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Abstract

In various contexts, network embedding techniques have been developed for

performing analysis on a single graph. This approach has been proven to work

for different applications, such as node classification or link prediction. A good

network embedding algorithm is capable to capture only the relevant features of

the graph and to reproduce them in a low-dimensional Euclidean space.

In the context of neuroscience, networks are currently used for representing the

system of connections in the brain with the purpose of determining the charac-

teristics of a pathological brain. However, discriminating a healthy human brain

connectivity network from a clinical one using common network descriptors could

be misleading. In fact, a difference in the currently used graph measures could

not be detected or could be insufficient for the discrimination. For this reason,

we investigate network embedding and extend its fields of application to human

connectivity network. Moreover, we use the embedding for performing graphs’

comparison. Finally, we propose a definition of the representative network of a

set of graphs. This representative captures the properties which are in common in

the group. In this way, we confirm the existence of a healthy signature, namely a

brain structure which is shared by all healthy individuals.
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Chapter 1

Introduction

The network model and its natural mathematical representation into graphs

find application in many different contexts. Network analysis requires the defini-

tion of measure over the constituent elements of the network and the focus on a

single feature each time. In that context, tools to represent a graph and to cap-

ture at the same time the relevant characteristics of a network have started to be

developed. Among all, network embedding technique has shown to be powerful in

different types of application.

The topic of this work is to exploit embedding capability in capturing the relevant

features of brain connectivity networks. In the majority of cases, the embedding

techniques have been developed as a dimensional reduction tool which could be

used for analysis in a single huge network, for instance in the task of node classi-

fication or link prediction. In the study of brain connectivity networks, we would

like to find which are the discriminating properties in the identification of the class

of membership of each considered graph. However, it is evident that, because of

the subject variability, no network could be exactly equal to another one, even if

they belong to the same group. Namely, even under the same healthy conditions,

networks of different subjects would be different. From an ideal point of view, we

would like to capture in the embedding space this variability, highlighting which

are the specific properties of the class. The final goal would be to generate a rep-

resentative graph (an average network) for each of the considered class. Thanks
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to this average network, we would like to understand where the dissimilarities be-

tween classes are located and how they are affecting the connectivity. For that

reason, we do not limit our attention to the embedding computation, but also to

the comparison among graphs.

The following report is organized as follows. In the first chapter, a short recall

of graph theory necessary to better understand the proposed problem is given

together with a general introduction about brain connectivity. In the following

chapter, the state of the art in graph embedding is presented, focusing on a special

algorithm and in a way to compute graph similarity through embedding method.

Next, an original method to tune the embedding parameters is proposed, together

with an innovative scheme for the definition of a representative class graph. The

mean graph should well represents the variability among individuals of the same

group, enlightening the features which make the class different from the other. A

presentation on the datasets and on the experiment framework which have been

used for the evaluation of our contributions are presented in the following chapter.

Finally, the sixth chapter is dedicated to critical discussion of the observed results.

As a conclusion, we propose some open problems which could be explored in the

future.
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Chapter 2

Brain Connectivity Graphs

2.1 Recall of Graph Theory

2.1.1 Notation and nomenclature

Definition 2.1. An unweighted graph G is a pair G = (V , E).

Here, V is a set of vertices or nodes. Each node represents an unit of the network

we are considering.

E ⊆ V×V is the set of edges among the nodes. In this work we will consider graph

where each link e ∈ E is a pair of nodes e = {u, v} u, v ∈ V which corresponds to

an existing connection among the vertices u, v.

Since the pairs of nodes are not ordered, the graph we consider, is said to be

undirected.

Definition 2.2. The adjacency matrix A of an unweighted graph G, is a binary

matrix defined as follows:

A = (auv)u, v∈V =

1 if {u, v} ∈ E

0 otherwise

For an undirected graph A is symmetric.

Definition 2.3. A walk over a graph is a sequence of nodes where each pair of

consequential nodes is connected by an edge.
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A path is a walk in which each node except for the first and the last one, is present

in the sequence only once.

In the case of unweighted graph, the length of a walk is defined as the number

of edges in the walk itself.

2.1.2 Proximity functions between a pair of nodes

In this section, we introduce the concept of proximity between a pair of vertices

in the graph. These definitions could be found in [15, 6, 5]. Whereas the two last

definitions are based on [4].

• I order proximity

Definition 2.4. The first order proximity in a graph is the local pairwise

proximity between two vertices. For each pair of vertices the presence of an

edge, Auv indicates the first-order proximity between u and v. If no edge is

observed between u and v, their first-order proximity is 0.

For each vertex u we denote p
(I)
u = (Au1, . . . , Au|V|) the vector of its first-order

proximity.

• II order proximity

Definition 2.5. The second-order proximity between a pair of vertices {u, v}
in a graph is the similarity between their neighborhood structures. Math-

ematically, let p
(I)
u denotes the first-order proximity of u with all the other

vertices, then the second-order proximity between u and v is determined by

the similarity between p
(I)
u and p

(I)
v . If no vertex is linked with both u and v,

the second-order proximity between u and v is 0. For each vertex u we de-

note p
(II)
u the vector of its second-order proximity. The ith entry corresponds

to the scalar product between p
(I)
u and p

(I)
i .

Example 2.1. Referring to Figure 2.1:
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p
(I)
1 =

( 1 2 3 4 5 6 7

0 0 0 0 1 1 0
)

p
(I)
1 = p

(I)
2 = p

(I)
3 = p

(I)
4

p
(I)
5 =

(
1 1 1 1 0 0 0

)

p
(I)
6 =

(
1 1 1 1 0 0 1

)

p
(I)
7 =

(
0 0 0 0 0 1 0

)

p
(II)
5 =

( 1 2 3 4 5 6 7

0 0 0 0 4 4 0
)

p
(II)
6 =

(
0 0 0 0 4 4 0

)

Figure 2.1: In the figure node 6 and 7 are first-order proximal since they are

connected one to another. Nodes 6 and 5, instead, are second-order-proximal

since they share links with nodes 1, 2, 3 and 4. Figure from [6]
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Figure 2.2: Top: an example of graph with nodes’ labels. Bottom: labels indicate

the position which are structurally isomorphic a ≡ c ≡ h ≡ j, b ≡ d ≡ g ≡
i, e ≡ f . Figure from [4]

• Structural equivalence of nodes

The concept of structural equivalence of nodes is related to the way the

node is connected with the other nodes in the graph. In the context of social

networks, the structural equivalence refers to the role the node-associated

agent is playing in the networks, especially looking at the type of links with

the other equivalence classes. In the case of brain connectivity networks,

knowing the role that each node is playing, is fundamental in a neurological

interpretation of brain connections. Discursively, two vertices of the same

network are said to be structurally equivalent if they have similar connections

with the rest of the graph. To give a mathematical definition, we recall the

definition of an automorphism.

Definition 2.6. An automorphism of a graph G = (V , E) is a bijection π

between G and itself such that:

∀u, v ∈ V , {u, v} ∈ E ⇐⇒ {π(u), π(v)} ∈ E
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That means that if two vertices are connected in G their images through

the map π must be connected too. An obvious automorphism is the iden-

tity map, however not-obvious automorphism could exist. It is worth to

emphasize that the nodes’ labels are not taken into account defining an au-

tomorphism and therefore, a graph and its automorphism image without

labels are indistinguishable.

Definition 2.7. Two nodes v, w ∈ V are structurally isomorphic or auto-

morphically equivalent v ≡ w if there exists an automorphism π : G → G
such that π(v) = w

In our case, two regions of the brain are said to be structurally equivalent

if their representative nodes in the network are structurally isomorphic. An

example of automorphically equivalent nodes is shown in Figure 2.2

Proposition 2.1. If two nodes are structurally isomorphic, so are their

adjacent nodes.

v ≡ w =⇒ ∀u ∈ V s.t.{v, u} ∈ E ∃u′ ∈ V s.t. {w, u′} ∈ E

for which it values:

u ≡ u′

Proof. By hypothesis we have v ≡ w, so it exists an automorphism π such

that w = π(v). By definition of automorphism:

{v, u} ∈ E ⇐⇒ {π(v), π(u)} = {w, π(u)} ∈ E

Let u′ equals to π(u) then we have {w, u′} ∈ E for which it values u ≡ u′ via

π.

• Community similarity of nodes

As for the structural equivalence, in the case of community similarity of

nodes the focus is on the way each node is linked with all the others in the

graph. However, there is not an unique way to define community similarity.
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Figure 2.3: Example of graph with strong community structure. The nodes could

be divided into 3 groups of nodes strongly interconnected. Figure from [20]

In fact, the way of define a community of nodes of a network hardly depends

on the application. For our purpose, it is sufficient to know that the commu-

nity structure of a graph is given by the presence of groups of nodes which

are strongly connected one to another and, at the same time, present few

links with nodes of different group.

2.2 Brain Connectivity

Brain connectivity has multiple meanings, depending on the specific level of

brain which is taken into account. In this work, we consider functional connectiv-

ity in human brains.

Functional connectivity refers to the way information spreads in the brain. In fact,

the brain activity is characterized by neurons and group of neurons which commu-

nicate one to another. Using the terms functional connectivity we want to refers

to this system of interactions. We will use connectivity and brain connectivity

as synonyms as-well. Functional neuroimaging methods, such as functional MRI

(fMRI), permit to collect data and to analyze brain in this particular context.

In this work, the fMRI data are acquired in a state of resting: the brain imaging
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aquisition is performed when the subjects are daydreaming and are not supposed

to execute any particular tasks. It is natural, to represent the connections among

the brain regions as a graph, the nodes are the specific regions we consider and

the edges indicate the presence of a connection between two nodes.

The networks which are considered in the presented report, have been previously

built, according to the framework explained in chapter 5.

9
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Chapter 3

State of the art in network

embedding

Network embedding can be seen as a dimensionality reduction tool which maps

a network into a vector space. The embedding could be performed at different

levels, that means it could take as input different parcels of the graph. It could

be defined over the nodes, over the edges, over some substructures of the graph

or even over the entire graph. In this last case, each graph would be mapped

into a single point in the embedded space. We focus on nodal embedding, namely

a mapping function which takes as input a single vertex of the graph. In this

particular case, the embedding could be defined as follows:

Definition 3.1. For a given network G, a network embedding is a mapping func-

tion Φ : V → R|V|×d, where d� |V| is the dimension of the embedding space. This

mapping Φ denotes the embedding of each node v ∈ V .

Z denotes the matrix having as rows the embedding vectors of each node.

Embedding algorithms could be classified according to the characteristics they

preserve in the embedding space, such as first-order preserving etc. More details

about this classification could be found in [6].

Following [5], we briefly present the main steps which could be found in the ma-

jority of the embedding algorithms. According to this model, a general algorithm

for graph embedding GEM -D[h(·), g(·), d(·, ·)] is characterized by:
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• a node proximity function

h(·) : R|V|×|V| → R|V|×|V|

which is a function of the adjacency matrix

• a warping function

g(·) : R→ R

which determines how to measure the distance in the embedding space. The

distance between two vertices in the embedding space is given in the entries

of the embedded proximity matrix g(ZZT ). g is applied element-wise and is

monotonically increasing.

• a loss function

d(·, ·) : R|V|×|V| × R|V|×|V| → R

which is required to the formulation of the embedding problem.

The general formulation of the embedding as an optimization problem is repre-

sented by:

Z = arg min
Z∈R|V|×d

d(h(A), g(ZZT )) (3.1)

d(·, ·) is measuring the differences in the nodes proximities between vertices in the

graph and their embedding vectors.

3.1 Node2vec

Among the other methods, we focus on a particular embedding algorithm which

has been proven of being able of capture the structural equivalence of nodes ([9]).

Vectors which correspond to nodes having similar roles are clustered together using

k-means algorithm in the embedding space. This algorithm has been proposed in

[9]. Moreover, it has recently been used in the context of brain connectivity graph,

with good results in the characterization of the correspondence relations among

brain regions ([14]). node2vec is based on the Skip-gram architecture which is

used to learn a features representation of words based on their context [12]. In the
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same way, in the node2vec model, the concept of context of a word is translated

into the one of neighborhood of a node. Precisely, node2vec defines a flexible no-

tion of a node’s neighborhood, depending on the characteristics we are interested

in. Especially, two opposite characteristics are given by structural or community

similarity of nodes.

The neighborhood is not based on a single similarity, but it can be defined through

out the interpolation of two searching strategy.

There are two extreme sampling strategies: the breadth-first sampling (BFS) and

the depth-first sampling (DFS). For each vertex, the algorithm computes a neigh-

borhood set of a given number of nodes. The BFS strategy assigns to the neigh-

borhood of a node, nodes which are immediate neighbors of the source. Whereas,

the DFS neighborhood is composed by nodes which are sequentially sampled at

increasing distances from the node itself (Figure 3.1). As said before, node2vec

allows to smoothly interpolate between BFS and DFS.

Figure 3.1: Generation of a neighborhood set of given cardinality equals to 3

for node u, according to the two different sampling strategies. In red the BFS-

neighborhood (s1, s2, s3). In blue the DFS-neighborhood (s4, s5, s6). Figure from

[9]

Definition 3.2. Given a neighborhood sampling strategy S over the nodes, the

neighborhood of size k of a node v ∈ V is the set NS(u) composed by a sample of

k nodes extracted following the strategy S.

In terms of GEM-D model ([5]), node2vec is composed by the following three

building blocks:

13



Proximity function As a proximity function node2vec uses an approximation obtained through

random walk simulation. The proximity depends on the following memory

matrix. More details could be found in the appendix.

Over the networks nodes, we define a memory matrix as follows:

Muv =



1
p

u = v

1 Auv = 1 u and v are adjacent

1
q

luv = 2, u and v have minimum path length equals to 2

0 otherwise

(3.2)

p and q are the parameters used to interpolate among the two searching

strategies. A small p implies breadth-first sampling, while a small q corre-

sponds to depth-first sampling. The proximity matrix II(L,p,q) is depending

on an additional parameter: the length of the generated random walk L.

The entry (II(L,p,q))uv is the expected number of times of visiting node v,

starting from u and walks L steps sequentially. II(L,p,q) is a function of M

and A, the adjacency matrix. (See the appendix for the complete definition)

Warping function The warping function used in node2vec, is the exponential

g(x) = exp(x)

Loss function node2vec solves the optimization problems of maximizing the log-probability

of observing a network neighborhood Npq(v) for a node v conditioned on its

feature representation Φ(v):

max
Φ

∑
v∈V

logP (Npq(v)|Φ(v)) (3.3)

This optimization problem is equivalent to the minimization of the KL-

divergence between the two probability distributions obtained after the nor-

malization of II and g(ZZT ).

In synthesis, the node2vec embedding function is determined by the following

parameters:

14



d dimension of the embedding space

N number of random walks per node used to estimate the proximity matrix

L random walk length

k size of the neighborhood set for each node

p return parameter, control of the sampling strategy, small values → BFS

q in-out parameter, control of the sampling strategy, small values → DFS

3.2 Graphs similarity through embedding meth-

ods

In our project, we are interested in comparing networks which belong to differ-

ent classes. For instance, we would like to be able to discriminate a network which

belongs to a healthy subject from a pathological one. This comparison could be

directly performed in the network space, for example, using one of the measures

proposed in [21]. However, our purpose is to explore the embedding potential in

the analysis of brain connectivity. For this reasons, we were searching not only an

embedding procedure, but also a way to compare graphs in the embedding space.

With this goal, we found the work [13] newsworthy. In particular, inspired by

the pyramid match kernel used in computer vision, the authors have designed an

equivalent version for the graph, named pyramid match graph kernel. Two ver-

sions of the kernel are provided, one regarding graph having unlabeled nodes and

a second version for the labeled ones. The main idea of the algorithm is to count

the matching of vectors in the embedding space at different resolution levels. In

their setting, they proposed an embedding based on the eigenvectors of the adja-

cency matrix and their computed node-representing vectors lay in a d-dimensional

hypercube. Given a number of level, a grid of cells having increasing size in one

dimension for each level is computed. Two vectors are said to match if they belong

to the same cell. Each match is weighted according to the dimension of the region

15



in which it appears. Counting the matching within two embedded graphs, we are

able to compute their proximity. In the case of labeled nodes, the matching is valid

only if it appears between two node vectors with the same label. A toy example

is shown in Figure 3.2.

Figure 3.2: A toy example of the pyramid match graph kernel for labeled graph.

In two dimensions, we increase the resolution on dimension d 1 from left to right.

A matching in the resolution grid is indicated by a green circle. Matching which

are present at all resolution levels, like the ones for node having label 1, receive a

high weight in the proximity between the two graphs.
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Chapter 4

Contributions

The purpose of our work is to determine if a network embedding technique

could be used to capture variability among classes and to be used to spot where

the differences among healthy and pathological brain connectivity are located.

Two points have to be taken into account in this purpose.

First, we assume that the relevant differences in the connectivity graphs are es-

pecially given by the changing in the role of some nodes in terms of connectivity

structure. Previous works [2] have highlighted, that in connectivity network there

are some nodes which are playing a key-role in the spreading of information for

consciousness. For example, comparing data of comatose patients with healthy

controls, it has been proven that same regions in the brain play different roles in

the connection. The nodes which correspond to these regions, are called hubs. To

be considered a hub, a node has to behave in an unusual way. For example, we

could interpret as a hub a node with an unusually high degree or centrality. Thus,

in our purpose an ideal embedding would represent a hub faraway to a non-hub

node.

Secondly, a comparison through the embedding space would theoretically be able

to well-classify data. However, it is not enough to classify. A doctor is usually able

to discriminate a brain disease without computing the brain connectivity network.

What could be interested in our work is to understand which are the relevant dif-

ferences for the classification, with the final goal of determine an average graph. If
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this average network is representative enough, we would like to classify new data

just looking at the distance with the average graph.

4.1 Automatic parameters tuning method

As it has been explained in Chapter 3, node2vec algorithm depends on a sub-

stantial number of parameters. We propose a framework to tune these parameters.

Every combination of parameters determines a different nodal proximity function

in the definition of the embedding algorithm. Thus, it would preserve different

features of the graphs in the embedding space. Moreover, it is important to no-

tice that setting the parameters’ values referring to a single graph’s embedding

would result in the necessity of using different parameters for each single graph.

However, in this way we lose the possibility of a fair comparison of graphs in the

embedding space. Therefore, since our purpose is capturing the class features and

not only those of a single graphs, we propose to set the parameters according to

the obtained results in the graphs comparison. The obtained embedding, thereby,

would eventually be able to capture the shared characteristic of a group of graphs.

To better explain, we would like to perform a graph embedding through which the

computed kernel proximity in the same class is maximized, while the proximity

between different class is minimized.

Since all the graphs in our dataset are comparable from the point of view of number

of nodes and edges, we intend tune parameters using a single dataset and apply

the same computed values to perform the classification on the other datasets. In

this way we expect to find parameters which could be re-used in similar brain

connectivity dataset without going through a new parameter tuning process. In

addition, this parameter tuning method is general and not related to the accuracy

results in classification. However, in our framework it is related to the dataset we

decide to use for evaluating the embedding performance.
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4.2 Embedding performance evaluation

We define two measures to evaluate the embedding performance for a given

set of parameters. With some adjustments, this framework could be applied in

dataset having a different configuration of the data classes. We report the case

where, each class is composed of a pair of graphs.

Let D = {Gi}i≤N be the collection of graphs in the dataset, where each G
has an associated one G̃ and let be G the square symmetric matrix of dimension

|D| × |D| = N × N , such that G(i,j) = K(Gi,Gj), where K is the pyramid graph

matching kernel. The first step of our parameter tuning framework is to compute

the embedding under a given set of parameters. Then, we calculate the kernel

matrix over all the data. This matrix G depends on the configuration of parame-

ters of the embedding. Afterwards, for each row of G, we estimate the frequency

distribution of the proximity values f . Hence, we are looking at the proximity’s

values between a fixed graph and all the other graphs in the collection D.

Considering a graph Gi, we refer to the proximity value between Gi and G̃i,
K(Gi, G̃i), as its minimal proximity threshold.

We say that the graphs having a proximity greater or equal to a fixed threshold

are close to the considered one. Theoretically, we would like to find that, pairing

each graph to its closest, the resulting sets of two elements are composed by the

two graphs G and G̃. However, we relax this constraint defining a subset of graphs

- a close-set - which are similar to the considered one and we simply require that

G̃ belongs to the close-set of G.

Definition 4.1. The close-set of threshold τ of graph Gi is

Cτ (G) = {Gj ∈ D s.t. K(Gi,Gj) ≥ τ}

Definition 4.2. The graph Gi is well-paired or correctly paired with respect

to the threshold value τ , if

G̃i ∈ Cτ (Gi) ⇐⇒ τ ≤ K(Gi, G̃i)
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We would like at the same time to maximize the number of well-paired graphs

and their minimal proximity threshold. Since, the proximity distribution differs

from a graph to another we want to maximize the minimal proximity threshold

looking at its position in the considered distribution. We give, then, the following

definitions.

Definition 4.3. Given a close-set Cτ (Gi), its relative dimension is given by the

ratio between its cardinality and |D|:

|Cτ (Gi)|
|D|

Osservation 1. The relative dimension of a close-set Cτ (Gi) is equal to (1 −
Fi(τ)) where F is the cumulative distribution function of the proximity values for

graph Gi.

The relative dimension of the close-set of the minimal proximity threshold,

represents the percentage of graphs in the collection which needs to be declared

similar to the given graph to correctly pair it.

We evaluate the performance of an embedding looking at two measures.

Definition 4.4. Given a configuration of parameters π and the node2vec embed-

ding Φπ, its average cumulative proximity frequency µ is the average over

all the data in the collections of Fi(K(Gi, G̃i)).

µ =

∑
i≤N Fi(K(Gi, G̃i))

|D|

The average cumulative proximity frequency is inversely proportional to the

relative dimension of the close-set of minimal proximity threshold in the collection.

For a given graph Gi, the greater Fi(K(Gi, G̃i)) is, the smaller the relative dimension

of CK(Gi,G̃i)(Gi) and so are their average.

After having determine the average cumulative proximity frequency of the em-

bedding Φπ on the collection D, we can define the following well-paired counting

with respect this average:
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Definition 4.5. Let µ be the average cumulative proximity frequency. For each

graph Gi, we set the proximity threshold equal to F−1
i (µ). The well-paired counting

is the number of well-paired graphs in the collection using this value.

Using this framework, the close-sets are not symmetrical and the similarity is

not a reciprocal relation. In fact, we are not determining any clusters of the graphs,

we are just looking at a possible way to associate them one to another. Moreover,

since each close-set is defined using the proximity distribution of the considered

graph, it could happened that the graph does not belong to the close-set of some of

its similar. However, we consider that for our application it is better to associate

each graph to some others instead of setting the same proximity threshold for all

the data and finding that some of the graphs could not be associated at all. In

fact, an embedding graph could be very close or very far from all the others graphs

in terms of absolute proximity value, nevertheless we would like to consider the

case in which its higher proximity is with its corresponding.

4.3 Definition of a representative graph

A second goal of our study is to create a representative graph for each class.

Previous works have defined a average graph in the network space, taking into

account the average of the adjacency matrices of each class or selecting edges

which are proven to be present in all the graphs of the class. We propose an

innovative approach using a network embedding algorithm. Our proposal requires

labeled graphs with labeled nodes. All the graphs have the same number of nodes

|V|.
Having at disposal a labeled set of graphs, we consider all the networks which

belong to the same class. As we have explained before, any nodes embedding

algorithm results into a vertex-associated vector in Rd. Let D = {Gi}i≤N be a

collection of graphs embedding. For our application, we represent a graph as a

bag-of-vectors Gi = {vi1, vi2, . . . , vi|V|} where vi1 = (vi11 , · · · , vi1d) ∈ Rd is the

embedding vector of node 1, etc. Each node has a unique label. Let C1, C2, · · · , Ck
be a partition of D where each set Cj corresponds to a class of graphs. For each
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class we define a representative graph in the following way. Let’s say class j is

given by Cj = {G1, · · · ,Gn}, then its representative graph Ḡj is

Ḡj = {v̄1, v̄2 · · · , ¯v|V|}



v̄1 = 1
n
(
n∑
i=1

vi11 ,
n∑
i=1

vi12 , · · · ,
n∑
i=1

vi1d)

...

v̄k = 1
n
(
n∑
i=1

vik1 ,
n∑
i=1

vik2 , · · · ,
n∑
i=1

vikd)

...

¯vi|V| =
1
n
(
n∑
i=1

vi|V|1 ,
n∑
i=1

vi|V|2 , · · · ,
n∑
i=1

vi|V|d)

For each node, we consider the set of the embedding vectors obtained through the

mapping of all graphs in the class. Then, we average components by components,

determine the baricenter. The output of this process is a set of vectors, where each

vector is associated to a given node in the graph. This output can be interpreted

as a virtual embedding of a representative graph.

A reconstruction of this graph is also possible. Indeed, it is sufficient to invert

the optimization problem which has been used to define the embedding map.

Knowing the expected number of edges, it is possible to determine a proximity

function over the node and to infer a possible adjacency matrix. However, the

reconstruction framework is not part of this work.

This proposed method is inspired by the graph kernel which is used to measure the

proximity among the graphs. In fact, we are implicitly assuming that the vector

position in the embedding space should be related to the associated-node’s label.

Moreover, since the embedding is supposed to capture the structural equivalence

of nodes, we conjecture that for individuals in the same class same brain region

behaves in a similar way for the connectivity. Finally, the choice of average each

node-embedding vector is justified by the fact that the similarity between two

graphs is evaluated according to the vector matching in the embedding space.
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Chapter 5

Material and method

5.1 Data

Brain functional networks definition

For this section we refer to [3],[2].

The definition of the functional network is achieved through out different

phases. First, the acquired fMRI data are aggregated over regions which are

determined according to the anatomical labeling proposed in [17]. Following this

parcellation, the brain is partitioned in 45 regions of interest per hemisphere. Thus,

in total there are 90 regions which are listed in table B.1. For each zone, a unique

time series signal is determined: by averaging the fMRI time series over all vox-

els in each parcel, weighted by the proportion of gray matter in each voxel. The

following stage consists in the application of the discrete wavelet transform to the

fMRI time series. Thanks to this procedure, each time series is decomposed into a

set of compactly supported basis function, which are uniquely scaled in frequency

and located in time. As a results, for each subject, different fMRI time series

at distinct scales are at disposal. At each scale, which represents an interval of

frequencies, the correlation among regions is estimated. In our study, the focus is

given to a low frequency bound, depending on the considered dataset, since it has

been observed that the resting state information activity is capture at a frequency
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Figure 5.1: Framework for the definition of the graph. Courtesy of Sophie Achard,

[http://www.gipsa-lab.grenoble-inp.fr/∼sophie.achard/Tutorial brainwaver]

lower than 0.1Hz. By thresholding the selected correlation matrix, it is possible to

obtain a binary matrix which represents the adjacency matrix of the final graph,

whose nodes are given by the parcels. The threshold is tuned for each subject

in order to compute a binary matrix with a given non-zeros entries number. In

the graph construction, the number of edges of the expected network is previously

chosen (we will refer at this number as cost). Thus, for each subject the threshold

is different and it is selected to obtain the wanted cost.
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Datasets

In our study, we have access to different data. You could find a resume in Table

5.1 (appendix). For each dataset we have at disposal five versions of graphs at

different cost: 400, 800, 1200, 1600 and 2000 edges.

1. HCP test retest

This dataset belongs to the collection of the Human Connectome Project.

100 healthy subjects underwent resting state f-MRI scanned in two different

days, providing 200 connectivity graphs, a pair for each subject.

2. Coma and Controls

This dataset is composed by 37 subject, 20 healthy controls and 17 comatose

patients.

3. Young and Elderly

This dataset is composed by the scans of 26 individuals. 15 are classified as

younger and are aged 18–33 years and 11 classified as older participants who

are aged 62–76 years.

4. ABIDE

The Autism Brain Imaging Data Exchange (ABIDE) dataset is composed

by 866 graphs. 402 subject with autism spectrum disorders and 464 healthy

controls.

5. TBI This dataset is composed by 20 controls and 24 patients who reported

traumatic brain injuries. For 15 patients, two scans are provided.
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Dataset overview

Name Number of Data Reference

total class 1 class 2

HCP test retest 100 × 2 x x [16]

Coma 37 Control : 20 Comatose : 17 [2]

Young and Elderly 26 Young: 15 Elderly: 11 [1]

ABIDE 866 Control: 464 ASD: 402 [7]

TBI 44 - 15× 2 Control : 20 Injured : 24 [7]

Table 5.1

5.2 Experiments framework

5.2.1 Tuning parameters

We decide to use the HCP data for the tuning of the parameters. Referring to

the notation introduced in chapter 4, the pair (G, G̃) is composed by the graphs

of the same subject in the different scans. Using this dataset for the tuning, we

expect to maximize the proximity between graphs of the same subject, forcing the

embedding to capture the characteristics which are relevant in brain connectivity.

Indeed, a parameters configuration which estimates similar embedding for similar

graphs, is assumed to reproduce the specificity of brain connectivity network.

In our experiments, we focused on the data of cost = 400. Since the set of

parameters and their possible values is not discrete and since, due to the embedding

definition, it was not possible to write the tuning of parameters as an optimal

problem, our results are expected to correspond to sub-optimal solution. We

would evaluate the performance of the embedding in 5 turns, focusing each time

on a single parameter. After having chosen the parameter to be tuned, we define a

set of its possible values where we would estimate the goodness of the embedding.

We fix all the other parameters to some standard values {walk-length = 30, number

of walks per node = 18, size of the neighborhood set per node = 3, p = 1, q =
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Figure 5.2: Clustering results on the network Les Misérables. The embedding is

performed using a configuration which preserves structural equivalence and then

the nodes are cluster using kmeans. Figure from [9]

2 }. These values are chosen looking at the ones used in the previous works

[9, 14]. Especially, in [9] they used {dimension = 16, p = 1, q = 2 } to embed

Les Misérables network ([10]) which has characteristics similar to the networks in

our datasets. Concerning the cost and the node numbers, Les Misérables has 77

nodes and 254 edges, while our data have 90 nodes and 400 edges. Using their

configuration, they were able to cluster the nodes according to their structural

role as it is shown in figure 5.2. We set the remaining parameters ( walk-length,

number of walks per node and size of the neighborhood set per node) according

to the ones used in [14] on the HCP dataset.

Since the embedding depends on a random walk generation process, even if it

is performed on the same graph it embeds nodes in different vectors every time.

Therefore, we evaluate the results over 50 different runs each time. The tuning

order is given by dimension, walk-length, neighborhood size, (p,q) parameters and

number of walks. From the second turn on, the already-tuned parameters are fixed

to the value which has achieved the best performance in their corresponding turn.

For every turn, we select a set of possible values for the considered parameter.

This set always includes the values used in [9] and [14].
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Figure 5.3: X-axis: proximity value Y-axis: frequency density function Example

of proximity distribution for network 100307 - first scan. The blue vertical line

corresponds to the value of the proximity with network 100307 - second scan. The

yellow area is used to evaluated the performance of the embedding. Indeed, this

area corresponds to the cumulative distribution evaluated in the proximity with

the second scan. Averaging the value of this area over all the data, we determine

µ. The final value F−1
(1003007,first scan)(µ) is indicated by the dashed vertical line. All

graphs which have a proximity values greater than this value belong to the close-

set of (1003007, first scan). Since this value is lower than the one on the blue line,

(1003007, first scan) will count as well-classified.
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Figure 5.4: Scheme of the two classification procedures

5.2.2 Classification and representative graph

Using the parameters’ values we have determined in the previous experiments,

we perform the classification on each dataset. We use two procedures: kernel-SVM

and comparison through representative.

For 100 times, we randomly select a subset of training data, perform the embedding

and calculate the gram matrix using the pyramid matching graph kernel. Thus,

we use kernel-SVM to predict the labels on the test data.

A similar procedure is used to classify the data using the representative graph. In

fact, we determine 100 different subsets of training data. Each training subset is,

then, partitioned into the two classes. Afterwards, the representative embedding

graph is evaluated for both classes. In order to classify the test data, we compute

the proximity between the test and the two representatives and we predict the

graph label, according to the one which is closer. A schematic representation of

the process for the classification could be found in Figure 5.4.
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Chapter 6

Results and Discussion

6.1 Results on the parameters tuning

(a) average cumulative proximity fre-

quency

(b) average counting of well-pairs

Figure 6.1: dimension tuning results

We first decide to tune the dimension. We would like to use a small dimen-

sion for two reasons. First, representing the embedding in a low dimensional

space, would allow an easier interpretation and evaluation of the differences among

graphs. Moreover, the kernel used for the comparison requires to create 24 cells per

dimension per each pair of graphs. Therefore, using a low dimension corresponds

to a low-computational algorithm in the complete experiments.
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We show in Figure 6.1 the observed results for this parameter. The best value

is obtained as a trade-off between the two measures used for the performance eval-

uation of the embedding. For the previous reason, we decide to set the dimension

equals to 3. In comparison, with the [14] where the used value is 30, our estima-

tion shows that the increasing between 16 and 30 is not enough for justifying the

setting of the dimension to the higher value.
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(a) average cumulative proximity fre-

quency

(b) average counting of well-pairs

(c) Top: walk-length’s tuning results

(d) average cumulative proximity fre-

quency

(e) average counting of well-pairs

(f) Top: size of the neighborhood set per node tuning results

(g) average cumulative proximity fre-

quency

(h) average counting of well-pairs

(i) Top: number of walks’ tuning results

Figure 6.2: Tuning results
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The second parameter to be tuned is the length of the generated random walk.

In [5], it has been proven that the walk length should be related with the diameter

of the graph, which is the maximum of the minimal path length between two

nodes in the graph. They suggest to use the diameter as walk length. However,

our results in Figure 6.2 give a best score for a length of two times the diameter.

A possible explanation for the discrepancy between our work and [5], could be

related to the type of analysed networks. In fact, in [5], the focus is on a single

social network to be clustered in community of nodes. They found that a too small

walk length (minor than the diameter) fails to capture the community structure,

while a too high length determines the same proximity over all the nodes, failing

again. To our intuition, instead, to use twice the diameter length allows to go from

a node to any others and to come back. A walk of this type, will represent the way

the information is spread in both the directions. In this case, having more than an

occurrence of the same node in the same walk could be significant for determining

its structural role.

All the results for the other parameters are displayed in Figure 6.2. We compare

the value for the number of random walks with the ones used in [14] which is 800.

As we can notice in the plot of our results, the performance for 800 is even lower in

the counting of well-pairs respect the other values. In [14], there is no explanation

in the way they have calibrated the parameters, we limit to report the fact that in

our framework their setting is not proven to be the optimal. The only value which

is in common is 3 for the neighborhood size. In general, we find that the overall

trend for each parameter is meaningful. The plot always reaches a peak and then

remains stable. Hence, empirically, after a point there are no better results which

could be achieved and we are selecting the best values possible in our experiments.

It is worth to spend some words on the sample strategy’s parameters p and q.

We evaluate the performance of the embedding in 3 different configurations the

two proposed values in the [9] for the embedding of Les Misérables network and

the pair which is used in [14] on the HCP dataset. We observe, that the results

(Figure 6.3) are all very similar. On the other hands, the variance in the average

counting of well-pairs is higher for the configuration (1,2) which corresponds to the
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sampling strategy capturing the structural equivalence. We decide then to keep

them equal to these standard values.

(a) average cumulative proximity fre-

quency

(b) average counting of well-pairs

Figure 6.3: p and q parameters’ tuning results

The final parameters’ values are then in 6.1:

Parameters Value

d dimension of the embedding space 3

N number of random walks per node 20

L random walk length 2×diameter

k size of the neighborhood set per node 3

p return parameter 1

q in-out parameter 2

Table 6.1
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6.2 Results on the classification

Figure 6.4: Results in the accuracy classification over all the dataset through the

two different procedures. In blue the classification through support vector machine

is apply on the pyramid graph matching kernel used to compute the graphs’ prox-

imity. In orange the classification obtained calculating the proximity given by the

pyramid graph matching kernel between the test and the representative graphs of

each class.

In terms of accuracy results through the two classification methods, we observe

a variability on the datasets. Referring only to the SVM method, we notice that

it gives as outcome a very good classification in the data of coma. The accuracy

remains appreciable for TBI and Young&Elderly, but is equal to a random classi-

fier for the ABIDE. Before giving a possible explanation for these differences, we

would like to stress the encouraging results of the second classification method. In

fact, for all the datasets the obtained accuracy is perfectly aligned within the two

methods. We interpret this alignment as a validation of the proposal definition

of a representative graph. It is important to say that the way our parameters
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are calibrated is not in order to achieve the best accuracy, but to obtain a cer-

tain pattern on the data. For this reason, we believe that our procedure should

not be only evaluated on the classification results. Indeed, the major interest of

this work, is to provide an interpretation of the embedding with the purpose of

determine which are the property of the brain network. For that reason, even if

precedent works in brain networks classification, report better results, we believe

that a network embedding procedure provides an additional value: the possibility

to determine a signature for the class.

Concerning the coma dataset, previous attempts in the classification did not reach

an accuracy value as high as ours. Moreover, using graph’s global descriptors

has been proven not to be enough in the detection of the difference between the

two classes ([2]). Our achievement shows the power of our embedding method for

graphs comparison in capturing the meaningful features of the network. Even if

further analysis need to be conducted, we read this high result as an indicator of

the type of property of the graph which are preserved in the embedding. To better

explain, from [2], it has been proven that hubs of brain networks are radically reor-

ganized in comatose patients. Considering the accuracy value, we could presume

that in the embedding the structural role of nodes is likely to be preserved. In

addition a next result could be analysed. Indeed, we could visualize the dissimi-

larities between the two representative graphs of coma and control. In Figure 6.5

we overlap the two representatives in the embedding space. The blue dots are the

vectors of the control, while the red dots belong to the representative of the co-

matose. In terms of points’ distribution, the two representatives occupy different

positions in the embedding space. Accordingly to the way a match is determined

in the kernel computation, we know that the vector coordinates associated to each

node are significant for the comparison. Hence, these observed dispositions could

reveal some important aspects of the brain networks.

Coming to the Young&Elderly dataset, a similar discussion could be conducted.

In fact, it has been shown that some nodes of the two classes have a different

behaviour in the spreading of the information ([1]). Especially, there are some

nodes which are affected by the age in their efficiency. For the reached accuracy,
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(a) (b)

Figure 6.5: A visualization of the representative graphs in the coma dataset. In

blue the control, in red the comatose. It could be noticed that the distribution

of the vector for the two graphs are different. (a) and (b) are the projections on

plane xy and xz
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(a) (b)

Figure 6.6: A visualization of the representative graphs in the Young&Elderly. In

blue the elderly, in red the young. In green the representative of the control in the

coma dataset. (a) and (b) are the projections on plane xy and xz,

we presume that the embedding has the ability to preserve this difference. Besides,

if we look at the representative embedding visualization (Figure 6.6) we notice

that the points occupying different positions are few with respect to the previous

dataset. It is also interesting to observe that, comparing these two graphs with the

control representative in coma dataset, all the three sets of vectors share a similar

distribution. Again, this fact can be thought as a validation of this method, since

both classes belong to the healthy group.

For the TBI data, the accuracy reported in [18] is equal to 0.80. Even if still

appreciable, our result is lower. Nevertheless, the achieved good result suggests
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(a) (b)

Figure 6.7: A visualization of the representative graphs for TBI. In blue the control,

in red the injured. It could be noticed that the distribution of the vector for the

two graphs are different. (a) and (b) are the projections on plane xy and xz
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(a) (b)

Figure 6.8: A visualization of the representative graphs for the control determined

in the coma dataset and on TBI. In blue the first one, in red the second. It could

be noticed that the distribution of the vector are perfectly overlaped. (a) and (b)

are the projections on plane xy and xz,

again a possible difference on the structure of the connections (Figure 6.7). A

further and intriguing result is shown in Figure 6.8, where the two representative

graphs for the control class are determined in different dataset (blue for the coma,

red for TBI). The two embeddings are perfectly overlapped. This plot confirms

the existence of an healthy signature and reveals the possibility in the future,

of determine a representative graph for no-pathological brain connectivity which

could be used as a comparison with pathological ones.

Coming to the ABIDE dataset, in [7] a classification method is applied with an
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accuracy result of 0.75. Our procedure differs from this one in many points: it re-

quires to determine the connectivity graph from the correlation matrices, compute

a nodal embedding, estimate a kernel for the comparison, etc. In their framework,

the used data are not thresholded to generate an adjacency matrix, but they apply

the classifcation directly in the correlation matrices. To compare the two works

could then be misleading. In addition, the ABIDE dataset differs from the others

in some aspects. For instance, the data acquisition have been obtained in different

centers or the evaluated time-series are defined using a lower number of points.

Even assuming the irrelevance of these differences in the network determination,

the dimension of the dataset could be responsible for the lower accuracy: having

more data would give a higher variability in the class and our method could fail

in capturing it in its entirety. However, if we look at the computed representative

for the two classes in Figure 6.9, we could notice that they are exactly overlying

and they are both similar to the representative estimated for the control in the

previous datasets. This could be taken as a positive remark and a further valida-

tion of our network embedding procedure: in fact, an optimistic explanation could

be that the embedding has been forced to focus on some properties of the graph

which are irrelevant in ABIDE data. In summary, failing in the classification task

in this dataset is not a valid justification for rejecting our proposal. Instead, it is

worth to give more space and time to a deeper investigation for determining the

possible causes.
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(a) (b)

Figure 6.9: A visualization of the representative graphs for the control and the

pathological on ABIDE. In blue the first one, in red the second. It could be

noticed that the two embeddings are perfectly overlaping. (a) and (b) are the

projections on plane xy and xz.
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Chapter 7

Conclusion

To conclude, the main goal of this work was to exploit the potential of network

embedding in capturing the main properties of brain connectivity network. We

have proven that network embedding is a powerful tool not only in the dimension-

reduction or for a single network analysis, but it could be applied in the comparison

of brain connectivity graphs, too. A first contribution of our work is represented

by the proposal of a general framework for the tuning of the parameters which

is not related on a specific task, such as classification. The resulting values for

the parameters could be applied for the embedding on different datasets, with the

only restriction given by the number of nodes and edges of each graph. A second

contribution is given by our definition of a representative graphs. The success of

this method is validated by the alignment in the accuracy results between two

classification procedures in all the datasets. Furthermore, this work opens new

questions and needs further studies.

7.1 Future works

First of all, a neuroscience explanation of the difference of connectivity of the

pathological brain could be explored. Performing an embedding analysis, node-

wise could reveal which nodes are responsible of the variance between the classes.

In this direction, a next step would be to construct an associated graph to the
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representative network, starting from its embedding. This could lead to relevant

results in the interpretation. In addition, in order to determine the best repre-

sentative graph for an healthy brain, a merging on the control data of different

datasets could be performed. In that way, we could investigate how similar the

data are and how meaningful are the estimated representative graphs of the differ-

ent datasets. Moreover, new ways of defining the representative graphs could be

proposed. For instance, instead of requiring the representative to have the exact

number of nodes as the other graphs in the dataset - as it is in our proposal-,

we could examine the possibility of taking into account only the vectors which

remain stable in the embedding space for a given class. In that way, the repre-

sentative graphs would focus only on the nodes playing a special role for that class.

In conclusion, this work is not meant to give a definitive solution of the proposed

problem, rather it lays the foundations for future explorations in this subject.
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47



ease Neuroimaging Initiative, et al. Benchmarking functional connectome-

based predictive models for resting-state fmri. NeuroImage, 192:115–134,

2019.

[8] Linton C Freeman. A set of measures of centrality based on betweenness.

Sociometry, pages 35–41, 1977.

[9] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 855–864, 2016.

[10] Donald Ervin Knuth. The Stanford GraphBase: a platform for combinatorial

computing. AcM Press New York, 1993.

[11] Vito Latora and Massimo Marchiori. Efficient behavior of small-world net-

works. Physical review letters, 87(19):198701, 2001.

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-

tion of word representations in vector space. arXiv preprint arXiv:1301.3781,

2013.

[13] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis.

Matching node embeddings for graph similarity. In Thirty-First AAAI Con-

ference on Artificial Intelligence, 2017.
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Appendix A

A.1 Graphs measures of interest: metrics over

nodes

We shortly present some metrics which could be associated to each node of

the graph. Each of the following measures is a function measure : V → R. While

the definition of the degree of a node could come with the basics of graph theory,

the proposed definition of efficiency and clustering coefficient refer to [2, 11, 19].

Whereas the definition of betweenness centrality could be found in [2, 8].

• Degree

The degree of a node is defined as the number of links in which tue node is

involved.

Definition A.1. The degree of a node v ∈ V is given by∑
u∈V

Avu (A.1)

We can define the degree distribution of a graph G as the frequency of each

degree value in the graph. For each of the possible value of degree, we count

the fraction of nodes having that degree and we define the degree distribution

of the given graph.

Definition A.2. fk = 1
|V|{v ∈ Vs.t. v has degree equals to k} ∀k ∈ N The

sequences (fk)k∈N is called the degree distribution.
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• Efficiency

Given a graph, we could find for each pair of nodes in the graph the minimal

path length; namely, the length of the path which connects the two nodes

having the minimal length possible. In some cases, a path between the two

nodes could be impossible to be found. In this case, the nodes are said

to be disconnected. Therefore, for each node we can measure the average

minimum length from the node and all the others in the graph. However, to

avoid dealing with disconnected nodes, instead of considering the minimum

path length, we could define a function which is proportional to the reciprocal

average of the minimum path length. Especially, the efficiency measure of

a node has been defined as the mean of the inverse of the minimum path

length between the node itself and all the other nodes in the graph. The

nodal efficiency represents in some way, a measure of the strength of the

connection of the node. The closer to 1 the more similar the node behaves

as a node in a graph where all possible edges are present. An efficiency close

to 0 coincides with a disconnection from the rest of the graph.

Definition A.3. Calling lvu the minimal path length between nodes u, v,

the efficiency of node v is given by

Ev =
1

N − 1

∑
u∈V,u6=v

luv (A.2)

• Clustering coefficient

While the efficiency indicates the quality in the spreading of information in

the global graph, the clustering coefficient of a node focus in the way the

communication is organized in the closer nodes.

Definition A.4. Saying that Gv is the graph obtained considering the neigh-

bour nodes of v in G and having the same edges in G, the clustering coefficient

of v is

Cv =
1

|Gv|(|Gv| − 1)

∑
u,w∈Gv

1

luw
(A.3)

where luw is the minimum path length between u and w in Gv
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• Betweenness centrality

The betweenness centrality of a nodes is one of the possible measures used

to quantify the centrality of a node in a graph. In particular, the betweennes

centrality of a node counts the number of shortest paths among a pair of

node in the graph which pass through the node itself.

Definition A.5. The betweenness centrality of node v is given by:

Bv =
∑
u6=v

∑
w 6=u

|shortest paths from u to w that pass through v|
|shortest paths from u to v|

(A.4)

A.2 Nodal proximity in node2vec

Definition A.6. The degree matrix D ∈ R|V|×|V| is the diagonal matrix such that

Duv =


0 if u 6= v∑
z∈V

Au,z if v = u

Definition A.7. The transition matrix P ∈ R|V|×|V| is defined as

P = D−1A

The entries of the transition matrix Puv could be interpreted as the probability

of go directly from node u to node v in a walk. For a given node v ∈ V , the

diagonal matrix Qv ∈ R|V|×|V| is given by the following formula:

(Qv)ij =

Pvi if i = j

0 otherwise

Its non-zero entries are the probabilities of leaving node v. For each node in V , we

build such a matrix and we define Q ∈ R|V|×|V|2 , Y ∈ R|V|×|V|2 and W ∈ R|V|2×|V|2

as:

Q = [Q1 · · ·Q|V|]
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Y =



1 . . . |V| |V|+ 1 . . . 2|V| . . . . . . |V|2 − |V| . . . |V|2

1 1|V| 0 . . . 0 0 0 0 . . . 0

2 0 1|V| 0 0 0 . . . 0
... 0 0 . . .1|V| . . . 0 0 . . . 0

|V| 0 0 0 0 1|V|



W = (Wik)i,k∈V Wik ∈ R|V|×|V| (Wik)jl =


AikMil∑

v
AvkMvl

if j = k

0 otherwise

The matrix M is the memory matrix defined in chapter 3. Then, the nodal prox-

imity II(L,p,q) ∈ R|V|×|V| is:

II(L,p,q) = Y

(
L−1∑
l=0

W l

)
QT (A.5)

The value II(L,p,q)
uv is the expected number of times to visit node v in a random

walk of length L which start in u.

A.3 A schematic on the brain connectivity net-

work definition

Schematic of wavelet correlation analysis, thresholding, and func-

tional network visualization
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Figure A.1

Schematic of wavelet correlation analysis, thresholding, and functional network

visualization. Top, fMRI time series recorded from each of 90 regions in each sub-

ject are decomposed using the discrete wavelet transform, and the inter-regional

correlation is estimated at each scale for each pair of regions in each subject. Mid-

dle, The wavelet correlation matrices are thresholded to generate binary matrices,

each element of which is either black (if there is no significant connection between

regions) or white (if there is). The sparsity of the obtained adjancency matrix is

determined by the choice of the correlation threshold R, as illustrated by applying

three different thresholds (R = 0.3, 0.4, 0.5) to the scale 4 wavelet correlation ma-

trix. Bottom, Thresholded matrices are visualized in anatomical space by locating
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each region according to its y and z centroid coordinates in Talairach space and

drawing an edge between regions that are connected. Image and caption from [3]
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Appendix B

Tabels
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List of anatomical regions in the left hemisphere defined in [17]

Index Label Brain Region Code

1 FA Central region precentral Precentral L

3 F1 Frontal lobe, laterlar surface, superior

frontal, dorsolateral

Frontal L

5 F1O Frontal lobe, orbital surface superior

frontal, orbital part

Frontal Sup Orb L

7 F2 Frontal lobe,lateral surface, middle

frontal

Frontal Mid L

9 F2O Frontal lobe, orbital surface, middle

frontal, orbital part

Frontal Mid Orb L

11 F3OP Frontal lobe, lateral surface, inferior

frontal, opercular part

Frontal Inf Oper L

13 F3T Frontal lobe, lateral surface, inferior

frontal, triangular part

Frontal Inf Tri L

15 F3O Frontal lobe, orbital surface, inferior

frontal, orbital part

Frontal Inf Orb L

17 OR Central region, rolandic operculum Rolandic Oper L

19 SMA Frontal lobe, medial surface, supple-

mentary motor area

Supp Motor Area L

21 COB Frontal lobe, orbital surface, olfactory

cortex

Olfactory L

23 FM Frontal lobe, medial surface, superior

frontal, medial

Frontal Sup Medial L

25 FMO Frontal lobe, orbital surface, superior

frontal, medial orbital

Frontal Med Orb L

27 GR Frontal le, orbital surface, gyrus rectus Rectus L

29 IN Insula Insula L

31 CIAN Limbic lobe, anterior cingulate and

paracingulate gyri

Cingulum Ant L
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33 CINM Limbic lobe, median cingulate and

paracingulate gyri

Cingulum Mid L

35 CIP Limbic lobe, posterior cingulate gyrus Cingulum Post L

37 HIPPO Limbic lobe, Hippocampus Hippocampus L

39 PARA HIPPOLimbic lobe, parahippocampal gyrus ParaHippocampal L

41 AMYGD Sub cortical gray nuclei, Amygdala Amygdala L

43 V1 Occipital lobe, medial and inferior sur-

faces, calcarine fissure and surrounding

cortex

Calcarine L

45 Q Occipital lobe, medial and inferior sur-

faces, cuneus

Cuneus L

47 LIN Occipital lobe, medial and inferior sur-

faces, lingual gyrus

Lingual L

49 O1 Occipital lobe, lateral surface, superior

occipital gyrus

Occipital Sup L

51 O2 Occipital lobe, lateral surface, middle

occipital gyrus

Occipital Mid L

53 O3 Occipital lobe, lateral surface, inferior

occipital gyrus

Occipital Inf L

55 FUSI Occipital love, medial and inferior sur-

faces, fusiform gyrus

Fusiform L

57 PA Postcentral L

59 P1 Parietal lobe, lateral surface, superior

parietal gyrus

Parietal Sup L

61 P2 Parietal lobe, lateral surface, inferior

parietal gyrus

Parietal Inf L

63 GSM Parietal lobe, lateral surface, supra-

marginal gyrus

SupraMarginal L

65 GA Parietal lobe, lateral surface, angular

gyrus

Angular L
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67 PQ Parietal lobe, medial surface, pre-

cuneus

Precuneus L

69 LPC Frontal lobe, medial surface, paracen-

tral lobule

Paracentral Lobule L

71 NC Sub cortical gray nuclei, caudate nu-

cleus

Caudate L

73 NL Sub cortical gray nuclei, lenticular nu-

cleus, putamen

Putamen L

75 PALL Sub cortical gray nuclei, lenticular nu-

cleus, pallidum

Pallidum L

77 THA Sub cortical gray nuclei, thalamus Thalamus L

79 HESCHL Temporal lobe, lateral surface, Heschl

gyrus

Heschl L

81 T1 Temporal lobe, lateral surface, superior

temporal gyrus

Temporal Sup L

83 T1A Limbic lobe, temporal pole: superior

temporal gyrus

Temporal Pole Sup L

85 T2 Temporal lobe, lateral surface, middle

temporal gyrus

Temporal Mid L

87 T2A Limbic lobe, temporal pole: middle

temporal gyrus

Temporal Pole Mid L

89 T3 Temporal lobe, lateral surface inferior

temporal gyrus

Temporal Inf L

Table B.1: List of the anatomical regions used

60


