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INTRODUCTION 

 

The historical period we are living in sees the need to implement and develop new 
solutions in the energy field, above all to try to stem the catastrophic future 
consequences we may face due to climate change. 
Reduction of emissions, of the use of fossil fuels and a consequent investment in 
different, cleaner energy sources are actions that must absolutely be undertaken, 
without forgetting a fundamental aspect we must absolutely invest on: the energy 
efficiency of buildings. Its goal is to maintain, if not improve, the comfort of the 
occupants inside the building while minimizing energy consumption. 
Still in this perspective, according to some recent studies [1], we could act on the 
thermal comfort of people even in the external environment, for instance on the 
roads. This, above all, in function of these anomalous heat waves that in recent 
years have followed each other more and more frequently, in order to improve 
and safeguard the health of the population (especially the weakest and most 
vulnerable ones) and to improve the efficiency of the buildings. 
Pursuing these goals is anything but simple, especially when dealing with the 
concept of comfort. Beyond the physical parameters that can be measured and 
controlled by sensors (air temperature, air pressure, air velocity, humidity), there 
are a whole other set of subjective variables, much more difficult to investigate, 
which are closely related to the physiological parameters of the occupants and 
which therefore vary from individual to individual.  
It is therefore very important to study the effects that these physiological 
parameters have on occupants’ comfort and how the interaction with the 
environment and the ability to adapt can condition the well-being and its own 
perception. 
The variables that must be taken into account in this case are many and varied: 
metabolic activity, heart rate, brain activity (EEG), respiratory rate, skin 
temperature measured on the wrist and ankle, body temperature, posture, ACT- 
Activity level.  
These variables must be analyzed on the basis of age, health, ability to adapt; it is 
therefore essential to understand what impact they have on comfort and energy 
management of the building. 
This new approach in the study of thermal comfort tries to investigate much more 
in depth and objectively the effects that the external environment is able to 
generate in a person, such as the influence on the actions it performs and how it 
modifies the perception of comfort, comparing what is the physiological reaction 
with the subjective one, expressed by the person itself.  
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Knowing these elements better and deeper, it’s possible to greatly improve 
thermal comfort and perform a better and a more efficient energy management. 
In the first chapter Fanger's theory will be briefly summarized and its main critical 
points will also be highlighted. Subsequently, the sensors that have been used up 
until now and the parameters that have been measured and analyzed will be 
presented. The critical points and the advantages of these sensors will also be 
discussed, in order to effectively identify which of these devices can be practically 
used for the assessment of thermal comfort. 
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1. FUNDAMENTALS 
 
In this chapter the concept of thermal comfort, the theory of comfort theorized by 
Fanger, the theory concerning the measurement of a physical quantity and the 
accuracy and sensitivity of the PMV index created by Fanger will be presented 
and analyzed. 

 

1.1 Thermal comfort and Fanger’s model 
It is possible to give a subjective and an objective definition of thermal comfort. 
The former is defined as "the state of mind in humans that expresses satisfaction 
with the surroundings environment" (ASHRAE standard 55), the latter provides 
that the following conditions are respected: the heat produced is completely 
dissipated, behavioral thermal control mechanisms are inactive, peripherical 
vasomotor mechanisms are inactive. 

The international standards used to determine thermal comfort are: ASHRAE 55 
and ISO 7730. They use heat balance model for the human body, connecting the 
perception of comfort to six parameters, four objective and two subjective: 

• air temperature; 
• mean radiant temperature; 
• air velocity; 
• relative humidity; 
• metabolic rate; 
• clothing insulation. 

 

In mechanically ventilated buildings (the case we are interested in), the comfort 
is evaluated through the ISO 7730 standard, which describes the Fanger’s model 
(the basis behind the standards previously mentioned). For naturally ventilated 
rooms the adaptive method is used. 

Ole Fanger devised a climatic chamber: through it, by varying three 
environmental parameters (air speed, mean radiant temperature and relative 
humidity) and two personal parameters (activity level and clothing insulation), he 



6 
 

calculated the degree at which most people felt no difference between them and 
the environment around, the “thermally neutral state”. 

 

Thanks to these studies, he developed the Predicted Mean Vote (PMV) index and 
the Predicted Percentage Dissatisfied (PPD) index. 

The Predicted Mean Vote (PMV), see equation (1), it’s an index which predicts 
the conditions at which most occupants will be satisfied at, is a mathematical 
function of six comfort parameters expressing the average value of thermal 
sensation of a significant group of people on a seven-point scale from -3 to 3 [2]: 

 

𝑃𝑀𝑉 = 0.303 ∗ 𝐿 ∗ exp	(−0.036 ∗ 𝑀 + 0.028) (1) 

 

Where: 

• L is the “load on the human thermal control system” (2). It is defined as the 
difference between the thermal energy that is generated within the human 
body and does not transform into mechanical energy (M - W), and the 
thermal energy that the individual would disperse if he were in a situation 
of well-being [3]: 
 

𝐿 = (𝑀 −𝑊) − (𝐸!∗ + 𝐸#$∗ 	 + 𝐸&'#
∗ + 𝐶&'# + 𝐶∗ + 𝑅∗) (2) 

 
- 𝐸!∗  = thermal power dispersed by diffusion of steam through the skin; 
- 𝐸#$∗ = thermal power dispersed by sweating;  
- 𝐸&'#∗ = thermal power lost in breathing as "latent heat"; 
- 𝐶&'# = thermal power lost in breathing as "sensitive heat"; 
- 𝐶∗ = thermal power dispersed by convention;  
- 𝑅∗ = thermal power dispersed by radiation; 

(The asterisks show that these are not real values but those that would occur 
in fictitious conditions). 

• M is the metabolic heat production; 
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Figure 1- Thermal sensation scale and comments about scale [4] 

 
The Predicted Percentage Dissatisfied (PPD) index predicts what percentages of 
occupants will be unhappy with a particular set of environmental conditions. 

An approximate relationship between PPD and PMV can be seen in the graph 
below: 

 
Figure 2 - The relationship between PPD and PMV [4] 

 
5% of the occupants would be dissatisfied even with the most comfortable 
conditions (PMV=0). 
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However, this model has some important limitations as shown in the studies of 
Byron W. Jones [5] and Kate E. Charles [6]: 
 
• It was developed in a closed and air-conditioned environment. The PMV 

model is based on climate chamber experiments, in which the four physical 
variables (mean radiant temperature, air temperature, relative humidity and 
air velocity) can be monitored and controlled; 
 

• It’s a static and mono-dimensional model which considers clothing perfectly 
uniform on the whole body; 
 

• Fanger sees people as passive subjects, they are just the object of the 
experiment, unable to interact with the surrounding environment; 

 
• People involved in the experiment,  did not constitute a representative sample 

of the population (in terms of climatic, cultural, social factors, i.e.: age, social 
background, activity performed, etc.), in fact Fanger’s original studies (in 
1967;1970) were conducted using college-age white subjects: so the model 
obtained from these studies may not be valid for other occupant populations. 
In the performed researches (reported in [4]) attention has been paid to gender 
for example. It has been noticed that when the temperature shifts from the 
neutral one, the thermal sensation of women changes much more rapidly than 
that of men; a difference is also found in the type of clothing used, in fact 
women tend to use lighter clothes than males. Another aspect not to be 
underestimated is that people from different climatic regions differs in their 
neutral temperatures; 
 

• The metabolic rate is estimated by calculating the metabolic heat produced 
and the degree of activity, but not taking due account of age, gender, time of 
the day in which the calculation is made. In fact, the current tables containing 
standard values of metabolism provide information for the 'average' person 
and this obviously does not accurately reflect the differences between people 
and the context.  
 

 



9 
 

 

Table 1 – Metabolism values for different activities [7] 

 
 

The metabolic rate is influenced by body mass, body type, fitness level and 
blood flow. The metabolic rate is continuously changing over time, even 
without performing any remarkable physical activities. The study of Hasan et 
al. [8] shows for example that simple mental work might lead to some increase 
in the MET value, which can lead to thermal discomfort.  

 
Therefore, it is necessary to consider much more information in order to have 
a correct estimate of the metabolic rate, which must be carefully and 
constantly measured to ensure the reliability of the PMV comfort model. An 
accurate measurement of metabolism of an occupant can extend the area of 
application of the PMV model to those who may be involved in physical 
activities, such as waiters and waitresses in a restaurant, or people working 
out in the gym; 

 
 
• The thermal resistance generated by clothing is it is considered uniform on the 

whole body and calculated in a generic and inaccurate way, the estimate that 
is made is limited to a standard, tabulated choice of clothes, for example 
winter clothing, summer clothing, work clothing, short dresses etc.  

 

Subject activity met Subject activity met 
Lying 0.7 Baker 1.5 - 2.0 
Sitting 1.0 Construction worker 4.0 - 6.0 

Standing 1.2 Mechanical worker 3.5 - 4.5 
Walk slowly 2.0 Electrical worker 2.0 - 2.5 

Walk fast 2.6 Store clerk 2.0 - 2.5 
Drive a car 1.5 Watchmaker 1.0 - 1.2 

Ride a motorbike 2.0 Tennis 3.6 - 4.0 
Drive a truck 3.2 Squash 5.0 - 7.0 
Drive a plane 2.0 Basketball 5.0 - 7.6 
Clean house 2.5 Dance 2.4 - 4.4 

Cooking 1.8 Golf 1.5 - 2.5 
Shopping 1.6 Fishing 1.2 - 2.0 
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Clothing Icl (clo) 

Skinny trousers, short-sleeved shirt 0.57 
Skinny trousers, long-sleeved shirt 0.61 

Skinny trousers, long-sleeved shirt, jacket 0.96 
Slow pants, long-sleeved shirt, sweater, underwear shirt 1.01 

Slow pants, long-sleeved shirt, sweater, jacket, heavy underwear 1.30 
Skirt, short-sleeved shirt, tights, sandals 0.54 
Skirt, long-sleeved shirt, petticoat, tights 0.67 

Long skirt, long-sleeved shirt, jacket, tights 1.10 
Long-sleeved suit, shirt 0.72 
Table 2 – Clothing table  [7] 

 
 

Many studs, as reported in [4], have shown that the accuracy of PMV 
predictions is strongly influenced by the value attributed to clothing 
insulation. The PMV well predicts the values of the neutral temperature for 
clothing insulation (including the insulation generated by the chair, in a office 
simulation) in the range from 0.3 to 1.2 clo. For lighter or heavier clothes, the 
PMV model tends to overestimate the actual neutral temperature. 

 
 
 

 
As proof of the fact that PMV is highly influenced by the metabolic rate and by 
clothing, Hasan et al. [7] have developed a graph (see figure 3) and a summary 
table (obtained through a series of experiments) where the sensitivity of the PMV 
to different parameters is highlighted. 
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Figure 3 - PMV model sensitivity to (a) metabolism, air velocity, humidity, and air 
temperature, (b) and to air temperature. [7] 

 
 
 

 
Table 3 – PMV sensitivities to its parameters [7] 

 
The figure 3 show that PMV model is very sensitive to the personal parameters, 
and its sensitivity to metabolism, clothing, and air velocity, changes with these 
parameters values and hold constant for air temperature and humidity. 

 
 

This model is therefore limited and it requires improvements, especially on the 
estimation of the subjective parameters (metabolism, perception of the occupant 
and activity performed at the time of measurement). 
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A first attempt in this direction was made by the creation of questionnaires 
submitted to the occupants of the room under analysis together with the standard 
measurements of environmental parameters. These questionnaires were structured 
in order to make a better comparison between what are the comfort standards 
calculated theoretically, through the Fanger’s theory, and the actual perception 
that the occupants have of a certain indoor environment. 
An example of this type of study was carried out by Castaldo et al [9] in a luxury 
clothing factory in central Italy (Perugia).  
They have adopted the previous mentioned new methodology for the comfort 
assessment, combining the monitoring of physical environmental variables and a 
survey campaign.  
They monitored indoor air quality, illuminance level, global and local thermal 
comfort, while the questionnaire deals with:  
 

• personal information (gender, age, clothing); 
• working schedule and the possibility to control the environment; 
• thermal and lighting perception (sensation perceived, comfort, preferences, 

acceptability, tolerability); 
• general comfort condition adaptability with respect to non-physical 

influences (work environment perception, environmental quality of the 
domestic environment compared to the work place, health condition, 
personal mood). 
 

As can be seen from the construction of the questionnaire, great importance is 
given to the person and his perception, making a comparison also with the 
domestic environment. It is also shown how many factors must be considered to 
have a true representation of the occupants’ perception of comfort. 
In fact, one of the aims of the study was also to investigate other aspects, not 
strictly related to physical variables, which can have a positive influence on the 
perception of thermal comfort and the productivity of workers: for instance an 
aesthetically pleasant and comfortable work environment, or the view of the 
greenery of the gardens out of the office windows. 
 
In fact, a discrepancy has been observed between the comfort levels obtained from 
the monitoring campaign and the ones obtained through the questionnaires: this 
is precisely due to this whole series of physiological and non-physiological 
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parameters which are not considered or not measured in a truthful way in the 
Fanger’s model. 
 
Therefore, new studies and new researches are focusing on a much more accurate 
study of the physiological parameters, especially on the more precise estimate of 
the metabolic rate, which represents one of the most important values to be 
checked in order to have a truthful representation of the person's activity and 
consequently of his thermal perceptions. 
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1.2 Measurements of PMV parameters 
The UNI EN ISO 7726 standard "Ergonomics of the thermal environment- 
Instruments for measuring physical quantities"  [10] in paragraph 4 defines the 
physical quantities to be estimated for the calculation of the PMV index and how 
these quantities can be measured:  
 
• Air temperature: "it is the temperature of the air around the human body", this 

parameter can be measured with the following devices: expansion 
thermometers (liquid or solid), electric thermometers (variable resistance 
thermometer, thermocouple), thermomanometers (variation liquid pressure as 
a function of temperature); 
 

• Mean radiant temperature: "it is the uniform temperature of a hypothetical 
enclosure in which radiant heat transfer from the human body is equal to the 
radiant heat transfer in the actual non uniform enclosure". Usually the black 
globe thermometer is used to calculate an approximate value of this quantity 
starting from the temperature values of the globe and those of the temperature 
and the air speed around the globe. This parameter can be also calculated from 
the values of walls temperatures, walls size and their positions with respect to 
people (calculation of the geometric shape factor); 
 

• Air velocity: "it is a quantity defined by its magnitude and direction. The 
quantity to be considered in the case of thermal environments is the speed of 
the air; i.e. the magnitude of the flow velocity vector at the considered 
measuring point". An anemometer is used to measure this quantity; 
 

• Absolute humidity: "it characterizes any quantity related to the actual amount 
of water vapor contained in the air", while relative humidity: "it gives the 
amount of water vapor in the air in relation to the maximum amount that it 
can contain at a given temperature and pressure". When we talk about 
evaporative exchange between a person and the environment, we must 
consider the absolute humidity of the air. This latter can be determined 
directly (i.e. dew-point instruments) or indirectly, by measuring, for example, 
relative humidity and air temperature or psychrometric wet temperature and 
air temperature (in this last case the instrument used is the psychrometer). 
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As regards the physiological parameters (metabolic rate and insulation generated 
by clothing), the calculation methods are reported in UNI EN ISO 7730 [11]. The 
appendices of this standard report the tables containing the standard values of 
metabolism for different activities and the insulation generated by different 
combinations of clothing.  
As seen before, this method of estimating metabolism and clothing insulation is 
rather limiting and not very accurate and, therefore, requires improvement. 
In the following paragraphs the basic principles of metrology will be deeply 
explained in order to be able to fully understand the importance of a good 
measurement and how the errors that can be generated during the measurement 
process propagate and can influence the reliability of the result itself. 
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1.3 Measurement theory 
In this paragraph, before moving on to the description of wearable devices, a brief 
mention of the theory concerning the measurement of a physical quantity will be 
presented [12].  

 

Let’s start from the definition of measurement: “measurement is the process by 
which a number is associated with a physical quantity”. Therefore, the 
measurement of each physical quantity is characterized by a number followed by 
a symbol that expresses the unit of measurement used. 

Measurement operations are always affected by uncertainty, according to UNI 
ISO 3534-1: 2000: "measurement uncertainty is the estimate of the result of tests 
that characterize the range of values within which the true value is supposed to 
fall of the measurand. Uncertainty is the size of a mean square deviation ". 

The estimate of the measurement uncertainty is fundamental because it expresses 
the intrinsic reliability of the measurement result.  

To express the uncertainty of the measurement of a quantity x, it is necessary to 
express the error 𝜖x that is committed during the measurement, i.e. write the 
number x=�̅� ±	𝜖(, followed by the unit of measurement of the quantity measured, 
where �̅�  represents the average value of the measurements made. 

 

The error is calculated by evaluating the mean square deviation, often determined 
with the standard deviation (3):  

 
 

𝜖( = <∑ ((!+(̅)"#
!$%
.+/       (3) 

 

 

Systematic errors, contribute to uncertainty; to evaluate them, it is necessary to 
consider the probability distribution P (x) of the measurand, the mean square 
difference becomes:  
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𝜖( = <∫ 𝑃(𝑥)(𝑥0 − �̅�)
	
ℙ 𝑑𝑥		(4) 

 
 
Where ℙ is the volume of the probability space considered. 

At this point, it is possible to express the uncertainty by indicating the confidence 
interval built around the result of the measurement. The measured value belongs 
to the range with a given probability, i.e. the coverage level K 

 

 
�̅� − 𝐾2& < 𝑥 < �̅� + 𝐾2&   (5) 

 

 

If the random effects affecting the measurement have a normal probability 
distribution, then the probability that the expected value of the measurand is 
within the confidence interval is: 

 

• 68.3% for k=1; 
• 95.4% for k=2; 
• 99.7% for k=3. 

 
In summary, when carrying out a measurement operation, errors can be committed 
and they can be classified as follows: 
 

1. “Systematic errors: caused by factors that always act in the same way and 
therefore are not immediately detectable”; 

2. “Gross errors: due to oversights by the operator”; 
3. “Operator errors: caused by particular aptitudes or dispositions of the 

experimenter in the use of the instrumentation”; 
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4. “Accidental errors: these are the errors that occur independently of the 
observer and are due to the accuracy of the measures. For these, there is a 
statistical treatment that allows you to take them into account”. 

 
Let's see how the error spreads. In the case of linear relationships, the error is 
treated in this way [7]:  
 
 
 
 

x=�̅� ±	𝜖!  ,  y=𝑦& ±	𝜖",  z=𝑧̅ ±	𝜖# 

 
 

Table 4 – Propagation of error [13] 

 
 
Let’s see also, the measuring instruments in more detail. [14] They are mainly 
composed of three elements:  
 

1. The sensitive element or sensor that transforms the physical quantity to be 
measured in another (signal of measure);  

2. Processing and transmission element (transformation of the signal into an 
electrical quantity, linearization, amplification….); 

3. Detector or indicator element that allows the reading by the user in an 
analogical way (index mobile on a graduated scale) or digital (series of 
numbers on a dial). 

 

 z=x+y z=x-y z=xy z=x/y 

𝑧̅ �̅�+𝑦D �̅�-𝑦& �̅�𝑦& 
�̅�
𝑦D

 

𝜖3 𝜖( + 𝜖4 𝜖( + 𝜖4 
𝜖(
|�̅�|

+
𝜖4
|𝑦|DDDD

 
𝜖(
|�̅�|

+
𝜖4
|𝑦|DDDD
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There are also introduced some important definition [14]: 

Accuracy:” it is the ability of an instrument to indicate or record the exact value 
of the measured quantity.” 

Precision:” it is also called measurement repeatability, i.e. the ability of an 
instrument to indicate, in the case of repeated measurements with the same 
method and in same conditions, always the same value as the measured quantity.” 

Sensitivity: “it is the smallest variation in size measured that the instrument allows 
you to observe.” 
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1.4 Accuracy of the PMV model 
 

Let’s now analyze the accuracy of the PMV model and also the role of 
measurement accuracy on the assessment of the thermal environment using the 
PMV. 

Cheung et al. in 2019 [15] conducted research, funded by the National Foundation 
of the Republic of Singapore as part of the Singapore-Berkley Building Efficiency 
and Sustainability in the tropics (SinBerBEST) program, to evaluate the accuracy 
of the PMV model prediction using the ASHRAE Global Thermal Comfort II 
database They focused on:  

• the accuracy of the PMV to predict the individual observed thermal 
sensation (OTS) and the observed mean vote (OMV); 

• comparing relationships between PMV-PPD and OTS with observed 
percentage of unacceptability (OPU).  
 

These analyses were performed on different types of buildings (offices, 
classrooms and houses), strategies of ventilation (air conditioning, natural 
ventilation and mixed mode) and climatic classifications (tropical, arid, temperate 
and continental).  

PMV has been found to have a low prediction accuracy based on different 
methods used in other works. The accuracy of the overall forecast was measured 
at 34% (i.e. the thermal sensation would have been wrongly predicted two out of 
three times). The PMV model has slightly higher accuracy with sensational marks 
close to neutral, but has never exceeded 60% in any type of building, ventilation 
strategy and climatic classification. Its accuracy has decreased towards both ends 
of the thermal sensation scale and has overestimated OTS in both hot and cold 
sensations.  

Cheung et al. have developed a simple model based on-air temperature and 
achieved 43% accuracy in predicting thermal sensation. The results demonstrate 
that in many contexts the inaccuracies are not in the PPD model itself but rather 
in the PMV model and in its prediction of the thermal sensation.  

The authors of the article, on the basis of the results obtained, believe that the 
accuracy of the PMV is unacceptably low, this suggests that is important to 
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overcome deterministic models of thermal comfort and to develop personal 
thermal comfort models able to respond to the different needs of the occupants. 

 

Another important aspect to analyze is the sensitivity of the PMV index to 
measurement errors of its independent variables. 

This aspect is well explained in the study  of d'Ambrosio Alfano et al. [16],  which 
aim is to perform a sensitivity analysis of numerical models, evaluate the 
propagation of errors by modifying any quantity that influences PMV.  

This method allows an easy interpretation of the results obtained. 

Sensitivity analysis was carried out in the same thermal state of the human body 
for a fixed PMV value. Under these conditions every variable independently 
involved in PMV equation, with the required precision, was first "disturbed" one 
at a time and then all together.  

For the PMV values examined in this study, the authors worked on a PMV of 0 ± 
0.35 and ± 0.60.  

The nominal values of the six quantities that affect the PMV are shown in the 
table below:  

 

 

Table 5 – Microclimatic and subjective variables investigated values [16]  

 

For the accuracy of the physical parameters, the author used the values reported 
in ISO 7726 for comfort applications (see table 6).  
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The sensitivity analysis has been performed with an accuracy of ± 10% of the 
nominal metabolic rate.  

 
 

 
Table 6 – Accuracy levels used for the whole of parameters affecting the thermal sensation 

[16] 

 
 

The sensitivity of the PMV to the accuracy of the measurement of physical 
quantities is summarized as follows [16]: 

 

• Air temperature: at each value of the metabolic rate studied, the maximum 
of the PMV did not exceed ± 0.07 with respect to the required level of 
accuracy in winter conditions and it wasn’t influenced by higher metabolic 
rate values. Furthermore, in summer conditions the uncertainty of the PMV 
appeared slightly enlarged, probably due to the lighter clothing worn by the 
occupants which makes the human body more sensitive to changes in air 
temperature; 

 

• Mean radiant temperature: the accuracy of the measurement of this 
parameter strongly influenced the evaluation of the PMV.  Metabolic rate 
for a sedentary activity (M = 1.2 met) in winter or summer conditions, it 
was calculated an average deviation of PMV of approximately ± 0.20 or ± 
0.28, respectively. 
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These results have clearly made the mean radiant temperature measurement 
a crucial step in the assessment of the thermal environment, since the 
transfer of radiative heat is related to the fourth power of the mean radiant 
temperature. Consequently, even small mistakes in its evaluation (i.e. an 
incorrect calibration procedure) can increase the uncertainty in the 
evaluation of the thermal environment. A lighter effect was found with 
higher metabolic rate; 
 

• Air velocity: the effect of errors in this case appeared less significant than 
the previous one. Indeed, the ΔPMV values calculated in winter condition 
(at 1.2 and 1.4 met) with the required accuracy, appeared close and were 
gradually lowered increasing metabolism; 

 

• Air humidity: the effect of errors on partial water pressure was negligible 
(following Fanger's theory), which refers to a reduced effect of humidity 
on human thermal sensation. 

 

 

The sensitivity analysis reported in the study of d'Ambrosio Alfano et al. has 
shown that the reliability of the PMV calculation is very influenced by the 
accuracy of the evaluation of each quantity related to the thermal sensation. 

In particular, although the mean radiant temperature was measured following the 
accuracy proposed in ISO 7726, the PMV value calculated can make the 
classification of the environment quite random. Furthermore, the uncertainty of 
the PMV with respect to this temperature, decreases if this measurement is carried 
out with the requested precision (which is very difficult considering the devices 
available on the market). 

Based on these tests, it is necessary to study the modification of the precision 
requirements presented in the ISO 7726 standard or refer to more reliable 
measurement procedure.  

Only a slight sensitivity of the PMV was detected both at the air temperature and 
at the air speed with a maximum uncertainty of the PMV of approximately 0.10. 

The accuracy of the humidity measurement didn’t affect the PMV estimation. 
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A significant influence from the metabolism was detected. In moderate 
environments, the values of the metabolic rate do not change significantly, so the 
accuracy used in this survey (±10%) must be considered valid. 

These results suggest the need of researches focused on measurement protocols 
leading to a possible reduction in the accuracy levels reported in ISO 7726. Also, 
due to a significant sensitivity to PMV, the ranges of PMV comfort found in ISO 
7730 and EN 15251 standards should be expanded to allow a better classification 
of thermal environments. 
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2 WEARABLE SENSORS 
Considering all the mentioned limitations concerning Fanger’s model and the 
calculation of the parameters contributing to the estimate of the PMV index, 
innovative solutions have been investigated for the measurement of the PMV: 
some of them consider the integration of the measurements of personal parameters 
included in the calculation of the PMV index (in particular, through the use of 
wearables sensors) while others are focused on defining personalized 
thermohygrometric well-being, with the use of measurements that go beyond the 
assessment of the metabolic rate. 

In this chapter then, the sensors used until now for measuring the physiological 
and physical parameters for the purpose of thermal comfort evaluation are 
presented. From the analyzed studies, it can be seen that sensor networks have 
also been generated (e.g. BAN Body Area Network) in order to analyze both 
physiological and environmental parameters in the most complete and exhaustive 
way possible. 

The key feature that recent studies in the field of thermal comfort have in common 
is to use small and wearable sensors.  

This aspect is fundamental to allow an even more accurate and truthful 
measurement of a person's physical state in different environments and to carry 
out measurements that are closer to reality and actually improve the occupant 
comfort inside a building. 

Before proceeding with the description of the individual devices, some 
mechanism, by which some physiological parameters are measured, will be 
analyzed: 

 

• Heart rate: this is a data that contains a lot of information and allows to 
understand how human heart is working both at rest and during exercise. 
Usually these sensors can be found in two different forms: a chest strap or a 
sensor integrated in a wrist device. 
Usually, sensors that are worn through a chest strap detect the heart pulse 
through an electrical signal via electrodes and send the data to an external 
device, be it a smartphone or a fitness tracker. [17] BioHarness for example 
uses this type of sensor. 
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On the other hand, there are sensors, usually mounted on smartwatches, that 
exploit the following principle: when our heart beats, the capillaries expand 
and contract based on changes in blood volume. To determine the heart rate, 
the green LEDs of the optical heart rate sensor on your device flash many 
times per second and the sensor uses light sensitive photodiodes to detect 
these volume changes in the capillaries above the wrist. So, your device 
calculates your beats per minute (BPM).  

 

Green LEDs are used to maximize the signal detected by the capillaries near 
the surface of the skin. The optical heart rate sensor also uses infrared light 
to determine when the device is on the wrist and improve the accuracy of 
heart rate data [18]. This type of sensor is used on the devices of the Fitbit 
family.  
Both types of sensors have their pros and cons. Those worn on the chest can 
be uncomfortable and difficult to wear, but they tend to be more precise as 
they are pressed firmly against the skin and are pretty close to the heart. On 
the other hand, wrist sensors are more comfortable to wear, but they need to 
be positioned carefully to ensure an accurate data reading. 

 

• Respiration: these devices works thanks to the use of a pressure sensor pad 
mounted on to the chest strap of the subject’s left-hand side, detecting and 
analyzing the expansion of the rib cage due to breathing action [19]. A 
wearable device that uses this type of sensor is BioHarness 3.0; 

 

• Electrodermal activity: Galvanic Skin Response (GSR), also known as 
Electrodermal Activity (EDA) or Skin Conductivity (SC), is a measure of 
the continuous changes in the electrical characteristics of the skin, such as 
conductivity, as a result of changes in sweating in the human body. The GSR 
signal is very easy to record: in general, two electrodes applied to the index 
and middle fingers of a hand are sufficient. The variation of a low voltage 
current applied between the two electrodes is used as a measure of 
electrodermal activity (EDA)  [20]; 
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Recently, new commercial devices dedicated to healthcare have been 
developed, as bracelets, watches, allowing an easier measurement. Empatica 
E4 is an example of a wearable sensor with an integrated EDA sensor [21]; 

 

• Steps: wearable devices use 3-axis accelerometer to count steps. This sensor 
also allows the device to determine frequency, duration, intensity and 
movement patterns [18]; 

 

• Distance: for example, Fitbit devices use the following formula to calculate 
distance. Stride length is determined by height and gender: 

 
 

Steps x Step length = Distance traveled 

 

When the user detects an activity with GPS, the device calculates the 
distance using GPS data instead of steps. If the user starts moving before a 
GPS signal is available, the device calculates the distance using the steps 
until it connects to the GPS [18]; 

 

• Floors: wearable devices, to count floors, have an altimeter integrated, 
which is a sensor that detects when you get on. The device registers 1 floor 
when the person climbs about 3 meters. Barometric pressure changes are 
used combined with the steps taken to calculate the floors climbed [18]; 

 

• Basal Metabolic Rate: Basal metabolic rate is the rate at which a person 
burns calories at rest to maintain vital body functions (i.e. breathing, blood 
circulation and heart rate), is based on the physical data as height, weight, 
gender and age and counts for at least half of the calories burned in a day 
[18]; 
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• Calories: wearable devices combine basal metabolic rate (MB), and activity 
data to estimate calories burned. If the device detects heart rate, this data is 
also included, particularly to estimate the calories burned during training 
[18]; 

 

• Activity level: this parameter is usually measured using a heart rate monitor, 
a sensor that detects heartbeats per minute (mounted for example on a chest 
strap) and GPS sensor. 
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2.1 BioHarness  
   
BioHarness 3.0 (BH3) is a sensor for real-time monitoring of various 
physiological parameters such as heart rate, respiratory rate, skin temperature, 
activity (running, walk, etc.), acceleration, position and posture (see figure 4).  
It’s sattached to a belt made of lightweight Smart Fabric, positioned on the chest 
directly in contact with the skin. It acts as a sensor, transmitter and data logger.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4 - BH3 sensor [22] 
 
 
 
 
 
Its characteristics are reported in the following table. 
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BIOHARNESS 3.0 
Hardware Characteristics 

Description Sensor for real-time monitoring of various physiological parameters, 
attached to a belt made of lightweight Smart Fabric 

Dimension 28mm x 7mm 
Weight 18g 

OPERATING CONDITIONS 
Temperature -10° to 50° C 

Humidity 5% to 90% relative humidity (non-condensing) 
Battery 4.2V Li-Ion rechargeable 

Battery capacity 24 hrs standby mode, 18 hrs active mode 
Charging time 3 hours 

Wireless Up to 2 miles (refer to RAELink3 datasheet for complete details) 
Software Zephyr’s OmniSense PC application 

DATA MANAGEMENT 
Run time 12 to 28 hours 

Data storage Hours 
General 500 

General and ECG 140 
General and 

Accelerometer 
280 

Data transfer 

Bluetooth or proprietary cradle (USB). BioHarness Log data can also 
be imported directly into Zephyr’s OmniSense Analysis module. 

(Zephyr Log Downloader Tool) 

Data format and 
analysis 

•.csv format (comma separated values) which can be opened using 
Microsoft Excel, Notepad, or similar, or imported into many data 

processing applications. 

•.dat/.hed file pairs. These are data files design for input of large data 
sets into a 3rd party data processing application such as DaDISP 

•.kml files, if the BioModule is used in conjunction with a supported 
Bluetooth GPS device 
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MEASURED PARAMETERS 
Heart Rate 25 to 240 BPM (±1 BPM) 

Respiration 3 to 70 BPM (±1 BPM) 

Activity (±) 16g in each axis (Vertical/Lateral/Sagittal) 

Skin Temperature 30° to 40° C ± 2° 

Posture ± 180° 

GPS Accuracy (via RAELink3) Within 5 meters 

APPLICATIONS 
Better individual activity classification, combining physical and physiological parameters 

[23]  

Improved measures of metabolic rate [24]  

REFERENCES 
• S. Casaccia, F. Pietroni, A. Calvaresi, G. M. Revel, and L. Scalise, “Smart 

monitoring of user’s health at home: Performance evaluation and signal processing 
of a wearable sensor for the measurement of Heart Rate and Breathing Rate,” 
BIOSIGNALS 2016 - 9th Int. Conf. Bio-Inspired Syst. Signal Process. Proceedings; 
Part 9th Int. Jt. Conf. Biomed. Eng. Syst. Technol. BIOSTEC 2016, vol. 4, no. 
Biostec, pp. 175–182, 2016, doi: 10.5220/0005694901750182. 

• F. Pietroni, S. Casaccia, G. M. Revel, and L. Scalise, “Methodologies for 
continuous activity classification of user through wearable devices: Feasibility and 
preliminary investigation,” SAS 2016 - Sensors Appl. Symp. Proc., pp. 326–331, 
2016, doi: 10.1109/SAS.2016.7479867. 

• A. Calvaresi, M. Arnesano, F. Pietroni, and G. M. Revel, “Measuring metabolic rate 
to improve comfort management in buildings,” Environ. Eng. Manag. J., vol. 17, 
no. 10, pp. 2287–2296, 2018, doi: 10.30638/eemj.2018.227. 

• BioHarness 3.0 User Manual. [25] 
• BioHarness BT User Guide.[26] 

Table 7 - BH3 characteristics 
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This device can be used, for example, to classify individual activities carried out 
by a specific person, characterizing each of them through the measurement of 
physical and physiological parameters. This type of study can be very useful as it 
allows to have a more precise estimate of the metabolic rate during different 
activities and, therefore, it also allows a greater precision in estimating thermal 
comfort. [23] 
 
The study by Calvaresi et al. [24] uses BioHarness to measure the metabolic rate, 
which will then be used in the Fanger’s comfort model to calculate the PMV. 
 
The methodology introduced in this experiment provides a continuous multi-
parametric measurement providing a real time estimate of the metabolic rate. 
During this test, the subjects involved (5 females and 5 males, age: 21 ±1 year, 
weight 61 ±13 kg, height 1.71 ± 0.09 m, BMI 20.95 ± 2.72 Kg/m2) were asked to 
perform 4 different types of activity:  
 

• sedentary activity; 
• walking slowly; 
• going down the stairs; 
• climbing stairs. 

 
Analyzing the data obtained, it emerged that in order to have an accurate 
metabolism value, it is necessary to measure physiological parameters such as the 
heartbeat. This new proposed methodology adapts very well to wearable sensors 
(chest straps such as BioHarness or smartwatches) allowing a real-time 
measurement of the metabolic rate with an uncertainty of ± 0.2 met. 
This new method of calculating the metabolism has been integrated into a virtual 
environment consisting of a building simulation model with technical systems 
allowing the control of the air temperature inside the room through a PMV-based 
approach. 
The virtual PMV sensor has been tested in two different ways: through standard 
sensors and through the real-time measurement of the metabolism. This way, it 
was possible to evaluate the impact of PMV uncertainty on building management 
as a function of the error committed in calculating the metabolic rate. 
A typical 8 working hours day was simulated, considering the activities that are 
normally carried out during these working hours. 
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From the results, it can then be observed that, in winter conditions and considering 
a constant value of the metabolism rate, the indoor air temperature is kept almost 
constant. On the other hand, considering the variation of the metabolic rate we 
can note that there is a variation of the set point temperature. In particular, 
temperature decreases with the increase in the metabolic rate. 
 
These results lead to the conclusion that it is very important to monitor the activity 
of the occupants themselves in order to optimize comfort management. In fact, 
there is a great discrepancy between the energy consumption simulated with the 
new methodology and the traditional one (in this specific case there is a 33% 
difference). 
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2.2 Fitbit Charge HR 
Fitbit Charge HR (figure 5) is a smart watch that is able to continuously monitor 
heart rate as well as steps, distance, calories, climb plans and sleep.  
It is one of the most affordable and easy to wear sensor. It allows continuous and 
non-invasive monitoring of physiological parameters, which can be integrated 
into everyday life while maintaining good data acquisition accuracy. 
Even the reading of acquired and processed data is easy and extremely user 
friendly.  

 
 

 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 5 - Fitbit Charge HR 4 [18] 

 
 
 
Its characteristics are reported in the following table. 
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FITBIT CHARGE HR 

Hardware Characteristics 

Description Fitbit Charge HR Bracelet Heart Rate Monitor and Physical Activity 

Bracelet 
Dimension 

Small: 14 – 17cm 
Large: 16-19,3 cm 

Extra-large: 19,3-23,1 cm 
Weight 30g 

OPERATING CONDITIONS 
Temperature -20° to 45° C 

Humidity - 
Battery Rechargeable lithium polymer 
Battery 
capacity  5 days 

Charging 
time 1-2 hours 

Wireless Bluetooth 4.0 
Software Fitbit app (mobile and Pc) or fitbit.com 

DATA MANAGEMENT 
Run time 7 days 

Data storage 

Charge HR stores minute-by-minute detailed data from the past seven 
days and summaries of daily activities for up to 30 days. The related heart 

rate data are stored at 1 second intervals in the mode workout and at 5-
second intervals at other times. 

The recorded data include steps, distance traveled, calories burned floors 
climbed, minutes active, heartbeat and sleep quality. 

Data transfer 

Charge HR syncs automatically and wirelessly with computer about every 
20 minutes only if they come fulfilled the following requirements: 

• Charge HR is located within 4-6 meters of the computer and 
logged new data to upload (if you haven't moved, nothing happens 

automatic synchronization). 
• The computer is turned on, active and connected to the Internet. 

Data transfer 

• The wireless sync dongle is inserted into a USB port and has been 
recognized by the computer. 

To manually sync Charge HR with the panel, click the Fitbit Connect icon 
on the computer, then on Sync now. 
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MEASURED PARAMETERS 

Heart Rate Heart rate is stored at 1 second intervals in the mode workout and at 
5-second intervals at other times 

Steps taken Steps 

Distance covered  Meters 

Calories burned Calories 

Floors climbed Floors (3 meters) 

Active minutes Minutes  

APPLICATIONS 
Evaluation of the metabolism to be included in the PMV calculation [8] 

REFERENCES 
• M. H. Hasan, F. Alsaleem, and M. Rafaie, “Sensitivity study for the PMV thermal 

comfort model and the use of wearable devices biometric data for metabolic rate 
estimation,” Build. Environ., vol. 110, pp. 173–183, 2016, doi: 
10.1016/j.buildenv.2016.10.007. 

• R. Bdnf and E. Kit, “Product Manual,” vol. 40, no. 15, pp. 1–5, 2000, doi: 
10.1002/jms.314.[27] 

 
Table 8 – Fitbit Charge HR 

 
 
Hasan et al. carried out an experimental study [8] to assess the average value of 
the metabolic rate of the occupants of a building, in order to study the sensitivity 
of the predicted mean vote model PMV.  

The authors conducted a simple experiment on a 22-year-old and 35-year-old 
male graduate students for more than half a day who were asked to wear the Fitbit 
Charge HR (to monitor heart rate, activity level, rate of caloric consumption per 
minute) associated with a HOBO MA 1101 wireless data recorder, which 
registered the internal environmental conditions (temperature and humidity), and 
an application on which the occupants of the building had to record the type of 
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clothing they worn during the experimental measurements. They were asked to 
do normal life activities while working at office or at home. 

 

These data were used to calculate the PMV values for each student for each minute 
and then the average values for 30 minutes were calculated. 

 

 

Figure 6 - MET and PMV values, clothing, and indoor environmental conditions recorded for 
two students [8] 

 

Figure 6 (a) and (b) show the graphs for the MET values measured using the Fitbit 
device together with the corresponding PMV value and the presumed PMV value 
(i.e., using a rate metabolic constant of 1.0 MET).  

These graphs show that the MET value continues to change throughout the day. 
For example, for the younger student, the metabolic rate was consistently above 
1.0 MET throughout the day, the lowest was 1.09. 

The figure also shows a very large increase in the MET value, and consequently 
in the PMV index, during the student's home study hours between (15: 00-17: 00) 
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and (19: 00-21: 00), while it decreases during the student's relaxing hours between 
(17:00 and 19:00). During most of the study period, the student was thermally 
dissatisfied, feeling warm, with an average PMV value of 2.5, while it is assumed 
that he should be comfortable with a PMV value of less than -0.2 (assuming a 
constant MET value of 1.0).  

Even if the student does not perform physical work, the figure show that mental 
work and just standing and walking seem to increase the MET value to an average 
higher than 3.0.  

The high sensitivity of the PMV model to metabolism, should explain the very 
large error between the presumed calculation and effective of the PMV. 

Therefore, metabolism must be carefully and constantly measured to ensure 
reliability of the PMV comfort model. The metabolic rate is continuously 
changing over time, even without performing any remarkable physical activities. 
For example, this document shows that simple mental work might lead to some 
increase in the MET value, which can lead to thermal discomfort. 

An accurate measure of metabolism of an occupant can extend the area of 
application of the PMV model to those who may be involved in physical activities, 
such as waiters and waitresses in a restaurant, or people working out in the gym, 
underlining also the importance of using wearable devices for this purpose. 
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2.3 iButtons 
 

The iButton temperature/humidity logger (DS1923) is a rugged, self-sufficient 
system that measures temperature and/or humidity and records the result in a 
protected memory section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7 - iButton (DS1923) [28] 

 
 
 
 
 
 
 
 
 

In the table below are reported its characteristics: 
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IBUTTONS 
Hardware Characteristics 

Description 
The iButton. temperature/humidity logger (DS1923) is a rugged, self-

sufficient system that measures temperature and/or humidity and records 
the result in a protected memory section. [29] 

Dimension 17,35mm x 5,89mm 
Weight 5 g 

OPERATING CONDITIONS 
Temperature -20° to 85° C 

Humidity 0% to 100% relative humidity 
Battery 3V to 5,25 V Lithium battery 
Battery 
capacity Depending on use 

Charging time - 

Software 

Software for setup and data retrieval through the 1-Wire interface is 
available for free download from the iButton website. This software also 

includes drivers for the serial and USB port of a PC and routines to 
access the general-purpose memory for storing application-specific or 

equipment-specific 
data file. 

DATA MANAGEMENT 
Run time Depending on use  

Data storage 

512 Bytes. A total of 8192 8-bit readings or 4096 16-bit readings taken 
at equidistant intervals ranging from 1s to 273hrs can be stored. In 

addition, there are 512 bytes of SRAM for storing application-specific 
information and 64 bytes for calibration data.  

Data transfer 

The DS1923 is configured and communicates with a host-computing 
device through the serial 1-Wire® protocol, which requires only a single 

data lead and a ground return 

Data format 
and analysis 

- 

 
MEASURED PARAMETERS 

Temperature 
Temperature Accuracy Better Than ±0.5°C from -10°C to +65°C with 

Software Correction. Measures Temperature with 8-Bit (0.5°C) or 11-Bit 
(0.0625°C) resolution. 

Humidity Digital Hygrometer Measures Humidity with 8-Bit (0.6%RH) or 12-Bit 
(0.04%RH) resolution. 



41 
 

APPLICATIONS 
Calculation of skin temperature[30] 

REFERENCES 

• S. Liu, S. Schiavon, H. P. Das, M. Jin, and C. J. Spanos, “Personal thermal comfort 
models with wearable sensors,” Build. Environ., vol. 162, no. March, p. 106281, 
2019, doi: 10.1016/j.buildenv.2019.106281. 

• G. Description, “iButton Hygrochron Temperature / Humidity Logger with 8KB 
Datalog Memory DS1923 iButton Hygrochron Temperature / Humidity Logger with 
8KB Datalog Memory Absolute Maximum Ratings,” pp. 1–56. [29] 

Table 9 – iButton DS1923  

 
These small sensors were used together with the Polar H7 chest strap in an 
experiment for the development of personal thermal comfort models using 
wearable sensors. The accurate description of the study will be presented in the 
following paragraph. 
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2.4 Polar H7 
 

 Polar H7 is a chest strap equipped with a sensor for heart rate monitoring. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8 - Polar H7 [31] 

 
 
Its characteristics are listed in the following table: 
 

POLAR H7 
Hardware Characteristics 

Description Heart rate sensor (electrodes and transmitter) mounted on a chest strap  

Dimension Sensor 2x1x3 cm 
Weight 200 gr 

OPERATING CONDITIONS 
Temperature -10° to 50° C 

Humidity - 
Battery Lithium battery CR 2025 

Battery capacity 200 hours 
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DATA MANAGEMENT 

Run time 200 hours 
Data storage Instant transmission 

Data transfer 
Bluetooth sync with the Polar Beat app (smartphone or 

Pc) 

Data format and analysis - 

MEASURED PARAMETERS 
Heart Rate BPM 

APPLICATIONS 
Heart rate monitoring for the study of personal thermal comfort through wearable sensors 

[30] 

REFERENCES 

• S. Liu, S. Schiavon, H. P. Das, M. Jin, and C. J. Spanos, “Personal thermal comfort 
models with wearable sensors,” Build. Environ., vol. 162, no. March, p. 106281, 2019, 
doi: 10.1016/j.buildenv.2019.106281. 

• U. Manual, “Polar H7,” p. 17953893, 2014, doi: 10.1016/S0262-4079(15)30383-3 [31] 

Table 10 – Polar H7  

 
 
Liu et al. [30] developed personal thermal comfort models using wearable 
devices. Data from four subjects (8 males and 6 females) were analyzed. Each 
subject was monitored with three sensors (shown in the figure 9): 
 

- iButtons (DS1923) for skin temperature, that was detected at the wrist 
and ankle level with a sampling frequency of one minute; 

- the Polar H7 chest strap for heart rate monitoring (with a frequency of 
one second); 

- a small cell phone in a wrist pocket that acts as an accelerometer to 
record the activity levels (sampling rate of 5 Hz or higher).  
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The participants were also asked to participate in an online survey every hour 
during the day (at least 12 times a day) to capture the dynamics of thermal 
conditions. 
To detect the transition between different thermal environments, the temperature 
of the air near the body was also monitored by pinning an extra iButton to the 
trousers with a badge (slightly above the ankle to reduce the influence of the 
body's thermal plume). 
 
 

 

 

Figure 9 - Physiological sensors and wearing locations [30] 

 
 

 

The measurement campaign was conducted for 14 days. Each day, the subjects 
had to wear the sensors for at least 20 hours to make the survey at least 12 times 
while the subjects carried out their daily activities. 
The analysis also considered the weather conditions, that can influence people's 
clothing, thermal expectations and also the way buildings are conditioned in 
(these data were taken from the station https://www.wunderground.com/ close to 
the position where the participants of the experiment were). 
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The results obtained are reported below: 
 

• Personal thermal comfort models developed with long term monitoring of 
physiological and environmental data lead to a median prediction power of 
24%/ 78% /79% (Coappa's kappa / accuracy / AUC) which is significantly 
greater than the conventional PMV and adaptive models. 
 

• The PMV model has the best forecasting accuracy in the thermal and 
neutral zone and it decays towards the extremes of the thermal sensations 
scale. The authors have shown that personal thermal comfort models that 
use wearable sensors do exactly the opposite. They have the highest 
prediction outside of thermal neutrality. This is very useful in practice 
because the aim is to prevent people from being too much cool or overheat. 

 
• When the data of all subjects are merged and all features are included, the 

forecast power is 35% / 76% / 0.80 (baseline). The current smart bracelets 
with time, heart rate, acceleration data can generate predictive power 
maximum of 18% / 71% / 0.67. However, the performance of forecast can 
be increased to 43% / 77% / 0.78 when detection of the skin temperature 
and meteorological data streaming are present into the bracelets. 

 
• The predictive performance of personal comfort models with wearable 

sensors could reach 21% / 71% / 0.7 (Cohen's kappa / accuracy / AUC) 
afterwards about 200 votes. 

 
 
 
 
 

 
 
 
 
 
 



46 
 

2.5 Empatica E4 wristband 
 
Empatica E4 bracelets are used for heart rate detection. They consist of a photo-
plethysmography (PPG) sensor used to monitor the blood volume of the wrist 
(BVP). BVP can be used to derive cardiovascular characteristics including heart 
rate (HR) and heart rate variability (HRV). Both HR and HRV have shown 
promising results for cognitive load and mental stress detection. 
E4 provided reliable data even when the subjects are in motion. [32] 
 
 
 
 
 

 
 

 

Figure 10 – Empatica E4 wristband [21] 

 

 

Its characteristics are listed in the following table: 
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EMPATICA E4 
Hardware Characteristics 

Description Multiple sensors mounted on a wristband to monitor physiological 
signals 

Dimension 44x40x16 mm 
Weight 25g 

OPERATING CONDITIONS 
Temperature - 

Humidity 0-100% H.R. 
Battery 260mAh with 3.7V output 

Battery capacity Streaming mode 20+ h 
Memory mode 36+ h 

Charging time < 2hours 
Wireless Bluetooth smart 
Software Empatica Manager (Pc), Empatica E4 real-time app 

DATA MANAGEMENT 

Memory Session data is approximately 1MB per recording hour.  Device 
storage capacity exceeds 60 recording hours. 

Data storage 60+ h 

Data transfer 

The E4 wristband connects to a smartphone or desktop computer via 
Bluetooth, both modes upload the data recorded in Empatica's secure 

cloud platform – Empatica Connect - which allows users to easily 
access their data. 

Data format and 
analysis 

Download raw data in CSV Format from Empatica cloud platform. 
It’s possible to view graphs of Electrodermal Activity (EDA) also 
known as Galvanic Skin Response (GSR), Blood Volume Pulse 

(BVP), Acceleration, Heart Rate (HR), and Temperature 

MEASURED PARAMETERS 

Electrodermal 
activity (EDA) 

• Sampling frequency: 4 Hz (Non customizable). 

• Resolution: 1 digit ~900 pSiemens. 

• Range: 0.01 μSiemens – 100 μSiemens. 

• Alternating current (8Hz frequency) with a max peak to peak value 
of 100 μAmps (at 100 μSiemens). 

• Electrodes: Placement on the ventral (inner) wrist.  Snap-on silver 
(Ag) plated with metallic core. Electrode longevity: 4–6 months 



48 
 

Blood volume 
pulse (BVP) 

PPG sensor: sampling frequency 64 Hz (Non customizable). 
Sensor output resolution 0.9 nW / Digit. 

The heart rate is derived from this measurement. 
 

Temperature 

Infrared thermopile:  

• Sampling frequency: 4 Hz (Non customizable). 

• Range: -40...85°C for ambient temperature (if available) *, -
40...115°C for skin temperature. 

• Resolution: 0.02°C. 

• Accuracy ±0.2°C within 36-39°C. 

Acceleration 

Sampling frequency: 32 Hz (Non customizable). 

• High sensitivity motion detection across 3 axes: X, Y, and Z. 

• Default range ±2g.  

• Ranges of ±4g or ±8g are selectable with custom firmware. 

• Resolution: 8 bits of the selected range. 

These measures permit to capture motion-based activity. 

APPLICATIONS 
Improved evaluation of thermal comfort of office workers [32] 

 
REFERENCES 

 

• F. Zhang et al., “The effects of higher temperature setpoints during summer on office 
workers’ cognitive load and thermal comfort,” Build. Environ., vol. 123, pp. 176–
188, 2017, doi: 10.1016/j.buildenv.2017.06.048. 

• Empatica, “Empatica E4 User Manual,” User Man., pp. 1–32, 2015. [33] 
• “Get started with your new E4 wristband Follow this simple 10 step guide to quickly 

get up and.” [34] 

 
Table 11 – Empatica E4 
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This smart bracelet was used together with the Emotiv Insight in an experiment 
to investigate if office environments with a higher temperature set point can be 
still comfortable and cognitively efficient. The accurate description of the study 
will be presented in the following paragraph. 
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2.6 Emotiv Insight Mobile EEG headsets 
This device consists of five sensors positioned on the scalp of the person AF3, 
AF4, T7, T8, Pz according to the international Jasper 10-20 method and two 
reference sensors located on the left mastoid process. 

 

 

 

 

Figure 11- Emotiv insight sensors position [35] 
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Five-channel brain waves were measured with a minimum voltage resolution of 
0.51 mV from the least significant bit and the frequency response from 0-43 Hz. 

The sampling frequency of the data was set at 128 samples per second for each 
channel. [32] 

 

 

 

 

 
Figure 12 - Emotiv insight [35] 

 
 

 
Its characteristics are reported in the table below:  
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EMOTIV INSIGHT 
Hardware Characteristics 

Description 5-channel mobile EEG system using semi-dry polymer sensors. 

Dimension Adjustable 

Weight About 600 g 

OPERATING CONDITIONS 
Temperature - 

Humidity - 

Battery LiPo battery 480mAh, rechargeable 

Battery capacity Up to 8 hours using USB receiver, up to 4 hours using Bluetooth 
Low Energy 

Charging time 2 hours 

Wireless Wireless: Bluetooth Low Energy 
Includes proprietary USB receiver:  2.4GHz band 

Software Myemotiv (Google play and App store), BrainViz, EmotivPro, 
EmotivBCI 

DATA MANAGEMENT 

Data storage - 

Data transfer Wireless: Bluetooth Low Energy 
Includes proprietary USB receiver:  2.4GHz band 

MEASURED PARAMETERS 

EEG Signals 
Sampling rate: 128 samples per second per channel 

Resolution: 14 bits with 1 LSB = 0.51μV 
Frequency response: 0.5-43Hz, digital notch filters at 50Hz and 

60Hz 

Motion sensors 

Accelerometer: 3-axis +/-8g 

Gyroscope: 3-axis +/-2000 dps 

Magnetometer: 3-axis +/- 12 gauss 

Sampling rate:  64 Hz 

Resolution: 14 bits 
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APPLICATIONS 
Control of brain activity during the variation of the temperature setpoints in a office during 

summer [32] 

REFERENCES 
• F. Zhang et al., “The effects of higher temperature setpoints during summer on 

office workers’ cognitive load and thermal comfort,” Build. Environ., vol. 123, pp. 176–
188, 2017, doi: 10.1016/j.buildenv.2017.06.048. 

 
• “INSIGHT Manual.” [36] 

 
• Emotiv Insight official web page [35] 

Table 12 – Emotiv Insight 

 
Empatica E4 and Emotiv insight headsets were used in the study of Zhang et al. 
[32] to investigate whether office environments with high temperature setpoints 
can be comfortable and allow occupants a cognitively efficient work environment. 
Three different methods for assessing cognitive load were used: cognitive 
performance test scores, NASA-TLX measurement, EEG and HR. 

The experiment was conducted in an IEQ Lab climate chamber of the University 
of Sydney. 26 participants (12 males and 14 females) were employed, all of them 
(in groups of three or four) participated in a 3-hour experiment consisting of two 
acclimatization periods, two sessions and a break. Session one lasted one hour. 
During the acclimatization period (30 minutes) and session 1 (control condition), 
the room temperature setpoint was 22 °C. In the second session, however, the 
acclimation period was 20 minutes followed by the experiment period (one hour) 
and the temperature setpoint was set at 25 °C. 

The participants' brain activities were monitored both through the control 
condition and the temperature reduction condition. 

The following cognitive performance tests were performed: memory test, 
concentration test, reasoning test, planning test, the Paced Auditory Serial 
Addition test (PASAT). Then NASA-TLX was performed, it is a workload 
assessment technique (based on six subscales: mental demand, physical demand, 
temporal demand, performance, effort and whipping level). 

Brain activity levels and heart rate were then monitored. 
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Brain activity was controlled with EEG Emotiv Insight Mobile headsets that 
measure brain waves in five channels with a minimum resolution of 0.5 𝜇V from 
the least significant bit and the frequency response of 0-43 Hz. The data sampling 
rate was set at 128 samples per second from each channel. 

Heart rate (HR) and heart rate variability are derived from the heart beat detected 
by Empatica E4. 

The HR and EEG data were recorded on 19 subjects, however for the actual 
analysis only the data of 12 subjects were analyzed (those that had the minimum 
value of incorrect values and therefore a more reliable dataset). 

To analyze the physiological response of the participants Zhang et al. used 
machine learning based analysis using MATLAB. 

Air temperature and humidity were measured every 5 minutes; the air temperature 
was measured at 0.6 m high in the occupied area using thermistors, the wall 
humidity sensors at 1.7 m high monitored the atmospheric humidity in the 
chamber. 

As regards to thermal comfort, two different approaches were used to determine 
the level of acceptability of the thermal environment the subjects were exposed to 
at the time of the survey.  

The first approach was the questionnaire on thermal acceptability, in which the 
participants were asked to report how they found the thermal environment. The 
replies indicated that during the control condition, approximately 88% of the 
subjects considered the environment acceptable. Similarly, the condition of 
temperature reduction (25°C) was considered acceptable and unacceptable 
respectively by 81% and 19% of the subjects. 

The second approach was based on percentage of people voting for the three 
central categories of the scale of thermal sensations (i.e. slightly cool, neutral or 
slightly warm). Therefore, the subjects who voted cold (−3), cool (−2), warm (+2) 
and hot (+3) were considered unsatisfied from the point of view of thermal 
comfort. 

During the control condition, 88.5% of subjects voted for the three central 
categories, so the environment was considered satisfying. Another 11.5% of the 
subjects voted for (−3, −2) and no subjects voted for (+2, +3). They were deemed 
unsatisfied with the thermal conditions at the temperature of 22 °C. 
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The results of the CBS performance tests were consistent with the NASA-TLX 
result: participants' cognitive performance test scores did not differ significantly 
between the control condition and the varied temperature condition. The 
measurement of EEG and HR helped confirm that cognitive performances were 
not influenced by temperature.  These physiological responses were analyzed with 
a machine learning-based method using MATLAB. This process involves four 
steps: preprocessing, feature extraction, feature generation, clustering. 
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2.7 Sensors network 
Up to now, the characteristics of the individual sensors and their applications have 
been analyzed. Wireless network technology has allowed the development of 
systems consisting of sensor networks capable of measuring both physiological, 
physical and environmental parameters. Regarding the physiological parameters, 
a technology now widely developed and studied, especially in the medical field, 
is the Body Area Network (BAN). As for the study of environmental parameters, 
an example is the Comfort Eye, which finds numerous applications. 

The following paragraphs will analyze both the BAN, with its characteristics and 
applications, and the Comfort Eye. 

 
 
2.7.1 Body Area Network (BAN) 

The BAN was born in the medical field with the aim of carrying out a continuous 
observation of the patient's state of health to detect a critical condition, thus 
generating an alarm [37]. To obtain this result, sensors are placed on, in and/or 
around the human body. The table below, taken from [37], shows the biosensors 
that are used and their functions. 

 
 

 
Table 13 – Biosensor with their functions  
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These sensors can be positioned on the human body in different ways, the 
following figure exemplifies one of the possible ways: 
 
 
 
 

 
 

Figure 13 -  Example of patient monitoring in wireless body area network [37] 

 
The data collected by the sensors are sent wirelessly. There are three levels of 
communication: an intra-body, an inter-body and an extra-body which is 
responsible for the data bundle between personal devices and the internet, i.e. 
sending the data to the doctor so that he can make a diagnosis.  
Monitoring systems have been developed to integrate body sensors with an 
environmental sensor, in order to evaluate environmental, physiological and 
behavioral data of the occupants of a given environment. There are also other 
applications of the BAN [38], for example in the military field to evaluate the 
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physical performance of soldiers, or in the sports field to evaluate training 
programs. 
An application proposed by Chika S. [39] provides the use of an intelligent system 
based on wearable wireless sensors, that detect the state of well-being and send 
these data to a control system of environmental parameters (temperature and 
humidity).  
 
 
 

 

Figure 14 -  Conceptual diagram of a smart system [39] 

 
 
 
The system consists of a temperature sensor positioned on the ear, skin 
temperature sensors, an ECG sensor with triaxial accelerometer and thermo-
hygrometers as shown in the figure below: 
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Figure 15 - BAN configuration [39] 

 
 
 
 

The data is transmitted to the coordinator (smartphone or laptop). The sensor 
micro-controller integrates a 32-bit and 2.4 GHz microprocessor, IEEE 802.15.4 
compliant, a transceiver that has A/D conversion, data processing and 
transmission functions. The sampling frequency of the ECG sensor is 204Hz and 
that of the other sensors is 1Hz. 
 
The comfort level is assessed by fluctuating peripheral body temperature and 
sweating. The accelerometer is used to recognize the subject's level of physical 
activity and correctly estimate the thermal sensation. The estimation of the state 
of well-being is based on Markov's hidden hierarchical model and allows to 
intervene on the environmental air conditioning according to the individual's 
comfort level, creating a smart environment. 
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2.7.2 Comfort eye 
Comfort Eye is a low-cost system for real-time monitoring of comfort conditions 
in indoor environments. The system is based on an IR (infrared) sensor installed 
on the ceiling of the room that analyzes the temperature of all the surfaces of the 
room and calculates the average radiant temperature for each point in the room. It 
also measures temperature, relative humidity and air speed. The combination of 
this data allows the calculation of the PMV index for multiple positions in the 
room. [40] 

The information provided by the system can be sent directly to the control system 
just like the temperature sensor does with a thermostat or with an HVAC control 
system. The system outputs real-time PMV maps which are suitable for providing 
modular control feedback that cannot be obtained with standard thermostats. [41] 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 - Comfort eye [41]  

 

 

 

Its characteristics are reported below: 
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COMFORT EYE 
Hardware Characteristics 

Description 
It’s a low-cost system for real time monitoring of comfort conditions, 

it is able to provide continuous monitoring of PMV and average 
radiant temperature for multiple positions in the environment. 

Dimension - 
Weight - 

OPERATING CONDITIONS 
Temperature - 

Humidity - 
Battery - 
Wireless Wireless Wi-Fi 
Software - 

DATA MANAGEMENT 
Run time - 

Data transfer Real-time data transmission via Wi-Fi.  

Data format and 
analysis 

The system sends the results to a local gateway based on raspberry 
board. Data are sent to a server and processed for being consumed by 

web clients 

MEASURED PARAMETERS 
Mean Radiant 
Temperature ±0.5°C 

Wall 
Temperature ±0.9°C 

Air Temperature ±0.2°C 

Relative 
Humidity ±5 % 

Air velocity ± 0.1 m/s (range 0-1 m/s) 

PMV ±0.1 

APPLICATIONS 
Improved PMV assessment for the evaluation of thermal comfort 
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REFERENCES 
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for the energy-efficient sub-zonal heating management in indoor environments 
based on PMV,” Energy Build., vol. 166, pp. 229–238, 2018, doi: 
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Table 14 – Comfort eye  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17 - Concept of the solution for the monitoring of the PMV in multiple positions in the 

space [41] 
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An application of comfort has been described by Arnesano et al. [40] in the 
creation of a system consisting of: 

• a real-time, multi-point meter of thermal comfort (Comfort Eye); 
• an advanced controller; 
• a customized or sub-zone heating/cooling system. 

The union of these three components in an integrated system brings closer the 
possibility of maintaining the comfort of a building with minimum energy 
consumption. In the experiment described, conducted in an office of the 
Polytechnic University of Marche, it was shown that this control system is able to 
achieve an energy saving of 17.1% compared to a traditional control system. 

 

Another study conducted by G.M. Revel, M. Arnesano, F. Pietroni [41] paired the 
measurements made with comfort eye with the metabolic estimation of occupants, 
in order to better assess internal comfort. "The metabolic rate M is defined as the 
amount of daily energy that a person consumes while at rest in an environment 
that is temperate and neutral, and while in a post-absorptive state." M is one of the 
most important parameters for estimating thermal comfort, and can be recorded 
by measuring heart rate during different states of activity in a climatically neutral 
environment. The instrument used to measure heart rate was a low-cost sensor 
that consists of a small printed circuit board of 16 mm in diameter, an ambient 
light sensor as a receiver and a super bright green LED with reverse mounting as 
an emitter.  

The use of these sensors for heart rate measurement integrated with the Comfort 
Eye has allowed effective concomitant monitoring of the metabolism allowing a 
better assessment of the PMV index and consequently of the thermal comfort. 

 

Another application of the comfort eye can be found in the ENERGIS project [42] 
which aims at optimizing the use of energy resources by reducing general costs 
and emissions, while simultaneously maintaining comfortable living conditions 
in individual buildings and districts. 
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Monitoring is used to locally detect energy demand, while optimization is 
performed on two levels. The first optimization tries to consider different aspects 
related to the thermal management of the environments supported by the Comfort 
Eye sensor, capable of controlling the thermal actuators to set a comfort setpoint. 
The second level of optimization starts from the data of each building to set up a 
district model capable of mapping and predicting energy needs, allowing energy 
management based on the concept of sharing. 

 

In particular, the monitoring system provided in the first optimization level is 
able to measure the following variables: 

• electric metering on monophase and triphase (V, I, P, Pact, Preact) 
connected on RS485 bus; 

• water metering; 
• thermal metering; 
• natural gas metering; 
• comfort (thermal); 
• indoor air quality. 

 

The use of the Comfort Eye allows the monitoring of the internal thermal 
conditions allowing to identify the optimal set point that combines thermal 
comfort with minimum energy consumption. 
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Figure 18 - EnergyPlus simulations diagram: a) standard scenario, b) scenario 

with Comfort Eye decision. [42]  

 

 

Comfort Eye data can also be viewed using a panoramic viewer that allows 
viewing of the RGB panorama developed with a classic camera co-registered with 
thermal data (see figure 19). This mode can provide very useful information on 
the performance of the building envelope and on the presence of heat loads in the 
room. 
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Figure 19 - Visualization of RGB and thermal data by using a panorama viewer. 

a) Left: RGB panorama. b) Center: Thermal panorama. c) Blended RGB and 

thermal panorama. [42] 
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2.8 Considerations 
The following table summarizes all the sensors analyzed and compares the 
parameters they measure: 

 

MEASURE
D 

PARAMET
ERS 

SENSORS 

BIOHARN
ESS 3.0 

FITBI
T 

CHAR
GE HR 

I-
BUTTO

NS 

BAN 
NETWO

RK 

POL
AR 
H7 

EMPATI
CA E4 

EMOT
IV 

INSIG
TH 

COMFO
RT EYE 

Heart rate √ √  √ √    
Blood 

volume 
pulse 

     √   

Respiration √        
EEG       √  
EDA 

(Electroder
mal 

activity) 

     √   

Skin Temp. √   √     
Calories  √       
Activity 

level √ √       

Acceleration    √  √ √  
Posture √        
PMV        √ 
GPS √        
Steps  √       

Distance  √       
Floors  √       

Humidity   √ √    √ 
Mean 

Radiant 
Temp. 

       √ 

Wall Temp.        √ 
Air Temp.   √ √  √  √ 

Air velocity        √ 
Table 15 – Summary table  
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By analyzing the articles cited above it’s possible to understand how important to 
is the monitor of the physiological parameters as well, their integration with the 
measurements of the environmental parameters. One of the most important 
quantity to take into account is the metabolism. Making measurements in real time 
of the heart rate, it’s possible to have a reliable and more truthful estimate of the 
metabolic rate with respect to the Fanger’s model. 

The sensors that are heavily targeted for their practicality are smart watches and 
chest straps that have the ability to be worn easily, are easy to handle, allow the 
acquisition of different physiological parameters and have the advantage of being 
able to be worn in a real context and not simply in the laboratory where the 
experimentation is carried out. 

On the other hand, these sensors have a good accuracy but certainly not 
comparable to a more precise and better calibrated laboratory sensors. 

There is the need to find a compromise between the accuracy of the sensor and its 
handling. The development of "smart shoes" equipped with wearable sensors is 
also assumed. They would allow continuous and real-world study and data 
collection, for periods much longer than, for example, studies conducted only in 
a laboratory. 

In fact, another critical aspect concerns the sampling time of these physiological 
parameters, much of which require different time to stabilize and therefore to be 
considered reliable and significant. In fact, most of the studies carried out 
experiments of a few hours and only in the laboratory. 

 

Just one of the articles read [21] reports a different kind of approach, in fact the 
study was carried out in 4 weeks with data acquisition for about 20 hours per day 
in a "real" environment, monitoring the actual activities made by the participants. 
A personal comfort model was then created for each participant in order to have 
the most truthful representation possible. Although this approach is extremely 
accurate; it requires considerable data acquisition and processing times and is 
therefore difficult to apply on a large scale. 
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3 ANALYSIS OF THE RESULTS 
Having studied the sensors and their application in the assessment of thermal 
comfort, it is necessary to make a detailed analysis of the results obtained from 
these researches in order to understand whether the introduction of these sensors 
has actually brought a benefit and an improvement. 

Two trends were noted in the studies analyzed: the first sees the use of the PMV 
model and tries to improve the evaluation of the parameters which influence it 
and consequently tries to achieve a more accurate prediction of thermal comfort. 
The second trend, instead, sees the introduction of a new model of thermal 
comfort for a more truthful assessment of the state of comfort. 

Instead, the study conducted by Zhang et al. [32] highlighted a different aspect of 
the comfort condition, analyzing the impact that comfort can have on human 
activities. The authors assessed whether the offices with high internal 
temperatures (from 22 °C to 25 °C) represented a cognitively efficient and 
productive environment. The results obtained showed that the cognitive load of 
the subjects involved was not influenced by this moderate temperature variation 
from 22 °C to 25 °C. The questionnaires on thermal comfort and air quality 
administered to the participants showed that this temperature variation probably 
did not significantly compromise thermal comfort, although a warmer sensation 
was reported at the higher temperature. The acceptability of the thermal 
environment had therefore not changed significantly. 

Surely the analysis of the impacts that, for example, the temperature can have on 
people and their activities, is very important and needs to be studied in depth and 
combined with the study of comfort to improve the well-being and productivity 
inside offices, schools, universities. 

 The two trends that have been mentioned above are now analyzed. 
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3.1 Optimization of Fanger’s model 
Most of the studies analyzed are found in this first case, specifically the research 
that used: BioHarness 3.0 [24], Fitbit Charge Hr [8]  and Comfort Eye [41].  

 

• BioHarness: this study by Calvaresi et al. [24], as already highlighted above, 
proposes a real time evaluation of the metabolic rate, which, has seen before, 
is one of the physiological parameters that most influences the calculation of 
the PMV index. This new measurement was integrated into the simulation of 
a virtual environment consisting of a building with an internal air temperature 
control system based on the PMV model. This temperature control sensor has 
been set with two different working modes.  
The first that used the calculation of the PMV according to the standard model, 
with the use of constant values of the metabolism taken from tables (according 
to Fanger's theory); the second that instead used this innovative method for 
real time estimation of the metabolic rate. This simulation allowed the 
evaluation of the impact of the PMV uncertainty on the management of the 
building as a function of the error committed on the estimate of the metabolic 
rate using standard values instead of a continuous measurement. 
 
The temperature control simulated in the two tests, which depends on the 
PMV index, was carried out considering a typical working day of 8 hours, 
simulating the standard activities that are carried out in such situation.  
 
From the simulations carried out, it was observed that in winter, using a 
constant metabolism value, the temperature inside the building was kept 
almost constant; on the contrary, if you observe the result obtained with the 
dynamic value of the metabolic rate, a variation in the set point temperature 
is noticed as shown in the figure below: 
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Figure 20 – Trends of the set-point temperatures and air temperature obtained with: 

(a) dynamic profile of metabolic rate (b) constant value of the metabolic rate 
 

An increase in the metabolic rate corresponds to a lower value of the set point 
temperature, therefore the set point temperature decreases as the metabolic 
rate increases. The use of a constant metabolic rate value leads to an error in 
the calculation of the PMV which induces an error of 3.2 °C in the estimate 
of the T set. Analyzing the PMV index calculated in the two tests, it can be 
seen that in the case of dynamic metabolism control, there is an average PMV 
close to zero, while, in the other case, an environment near the slightly warm 
sensation is obtained (as shown in figure 21). This happens because the 
controller is unable to identify the need to reduce the heat (due to the increase 
in occupant activity), thus leading to a worsening of the comfort conditions. 
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Figure 21 – Trends of PMV in the two simulations 

 

 

The dynamic simulation also led to an energy consumption of 5.8 kWh 
compared to 8.6 kWh in the second test. 

Given the results obtained from this study, it is highlighted that a real time 
and a more truthful assessment of the metabolism can reduce the systematic 
error introduced by the use of constant activity values assigned to the 
building, leading to an improvement in internal comfort as well as a better 
energy management of the building itself. 
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• Fitbit Charge HR: also in this article by Hasan et al. [8] (previously described), 
the attention is placed on the metabolism assessment and on the effect it has 
on the calculation of the PMV index. In this study we compare the PMV value 
calculated using the metabolic rate assessed through the Fitbit Charge HR 
device and the PMV value obtained considering the constant metabolism 
value equal to 1.0 MET. 

 

 

Figure 22 – MET and PMV values, clothing, and indoor environmental conditions 
recorded for two students [8] 

 

 

From the results obtained by the authors, it is noted that considering a constant 
value of the metabolism during the whole experiment is not correct, since the 
activity and the metabolic rate vary continuously.  
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The variation of the metabolism leads to the variation of the PMV index, 
leading to discomfort. For example, the value of the metabolism for one of the 
occupants was always higher than 1.0 MET for the whole duration of the 
experiment, even at its lowest value it was however higher than the constant 
value chosen. Therefore, most of the time the occupant felt thermally 
unsatisfied, feeling hot, with an average PMV value of 2.5, while instead, 
according to the calculation made with the constant value of the metabolism, 
the person would have had to feel right comfortable with a PMV value of 
approximately -0.2. From here it’s possible to understand the sensitivity of the 
PMV to the metabolic rate and also explain the great difference between the 
value obtained from the actual calculation and the presumed one. 

 

• Comfort Eye: in the study of Arnesano et al. [41], this sensor, capable of 
evaluate the internal temperature of a room and the mean radiant temperature 
in multiple positions in the space, was integrated with a sensor for the 
continuous monitoring of the heartbeat to evaluate thermal comfort through 
Fanger’s model. The continuous estimate of the metabolic rate obtained by 
monitoring the heartbeat presented advantages and improvements to the 
thermal comfort assessment: the system is able to identify the different 
activities carried out by the occupant by itself, allowing to take into 
consideration the real perception of the subjects involved (taking into account 
that the same activity can be carried out differently from person to person, 
with a different perception of comfort). This measurement of the metabolism 
shows a deviation of ±7% compared to the values found within the ISO 8996 
standard with a resulting ±0.05 in the PMV computation. Consequently, the 
proposed methodology is able to bring an improvement in the measure of 
thermal comfort. 

 

From the results obtained from these studies, it is well understood how the 
metabolism is actually one of the parameters that most influences the PMV and 
how its more accurate evaluation can improve the calculation of the PMV index, 
not only in order to better evaluate the thermal comfort but also in order to 
intervene on the energy management of a building. 
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3.2 New models of thermal comfort 
This category includes the studies that used: the iButtons and Polar H7 devices 
[30] and the Body Area Network [39]. 

 

• Polar H7 and iButtons: in this study [30] Liu et al. developed a personal 
thermal comfort model for each participant through machine learning 
methods. These models use information and data relating to the individual 
occupant and not average information: in this way it is possible to better 
understand the needs and preferences of the individual occupants and better 
satisfy their thermal comfort. 
The authors have shown that these models of personal thermal comfort that 
they developed have the maximum prediction precision towards the extremes 
of the scale of thermal sensations, unlike the PMV model which, instead, has 
maximum precision in the neutral thermal zone. 
These new models therefore exhibit significantly greater median prediction 
power than conventional PMV. 
 
 

• BAN: in this research [39] the author used the data acquired by the body area 
network to estimate individual thermal comfort through a model based on 
Markov's hidden hierarchical model (HHMM). The comfort level of this 
model has been sized as the PMV index from -3 (cold) to +3 (hot) as shown 
in the table below: 

 
 
 
 
 
 
 
 
 
 

Table 16 – Comfort level [39] 
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Using this model and the data obtained, a better control of the temperature 
inside a building is obtained, preventing excessive cooling or overheating, 
taking into account the personal conditions of each individual occupant. It 
consequently also allows better energy management than a PMV-based 
model. This detection system and the model that was derived from it has the 
potential to be used in many applications, being able to manage both 
physiological and environmental information. 

 

These new models are actually promising and show an improvement compared to 
the standard PMV model. They obviously present critical issues that can certainly 
be overcome in future studies: for example the quantity and quality of the data 
collected could be improved to obtain more predictive comfort models such as in 
the case of the study by Liu et al [30] in which, although the 14 subjects had 
participated in the research for several weeks, the average number of votes was 
only 275, to prevent their daily activities from being influenced by the 
measurement campaign. The data set may also be incomplete, there may be 
missing data due for example to unstable measurements (loss of internet 
connection or problems with the sensor batteries). Moreover, the algorithm 
chosen for the creation of personal comfort models could adapt very well to one 
subject but not to another, therefore the choice of calculation algorithms must also 
be studied and possibly adapted to the subject. 
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CONCLUSION 
In this work the limitations of Fanger’s comfort model were presented, in 
particular the one concerning the calculation of the metabolic rate. In order to 
overcome these drawbacks, many researches experimented the use of wearable 
sensors capable of measuring physiological parameters of the subject involved, 
such as heart rate, breathing, skin temperature etc.  

The characteristics of all the sensors used in the studies under consideration were 
review, explaining how they were used in each research. The analyzed studies use 
these sensors both to improve the estimate of the PMV index, above all by making 
the estimate of the metabolic rate more precise, and for the creation of new 
personal comfort models based on the collected physiological and environmental 
data. 

The use of these sensors is actually able to improve the prediction of comfort of 
the Fanger’s model and also to develop new alternative personal thermal comfort 
models. 

These wearable sensors represent, given the results obtained, a decisive step 
forward in the ability to evaluate all those physiological parameters that contribute 
to determining the state of well-being of the occupants. New research can be 
carried out using new combinations of sensors, trying to make them as less 
invasive as possible without losing the accuracy of the measurement. 
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