <u>https://doi.org/10.1021/ef010088h</u>.

[5] Chang, Cheng, Q.dzuy Nguyen, and Hans Petter Rønningsen. *"Isothermal Start-up of Pipeline Transporting Waxy Crude Oil."* Journal of Non-Newtonian Fluid Mechanics 87, no. 2-3 (1999): 127–54. https://doi.org/10.1016/s0377-0257(99)00059-2.

[6] J. Bruno, Thomas. "Improvements in the Measurement of Distillation Curves. 1. A Composition-Explicit Approach." American Chemical Society, 10 May 2006, https://doi.org/10.1021/ie051393j.

[7] David, S. J. Jones. Handbook of Petroleum Processing. Springer, 16 July 2015, pp. 3–51.

[8] Ahmed, Tarek H. Equations of State and PVT Analysis: Applications for Improved Reservoir Modeling. Houston, Tex., Gulf Pub, 1 Feb. 2007. [9] Pharris, T C, and Kolpa, R L. Thu. "Overview of the design, construction, and operation of interstate liquid petroleum pipelines.". United States. https://doi.org/10.2172/925387.

[10] Robert, Katz. "Hydrodynamics (Fluids in Motion)." Unl.Edu, 1958, Accessed 25 Apr. 2020. https://digitalcommons.unl.edu/physicskatz/143/.

[11] Frank M, White. Fluid Mechanics. seventh ed., New Delhi, India, Mcgraw-Hill Education, 2017, pp. 32–51

[12] Spedding, P.L., et al. "*Prediction of Pressure Drop in Multiphase Horizontal Pipe Flow*." International Communications in Heat and Mass Transfer, vol. 33, no. 9, Nov. 2006, https://doi.org/10.1016/j.icheatmasstransfer.2006.05.004.

[13] Hamed, Mansoori. "*Study Finds Simulation Flaws in Multiphase Environment*." Oil and Gas Journal, Nov. 2014, Accessed Aug 2, 2020 https://www.researchgate.net/publication/283054132_Study_Finds_Simulat ion_Flaws_in_Multiphase_Environment.

[14] Aspen Tech Organization "Modeling Petroleum Processes.",2009, https://sites.chemengr.ucsb.edu/~ceweb/courses/che184b/aspenplus/Gettin gStarted%20Petroleum.pdf.

[15] Media, Yu. "Weather Atlas | Weather Forecast and Climate Information for Cities All over the Globe." Weather Atlas, 2020, Accessed 10 Apr. 2020. https://www.weather-atlas.com/.

[16] J. Trench, Cheryl. "How Pipelines Make the Oil Market Work – TheirNetworks, Operation and Regulation." Allegro Energy Group, Accessed 29Apr.2020.,Dec.2001,https://www.iatp.org/sites/default/files/451_2_31375.pdf.

[17] Kamal IM Al-Malah. *"Aspen plus, Chemical Engineering Applications."* Hoboken, New Jersey, Published by John Wiley & Sons Inc, 2017. [18] Azom Materials Organization, "Vapor Pressure in the Transport, Storage, and Bending of Crude Oil.", 12 June 2019, Accessed 25 Aug. 2020. https://www.azom.com/article.aspx?ArticleID=18157.

[19] William L, Luyben, and American Institute Of Chemical Engineers. "Distillation Design and Control Using Aspen Simulation". Hoboken, N.J., John Wiley & Sons, 2013, pp. 9–48.

[20] Manuel A. Falconi, et al. "Model of Pressure Losses in Pipes during the Transport of Heavy Oil with 11 API Gravity." International Journal Of Mechanics, vol. 12, no. 1998–4448, 2018, https://www.naun.org/main/NAUN/mechanics/2018/a042003-aba.pdf.