
POLITECNICO DI TORINO
Master Degree Course in Computer Engineering

Master Degree Thesis

A modern reimplementation of an
alignment pipeline for the analysis

and quantification of small
non-coding RNA and isoforms

using C++ and Python

Supervisor
Gianvito Urgese

Candidate
Marco Capettini

March/April 2020



Abstract

During the last years computer science has taken on an increasingly central role
in the processes underlying the production and analysis of biological data. The
continuous development of new cutting-edge machines such as NGS has made it
possible to make great progress in the field of genetic sequence analysis. For this
reason, and also due to the enormous amount of data produced daily with these pro-
cedures, many algorithms and tools developed for the analysis need to be optimized
for exploiting the enhanced features of new computing systems.

With this thesis work I propose a modern reimplementation of an alignment tool
called isomiR-SEA which was developed with a precise objective in mind: overcom-
ing some of the limitations of today’s general-purpose alignment algorithms, that
usually lack accuracy and completeness in the results. The first version of the tool
was designed to detect and quantify small non-coding RNA sequences (microRNAs)
and their variants isomiRs. Such sequences are provided to the program as sim-
ple text substrings composed of combinations of A, C, T and G characters, which
represent very short segments of RNA made up of about 20-22 nucleotides. These
small sequences play a critical role in gene expression because of their regulatory
functions on the production of proteins. It is in fact widely proven that they are
fundamental in several cellular processes and, as a consequence, in the onset and
progression of many diseases such as immune disorders and cancer.

isomiR-SEA algorithm was developed in C++14, written in a non-optimized
way and not completely tested. So, in order to make it usable by the bioinfor-
matics community, there was a strong need for software re-engineerization and
bug-correction. For this reason I decided to reimplement the software by conform-
ing to the modern C++17 programming standard and to SeqAn3, the today’s latest
version of the library for the analysis of biological sequences which replaces SeqAn2,
used in the old version of isomiR-SEA.

Besides fixing bugs, I have implemented several new features such as the se-
rialization of the input reference databases, in order to save time in consecutive
executions, and the possibility of providing only a single file as input to the pro-
gram representing the union of several smaller ones, allowing to obtain with a single
execution the same results that before would have required many more execution
cycles.

2



This, together with a revised data printing mechanism which originally wasted
a large amount of resources saving temporary structures in memory, has allowed
to switch from a first prototype of the tool to a working version tested in an en-
vironment very close to the intended one, providing a product that is currently
usable by an end bioinformatician user. The new version of isomiR-SEA achieved
a significant increase in performance by gaining both in terms of execution times
(up to ~60%) and drastically decreasing max RAM consumption (by ~75%).

Finally, I dealt with the post analysis of the output data, porting into Python3
scripts what were previously implemented using Knime, a software useful to create
and productionize data science using intuitive environment. Although Knime is
very convenient for prototyping thanks to its intuitive and model-oriented graphical
interface, it flaws in terms of efficiency and performance when compared to Python.

3



Contents

1 Introduction 7
1.1 Bioinformatics: what is it? . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 DNA/RNA sequencing . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Sequence alignment algorithms . . . . . . . . . . . . . . . . 12
1.2.3 Small non-coding RNA and isoforms . . . . . . . . . . . . . 18
1.2.4 File formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Libraries and standards . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Methods 31
2.1 isomiR-SEA algorithm and flowchart . . . . . . . . . . . . . . . . . 31
2.2 Porting from SeqAn2 to SeqAn3 . . . . . . . . . . . . . . . . . . . . 33
2.3 A rivisited datastructure . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 New features and improvement . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Input serialization . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 Multi-sample analysis . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 On-the-fly output generation . . . . . . . . . . . . . . . . . . 41
2.4.4 YARA support . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Usage & configurations: a reference manual . . . . . . . . . . . . . 43
2.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Input & Output . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.3 Usage and configurations . . . . . . . . . . . . . . . . . . . . 50

2.6 Post-analysis: from Knime to Python . . . . . . . . . . . . . . . . . 56

3 Results 59
3.1 Testing material and procedure . . . . . . . . . . . . . . . . . . . . 59
3.2 Execution time and RAM consumption . . . . . . . . . . . . . . . . 60

4 Conclusions 65

Bibliography 66

4



List of Figures

1.1 Polymerase Chain Reaction . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Pyrosequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Biological events and their representation in alignment . . . . . . . 12
1.4 Needleman-Wunsch algorithm and matrix of scores . . . . . . . . . 14
1.5 Smith-Waterman algorithm and matrix of scores . . . . . . . . . . . 15
1.6 BLAST: step of the algorithm . . . . . . . . . . . . . . . . . . . . . 17
1.7 Main steps in miRNA biogenesis . . . . . . . . . . . . . . . . . . . . 18
1.8 miRNA-mRNA main interaction sites . . . . . . . . . . . . . . . . . 20
1.9 FASTA and FASTQ format: an example . . . . . . . . . . . . . . . 21
1.10 TAG and TAGQ format: an example . . . . . . . . . . . . . . . . . 22
1.11 GFF format: an example . . . . . . . . . . . . . . . . . . . . . . . . 22
1.12 SAM format: brief description of each column . . . . . . . . . . . . 23
1.13 Analysis work-flow of miRNA expression level extraction . . . . . . 24
1.14 Example of isomiRs percentages detected in a sample . . . . . . . . 25
1.15 Example of conserved interaction sites percentages detected in a sample 25
1.16 Example of isomiRs count detected in a sample . . . . . . . . . . . 26
1.17 Example of conserved interaction sites count detected in a sample . 26
1.18 Concepts: example of usage . . . . . . . . . . . . . . . . . . . . . . 29
1.19 Ranges and views: example of usage . . . . . . . . . . . . . . . . . 29

2.1 isomiR-SEA algorithm flowchart . . . . . . . . . . . . . . . . . . . . 32
2.2 Comparison between old and new data structure . . . . . . . . . . . 36
2.3 Hairpin precursor (pri-miRNA) and its mature microRNAs (miRNAs) 37
2.4 Unknown miRNA detection within its precursor . . . . . . . . . . . 38
2.5 Example of alignment features . . . . . . . . . . . . . . . . . . . . . 48
2.6 isomiR-SEA output: .tag file . . . . . . . . . . . . . . . . . . . . . . 49
2.7 isomiR-SEA output: .gff file . . . . . . . . . . . . . . . . . . . . . . 50
2.8 Python script to run isomiR-SEA in an exhaustive configuration . . 55
2.9 Python script to run Yara on isomiR-SEA discarded tags . . . . . . 56
2.10 Visual comparison between Knime project and Python script . . . . 57

3.1 Per-sample execution times of different isomiR-SEA releases (miRBase) 61
3.2 Per-sample execution times of different isomiR-SEA releases (Mir-

GeneDB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5



3.3 Per-sample max RAM usage of different isomiR-SEA releases (miR-
Base) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Per-sample max RAM usage of different isomiR-SEA releases (Mir-
GeneDB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Total execution time of different isomiR-SEA releases . . . . . . . . 63
3.6 Single sample VS Multi sample total execution time . . . . . . . . . 64

6



Chapter 1

Introduction

1.1 Bioinformatics: what is it?
Bioinformatics is a discipline that deals with developing new techniques, algorithms,
and software tools for analyzing biological data. It was officially defined for the first
time in 1970 as a “study of informatic processes in biotic systems” [1] and today it’s
characterized by mathematical, statistical and computational methods for molecu-
lar biology to study and understand the biochemical and biophysical processes that
underlie life, and to solve the problems deriving from the management and analysis
of biological data.

Producing these kind of data is essential in biomedicine to fully understand the
internal mechanism of diseases, but it is also useful to enable much more accurate
diagnoses and to be more precise in identifying targets both at the microscopic
and macroscopic level. However, due to this, data are often heterogeneous and
their quantity is continuously and exponentially growing. The only way to be able
to deal with this immense amount of information is the constant and continuous
development of new methods of analysis based on computer science’s principles, so
we are not only talking about algorithms per se, but also about all those tricks and
computational techniques that concern selection of data structures suitable for the
context, and advanced level programming.

Such data structures can be seen as containers of encoded biological information,
and in the digital world they can have different shapes and features depending on
the application field for which they are used. For example, they can be simple Excel
tables, more complex SQL databases, graphic representations such as nodes in a
network or vertices of a graph. On the other hand if you want to see them from a
low level point of view they can also be seen as variables and constructs within the
code of a program.

This allows us to relate directly to them, making navigation and interrogation
easier and allowing us to reconstruct the internal logics of the phenomena of interest.
Finally is extremely important because the exploration and observation of data can

7



Introduction

bring out characteristics that otherwise would have been difficult to notice.
So the figure of the bioinformatician refers to the one who guides the generation

of data step by step, transforms them so that they can be a clearer and more defined
source of information and finally extrapolates knowledge from them.

1.2 Background
All the information provided in this section is useful to guarantee the reader a com-
prehensive theoretical compendium in order to understand the subsequent steps, to
better frame the work done and to provide a broad picture of this area of study. In
particular, we explain the procedure for generating the processed data, continuing
with a focus on specific algorithms for the field of sequence alignment, and an in-
depth analysis regarding the fundamental biological theme: small non-coding RNA
and isoforms. Finally, we list the main file formats used.

1.2.1 DNA/RNA sequencing
The purpose of sequencing is to discover the sequence of nitrogenous bases (adenine,
cytosine, guanine and thymine/uracil) that alternate within a molecule.

To do this, the DNA is first divided into many small fragments and each of
these is analyzed and translated into nucleotide sequences using special sequencing
machines. On the other hand, to sequence RNA, it is necessary to first reverse
transcribe it into complementary DNA (cDNA) [2]. This is because DNA molecules
are more stable, they allow the amplification process which, as we will see, uses
DNA polymerases, and above all a more mature DNA sequencing technology can
be exploited.

Anyway, all these procedures are not free from errors in the sense that the
identified sequences can reflect more or less precisely the real reference sequence.
So often for this reason, together with the sequenced fragments which are called
reads and are in the form of string of characters, it is reported their nucleotide by
nucleotide quality (see 1.2.4).

Depending on how they are generated, there are two types of reads [3]:

• single-end reads: the fragments are sequenced from one end to the other,
completely, thus producing single reads of variable length;

• paired-end reads: the fragments are sequenced starting from both the ends
for a certain number of bases, producing two different segments for each read,
called mates. The two mates have a mutual distance in terms of nucleotides
and knowing it can be very useful for the alignment phases. These types
of sequences are useful for specific applications like the recognition of gene
fusions.

8



1.2 – Background

When working with small non-coding RNA reads instead it is essential, before
proceeding with sequencing, to filter the genomic material according to the length
of each sequences. This must be done because usually these sequences are of limited
length, and it is therefore possible to discard all those outside this range, consider-
ably reducing the amount of data to be analyzed. Such filtering involves the use of
coloured markers for each sequence of suitable length during a gel electrophoresis
process. In this process the sequences of interest are inserted into a fluid to which
a charge is applied, allowing them to be positioned at different levels depending on
their length, so that those that are too long or short can be discarded, being able
to proceed with the small RNA sequencing [4].

Sequencing has always been a long and expensive process, for this reason over the
years techniques have refined and the set of those most used today takes the name of
Next Generation Sequencing (NGS). When we talk about NGS technologies we
refer to methods for sequencing whole genomes, transcriptomes, or even small non-
coding RNA sequences. NGS machines are defined parallel machines because, after
the fragmentation into sub-sequences, copies of the same are created (amplification
process) which are then analyzed in parallel. This is very useful to decrease the
number of errors, which can be both in the amplification and in the sequencing
phase, and to have sequences more consistent with reality (better quality).

The amplification phase is a technique that is called PCR [5] and involves
three phases (Figure 1.1):

• Denaturation: the double helix is divided into two separate strands, each
complementary to the other, which will be copied;

• Annealing: primers are attached to the ends of each fragment, they are very
short sequences that act as anchors, that is, as a starting point for the copy
(i.e. for the binding of the subsequent bases);

• Elongation: a different nucleotide at a time is added manually to the so-
lution, if it is complementary to that one present on the reference sequence
at the point where the production of the copy-fragment arrived, then it will
bind to the sequence that is being formed, otherwise not. By adding these
bases step by step the DNA polymerase synthesizes a new DNA strand com-
plementary to the DNA template.

The process is done for both strands.
However, primers are complementary sequences with respect to the small seg-

ment of DNA template to which they bind, but not yet knowing the nucleotide
sequence of this DNA molecule, how do you choose the right primers? For this
reason there is the preparation phase, prior to amplification. Here we attach to
the reference strand (the one from which the copy fragments are produced) two
adapters: one at the beginning of the strand which will be used for the link of the

9



Introduction

Figure 1.1: Polymerase Chain Reaction [6].

primer for amplification, and one at the end of the strand which will be used for
the link of the primer for sequencing. These adapters are small sequences exactly
complementary to the primer sequences that we want to attach.

Finally there is the sequencing phase. To date there are numerous and differ-
ent sequencing techniques, some of them are based on fluorescence such as Illumina
Sequencing [7], some on pH variation as Ion Semiconductor Sequencing [8], other
on the production of light as Pyrosequencing [9]. The latter is a procedure very
similar to the just described PCR, with the difference that with this technique,
each time a group of identical nucleotides is inserted in the solution, if one or more
of these manage to bind in the correct position of the strand that is forming an
amount of Pyrophosphate (PPi) will be released, and this amount is proportional
to the number of nucleotides that have bound. This PPi will then be fundamental
in the chemical reaction which will produce a more or less intense light captured
by a camera. Each time, depending on the intensity of the light produced, it is
possible to understand how many identical nucleotides have linked consecutively.
Then with the action of Apyrase the solution is “cleaned”, i.e. the excess unbound
nucleotides are eliminated and the solution is ready to receive the next group of
nucleotides. In this way, step by step, all the light intensities captured are reported
on a graph called Pyrogram, from which it is possible to trace the actual nucleotide
string which will then be reported on text files, e.g. fasta, fastq, . . . (Figure 1.2).

At this point one of the possible steps that follow sequencing is the reconstruc-
tion of the entire original genome/transcriptome through the assembly or alignment
of the reads [3].

10



1.2 – Background

Figure 1.2: Pyrosequencing. On the left the strand being synthesised along the
reference sequence, on the right the pyrogram: peaks means binding of a nucleotide,
higher peaks means binding of several identical nucleotides consecutively [10].

• Assembly: it’s an iterative and time consuming process in which we do
not know what to expect, like when we do a puzzle without peeking at how
the final picture should come. The reads are assembled with each other by
overlapping them onto similar parts they have in common, for example the
series of nucleotides at the end of a sequence can be identical to the series
of nucleotides at the beginning of another sequence. Two or more assembled
reads form a new longer sequence which is called contig. Then the contigs
will be assembled to form longer sequences called scaffolds. Finally the latter
are joined to form the final assembly. This procedure is done each time we
face for the first time a genome never sequenced, because the “big picture”
is not yet available and therefore the sequences must be assembled trying to
discover the genome and use it as a reference.

• Alignment: it’s a simpler process because you already know what the fi-
nal result will be. Usually for alignment we use DNA as a reference even
if we have RNA data (reads). In particular if we sequence DNA then we
use the DNA/genome as a reference, if we sequence RNA we can use the
DNA/genome as a reference or even the transcriptome (mRNA). The tran-
scriptome is the set of all the transcripts that we can have, the transcripts are
all the mRNAs that are provided by a cell. A single gene can produce several
transcripts and therefore several mRNAs (isoforms). In any case when we try
to align the reads that come from a certain subject using a DNA/transcrip-
tome as a reference, this cannot be exactly identical to the assembly of our
reads, because the DNA/transcriptome of each living being is different (even

11



Introduction

if from the same organism). So the reference is used as a guide in reconstruc-
tion. These differences can be many and evident, but reads usually come from
samples of sick creatures, cancer cells and so on, and understanding what the
differences and similarities are compared to a reference genome is extremely
important.

1.2.2 Sequence alignment algorithms
Usually the next step after producing data with NGS technologies is the analysis
of the extracted sequences, this is done by aligning them on a reference database of
well-known sequences. Sequence alignment is an extremely important bioinformatic
process that allows you to compare two or more segments of DNA, RNA or even
amino acids with the aim of identifying similar or even identical regions so as to be
able to infer functionalities.

To find such correspondences, it would be unthinkable to look at and compare
the tertiary structure of the atoms of the molecules in exam, also taking in account
the enormous amount of data produced disproportionately with the swiftly evolving
sequencing technologies. So what you usually do is to compare their respective
strings of characters. When you find an important “similarity” then you can carry
on with more in-depth post-analysis.

During the alignment phase you must consider four fundamental biological
events that can occur by comparing the sequence under examination, referred to as
the query-sequence, and the reference sequence (sometimes called subject-sequence):
Conservation, Substitution, Insertion and Deletion. Conservation occurs when the
two letters in question are identical and this event is defined Match, while Substi-
tution occurs when these letters are different, and this is called Mismatch. Finally
there is Insertion or Deletion when in one of the two aligned sequences a letter is
aligned with a Gap (Figure 1.3).

Figure 1.3: Biological events and their representation in alignment [11].

Anyway, the position of matches, mismatches and gaps detected during the
alignment phase depends on the scoring scheme/gap models used and on the adopted
alignment algorithm. The scoring scheme is the set of rules used to define the yard-
stick of matches and mismatches, and there exist different types of them such as

12



1.2 – Background

those based on the Levenshtein [12] or Hamming distance [13] or those who use
Susbtitutional Matrices like PAM [14] or BLOSUM [15]. The gap model instead
helps to decide how to consider insertion and deletion events, examples are: Linear,
Affine, Convex [16] or even Dynamic Gap Model (an optimized version of the Affine
Gap designed by Urgese and called Dynamic Gap Selector [17]).

However, a fundamental role in the alignment mechanism is covered by the
chosen algorithm: over the years many have been developed, each one with its own
features, below there is a list of the most noteworthy ones.

Needleman-Wunsch algorithm

It was developed and published in the early 1970s [18] and is usually considered
to be one of the first application of dynamic programming to sequence analysis.
Dynamic programming is an algorithm-design technique that is based on the idea
of dividing the main problem into many small sub-problems and then proceeding
to solve each of them by finding optimal solutions which are then used to build
the solution to the main proposed problem. For this reason it is often referred to
as the optimal matching algorithm. Furthermore, this type of algorithm is able to
generate global alignments, i.e. the sequences are aligned to each other according
to their entire length (or inserting gaps if they have different lengths), this allows
alignments with the maximum number of elements aligned between two sequences.

As shown in Figure 1.4, to produce the alignment we start by building a score
matrix. In particular, the two strings are inserted one letter per cell in the grid
starting from the third column (horizontally) and the third row (vertically). At this
point the scores for match, mismatch and indel (i.e. insertion / deletion) must be
established, and the second column and row are filled starting from zero and adding
each time the value of the indel. Then we proceed to fill the table according to the
system of equations reported in the central part of the figure: the value of each
cell is calculated starting from the maximum value among its three adjacent cells,
also considering the specific biological event with respect to the current indices.
Each time a new cell is calculated, the link to the cell with the maximum value is
registered with an arrow. Once the matrix is complete, starting from the cell on
the bottom right back to the cell on the top left we mark the path following the
arrows, and the alignment is calculated so:

• diagonal arrow represents a match or mismatch;

• horizontal or vertical arrow represents an indel (horizontal arrows means a
gap to the letter of the row, vertical arrows means a gap to the letter of the
column;

• multiple arrows indicate that different alignments are possible.

13



Introduction

Figure 1.4: Needleman-Wunsch algorithm and matrix of scores: input sec-
tion shows the sequences under considerations together with the scores associated
with each biological event and the mathematical recursion used to calculate each
cell in the grid; output section shows the resulting matrix highlighting the path of
the alignment [19].

Smith-Waterman algorithm

As the former, is an application of dynamic programming and guarantees to find
optimal alignments, but there is an important difference: the produced alignments
are local. With a local alignment you encourage localized similarities in finite re-
gions, therefore not extended to the whole sequence. This algorithm was developed
in 1981 [20] and is usually referred to as a variant of the Needleman-Wunsch, in fact
the process is very similar but in this case the negative cells of the scoring matrix
are set to zero (see Figure 1.5). This allows the local alignments to be (positive

14



1.2 – Background

and) visible. Also the traceback procedure is different: we start from the cell with
the higher score proceeding until we meet a cell with zero score. The traceback
phase can be repeated starting from another cell with a score equal to or less than
the maximum, to determine the other possible local alignments.

Figure 1.5: Smith-Waterman algorithm and matrix of scores: input section
shows the sequences under considerations together with the scores associated with
each biological event and the mathematical recursion used to calculate each cell
in the grid; output section shows the resulting matrix highlighting the path of the
alignment [19].

Seed&extension algorithms

Since usually sequences are many and very long, it is very expensive to use the
algorithms just described, which have a quadratic complexity in time and space.
For this reason, computationally more efficient alternatives were developed between

15



Introduction

the 80s and 90s that adopt filtering strategies. In other words, instead of exploring
the entire space of possibilities, we start from a small match to discriminate and
work on a smaller amount of data, after which we extend the alignment to be able
to make more specific and dynamic analyses.

The common feature of these algorithms is that they use a heuristic approach,
that is employ a practical method that is not guaranteed to produce optimal solu-
tions, but that it is extremely faster. Basic Local Alignment Search Tool (BLAST)
[21] is probably the most prominent tool of this kind. It is a program that al-
lows you to compare biological sequences such as those of amino acids, proteins or
DNA/RNA nucleotides by first locating short and local matches between sequences
(this is called seeding). The algorithm consists of several steps [22], which can be
summarized as follows:

• List of w-letter words (Figure 1.6 A): starting from the query-sequence,
strings of length w are extracted one after the other following the letters from
left to right. For each of these words neighborhood words are generated using
specific scoring matrix such as BLOSUM [15] and among these only those
that have a score greater than a certain threshold are selected.

• Scan the database for exact matches (Figure 1.6 B): here the program
begins to look for the selected words within each single reference-sequence.

• Extend the exact matches (Figure 1.6 C): every time an exact match
is found, the query word is used as an anchor for the alignment, which is
extended in both directions until the score begins to decrease. Each alignment
is called Maximal Segment Pair (MSP).

• Evaluate the MSPs: at this point, a value that establishes its statistical
significance is assigned to each MSP, this is useful to filter the results.

Index based algorithms

Although seed-based alignment has significantly reduced search times compared
to the first algorithms based on dynamic programming, it is still a slow process.
For this reason, starting from the 90s, we began to look for other approaches like
genome indexing systems. Creating an index is as useful as it is in any other
application, just think about the index of a book: if you want to know on which
page a certain word appears it is much more efficient to search for it on the index
or glossary rather than browsing the book page after page. The same is true for
alignments, where creating an index of the reference database allows you to search
the query sequence on a much smaller space, saving both time and memory.

Usually these indexing systems are preceded by completely invertible transforms
in order to have more efficiency in the research phase. Transforms like that of
Burrows-Wheeler (BWT) [23] are in fact useful because they permute the order of

16



1.2 – Background

the text or the sequence to have a single character repeated multiple times in a row
(ex: ˆBANANA| becomes BNNˆAA|A), and this allows a greater space reduction
during the compression phase. However, the huge advantage that you have over a
simple alphabetical ordering (which allows you to compress the data easily too) is
that in this way you preserve the possibility of tracing back to the original data
(reversability).

Bowtie [24] is a famous sequence alignment software that best exemplifies the
process just described: it uses a permanent and reusable index of the genome
(for the human genome the index is about 2.2 GB) to allow extremely fast read
alignments. In particular it’s based on the FM-Index which is an index combining
the BWT with a few small auxilliary data structures in order to allow compression
of the reference text and fast lookup for queries. However there are also other
tools that use the Burrow-Wheeler transform to create an index of the genome, for
example BWA [25] which is a bit slower than Bowtie but, unlike it, allows gapped
alignment.

Figure 1.6: BLAST: step of the algorithm A) Words extraction. B) Matches
of words of the list to the database sequences. C) Extension of the alignment in
both directions to find high score segments. [26].

17



Introduction

1.2.3 Small non-coding RNA and isoforms
Thanks to the advent of NGS technologies, today we know that more than 90%
of the human genome is transcribed. Although trascription is the first important
step in gene expression, only about 2% of the genetic material is made up of genes
that encode for proteins [27][28], this means that a huge portion of non-coding
transcriptome remains. Initially these sequences were considered almost as garbage,
so much that they were even called “junk”, but recently it is becoming clear that this
transcriptome has a fundamental role in the physiological cellular development and
in the onset of many diseases both in animals and plants by triggering or inhibiting
certain cell functions. The fact that there are several cases of RNA molecules
that play a fundamental role in this sense has certainly prompted researchers and
scientists to investigate the topic and, depending on the length of the transcript,
today two main classes of non-coding RNA can be identified: long and small. In
particular among the latter there are very short sequences that play a critical role
in regulating gene expression: they are called microRNAs (miRNAs).

Biogenesis of microRNA and its isoforms

miRNAs are short segments of non-coding RNA made-up of about 20-22 nucleotides.
Their genesis involves several stages of development [28] that begin with the tran-
scription of sequences of up to a hundred nucleotides named hairpins, for their
peculiar shape. Usually these hairpins are called primary transcripts (pri-miRNA)
and they are cleaved before being exported to the cytoplasm (pre-miRNA). At this
point, these small agglomerations are again cleaved into strands which are identified
as the mature microRNA sequences (see Figure 1.7).

Figure 1.7: Main steps in miRNA biogenesis [28].

Initially it was thought that for each pre-miRNA molecule only two well-known
kind of strand could be produced, in particular one from the 5’ arm (5p strand) and
the other from the 3’ arm (3p strand). However, also thanks to the new sequencing

18



1.2 – Background

technologies introduced in recent times, we now know that there can be many and
distinct variants of a single miRNA that can differ both in terms of length (quantity
of nucleotides) and composition: these are usally called isomiRs. This isoforms are
slight mutations due to chemical processes taking place on site during the two
cleavage steps from pri-miRNA to pre-miRNA and from pre-miRNA to mature
miRNA. To date we know that there exist three main types of isomiR called 5’
isomiR, 3’ isomiR and single-nucleotide polymorphism (SNP). In particular the
first two are mutations resulting from insertion or deletion respectively in the 5’
end and in the 3’ end of the mature sequence while SNPs are isoforms where the
sequence presents a mismatch with respect to mature one.

miRNA / isomiRs regulatory functions and interaction sites

Both miRNAs and isomiRs are fundamental in the post transcriptional phases
where they participate in the downregolation of protein expression. This is possible
because these small sequences interact with specific target mRNA through base
paring, which means that they bind to specific portion of the messenger RNA
forming bounds between subsequent nucleotides. These small non-coding segments
have this capability of binding to specific positions of an RNA molecule thanks to
the conservation (or not) of some interesting nucleotide subsquences, such small
groups of bases identify the so-called interaction sites (see Figure 1.8) among which
we find:

• Seed site: from nucleotide 2 to 7, it is certainly the most important and
critical region because an uncorrupted seed sequence can act as an anchor
to ensure the miRNA-mRNA complex stability [29], and therefore for this
reason it is extremely useful for miRNA target recognition. Moreover, it is a
region that is preserved within the various isoforms, so it’s a precious starting
point in the isomiRs recognition process which is the heart of the tool used
for this thesis: isomiR-SEA.

• Offset site: nucleotide 8, not rarely the pairing of this nucleotide is a pre-
requisite for miRNA-mRNA interactions.

• Supplementary site: from nucleotide 13 to 16, but can often be even larger,
from nucleotide 12 to 20 approximately and in this case is called compensatory
site.

• Central site: from nucleotide 4 to 16 approximately, this set of nucleotides
was found to be of considerable importance in case seed pairing is not perfect,
compensating for a mismatch, or simply as a supplement to that pairing [30].

Having understood that miRNAs are a relevant component in the repression of
targets mRNA, it is not difficult to think about the fact that they could play an

19



Introduction

Figure 1.8: Main steps in miRNA biogenesis [28].

important role in human physiology and in the development of diseases. In fact,
as Li and colleagues say [31], “microRNA are predicted to control the activity of
approximately 30% of all protein-coding genes in mammals” and their studies con-
firm that this regulatory function affects the onset and progression of pathologies
like cardiovascular disease, immune disorders or even cancer where they can poten-
tially act as biomarkers [32] because of their involvement in various carcinogenetic
processes (as oncogenes or tumor suppressors).

1.2.4 File formats
This section proposes and explains some of the most commonly used file formats
in bioinformatics, with the aim of clarifying the different possible representations
and guiding the user so that he can recognize and understand them.

FASTA

FASTA is a text-based file format used to represent in a simple way one or more nu-
cleotides or amino acids sequences of nucleic acids and proteins. For each sequence
there are two main fields: the description and the sequence itself. The description
is a single-line that begins with the symbol > (greater than) and gives basic infor-
mation about the sequence, for instance a unique name and number. This line is
generally uniformly formatted, dictated by the sequence source database or by the
generation software. Following line(s) contain strings of characters representing the
molecule nucleotide after nucleotide, using the appropriate encoding alphabet (for
DNA or RNA). Each sequence ends when another line starts with a > symbol. See
Figure 1.9a for more details.

FASTQ

FASTQ format is very similar to FASTA with the addition of information regarding
the quality with which the sequences were produced by sequencing machines. In
FASTQ files each entry is associated with 4 lines:

20



1.2 – Background

• Line 1 begins with a @ character and like the FASTA header is a sequence
identifier/description.

• Line 2 is the sequence itself.

• Line 3 is the + character optionally followed by additional description.

• Line 4 encodes the quality value for each base of the sequence so it must
contain the same number of symbols as line 2. These symbols are ASCII
characters from ! which represents the lowest quality up to ~. See Figure 1.9b
for more details.

(a) FASTA format (b) FASTQ format

Figure 1.9: FASTA and FASTQ format: an example.

TAG and TAGQ

TAG and TAGQ file formats are customized output files of the tool BioSeqZip
[33] which is the software used in this thesis work to perform exact collapsing of
NGS datasets of redundant sequences. They are tabular file with a column based
structure. In particular TAG files have two columns: a unique sequence called
tag and its reads-count, i.e. the number of sequences identical to this one in the
non-collapsed input file. TAGQ files have an additional column which represents
the tag quality, obtained as the average quality of the collapsed sequences. See
Figure 1.10 for more details.

GFF

GFF stands for General Feature Format and the current stable version is GFF3
which refers to a file format with a tabular structure consisting of a maximum of
9 columns separated by tabs. This format was initially designed to have an easy
way to represent genomic features, editable with any type of text editor. Here the
detail of each column (see also Figure 1.11):

21



Introduction

• Col 1: ID of the genomic location of the feature.
• Col 2: a keyword identifying the procedure that generated the feature.
• Col 3: type of the feature.
• Col 4 and 5: start and end genomic coordinates of the feature.
• Col 6: score of the feature.
• Col 7: strand of the feature (+ positive, - negative).
• Col 8: phase of the feature.
• Col 9: list of attributes in tag=value format.

(a) TAG file

(b) TAGQ file

Figure 1.10: TAG and TAGQ format: an example.

Figure 1.11: GFF format: an example (a dot indicates lack of information).

22



1.3 – Pipeline

SAM/BAM

SAM files are tab delimited text format composed of header lines (starting with
a @) and alignment lines, so it’s a format used to represent mapping of reads to
reference sequence. Each record is an alignment and has 11 mandatory fields (see
Figure 1.12). BAM format, instead, is the binary version of SAM files, so they
contains exactly the same informations. These files can be viewed and analyzed
using several software tools such as SAMTools, a command line and open source
software.

Figure 1.12: SAM format: brief description of each column [34].

However, there are also many other popular formats such as Comma-Separated
Values (CSV), Browser Extensible Data (BED), eXtensible Markup Language (XML)
or simpler SQL databases.

1.3 Pipeline
Detecting and quantifying miRNAs and isomiRs from sequencing data is therefore
considered the central step in the characterization of a biological sample, and for
this reason the heart of all the study done for this thesis is a tool called isomiR-
SEA. The name stands for isomiRNA Seed Extension Aligner and it is an alignment
tool for the analysis and quantification of small non-coding RNA and its isoforms
developed by Urgese in 2016 [28]. Here I propose a complete reimplementation of
this tool, designed in such a way as to conform to the modern C++17 programming
language and the latest versions of open source libraries for sequence analysis (see
Section 1.4). Furthermore, in the remodelling process I introduced many important
changes and added support to some features essential to reduce computational costs
and to be able to provide a more streamlined and performing software (see Sections
2.3 and 2.4). Afterwards I have completely revised the post-analysis phase of
the data produced by this tool, through which it is possible to obtain exhaustive
graphical reports (see Section 2.6). However this process required the deepening

23



Introduction

of different components of a much larger pipeline (see Figure 1.13), within which
isomiR-SEA and post-analysis are the final two steps.

Figure 1.13: Analysis work-flow of miRNA expression level extraction.
Main steps: biological material extraction and sequencing, collapsing of the reads,
alignment, miRNA expression level extraction, output normalization and differen-
tial analysis [28].

First of all, all the material extracted from the cell and purified is treated with
the electrophoresis protocol, a laboratory procedure that involves the use of a fluid,
inside which the molecules of interest are scattered, and an underlying electric
charge: applying this charge, the sequences move within the gel based on their
size allowing their separation. Since miRNAs are of limited and roughly constant
length, sequences with a size that falls within this range are identified with markers
(fluorescent material) making their isolation possible. Adapters, the “glues” we have
talked about that act as anchor for the sequencing chip, are then attached to these
sequences of interest, so we can proceed with the actual Small RNA-seq sequencing
process [4].

At this point there is the filtering phase: the text files (ex: FASTQ) produced
by the sequencing undergo a quality check to verify which reads have sufficient
length and quality to be able to be aligned. After this, adapters must be removed,
and this can be done using ad hoc tools like Flexbar [35], Cutadapt [36] and so on.

The pre-processing phase of the reads ends with their collapsing. For this pur-
pose Urgese, Parisi and colleagues in 2020 developed BioSeqZip [33] to perform
exact collapsing of II-Generation sequencing datasets: each read is associated with
the number of times it appears within the sample(s) and its relative average quality.

Last but not least, we find isomiR-SEA which takes these collapsed file as inputs
together with well known pre-existing or manually supplied miRNA datasets in
order to perform alignments and produce very detailed tabular output files. These
files will then be processed with Python3 scripts to extract information necessary to
produce graphical reports showing the spectrum of isoforms in the form of a stacked
bar chart (see Figure 1.14, 1.15, 1.16, 1.17) or even useful for any machine learning
analysis. More specifically, in Figure 1.14 and 1.15 we can observe, respectively,
the percentages of miRNAs/isomiRs and the conserved interaction sites detected
in a sample, while in Figure 1.16 and 1.17 you can see the same kind of analysis
expressed in counts (total number of reads) instead of percentages.

24



1.3 – Pipeline

Figure 1.14: Example of isomiRs percentages detected in a sample. On
the left y-axis are reported the percentages of reads accounting for exact miRNAs
or isomiRs while on the x-axis are reported all the analyzed miRNAs in a list.
The black line denotes the absolute number of miRNAs mapped reads and its
logarithmic scale is on the right y-axis [28].

Figure 1.15: Example of conserved interaction sites percentages detected
in a sample. On the left y-axis are reported the percentages of the conserved
interaction sites while on the x-axis are reported all the analyzed miRNAs in a
list. The black line denotes the absolute number of miRNAs mapped reads and its
logarithmic scale is on the right y-axis [28].

25



Introduction

Figure 1.16: Example of isomiRs count detected in a sample. On the left
y-axis are reported the total number of reads accounting for exact miRNAs or
isomiRs while on the x-axis are reported all the analyzed miRNAs in a list.

Figure 1.17: . On the left y-axis are reported the total number of the conserved
interaction sites while on the x-axis are reported all the analyzed miRNAs in a list.

1.4 Libraries and standards
The design and implementation of proper algorithms are the key activities that
can be carried out by a bioinformatician to obtain insights from the data. These
algorithms can be developed by writing scripts in common scripting languages,

26



1.4 – Libraries and standards

however, programming languages such as C and C++ are usually preferred because
they allow optimized implementations and parallel executions, which are essential
when analyzing large amounts of data with complex techniques.

Therefore, in the reimplementation of isomiR-SEA tool I decided to adopt the
C++17 standard [37] both to provide a software that complies with a modern
and stable release of the standard and to be ready to more easily accommodate
the next improvements and changes that will be made with C++20 and from
which, however, some important features have already been introduced within this
work. In particular C++17 introduced many changes, here are some of the most
important:

• Class Template Argument Deduction (CTAD): constructor deduction guides
to avoid specifying all template arguments, which are now deduced by the
compiler.

• Inline variables: they eliminate the main obstacle to packaging C++ code as
header-only libraries.

• Guaranteed copy elision.

• Lambda functions improvements.

• New library utility features such as std :: variant which is a type-safe union that
can hold a value of one of its alternative types, std :: any which is a type-safe
container for single values of any type, and std :: optional which manages an
optional contained value, i.e. a value that may or may not be present.

• Possibility to run in parallel a bunch of std :: algorithms, under request.

• Introduction of other features such as: fold-expressions, structured bindings,
initializers for if and switch statements, UTF-8 character literal, std :: unique_ptr
instead of std :: auto_ptr and many more.

However, as far as the field of sequence analysis is concerned, C++ and other
commonly used programming languages do not provide default packages or libraries
capable of meeting the needs of a bioinformatician. For this reason, several exter-
nal and open source libraries have been developed over the years to specifically
support the analysis of biological data. In this work we refer to SeqAn3 [38], the
latest version of the well known SeqAn template library for the analysis of biological
sequences. It provides many generic algorithms and data structures for sequence
representation and transformation, managing input and output of common file for-
mats, text-indexing, text search and sequence alignment. This is possible because
the library provides a series of APIs predisposed to the analysis of biological data
that are based on data structures finely designed for this purpose, also taking ad-
vantage of some features of the modern C++20 language. In addition to this, the

27



Introduction

library is very easy to use thanks to a modular structure which provides logical
units separated into modules and submodules, to be included in your project when
and if necessary. Here are some of the main supported features:

• Alphabets and data structures: SeqAn implements specific and opti-
mised alphabets, which are set of symbols used to represent a biological text,
for managing sequences of RNA, DNA, protein, quality strings and gap an-
notation, together with a series of functions useful to, for instance, retrieve
the char representation of a symbol and vice versa. Furthermore these data
structure are perfectly compatible with STL containers.

• Input and Output: provides a set of APIs to assist the user in reading,
writing and managing a multitude of file formats usually used in this field.

• Algorithms: the library owns a core implementation based on Dynamic Pro-
gramming which can be extended with a variety of possible configurations in
order to compute many desired alignment variants, even choosing the scoring
and/or gap scheme.

• Concepts: this is a feature of the upcoming C++20 that SeqAn decided
to port into its library. Concepts can be seen as an extension to templates
and they are useful in all those situations where you want to use generic
constructs or algorithms that can work with any type of data as long as they
offer a minimal interface (e.g. a T objects that must be equality comparable).
In particular you can now constrain templates which means that you can make
requirements of a template argument explicit (see Figure 1.18).

• Ranges: another C++20 feature introduced by SeqAn. Ranges were intro-
duced to make C++ code more expressive, avoiding to explicitly use itera-
tors when handling STL containers and collections, which often confuse the
programmer leading him to make many mistakes. They are at a level of ab-
straction above iterators in the sense that they are implemented in terms of
iterators but you don’t have to worry about them. Moreover, specific kind of
range called Views are extremely useful when you want to transform ranges
via some algorithm or operations. Views in fact are lazy evaluated which
means that whatever transformation they apply, they do so at the moment
you request an element, not when the view is created, allowing you to combine
multiple views in a chain (see Figure 1.19).

28



1.4 – Libraries and standards

Figure 1.18: Concepts: example of usage. Here we have the definition of a
new concept named EqualityComparable which is satisfied by a and b lvalues of
generic type T. In particular the results of a==b and a!=b must be convertible to
the boolean type. Finally we declare a function constrained on the concept just
described.

Figure 1.19: Ranges and views: example of usage. In the upper part we
declare a range (in particular a std::vector) while in the lower part we apply some
range transformations on it using views: the range is first filtered by selecting only
even numbers and then is transformed multiplying all its elements by two.

29



30



Chapter 2

Methods

2.1 isomiR-SEA algorithm and flowchart
isomiR-SEA algorithm is divided in three main phases as shown in Figure 2.1: the
preprocessing step, the alignment procedure and the generation of output files.

Preprocessing step (Figure 2.1.A) In this phase parameters are set in order to
select the desired isomiR-SEA configuration and the input files are loaded into
specific data structures in memory. These parameters and files are processed
in order to extract the miRNA sequences and their seeds (as explained in
Section 2.3), which are the algorithm starting point. The complete list of
parameters and the various possible input file combinations will be discussed
in Section 2.5.

Alignment procedure (Figure 2.1.B) The first step of the algorithm involves
searching for each miRNA seed within the different tags. Every time a seed is
found in a tag, the actual alignment begins: a so-called “ungapped extension”
is performed between the tag concerned and each miRNA that owns the seed.
This kind of extension is called so because it extends the alignment in both 5’
and 3’ directions until a gap or mismatch is found. The ungapped extension is
then performed a second time allowing for the presence of a second mismatch.
At this point a first check is made to verify that the size of the alignment
does not exceed a certain default or user-selected threshold, so as to discard
uninteresting alignments. Then the extension procedure is repeated, but this
time only in the 3’ direction and for an arbitrary number of times chosen
accordingly to the number of mismatches that the user has chosen to allow
within a single alignment.
Once here, we compute the alignment score and we evaluate, in the mapped
tag, isomiRs and interaction sites. If the produced alignment has a score
higher than the pre-set threshold, we try to extend it also to the miRNA

31



Methods

Figure 2.1: isomiR-SEA algorithm flowchart. Block A reports on parameters
setting and input files preprocessing. Block B describes the alignment procedure
together with isomiRs classification. Block C shows the output files generation.

32



2.2 – Porting from SeqAn2 to SeqAn3

precursor (if present) by counting the number of matches up to the first mis-
match. Now the tag is marked as a miRNA expression and all the information
about its alignment is recorded within the data structure, ready to be printed.

Output file generation (Figure 2.1.C) Finally, isomiR-SEA generates two main
output files (.tab, .gff) and a log file (.log) which reports execution statistics
and details. The first two files contains, line by line, all the tags-miRNAs
alignments and, for each of them, many details about the kind of alignment.
These rows includes information such as the alignment score, the position
and the number of mismatches, the tags counts of the detected isomiRs, their
interaction sites and so on. For a complete description of file formats and row
fields, see Section 2.5.

2.2 Porting from SeqAn2 to SeqAn3
isomiR-SEA algorithm was developed few years ago in a non-optimized way and
not completely tested so, in order to make it usable by the bioinformatics com-
munity, there was a strong need for software re-engineerization and bug-correction.
Therefore, in remodelling I decided to conform to the modern C++17 programming
standard and to SeqAn3, the today’s latest version of the library for the analysis of
biological sequences. This open source library replaces SeqAn2 which was used in
the old version of isomiR-SEA. However, with respect to the previous one, SeqAn3
is a completely new library and unfortunately there isn’t any automated way of
porting SeqAn2 applications to the current release, so I re-wrote the software by
manually making the necessary changes.

During the porting process I followed the snake_case writing standard instead of
CamelCase for naming all entities, in order to be very close to the standard library.
Then the first significant renewal concerns the use of the new alphabets, types and
related functions introduced with SeqAn3, allowing to use alphabets symbols inside
STL containers. Here are some detailed examples to better understand:

• CharString type (SeqAn2) has been replaced with std :: string.

• IupacString type (SeqAn2) has been replaced with std :: vector<seqan3::rna15>.

• StringSet type (SeqAn2) has been replaced with std :: vector<std:: string>>.

• SeqAn2 predicates (e.g. seqan::EqualsChar<’ ’>()) have been replaced with
SeqAn3 predicates (e.g. seqan3::is_space) or Boost predicates (e.g. boost::
is_any_of(" ")).

• SeqAn2 functions such as toLower(), appendValue(), lenght() and many more
relied heavily on the data types just cited and defined by the old library

33



Methods

itself, so now they have been replaced with STL public member functions
such as std :: tolower, std :: string :: append, std :: string :: length and so on.

• Ranges have sometimes been adopted to facilitate transformations, such as:
std :: vector<seqan3::rna15> seq = string_of_nucl | view::char_to<rna15> | ranges::to<std
::vector>.

• Other shrewdness such as boost:: split instead of strSplit () (SeqAn2), std ::
variant instead of boost:: variant and many many more.

Syntax aside, some modules have been completely revised and certainly the
argument parser is one of those that has undergone major changes. In fact the seqan3
::argument_parser class now provides a completely renewed interface that mainly
allows to: parse command line arguments, define a list or a range of available
values for each argument, provide nicely formatted help screens when your call the
program with −−help. Basically you have to create an object of this class and then
you can for instance:

• set metadata containing information: parser. info .author = "Marco";;

• add options or flags to directly store the corresponding parsed value from the
command line: parser.add_option(variable, ’n’ , "number", "This is the description . "
) ; which can be used in the command line like this: −−number 1;

• setting options as required or hidden: parser.add_option(required_variable, ’n’, "
name", "This is the description . " , seqan3::option_spec::REQUIRED);;

After adding all desired information to the parser object, the command line ar-
guments parsing is triggered by calling the seqan3::argument_parser::parse member
function.

In addition to this, major changes have been made regarding the management
of input and output: SeqAn3 in fact models files as ranges over records, which
certainly allows to handle files more easily, enabling conversions and filtering with
very simple one-line commands. The whole mechanism is based on the construction
of objects that manage read and write access to different file formats. For example
if you want to read from a file in FASTA format you have to create an object
seqan3::sequence_file_input fin{std :: cin , format_fasta{}}; and cycle on fin as if it is a
normal range, so with a for loop. If, on the other hand, you want to write a
FASTQ file format, you must create an object seqan3::sequence_file_output fout{std::
cout, seqan3::format_fastq{}}; pushing each value at the end of the queue just as if you
are working with a std :: vector. SeqAn3 supports several file formats currently used
in the biomedical field (FASTA, FASTQ, SAM, . . . ) however, being a library still
in development, it lacks some, such as the GFF one. But this kind of file is used as
input of our isomiR-SEA tool and for this reason I chose to manually implement

34



2.3 – A rivisited datastructure

the reading, writing and management of this format. This includes creating ad hoc
functions to parse the file as if it is a simple text file, interpreting and storing in
memory each single field, which has a specific meaning according to the position in
which it is located (see Section 2.5).

The only thing that has not been translated is the algorithm used by isomiR-
SEA to search for seeds within the tags. This procedure is an online patter matching
algorithm based on Myers algorithm [39], but unfortunately in SeqAn3 the online
pattern matching is completely replaced by the indexed pattern matching. At
first, I tried to translate this algorithm using the syntax, types and constructs of
the new SeqAn3 library, however this process was too time-consuming since the
algorithm was very rooted in the library, and translating it would not have made
any improvement in terms of performance. So, also due to the lack of concrete
alternatives within the C++ library, I decided to directly include the SeqAn2 header
containing the APIs for this algorithm.

2.3 A rivisited datastructure
The previous version of the tool had a rather complex and certainly not optimized
internal data structure. Because of this it was necessary to acquire a large number
of input files, often repeating the same contained information several times. Fur-
thermore, the access to variables and structures was often too articulate, making the
code less intuitive and less efficient due to redundancies and cyclical dependencies.

In the development of this new release I chose first of all to keep in separate
header modules (.h) each set of structures that shares a well-defined logical link,
for example: the structures, types and variables concerning microRNAs (miRNAs)
are located in a different module with respect to those concerning precursors (pri-
miRNA). While previously there was a single file containing all the constructs.

The most notable change, however, concerns the organization of the various
data structures in the internal memory. The old data structure had a shape like
the one in Figure 2.2 above where each unique miRNA sequence, belonging to a
given organism, has a list of structures containing information about each individual
miRNA 5p/3p sharing that particular nucleotide sequence. Starting from these
structures there was then a further level of information, that is, a list of precursors
for each miRNA. These precursor structures contain both pri-miRNA and pre-
miRNA sequences. However, all this information is redundant as, for instance, a pri-
miRNA sequence already contains within it the pre-miRNA sequence, so we could
save only the start and end coordinates (offset) instead of the sequence itself (see
Figure 2.3 for further details). In this way I reduced the size of the data structure
which is now intuitive and less verbose (see Figure 2.2 below). Moreover, by saving
only the pri-miRNA sequence instead of both pri-miRNA and pre-miRNA, you
avoid occupying tens of bytes for each input string of nucleotides (which in case of

35



Methods

databases such as MirGeneDB or miRBase are in the order of tens of thousands).

Figure 2.2: Comparison between old and new data structure. The old
structure is composed of several layers and sequences (in red). The new structure
has less layers and sequences, note also where is now located the miRNA structure
(in blue).

A further advantage of this new structure is that you can have less input files. In
particular only a file of precursor (pri-miRNAs) and one of genetic coordinates. In
fact, the latter (GFF) contains the coordinates of both precursors and its miRNAs
5p/3p. These coordinates can be used to extract the miRNA sequences directly
from their precursor, as a simple substring (see Figure 2.3). In the previous version
of the tool, instead, it was required to provide, in order to have the same level
of information: a file of pri-miRNAs, a file of pre-miRNAs, a GFF file containing
the genomic coordinates (eventually followed by another file of coordinates in BED
format), a file of mature sequences and eventually a file of star sequences.

In case you didn’t have precursors, how could this data structure work? For this
purpose I have introduced the possibility, when having only mature sequences, to
create fictitious precursors. These kind of precursors are constructed starting from
the miRNA 5p, 3p or both, and adding a constant number of irrelevant nucleotides
(N characters) to the left of miRNA 5p, to the right of miRNA 3p and in the middle
between the two (see Figure 2.3).

36



2.3 – A rivisited datastructure

Figure 2.3: Hairpin precursor (pri-miRNA) and its mature microRNAs
(miRNAs). Each pri-miRNA contains within itself the pre-miRNA sequence
(green+blue+orange), which in turn contains both miRNA 5p (green) and miRNA
3p (orange). If you do not have precursors, a fictitious one can be built starting
from the miRNA sequences.

Bug fixing

miRNA without precursor With the mechanism just described it was possible
to deal with cases in which there are miRNA sequences not corresponding to
any precursor, which previously produced incorrect or missing data. With
the trick of the fictitious precursors, in fact, if a miRNA is found without any
precursor, it is assigned a fictitious one as seen, with a name that originates
from the root of the miRNA name: Hsa−let−7_5p -> Hsa−let−7_pri.

Incorrect coordinates Cases have been found in which some miRNA coordinates
were incorrect, i.e. they did not identify the sequence within their precursor.
For this reason, if MirGeneDB database is used and the miRNA sequence has
a precursor, the tool looks for the position of the sequence inside its precursor,
checking if the coordinates of the GFF file are consistent. If they are not,
they are updated with those that have been discovered.

Non-unique names In the previous version of the tool each sequence was uniquely
identified within the data structure using its name (e.g. Hsa−let−7_5p). This
information is certainly unique within certain databases such as MirGeneDB,
however it does not appear to be so within miRBase, where different se-
quences (for example identical sequences but located in different points of the
genome) sometimes share the same name. This situation caused data over-
writing, therefore producing incorrect results. To remedy this, if miRBase
is used the sequences are identified not by their name but by their MIMAT,
which is a unique code introduced by miRBase itself.

37



Methods

Unknown microRNAs In miRBase it is possible to find mature sequences that
are not identified neither as 5p nor as 3p. To resolve this lack of information
I have decided, every time this situation arises, to search within the relative
precursor for such sequences in order to understand in which half they are.
In fact, depending on its position within the precursor, a sequence can easily
be traced back to a 5p or a 3p miRNA (see Figure 2.4).

Figure 2.4: Unknown miRNA detection within its precursor. hsa-mir-643
is not identified neither as 5p nor as 3p within miRBase. This lack of information
can be solved by looking for hsa-mir-643 within its precursor: as you can see the
sequence is in the right part of the precursor so it can be identified as a miRNA
3p, and its name can be updated in hsa-mir-646-3p.

2.4 New features and improvement

2.4.1 Input serialization
Since isomiR-SEA is used to detect and quantify miRNAs and isomiRs within
a sample, that is the tags-counts file containing a set of sequences of genomic
material coming from an organism, it is necessary to repeat the execution of the
tool for each new sample that the user wants to analyse. If this user has to analyse
many samples, the number of tool executions would increase accordingly. However,
between one run and the next one, the tool uses the same reference database, unless
the user decides to do differentiated analysis using a different miRNA database each
time. This means that it is necessary each time to provide, read, process and store
in memory exactly the same input files (e.g. precursor files and gene coordinate
files from the MirGeneDB database), producing an always identical runtime data
structure.

Precisely for this reason, and since this repeated operation wastes time, I decided
to implement the possibility of serializing the data structure, saving a binary version
of it on disk. In this way it can be directly reloaded into memory during all
subsequent executions without having to specify and process the same files again.
So you can run isomiR-SEA specifying a path where to save the internal data
structure filled with your input data (option: −−store−serialized chosen_path) and

38



2.4 – New features and improvement

then, the next times you run the tool, you can directly load this serialized database
(option: −−load−serialized chosen_path), saving execution time.

Besides, this arrangement is particularly efficient in those cases in which, during
the input preprocessing phase, expensive operations are performed such as checking
the correctness of the coordinates of each single sequence as discussed is Section
2.3, introduced to fix errors inevitably present in the reference databases available
online. In this way, in fact, the correction can be made only once during the first
execution of the tool, after which the correct data structure is serialized and can
be reused by the program in all the subsequent executions.

To serialize the entire data structure I used cereal [40], which is an open source
C++ serialization library. It is very easy to use considering that is an header-only
library, which means that you simply have to include header files (depending on the
type of data you want to serialize) and write very basic serialization functions (e.g.
defined in the type/struct to be serialized). Moreover cereal provides serialization
support for almost all types in the standard library, it is usually faster than many
others serialization libraries such as Boost and it is compact, in the sense that
produces binary representations that take up less space.

In our case the data structure is serialized in its entirety, without any previous
filtering. In this way if a user is interested in an alignment performed only on the
sequences of a certain species (e.g. Homo sapiens, code: hsa) and in the subsequent
execution to those of a different one (e.g. Mus Musculus (house mouse), code:
mmu), he could reuse the same serialized binary file. Anyway, to avoid making the
program work with miRNA sequences not relevant to the user, I have introduced
a pruning mechanism performed only after acquiring the serialized file, so as to
eliminate from the data structure all the sequences and seeds belonging to organism
that the user is not interested in (i.e. which he has not specified as a command line
parameter), saving a lot of time in the search and alignment phase.

2.4.2 Multi-sample analysis
isomiR-SEA must receive as a command line parameter the path to a tag file.
This file certainly represents the most interesting input data because it contains
the nucleotide sequences to be analyzed, followed by an integer that identifies the
number of times that this string is found within its sample. In these cases the file
is in the FASTA or TAG format, while if in addition to the above information we
also have the string representing the quality of the sequencing process, then the
format can be FASTQ or TAGQ.

In the simplest configurations, isomiR-SEA is ran once for each single tag file,
generating a different output for each sample. So, in case you want to analyze a
large number of samples you should run the tool as many times. However, it is
important to note that the same RNA sequence could be in more than one sample
(with an equal or different number of occurrences), especially in the case in which

39



Methods

the samples come from the same organism (for instance at different periods of its
existence) or from similar organisms. Therefore, the information contained in the
various samples is not univocal but, on the contrary, they are often repeated and
this means that, during the various executions of the tool, reads already treated
are analyzed again, producing identical alignments every time.

A possible solution to this problem would be to collapse all the repeated reads
across the various samples generating a single tags-counts file containing only
unique reads. In this way, we no longer have a file for each sample and we greatly
reduce the number of sequences to be analyzed. The further advantage of doing so
is that isomiR-SEA can be executed only once, not mapping each unique sequence
to the same reference miRNA multiple times, saving both memory and execution
time (see Section 3).

In order to perform such collapsing I have used BioSeqZip [33], an exact collapser
for Second Generation Sequencing datasets which, among other things, allows you
to collapse into a single file recurrent reads from different samples, associating with
each read the number of times it appears within the samples and its relative average
quality. The format of this collapsed file can be specified by the user by choosing
from some of the most used formats in this field. However, performing the collapse,
we would lose the information about the position of the various reads within their
sample. To overcome this, when performing multi-samples collapsing a further
tabular file is provided by BioSeqZip reporting the detail of how many time each
read was found in which sample.

So in conclusion, to make isomiR-SEA aware of all this, I made two important
changes:

• First I modified the acquisition of the tags-counts file in input so that I could
correctly read the collapsed files produced by BioSeqZip (see Figure 1.9b).
In particular, the headers of each sequence must be parsed so that useful
information such as ID and number of reads can be extrapolated;

• The second change is the most important and allows the tool to generate,
with a single execution, several output files, each of which contains the align-
ments related to a specific sample. In order to do this it is necessary to
provide isomiR-SEA, in addition to the collapsed file of reads, also the tabu-
lar file (option: −−multi−sample−tab path). In this way, during the alignments
printing phase, every time you have to print a mapping between a tag and
a reference miRNA you read this tabular file up to the line corresponding to
that particular tag. In this line you will find the indication of the samples in
which this tag appeared (and their relative number of occurrences), so that
the tool can print that particular alignment only in the output files related
to those samples.

40



2.4 – New features and improvement

2.4.3 On-the-fly output generation

During the alignment phase, isomiR-SEA searches for and finds all the reads that
map to one or more specific reference miRNAs, so as to be able each time to find
out whether this read corresponds to a known miRNA or to an isoform thereof. In
all these cases in which matching occurs, all the various information regarding each
single produced alignment is stored in memory into an optimized data structure. In
particular, for each read, called tag, a list of structures is saved where each struc-
ture contains the miRNA sequence that has been mapped on that tag and all the
information regarding their alignment, such as: score, start position (offset) inside
the miRNA and tag, size, boolean indicating whether or not there is conservation
of the interaction sites, text strings that summarize the alignment and many more.
This set of information is cleverly organized in memory trying to keep references
(pointers) to the most full-bodied data such as the sequences themselves or the
structures containing information about each single miRNA or pri-miRNA, so as
not to occupy more memory than necessary.

Subsequently, however, while printing the results, these references must be re-
solved. This means that each of the data structures previously described and con-
taining the data of a single alignment must be “expanded”, saving the several
information in the form of strings, characters and numbers in temporary variables
in order to be more easily converted into text and correctly printed within the
textual output files.

Anyhow, in the previous version of the tool, these expanded data structures
were not directly printed in output, but were temporarily queued into an array
of structures. This array was first filled with all the alignments produced by the
program and only then scanned to print each alignment one by one. As you can
easily imagine, this solution is highly inefficient, since each structure contains up to
50 fields to be converted into text, thus occupying a lot of RAM during execution.

Probably this problem went unnoticed as working with relatively small read
files the RAM was used in large quantities but without altering the operation of
the program. Instead, in my tests I used much larger read files, also thanks to the
new multi-sample feature that allows you to collapse multiple read files into one
and give it as input to the program, thus realizing that in some cases the process
went into starvation and, after a while, it was killed by the operating system.

To remedy this situation, I decided to print each data structure individually as
soon as it is expanded (on-the-fly), without the need to temporarily save it within
an array. In this way the result is absolutely identical but there is the enormous
advantage of being able to discard this data structure as soon as it is printed, freeing
up memory and proceeding with the expansion of the subsequent structure. Using
this approach, I obviously had to modify the individual printing functions as they
previously worked by cycling on a list of structures while now they receive a single
structure at a time.

41



Methods

2.4.4 YARA support

When you run the tool providing an input tag file, not all the reads contained
within it are considered during alignment. This happens because a tag sequence
can be of variable length and depending on this the read can be discarded or not.
In particular, during the acquisition of the databases, isomiR-SEA annotates the
maximum length found for a miRNA and then uses this value to discard, during
the tag acquisition phase, the longer reads, because it means that any alignment
on that tag would certainly contain too many indels. At the same time and for
similar reasons, all reads that are too short are also discarded, i.e. those that
are shorter than the minimum default value or indicated by the user during system
configuration. Furthermore, during the alignment phase, there will almost certainly
be some reads that are not mapped on any miRNA, these sequences are inserted
at the end of the discard list too.

However it is not said that these discarded sequences are not relevant, they
could in fact align on other locations of the genome considered less important for
this type of analysis, but certainly not to be overlooked. We are talking about
sequences that could map to “secondary ” positions such as the loop site, that is
the part of the precursor that lies between the two miRNA sequences, or even at
the ends of the precursor (sometimes called flanks).

For this reason, in the previous version of isomiR-SEA there was a second
alignment phase based on a dynamic programming algorithm in which the discarded
sequences were aligned directly on the pri-miRNAs. However, this computation
was definitely expensive and since often the user was not interested in the results
of that particular analysis, it was decided at first to put it under condition, that is
to execute it only if explicitly specified by the user during the configuration phase.

Nevertheless, even under conditional execution, this research phase was poorly
optimized, but above all it would have been much more efficient to directly use
other tools already available online and specifically designated for that. For this
reason I completely removed this second phase of alignment and I decided to inter-
face isomiR-SEA directly to Yara [41], an exact tool for aligning DNA and RNA
sequences to indexed reference genomes. In fact, Yara needs first to create an index
of the reference genome (if it has already been calculated previously, it can be sim-
ply reused without wasting time) and then maps the reads directly on that indexed
genome, producing sub-optimal end-to-end alignments in SAM/BAM format.

The user can choose to use Yara simply by indicating that he wants to output
the list of discarded reads (option −−path−discarded−tags path). At this point, in the
reference manual (see Section 2.5), there is a python script that receives this file
in FASTQ format, generates (if necessary) the genome index and finally configures
and runs the Yara tool. For completeness, the discarded read file has a format
identical to that produced by BioSeqZip, with the addition of a new field in the
header: it is the RS (ReaSon) field which indicates whether the read was discarded

42



2.5 – Usage & configurations: a reference manual

because it was too long/short (RS: LENGTH) or because it has not been aligned
on any miRNA (RS: NOTALL). Furthermore, starting from this file of discarded
reads, if you want to go back to the sample relating to a tag, it would be enough
to look at the ID index, the indices in fact are still those originally established by
BioSeqZip.

2.5 Usage & configurations: a reference manual
All the material including source code, test files, manual and post analysis scripts
is available online in the GitLab repository [42].

2.5.1 Setup
This manual is intended for operating systems of the GNU / Linux family. However
this does not prevent you from using the operating system you prefer.

Software requirements

In order to build and run isomiR-SEA you need a modern C++ compiler with
OpenMP extensions, CMake tool and Git. Furthermore this tool makes use of a
modern C++ library for sequence analysis named SeqAn. In particular isomiR-
SEA uses both the current version of the library (SeqAn3) which is automatically
included on the fly during compilation and the previous one (SeqAn2) which instead
can be installed manually with a command below (or by following the tutorials on
its official website).
gcc >= 7

1 # sudo apt install g++−7

cmake >= 3.4
1 # sudo apt−get install cmake

git
1 # sudo apt install git

SeqAn2
1 # sudo apt install libseqan2−dev

Note: this package is available in Ubuntu since 18.04 LTS, if you have an older
version or another OS you can alternatively refer to SeqAn2 installation guide [43]
or download the latest version [44], extract the content and copy the /include/seqan
directory into the project include folder.

43



Methods

ZLIB, BZip2 and Boost libraries (depending on your distribution you may also
need to install these libraries):

1 # sudo apt install zlib1g−dev libbz2−dev
2 # sudo apt−get install libboost−dev

Yara (optional)
If you want to align isomiR-SEA discarded reads directly on the miRNA precursors
you need to install Yara tool following its Github documentation [45] and then
proceed with reading this manual.

Build

Create a build directory using CMake as follows:
1 # mkdir cmake−build−release
2 # cd cmake−build−release
3 # cmake ..

Note: if you have installed g++(>=7) but your current default compiler is different,
you can invoke cmake as follows:

1 # cmake −D CMAKE_CXX_COMPILER=g++−7 ..

Invoke make as follows:
1 # make

You will find your executable here: cmake−build−release/apps/isomir_sea

2.5.2 Input & Output
Input files

You can provide different kind of input file to isomiR-SEA:

File of precursors (option: –in-file-primir) Precursor files are FASTA files (.fasta,
.fas, .fa) available online, you can alternatively download them from Mir-
GeneDB download-page (precursor with 30nt-flank), from miRBase download-
page (hairpin file), or with wget command (see Section 2.5.3). Please note
that if you provide a precursor file you must also provide a genomic coordi-
nates file.

File of genomic coordinates (option: –in-file-gff) Genomic coordinates files
are GFF files (.gff, .gff3) available online, you can alternatively download the
GFF file (v2.0) from MirGeneDB download-page, all .gff3 files (v22) from
miRBase download-page, or with wget command (see Section 2.5.3). Please

44



2.5 – Usage & configurations: a reference manual

note that if you provide a genomic coordinates file you must also provide a
precursor file.

File of mature and/or star sequences (options: –in-file-mature, –in-file-star)
Mature and/or star sequences files are FASTA files (.fasta, .fas, .fa) available
online from MirGeneDB or miRBase download-pages or with wget command
(see Section 2.5.3), but you can also provide your own sequences only paying
attention to stick to the format used in the files of the sites just mentioned.

Serialized reference database (options: –store-serialized, –load-serialized)
You can run isomiR-SEA specifying a path where to save the internal data
structure filled with your input data (option: −−store−serialized) as explained
in Section 2.4.1. Doing so, the next times you run the tool, you can directly
load the serialized database (option: −−load−serialized) instead of re-reading
the same input files, saving execution time.

File of tags/reads (options: –in-file-tags, –multi-sample-tab) You can pro-
vide your own tags/reads file (FASTA, FASTQ, TAG or TAGQ) even multi-
sample (see Section 2.4.2). In this last case you will also provide the tabular
file (option: −−multi−sample−tab) containing informations about the number
of reads per sample of each sequence. As already said, to produce this kind
of collapsed file we used BioSeqZip, so we kindly suggest you to use it.

To understand the several possible input files combinations to use see Section 2.5.3.

Output files

isomiR-SEA generates three main output files: .log, .tag, .gff. Each of them contains
some or all of the following fields (see also Figure 2.5):

tag_id (TI): an integer value that represents a unique index given to each tag
while reading the input tags-counts file, an incremental number is given for
each new row read in that file;

tag_seq (TS): the tag sequence;
tag_qual (TQ): the average quality (for each nucleotide) of the tag sequence;
tag_count (TC): the number of identical reads of each tag;
tag_start_gen (TSG): the start position (coordinate) of the tag into genome;
tag_end_gen (TEG): the end position (coordinate) of the tag into genome;
org_code (ORG): a 3-letters code to identify the miRNA sequence organism;
mir_id (MI): an integer value that represents a unique index given to each

miRNA sequence while reading the input reference files, an incremental num-
ber is given for each new sequence;

45



Methods

mir_seq (MS): the miRNA sequence which has been aligned to the tag;
align_mark (AM): the alignment score;
align_iupac_tag (IT): the iupac string of the alignment w.r.t. the tag;
align_iupac_mir (IM): the iupac string of the alignment w.r.t. the miRNA;
align_cigar (CI): a compressed representation of the alignment;
align_length (AL): the length of the alignment;
mir_tag_size_diff (SD): the difference in length between the tag and the miRNA;
iso_exact (IEX): a boolean indicating whether the sequence is identical the

canonical mature sequence reported in the database;
iso5p (I5P): an integer indicating whether the sequence is an isoform resulting

from insertion or deletion in the 5p-end (+: insertion, -: deletion);
iso_m_snp (IMS): stands for multiple nucleotide polymorphism isoforms and

it’s a boolean indicating if the sequence presents more than a mismatch with
respect to miRNA sequence;

iso_snp (ISN): stands for single nucleotide polymorphism isoforms and it’s a
boolean indicating if the sequence presents a mismatch w.r.t. the miRNA;

iso3p (I3P): an integer indicating whether the sequence is an isoform resulting
from insertion or deletion in the 3p-end (+: insertion, -: deletion);

mismatch_in_seed (INS): a boolean indicating whether there are mismatches
in the seed or not;

off_site (IOS): a boolean indicating whether the offset site (nucleotide 8) is con-
served in the tag sequence;

suppl_site (ISS): a boolean indicating whether the supplementary site (from
nucleotide 13 to 16) is conserved in the tag sequence;

compens_site (IPS): a boolean indicating whether the compensatory site (from
nucleotide 12 to 20 approximately) is conserved in the tag sequence;

central_site (ICS): a boolean indicating whether the central site (from nucleotide
4 to 16 approximately) is conserved in the tag sequence;

a2i_in_seed (AIS): adenine to inosine in seed, it’s a boolean indicating if, inside
the seed, an ‘A’ in the miRNA correspond to a ‘G’ in the tag;

a2i_out_seed (AIO): adenine to inosine out seed, it’s a boolean indicating if,
outside the seed, an ‘A’ in the miRNA correspond to a ‘G’ in the tag;

num_of_mir_same_seq (MI4S): an integer indicating the number of miR-
NAs the tag TI was aligned with;

46



2.5 – Usage & configurations: a reference manual

score_diff_mir0_mir1 (MSD): an integer indicating the score difference be-
tween two subsequent alignment of miRNAs (same organism) with the same
tag sequence (ex: between the score of the 3rd best aligned miRNA and the
score of the 2nd one);

mir_info_index (MII): an integer that represents a unique index given to each
miRNA while reading the input reference files, an incremental number is given
for each new sequence (it differs from MI because identical miRNA sequences
from different organisms have different MII but same MI);

mir_info_info (MIN): a string indicating the full information of the miRNA;
mir_info_ref (MRF): a string indicating the reference chromosome of the miRNA;
mir_info_start_gen (MSG): start position/coordinate of the miRNA into genome;
mir_info_end_gen (MEG): end position/coordinate of the miRNA into genome;
mir_info_mimat (MIM): miRBase identifier for the miRNA sequence;
mir_info_strand (MSR): the strand of the miRNA sequence;
prx_index (PII): an integer value that represents a unique index given to each

precursor sequence while reading the input reference files, an incremental
number is given for each new sequence;

prx_info (PIN): a string indicating the full information of the precursor;
prx_ref (PRF): a string indicating the reference chromosome of the precursor;
prx_seq (PS): the precursor sequence from which the miRNA originates;
prx_start_gen (PSG): start position/coordinate of the precursor into genome;
prx_end_gen (PEG): end position/coordinate of the precursor into genome;
prx_mimat (PMI): the MIMAT (miRBase identifier) of the precursor sequence;
prx_strand (PSR): the strand of the precursor sequence;
num_of_prx_same_seq (PR4S): an integer indicating the number of differ-

ent precursors in which the miRNA sequence appears;
prx_align_mark (PAM): the score of the alignment extended to the precursor

(increased with each new match);
iso5p_canonic (IC5): a boolean indicating whether the 5p end of the tag (in-

sertion/s) is aligned on the precursor;
iso3p_canonic (IC3): a boolean indicating whether the 3p end of the tag (in-

sertion/s) is aligned on the precursor;
score_diff_prx0_prx1 (PSD): an integer indicating the score difference be-

tween two subsequent alignment of the tag with different precursor sequences;

47



Methods

mir_tag_out_id (MTOID): an integer value that represents a unique index
given to each miRNA-tag alignment in output, an incremental number is
given for each new row;

mir_matched_id (MMI): an integer value that represents a unique index given
to each subsequent miRNA aligned with the same tag sequence, an incremen-
tal number is given for each different miRNA;

mir_info_id (MIID): an integer value that represents a unique index given to
each miRNA sequence while reading the input reference files, an incremental
number is given for each new sequence;

premir_id (PID): an integer value that represents a unique index given to each
precursor sequence while reading the input reference files, an incremental
number is given for each new sequence;

align_iupac_prx (IP): the iupac string related to the alignment with respect
to the precursor;

single_multiple_discarded (SMD): an integer value indicating if the current
row is a unique-mapping, multiple-mapping or a mapping to be discarded.

Figure 2.5: Example of alignment features. Features of an alignment produced
by isomiR-SEA. In particular the tag has been aligned to Mmu-Mir-17-P1a_5p
miRNA. Each acronym has its value immediately to its right, then: differences
between the sequences are highlighted in red, miRNA starting location within the
genome is in blue, precursor starting location within the genome is in orange.

48



2.5 – Usage & configurations: a reference manual

.log file
Contains the list of options and parameters used, followed by all the alignment
features detected during the alignment of a Tag over miRs, and a small report that
shows execution times in the several phases together with some information like
the number of Tags used, discarded, aligned and the number of miRs aligned.
.tag file
Each line of this file contains the information about a specific Tag-miR alignment.
All these informations are tab-separated and the overall output is ordered by se-
quence alphabetically (see Figure 2.6).

Figure 2.6: isomiR-SEA output: .tag file.

.gff file
Each line of this file contains, similarly to the .tab file, the information about a
specific Tag-miR alignment but in GFF format. All these informations are tab-
separated a part from the last column which is the compression of several fields
together separated by a semicolon. The overall output is ordered by tag sequence
alphabetically, and then by score in descending order (see Figure 2.7). In particular:

Column 1: mir_info_ref (MRF);
Column 2: name of miRNA database;
Column 3: type of the record;
Column 4: tag_start_gen (TSG);
Column 5: tag_end_gen (TEG);
Column 6: align_mark (AM);
Column 7: mir_info_strand (MSR);
Column 8: prx_strand (PSR);
Column 9: is composed of several fields: TI, TS, TC, PIN, CI, MIN, ISO (which

is a concatenation of IEX, IC5, I5P, IMS, ISN, I3P, IC3 ), INT (which is a
concatenation of INS, IOS, ISS, IPS, ICS) and FILTER which is a field that
can be “Pass” or “NotPass”. For instance if there are two or more different
miRNAs belonging to the same organism that have matched with the same
tag, only one of them will be “Pass” and only if it has a strictly higher score

49



Methods

than the others. On the other hand, if there are two equal miRNAs but
belonging to different precursors (and therefore with the same score) and
these scores are higher than the other miRNAs then they will both have
“Pass”.

Figure 2.7: isomiR-SEA output: .gff file.

2.5.3 Usage and configurations
This section will guide you step-by-step in the use of isomiR-SEA tool and its
various configurations. For each one of them there will be indicated the shell-
commands to use and, in the last use case, there will be for sake of completeness
the ipython script to directly run the configuration with pseudo-realistic tag input
files. These files are already present in the io_files_test folder but depending on
which configuration you want to execute you have also to download the reference
files already mentioned in Section 2.5.2. For simplicity, here are the wget-commands
(take only what you need).
MirGeneDB

1 # mkdir ./io_files_test/mirgenedb

Precursor:
1 # wget −O ./io_files_test/mirgenedb/ALL−−pri−30−30.fas https://

mirgenedb.org/static/data/ALL/ALL−−pri−30−30.fas

Mature:
1 # wget −O ./io_files_test/mirgenedb/ALL−−mature.fas https://

mirgenedb.org/fasta/ALL?mat=1

Star:
1 # wget −O ./io_files_test/mirgenedb/ALL−−star.fas https://mirgenedb.

org/fasta/ALL?star=1

50



2.5 – Usage & configurations: a reference manual

GFF:
1 # wget −O ./io_files_test/mirgenedb/ALL.gff https://mirgenedb.org/gff/

ALL?sort=pos&all=1

miRBase
1 # mkdir ./io_files_test/mirbase

Precursor:
1 # wget −O − ftp://mirbase.org/pub/mirbase/CURRENT/hairpin.fa.gz |

gunzip −c > ./io_files_test/mirbase/hairpin.fa

Mature:
1 # wget −O − ftp://mirbase.org/pub/mirbase/CURRENT/mature.fa.gz |

gunzip −c > ./io_files_test/mirbase/mature.fa

GFF:
1 # mkdir ./io_files_test/mirbase/gff
2 # wget −r −−no−parent −P ./io_files_test/mirbase/gff −nd −−reject "

index.html∗" ftp://mirbase.org/pub/mirbase/CURRENT/genomes/

Note: if you want to run these scripts using your personal input data remember to
replace the paths with those of your input and/or output files!

Use Case 0: Reference manual

Show the integrated reference manual:
From project directory

1 # ./cmake−build−release/apps/isomir_sea −−help

From executable directory
1 # ./isomir_sea −−help

Use Case 1: Precursors and genomic coordinates

This is the most basic configuration: you provide a file of precursors and a file of ge-
nomic coordinates. In this way the tool, knowing the coordinates of each precursor
and its microRNAs, can extract these sequences from the precursor file. Here are
the two examples of this: one using MirGeneDB and one using miRBase. For both
of them the tag file is the BioSeqZip-collapsing of trimmed ENCFF005EAG.fastq.

51



Methods

MirGeneDB
1 # ./cmake−build−release/apps/isomir_sea −−in−file−primir

mirgenedb_primir_file −−in−file−gff mirgenedb_gff_file −−in−file−
tags tag_file −−specie−codes mmu −−mismatches−in−seed 1 −−
verbose 1

miRBase
1 # ./cmake−build−release/apps/isomir_sea −−in−file−primir

mirbase_primir_file −−in−file−gff mirbase_gff_file −−in−file−tags
tag_file −−specie−codes mmu −−mismatches−in−seed 1 −−verbose 1

Use Case 2: Mature and/or Star sequences

You can provide MirGeneDB (mature and/or star) or miRBase (only mature exists)
sequences or alternatively you can provide your own sequences, but please pay
attention to stick to the format used in the files of the sites just mentioned.

The example shown here uses MirGeneDB mature and star sequences and the
tag file is the BioSeqZip-collapsing of trimmed ENCFF005EAG.fastq.

1 # ./cmake−build−release/apps/isomir_sea −−in−file−mature mature_file
[−−in−file−star star_file] −−in−file−tags tag_file −−specie−codes
mmu −−mismatches−in−seed 1 −−verbose 1

Use Case 3: MirGeneDB precursors and mature/star sequences

In case you are using MirGeneDB precursors and genomic coordinates as input
files for isomiR-SEA (Use Case 1, MirGeneDB section) you can also provide, in
addition, a file of mature sequences and/or a file of star sequences (like Use Case
2). Note that in this way, the tool takes each mature/star sequence and checks
the precursor file: if there are sequences that do not belong to any precursor, a
“fictitious” precursor is created for them (see Section 2.3). If, on the other hand,
they correspond to a precursor, the tool searches for the position of the sequence
within the precursor and checks if the coordinates of the gff file are consistent, if
they are not, they are updated with those that have been discovered.

This prevents and corrects any errors in the MirGeneDB database and allows
you to add any of your personal sequences to the analysis.

The tag file is the BioSeqZip-collapsing of trimmed ENCFF005EAG.fastq.

1 # ./cmake−build−release/apps/isomir_sea −−in−file−primir
mirgenedb_primir_file −−in−file−gff mirgenedb_gff_file −−in−file−
mature mature_file [−−in−file−star star_file] −−in−file−tags tag_file
−−specie−codes mmu −−mismatches−in−seed 1 −−verbose 1

52



2.5 – Usage & configurations: a reference manual

Use Case 4: Serialization

Specify a path where to save the internal data structure filled with your input
data (option: −−store−serialized), doing so, the next times you run the tool, you can
directly load the serialized database (option: −−load−serialized) instead of re-reading
the same input files, saving execution time.

The example shown here uses miRBase sequences and the tag file is the BioSeqZip-
collapsing of trimmed ENCFF005EAG.fastq.
First execution, store serialized

1 # ./cmake−build−release/apps/isomir_sea −−in−file−primir primir_file
−−in−file−gff gff_file −−in−file−tags tag_file −−store−serialized
serialization_path −−specie−codes mmu −−mismatches−in−seed 1 −−
verbose 1

Subsequent executions, load serialized
1 # ./cmake−build−release/apps/isomir_sea −−load−serialized

serialization_path −−in−file−tags tag_file −−specie−codes mmu −−
mismatches−in−seed 1 −−verbose 1

Use Case 5: Alignment parameters

You can set many parameters to run the tool according to your preferences. Here
are described some of the most important (verbosity and alignment), and then
there is an example of execution with them. For more information and to find out
other parameters please refer to the output of the −−help command.

The example shown here uses miRBase sequences and the tag file is the BioSeqZip-
collapsing of trimmed ENCFF005EAG.fastq.

-V, –verbose 0: no outputs; 1: displays global statistics; 2: displays extensive
statistics for each batch of reads; 3: debug output.

-n, –specie-codes Specie codes to be evaluated during the alignment at the same
time (usually only one is used).

-o, –min-size-aln-stp1 Minimum size of ungapped alignment, starting from the
seed, extending the alignment.

-p, –min-align-score Minimum alignment score for considering a tag expression
of a miR.

-q, –seed-start Start position of the seed.
-r, –seed-end End position of the seed.
-s, –max-start-pos-tag Max index in tag position for starting the seed alignment.
-t, –min-size-tag Minimum size of tag to be considered for the alignment.

53



Methods

-u, –thr-select-tags Threshold used to select select high quality multimapped
tags.

-v, –mismatches-out-seed Number of mismatches allowed between miRNA and
tags.

-z, –mismatches-in-seed Number of mismatches allowed between miRNA seed
and tags.

1 # ./cmake−build−release/apps/isomir_sea −−in−file−primir primir_file
−−in−file−gff gff_file −−in−file−tags tag_file −−specie−codes hsa:
mmu −−min−size−aln−stp1 10 −−min−align−score 7 −−seed−start 1
−−seed−end 6 −−max−start−pos−tag 5 −−min−size−tag 15 −−thr−
select−tags 12 −−mismatches−out−seed 3 −−mismatches−in−seed 1
−−verbose 1

Use Case 6: Multi-Sample

You can provide multi-sample tags/reads file: to make isomiR-SEA aware of this
you have to provide also the tabular file (option: −−multi−sample−tab) containing
informations about the number of reads per sample of each sequence. To produce
this kind of collapsed file we used BioSeqZip, so we kindly suggest you to use it.

The example shown here uses miRBase sequences, while the tag and tabular
file are the BioSeqZip outputs (truncated to the first 500000 reads) of trimmed
ENCFF005EAG.fastq and ENCFF008VOH.fastq.

1 # ./cmake−build−release/apps/isomir_sea −−in−file−primir primir_file
−−in−file−gff gff_file −−in−file−tags multi_sample_tag_file −−multi
−sample−tab tabular_file −−specie−codes mmu −−mismatches−in−
seed 1 −−verbose 1

Use Case 7: isomiR-SEA & Yara

isomiR-SEA tool performs some checks on tags length, discarding those that are
too short or too long compared to the microRNA sequences used as reference.
Moreover, during the alignment phase, the tool also discards all those tags for
which no alignment has been found.

You can map all these isomiR-SEA discarded or not aligned tags directly on
precursors with Yara mapper. For sake of completeness it is reported here an
exhaustive call to isomiR-SEA: multi-sample is enabled (like the previous configu-
ration) and the path to a tabular file is provided. After that Yara is called.

54



2.5 – Usage & configurations: a reference manual

Shell commands
isomiR-SEA

1 # ./cmake−build−release/apps/isomir_sea −−in−file−primir primir_file
−−in−file−gff gff_file −−in−file−tags tag_file −−multi−sample−tab
tabular_file −−path−discarded−tags path_discarded −−specie−codes
mmu −−mismatches−in−seed 1 −−verbose 1

Yara
1 # gzip −c precursor_file > REF.fasta.gz
2 # gzip −c isomirsea_discarded_tags_file > READS.fastq.gz
3 # yara_indexer REF.fasta.gz −o REF.index
4 # yara_mapper REF.index READS.fastq.gz −o READS.bam

or (if index already calculated)
1 # gzip −c isomirsea_discarded_tags_file > READS.fastq.gz
2 # yara_mapper index_already_calculated READS.fastq.gz −o READS.bam

Figure 2.8: Python script to run isomiR-SEA in an exhaustive configura-
tion. In the upper part you can see the paths to the several input files and output
directory, in the central part there is the actual call to isomiR-SEA tool.

55



Methods

Figure 2.9: Python script to run Yara on isomiR-SEA discarded tags. In
the upper part you can see the paths to the several input files and output directory,
in the central part the compressed version of discarded tags and precursor files are
produced, then there is the creation of the genome index and finally the mapping.

2.6 Post-analysis: from Knime to Python

The last part of the pipeline provides for a post-analysis phase in which the output
files of isomiR-SEA are processed, in particular only the .tab files. In this way it
is possible to extract only the most interesting information necessary, for instance,
to perform downstream machine learning analysis or even to produce particular
graphic reports which show, in a clearer way than a simple text file, the spectrum
of isoforms and the interaction sites of miRNAs within a sample (see Section 1.3).

Previously, a tool called Knime was used for this post analysis phase, it is an
open source software with a very intuitive graphical interface which offers a platform
designed for data analytics and reporting. Although Knime is very convenient for
prototyping, it flaws in terms of efficiency and performance essentially because it
makes heavy use of disk memory, temporarily saving the results of each individual
operation. Consequently, it is advisable to use Knime only to have a high-level view
of the operations to be performed in order to obtain the desired result (in the form
of a network composed of operational nodes). Once this is done and the model
is consolidated, however, it is better to translate all the operations into code by
adopting scripting languages. In this way, execution times are greatly shortened,
avoiding the need to continuously use the internal memory. For this reason I chose
to adopt Python3 programming language, translating what had previously been
developed through interactive views into code instructions (see Figure 2.10).

Going more into detail, all the information of isomiR-SEA output files are now

56



2.6 – Post-analysis: from Knime to Python

Figure 2.10: Visual comparison between Knime project and Python script.
Above, an example of Knime project in which all the operations, including SQL
queries and small code snippets, are shown in the form of nodes within a network.
Below a Python script that performs similar operations being less understandable
at first glance, but certainly much more efficient.

acquired and stored into SQL tables, which are subsequently transformed by per-
forming operations similar to SQL queries. In order to do so I have chosen to rely
on the Pandas library [46], written specifically for the Python language and useful
for manipulating tabular data (which in Pandas are called Dataframes), also thanks
to its interface with the SQLite database engine [47].

In particular this data processing phase is divided into three main steps:

• The first is a Python script that has the task of dividing the different ref-
erence miRNAs into three categories: unique mapped, multiple mapped and
discarded. A miRNA is defined as uniquely mapped to a tag if their alignment
has the maximum score and this score is strictly higher than all the other
alignments of that particular tag, multiple mapped to a tag if there are more
alignments with identical and maximum score, discarded in all other cases or

57



Methods

when the alignments have too many mismatches or too low scores. All these
miRNAs, together with their alignment information, are stored in distinct
tables forming a first SQL database. However, this filtering process was pre-
viously done incorrectly in Knime, with several inaccuracies (incorrect SQL
queries) and oversights so, during Python porting, it has been completely
revised. For example the SMD field (see Section 2.5.2) has been added as an
additional column into isomiR-SEA output files, allowing an easier filtering
in Python.

• The second step is another Python script that computes, for every miRNA
that has not been discarded, several statistics useful to express the spectrum
of isoforms and the conserved interaction sites in mathematical terms. In
particular this script reads the SQL database created in the first step and
then generates, for each miRNA with a different MII, some fields that sum-
marize the type of isoform and the conserved (or not) interaction sites (e.g.
collapsing INS, IOS, ISS, IPS, ICS fields into a string that can be similar to
“FTTTT”). After that, if the miRNA under investigation is multiple mapped
(has several valid alignments), we calculate statistics like average align score
(AM) and length (AL), tag count (TC) sum and so on, producing a second
SQL database. There is then a second part of the script in which we cal-
culate some statistics to evaluate how many and which types of nucleotide
substitutions occurred by comparing the miRNA sequences to the tag.

• Starting from this second SQL database, we can carry out different types of
downstream analysis. These statistics in fact can be very useful for machine
learning studies or, more in general, can be used to generate many different
graphical reports, for instance in the form of stacked barchart (see Section
1.3) or pie chart, useful to better understand the detailed picture provided
by isomiR-SEA tool about miRNAs, isomiRs and miRNA-mRNA interaction
sites characterizing the samples under investigation.

58



Chapter 3

Results

We report here the results in term of execution time and max RAM consumption
of three different isomiR-SEA releases. The oldest one dates back to 2016, it was a
first prototype of the tool written in a non-optimized way and still not completely
tested, we refer to it as isomiR-SEA 1.6. The intermediate version instead is defined
isomiR-SEA 2.0 and is from a couple of years ago. It has certainly undergone some
improvements starting from the possibility of running the alignment algorithm in
parallel exploiting concurrency, but still contained several bugs, one of which caused
high RAM usage. The third and new version of isomiR-SEA is the one discussed
in this thesis work, with this we have switched to a working and tested release,
providing a product currently usable by an end bioinformatician user.

After that we will talk briefly about the decrease in execution times of the post
analysis phase thanks to the use of Python code

Finally, we show some examples of stacked barchart generated directly from the
post-processed output data of isomiR-SEA, to better understand the ability of the
tool to provide detailed results, in the form of a concise and exhaustive chart.

3.1 Testing material and procedure
We tested all the three isomiR-SEA releases on a set of 10 samples coming from
different house mouse (Mus musculus) tissues (see Table 3.1). These samples be-
longs to different datasets freely available online from the ENCODE project [48],
and contain raw sequencing data (sequences with adapters), so each one of them
was trimmed in order to remove the adapters, and then collapsed with BioSeqZip,
generating 10 sample files each one containing unique sequences.

All these sequences have been analysed by adopting two miRNA reference
databases one after the other: miRBase release 22 (v22), characterized by 48860
mature microRNAs from 271 species [49], and MirGeneDB2.0, which contains more
than 10900 miRNAs from 45 organisms [50]. The configuration parameters of the

59



Results

different isomiR-SEA versions have been set in the same way, in particular: 1 mis-
match in the seed sequence and 3 outside, seed length to 6 (from nucleotide 2 to
7), minimum alignment threshold to 10 and minimum alignment score to 7.

The experiment were performed on a Linux machine with Intel Core i7-920 (4
cores, 8 threads) clocked at 2.67 GHz, 8 GB RAM and 1 TB HDD ATA Disk. As
you can see these specifications are similar to those of today’s laptops, meaning
that these tests and analyzes can also be carried out at home, without advanced
equipment like that of the research laboratories.

Sample name Size (GB)
ENCFF005EAG.fastq 1.2
ENCFF008VOH.fastq 2.0
ENCFF009AAB.fastq 1.9
ENCFF013IGT.fastq 2.2
ENCFF015FMJ.fastq 1.5
ENCFF020DSK.fastq 1.0
ENCFF028KUU.fastq 1.2
ENCFF044SLN.fastq 1.2
ENCFF049APP.fastq 0.97
ENCFF051KKO.fastq 1.8

Table 3.1: Sample name and size.

3.2 Execution time and RAM consumption
The first tests were made using miRBase as the reference database for all the
three versions of isomiR-SEA. Firstly, the execution times of the three releases
were measured for each individual sample, as shown in Figure 3.1. As you can see
isomiR-SEA 1.6 took in almost all cases twice the time of the new release, and
this is mainly due to the adoption of concurrency. Instead isomiR-SEA 2.0, which
already adopted the concurrency, took a time similar to the current version only
when the samples were small, while with larger samples a substantial difference
begins to be seen in favour of the newest version. This is certainly due to the
adoption of the new data structure, which allows to organize the data in memory
more efficiently. However, in two out of ten cases isomiR-SEA 2.0 was unable to
complete the analysis (“killed” label), due to too high RAM usage that led the
operating system to kill the process.

Then, the same type of analysis was made using MirGeneDB as the reference
database, as shown in Figure 3.2. In this case however, only the current version
of the tool and the 2.0 release were compared, as isomiR-SEA 1.6 is not able to

60



3.2 – Execution time and RAM consumption

work with databases other than miRBase. In this case the execution times are very
similar mainly because the MirGeneDB database contains four times less miRNA
sequences than miRBase, which means that the number of alignments produced
is lower and the advantages of an optimized data structure are not highlighted.
Anyway, you can still notice that the execution times of the new isomiR-SEA ver-
sion are still shorter, on average, with respect to isomiR-SEA 2.0 which, moreover,
failed to complete the same two out of ten executions again.

Figure 3.1: Per-sample execution times of different isomiR-SEA releases
(miRBase). On the y-axis are reported the execution times expressed in seconds
while on the x-axis are reported the names of the 10 samples used in the analysis.
Each group of three stacked bars refers to a single sample.

During the several executions, RAM consumption was also measured in order
to better understand why some analysis were interrupted by the operating sys-
tem. In particular Figure 3.3 and Figure 3.4 show the maximum values of RAM
consumption reached when using miRBase and MirGeneDB respectively. As you
can see the same two samples (ENCFF013IGT, ENCFF051KKO) that led to the
interruption of the execution are also the ones that have achieved the highest RAM
usage. Moreover, this number is limited to 8 only because that is the maximum
memory capacity available in our system, which means that it could have been even
greater. In any case, these two graphs make us understand how the introduction of
a more efficient results printing procedure (discussed in Section 2.4.3) has allowed
to considerably limit the use of resources. We can see in fact that isomiR-SEA
2.0 on average reaches with miRBase a maximum value of RAM consumption 75%
higher than the average of the current release. With respect to isomiR-SEA 1.6
instead the RAM usage is only slightly lower but, as we have seen, the execution
times are drastically decreased.

To get a clearer idea of the gain in terms of performance, in figure Figure 3.5
we report, for each tool release, the sum of the execution times of each sample

61



Results

Figure 3.2: Per-sample execution times of different isomiR-SEA releases
(MirGeneDB). On the y-axis are reported the execution times expressed in sec-
onds while on the x-axis are reported the names of the 10 samples used in the
analysis. Each group of two stacked bars refers to a single sample.

Figure 3.3: Per-sample max RAM usage of different isomiR-SEA releases
(miRBase). On the y-axis are reported the RAM usage values expressed in Gi-
gabyte while on the x-axis are reported the names of the 10 samples used in the
analysis. Each group of three stacked bars refers to a single sample.

(not considering the samples ENCFF013IGT and ENCFF051KKO that were prob-
lematic in isomiR-SEA 2.0 ). Looking at these graphs we can easily notice, for
example, that the new isomiR-SEA release had a running time about 60% lower
than isomiR-SEA 1.6, when using miRBase.

62



3.2 – Execution time and RAM consumption

Figure 3.4: Per-sample max RAM usage of different isomiR-SEA releases
(MirGeneDB). On the y-axis are reported the RAM usage values expressed in
Gigabyte while on the x-axis are reported the names of the 10 samples used in the
analysis. Each group of two stacked bars refers to a single sample.

(a) miRBase (b) MirGeneDB

Figure 3.5: Total execution time of different isomiR-SEA releases. On the
y-axis are reported the total execution times expressed in minutes. On the x-axis
are reported the different isomiR-SEA releases.

Anyhow, considering only the version of isomiR-SEA described in this thesis,
if instead of running the tool once for each sample we take advantage of the pos-
sibility (discussed in the Section 2.4.2) to run the program once on a single file
that summarizes all the samples, execution time decreases even more. As you can
see from the Figure 3.6, the total running time decreases considerably even just

63



Results

collapsing our 10 samples used as tests.

(a) miRBase (b) MirGeneDB

Figure 3.6: Single sample VS Multi sample total execution time. Here are
reported the total execution times expressed in minutes of isomiR-SEA when run
in single sample and multi sample configuration.

Finally, as regards the post analysis phase, I measured the running times of the
Python scripts used to generate the first two SQL databases which we discussed in
Section 2.6, and from which it is possible to perform downstream machine learn-
ing analysis or produce comprehensive graphical reports. In particular I’ve not
considered samples ENCFF013IGT and ENCFF051KKO that were problematic in
isomiR-SEA 2.0. The results confirmed a significant gap in terms of execution time
if the analysis is performed with Python scripts rather than with a Knime project:

• To generate the first SQL database: Knime 1090 s, Python 196 s.

• To generate the second SQL database: Knime 47180 s (>13 h), Python 1659
s (0.5 h).

This confirms that Knime, which is java-based, is a very useful tool in the
prototyping phases, but once the model is established it is better to proceed with
more performing languages, such as Python.

64



Chapter 4

Conclusions

This thesis presented a modern redesign of an alignment tool for RNA sequences and
of the pipeline within which it is located. This pipeline is made up of several steps
that range from genetic material extraction and sequencing up to the normalization
of the tool outputs for differential analysis. We placed our attention on the final
stages of this long process, in particular discussing the reimplementation of isomiR-
SEA alignment tool, and the post processing of its results.

Our main goal was to provide a stable and efficient release of this software, in
such a way to be easily used by a conscious end-user, also speeding up the post-
analysis phase of its results.

After an introduction on the latest DNA and RNA sequencing techniques and on
the evolution of alignment algorithms, we studied the features and functionalities
of the peculiar small RNA sequences analyzed by isomiR-SEA, to highlight their
fundamental role in the development of diseases and in human physiology. Sub-
sequently we made a brief excursus on the libraries and programming languages
adopted during the algorithm revisiting process, to point out the importance that
the adoption of modern programming standards has in the development of a soft-
ware. Such adaptation is actually crucial because it has allowed, as we have seen,
to take advantage of the new features introduced with C++17 and C++20, and
in the meantime to completely change the internal data structure of the program,
which is now more streamlined and far more efficient.

This data structure has undergone numerous changes also thanks to the iden-
tification of some bugs, leading us towards the adoption of certain measures that
really make the difference when working with huge amounts of data. By working
in this way, and taking advantage of parallel execution (in search and alignment
phases), we have reduced computational times up to ~60%.

Of all these changes, probably the most decisive concerns the new results print-
ing process, which previously wasted a lot of RAM occupying the memory with
temporary data and which instead now allows you to directly print every single

65



Conclusions

row of results without having to keep anything in memory. This measure drasti-
cally decreased the average max RAM consumption by ~75%.

In conclusion, this thesis has contributed to switch from a primitive version of
the software to a stable release of a working tool, also thanks to the introduction
of useful features such as input serialization or multi-sample analysis. But in order
to be easily used by bioinformaticians, something was still missing. In fact, we
discussed about the development of a reference manual which can be searched to
understand how to configure the system according to personal needs, and about the
whole downstream analysis porting into Python scripts. This last contribution is
essential to generate useful data more quickly, in order to proceed with any machine
learning analysis or graphical reports.

66



Bibliography

[1] B Hesper and P Hogeweg. “Bioinformatica: een werkconcept”. In: Kameleon
1.6 (1970), pp. 28–29.

[2] Fatih Ozsolak and Patrice M Milos. “RNA sequencing: advances, challenges
and opportunities”. In: Nature Reviews. Genetics 12.2 (2011), pp. 87–98. doi:
10.1038/nrg2934.

[3] Elisa Ficarra. “A glance to sequencing”. University Lecture. 2016-2017. (ac-
cessed: 03.02.2020).

[4] url: https://en.wikipedia.org/wiki/Small_RNA_sequencing#Small_
RNA_sequencing. (accessed: 14.02.2020).

[5] Kary B Mullis. “The Unusual Origin of the Polymerase Chain Reaction”. In:
Scientific American 262.4 (1990), pp. 56–65. doi: 10.1038/scientificamerican0490-
56.

[6] Enzoklop. Polymerase chain reaction. url: https://commons.wikimedia.
org/wiki/File:Polymerase_chain_reaction.svg. (accessed: 03.02.2020).

[7] B Canard and RS Sarfati. “DNA polymerase fluorescent substrates with
reversible 3’ tags”. In: Gene 148.1 (1994), pp. 1–6. doi: 10.1016/0378-
1119(94)90226-7.

[8] Nicole Rusk. “Torrents of sequence”. In: Nature Methods 8.1 (2011), p. 44.
doi: 10.1038/nmeth.f.330.

[9] P Nyrén, B Pettersson, and M Uhlén. “Solid Phase DNA Minisequencing
by an Enzymatic Luminometric Inorganic Pyrophosphate Detection Assay”.
In: Analytical Biochemistry 208.1 (1993), pp. 171–175. doi: 10.1006/abio.
1993.1024.

[10] Robert England and Monica Pettersson. “Pyro Q-CpG: quantitative analysis
of methylation in multiple CpG sites by Pyrosequencing”. In: Nature Methods
2 (2005). doi: 10.1038/nmeth800.

[11] url: https://seqan.readthedocs.io/en/master/Tutorial/DataStructures/
Alignment/ScoringSchemes.html. (accessed: 07.02.2020).

67

https://doi.org/10.1038/nrg2934
https://en.wikipedia.org/wiki/Small_RNA_sequencing#Small_RNA_sequencing
https://en.wikipedia.org/wiki/Small_RNA_sequencing#Small_RNA_sequencing
https://doi.org/10.1038/scientificamerican0490-56
https://doi.org/10.1038/scientificamerican0490-56
https://commons.wikimedia.org/wiki/File:Polymerase_chain_reaction.svg
https://commons.wikimedia.org/wiki/File:Polymerase_chain_reaction.svg
https://doi.org/10.1016/0378-1119(94)90226-7
https://doi.org/10.1016/0378-1119(94)90226-7
https://doi.org/10.1038/nmeth.f.330
https://doi.org/10.1006/abio.1993.1024
https://doi.org/10.1006/abio.1993.1024
https://doi.org/10.1038/nmeth800
https://seqan.readthedocs.io/en/master/Tutorial/DataStructures/Alignment/ScoringSchemes.html
https://seqan.readthedocs.io/en/master/Tutorial/DataStructures/Alignment/ScoringSchemes.html


BIBLIOGRAPHY

[12] VI Levenshtein. “Binary Codes Capable of Correcting Deletions, Insertions
and Reversals”. In: Soviet Physics Doklady 10 (1966), p. 707. doi: 1966SPhD.
..10..707L.

[13] RW Hamming. “Error detecting and error correcting codes”. In: The Bell
System Technical Journal 29.2 (1950), pp. 147–160. doi: 10.1002/j.1538-
7305.1950.tb00463.x.

[14] MO Dayhoff and RM Schwartz. “A model of Evolutionary Change in Proteins,
in Atlas of protein sequence and structure”. In: Nat. Biomed. Res. Found. 5
(1978), pp. 345–358.

[15] S Henikoff and JG Henikoff. “Amino acid substitution matrices from protein
blocks”. In: PNAS 89.22 (1992), pp. 10915–10919. doi: 10.1073/pnas.89.
22.10915.

[16] url: https://en.wikipedia.org/wiki/Gap_penalty#Types. (accessed:
07.02.2020).

[17] Gianvito Urgese et al. “Dynamic Gap Selector: A Smith Waterman Sequence
Alignment Algorithm with Affine Gap Model Optimisation”. In: (2014). url:
http://iwbbio.ugr.es/2014/papers/IWBBIO_2014_paper_143.pdf.
(accessed: 11.02.2020).

[18] SB Needleman and CD Wunsch. “A general method applicable to the search
for similarities in the amino acid sequence of two proteins”. In: Journal of
Molecular Biology 48.3 (1970), pp. 443–455. doi: 10.1016/0022-2836(70)
90057-4.

[19] url: http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?.
(accessed: 10.02.2020).

[20] TF Smith and MS Waterman. “Identification of common molecular subse-
quences”. In: Journal of Molecular Biology 147.1 (1981), pp. 195–197. doi:
10.1016/0022-2836(81)90087-5.

[21] SF Altschul et al. “Basic Local Alignment Search Tool”. In: Journal of Molec-
ular Biology 215.3 (1990), pp. 403–410. doi: 10 . 1016 / S0022 - 2836(05 )
80360-2.

[22] url: https://en.wikipedia.org/wiki/BLAST_(biotechnology)#Algorithm.
(accessed: 11.02.2020).

[23] M Burrows and DJ Wheeler. “A block-sorting lossless data compression al-
gorithm”. In: (1994).

[24] Ben Langmead et al. “Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome”. In: Genome Biology 10.3 (2009). doi: 10.
1186/gb-2009-10-3-r25.

68

https://doi.org/1966SPhD...10..707L
https://doi.org/1966SPhD...10..707L
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://en.wikipedia.org/wiki/Gap_penalty#Types
http://iwbbio.ugr.es/2014/papers/IWBBIO_2014_paper_143.pdf
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://en.wikipedia.org/wiki/BLAST_(biotechnology)#Algorithm
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25


BIBLIOGRAPHY

[25] H Li and R Durbin. “Fast and accurate short read alignment with Burrows-
Wheeler transform”. In: Bioinformatics 25.14 (2009), pp. 1754–1760. doi:
10.1093/bioinformatics/btp324.

[26] url: https://www.slideshare.net/Fardin6600/blast-algorithm. (ac-
cessed: 11.02.2020).

[27] Chao Cheng, Jason Moore, and Casey Greene. “Applications of bioinformatics
to non-coding RNAs in the era of next-generation sequencing”. In: Pacific
Symposium on Biocomputing 19 (Jan. 2014), pp. 412–6.

[28] Gianvito Urgese. Computational Methods for Bioinformatics Analysis and
Neuromorphic Computing: Efficient Gap Model for Sequence Alignment Algo-
rithms, MiRNA and IsomiR Detection in RNA-seq Data, and Spiking Neural
Network Simulations Placement in Neuromorphic Platfmorms: PhD Disser-
tation. 2016. url: https://books.google.it/books?id=8IzAuQEACAAJ.

[29] DP Bartel. “MicroRNA Target Recognition and Regulatory Functions”. In:
Author manuscript 136.2 (2009), pp. 215–233. doi: 10.1016/j.cell.2009.
01.002.

[30] Chanseok Shin et al. “Expanding the MicroRNA Targeting Code: Functional
Sites with Centered Pairing”. In: Molecular cell 38.6 (2010), pp. 709–802.
doi: 10.1016/j.molcel.2010.06.005.

[31] M Li et al. “MicroRNAs: Control and Loss of Control in Human Physiology
and Disease”. In: World journal of surgery 33.4 (2009), pp. 667–684. doi:
10.1007/s00268-008-9836-x.

[32] GP George and Rama Devi Mittal. “MicroRNAs: Potential biomarkers in
cancer”. In: Indian Journal of Clinical Biochemistry 25.1 (2010), pp. 4–14.
doi: 10.1007/s12291-010-0008-z.

[33] Gianvito Urgese et al. “BioSeqZip: a collapser of NGS redundant reads for
the optimisation of sequence analysis”. In: Bioinformatics (Jan. 2020). issn:
1367-4803. doi: 10.1093/bioinformatics/btaa051.

[34] url: http://samtools.github.io/hts- specs/SAMv1.pdf. (accessed:
13.02.2020).

[35] Matthias Dodt et al. “FLEXBAR-Flexible Barcode and Adapter Processing
for Next-Generation Sequencing Platforms”. In: Biology 1.3 (2012), pp. 895–
905. doi: 10.3390/biology1030895.

[36] Martin Marcel. “Cutadapt Removes Adapter Sequences From High-Throughput
Sequencing Reads”. In: EMBnet.journal 17.1 (2011), pp. 10–12. issn: 2226-
6089. doi: doi.org/10.14806/ej.17.1.200.

[37] url: https://en.cppreference.com/w/cpp/17. (accessed: 02.03.2020).
[38] url: https://github.com/seqan/seqan3. (accessed: 20.02.2020).

69

https://doi.org/10.1093/bioinformatics/btp324
https://www.slideshare.net/Fardin6600/blast-algorithm
https://books.google.it/books?id=8IzAuQEACAAJ
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1016/j.cell.2009.01.002
https://doi.org/10.1016/j.molcel.2010.06.005
https://doi.org/10.1007/s00268-008-9836-x
https://doi.org/10.1007/s12291-010-0008-z
https://doi.org/10.1093/bioinformatics/btaa051
http://samtools.github.io/hts-specs/SAMv1.pdf
https://doi.org/10.3390/biology1030895
https://doi.org/doi.org/10.14806/ej.17.1.200
https://en.cppreference.com/w/cpp/17
https://github.com/seqan/seqan3


BIBLIOGRAPHY

[39] Gene Myers. “A fast bit-vector algorithm for approximate string matching
based on dynamic programming”. In: Journal of the ACM (JACM) 46.3
(1999), pp. 395–415. doi: doi:10.1145/316542.316550.

[40] W Shane Grant and Randolph Voorhies. cereal - A C++11 library for se-
rialization. 2017. url: http://uscilab.github.io/cereal/. (accessed:
26.02.2020).

[41] Enrico Siragusa, David Weese, and Knut Reinert. “Fast and accurate read
mapping with approximate seeds and multiple backtracking”. In: Nucleic
Acids Research 41.7 (2013), p. 78. doi: doi.org/10.1093/nar/gkt005.

[42] url: https://philae.polito.it/gitlab/gurgese/isomiR-SEA.
[43] url: https://seqan.readthedocs.io/en/master/Infrastructure/Use/

Install.html#infra-use-install. (accessed: 28.02.2020).
[44] url: http://packages.seqan.de/. (accessed: 28.02.2020).
[45] url: https : / / github . com / seqan / seqan / blob / master / apps / yara /

README.rst. (accessed: 28.02.2020).
[46] url: https://pandas.pydata.org/. (accessed: 03.03.2020).
[47] url: https://www.sqlite.org/index.html. (accessed: 03.03.2020).
[48] url: https://www.encodeproject.org/. (accessed: 04.03.2020).
[49] Ana Kozomara, Maria Birgaoanu, and Sam Griffiths-Jones. “miRBase: from

microRNA sequences to function”. In: Nucleic Acids Research 47.D1 (2019),
pp. D155–D162. doi: 10.1093/nar/gky1141.

[50] Bastian Fromm et al. “MirGeneDB 2.0: The metazoan microRNA comple-
ment”. In: (2018). doi: doi.org/10.1101/258749.

70

https://doi.org/doi:10.1145/316542.316550
http://uscilab.github.io/cereal/
https://doi.org/doi.org/10.1093/nar/gkt005
https://philae.polito.it/gitlab/gurgese/isomiR-SEA
https://seqan.readthedocs.io/en/master/Infrastructure/Use/Install.html#infra-use-install
https://seqan.readthedocs.io/en/master/Infrastructure/Use/Install.html#infra-use-install
http://packages.seqan.de/
https://github.com/seqan/seqan/blob/master/apps/yara/README.rst
https://github.com/seqan/seqan/blob/master/apps/yara/README.rst
https://pandas.pydata.org/
https://www.sqlite.org/index.html
https://www.encodeproject.org/
https://doi.org/10.1093/nar/gky1141
https://doi.org/doi.org/10.1101/258749


Ringraziamenti

Desidero ringraziare il mio relatore Gianvito Urgese per la sua estrema disponi-
bilità e per avermi accompagnato nella stesura di questa tesi, condividendo con me
la sua preziosa esperienza nel campo della bioinformatica.

Insieme a lui vorrei ringraziare anche Emanuele Parisi per essermi stato di aiuto,
anche a distanza, soprattutto nel primo periodo, quando ancora avevo bisogno di
orientarmi.

Un ringraziamento speciale va ai miei genitori che sono sempre stati al mio
fianco, supportandomi e permettendomi di concludere questi studi, assecondando
sempre tutte le mie scelte.

Ringrazio mio fratello per essere stato sempre un punto di riferimento e avermi
spinto, forse anche inconsciamente, a intraprendere questo percorso.

Ringrazio la mia ragazza Giulia per essere riuscita a sopportarmi durante questo
ultimo anno di duro lavoro, sapere di averla accanto rende tutto più semplice.

Ringrazio i miei compagni per tutti i bei (e un po’ meno bei) momenti passati
insieme; in particolare Matteo e Nicolò con i quali ho trascorso innumerevoli ore,
confrontandomi e condividendo pareri.

Vorrei ringraziare inoltre il mio storico coinquilino Matteo, per la spensieratezza
con cui abbiamo affrontato la vita universitaria, e Hasan, per i suoi preziosi consigli
e le interminabili chiacchierate.

Infine, una dedica particolare va a mia nonna, una persona speciale con cui ho
avuto la fortuna di crescere, e che desidera vedere quella corona di alloro quasi più
di me.

71


	Introduction
	Bioinformatics: what is it?
	Background
	DNA/RNA sequencing
	Sequence alignment algorithms
	Small non-coding RNA and isoforms
	File formats

	Pipeline
	Libraries and standards

	Methods
	isomiR-SEA algorithm and flowchart
	Porting from SeqAn2 to SeqAn3
	A rivisited datastructure
	New features and improvement
	Input serialization
	Multi-sample analysis
	On-the-fly output generation
	YARA support

	Usage & configurations: a reference manual
	Setup
	Input & Output
	Usage and configurations

	Post-analysis: from Knime to Python

	Results
	Testing material and procedure
	Execution time and RAM consumption

	Conclusions
	Bibliography

