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ACRONYMS

ACRONYM DESCRIPTION

GPS Global Positioning System
SLAM Simultaneous Localization And Mapping
UWB Ultra Wide Band
RANSAC RANdom SAmple Consensus
IMU Inertial Measurement Unit
TOF Time Of Flight
SPAD Single Photon Avalanche Diode
AMCW Amplitude Modulated Continuous Wave
GNSS Global Navigation Satellite System
FOV Field Of View
DARPA Defense Advanced Research Projects Agency
SNR Signal to Noise Ratio
MEMS MicroElectroMechanical System
UAV Unmanned Aerial Vehicle
VFH Vector Field Histogram
RMSE Root Mean Square Error
URI Uniform Resource Identifier
IP Internet Protocol
ROS Robot Operating System
UGV Unmanned Ground Vehicle



1 INTRODUCTION

Many different  technologies like GPS and radar  have been used to

localize, to map environments and to detect objects over time those let

vehicles to move.

In this thesis, I analyze Lidar, especially in indoor, to let robots, drones,

cars, etc. to move without a driver.

One of the most popular sensor, the GPS (i.e. the most popular GNSS

technology),  doesn’t  give  a  good  accuracy  in  dense  urban

environments  because  the  signal  availability  changes  over  time,

therefore  its  potential  for  autonomous vehicles  is  limited;  moreover,

when it’s  integrated with IMU, errors can be accumulated when the

vehicle travels because the measured positions doesn’t follow the true

position.

Camera based localization has the disadvantage to be sensitive to the

changes of illumination, to observation angle and it can be affected by

weather too; furthermore, when it’s equipped with RANSAC algorithm,

it’s not good to distinguish stationary objects from objects in movement.

Ultrasonic based localization requires instead a very long processing

time  because  its  extractions  of  feature  points  aren’t  accurate  and,

when it’s integrated with other sensors, errors can be accumulated; in

addition, it’s incompatible for autonomous vehicles also due to its short

range to detect obstacles.

Radar based localization has the disadvantage to have many sources

of noise, those make it a sensor with low robustness; moreover, it has



some problems to distinguish target’s surface properties, out of its data

association.

UWB sensor works well in indoor environment, but needs a reference

node and it’s  bad in  outdoor  environment  because its  signals  have

short range.

Actually  there  isn’t  a  dominant  sensor  technology  based  on

autonomous  navigation.  One  of  the  candidates  is  Lidar,  which

guarantees  smaller  positioning  errors  respect  to  other  localization

techniques  like  GPS,  radar,  sonar,  camera,  etc.,  but  it’s  also  more

expensive  respect  to  those  ones.  In  autonomous  navigation,  it’s

important that a car/robot/drone is able to estimate its position, all near

objects and the surrounding environment in every instant, to move and

follow a path towards a destination and to avoid every object/obstacle

in every instant. In common words, it’s very important to make a safe

journey without accidents.

1.1 OBJECTIVE

In  the  past,  people  explored  unknown  environments  risking  to  be

injured; then they created vehicles, which were at first non autonomous

and  due  to  that  reason  there  were  accidents,  especially  when  the

driver  is  distracted;  only  in  the last  years  people developed robots,

drones and autonomous cars which are finally able to avoid obstacles

not only when they follow a path, but also when they explore in an

unknown environment. The aim of this thesis is to describe the Lidar,

explaining  the  reasons  for  which  it  was  created  and  used,  the



differences respect to other technologies, why is so important and how

can be used for autonomous navigation.

1.2 OVERVIEW

Chapter 2 explains the role of Lidar in autonomous navigation systems,

their  problems  and  their  respective  solutions  through  obstacle

avoidance algorithms. Chapter 3 describes Lidar’s technology, history,

characteristics,  tipologies,  advantages,  disadvantages,  use  cases

(especially  for  autonomous  navigation),  models  (I  will  not  include

everything),  context,  measured  data  and  its  errors.  Chapter  4

compares  different  localization  algorithms  and  map  extraction

techniques used in Lidar and describes SLAM. Chapter 5 describes

Matlab’s Robotics System Toolbox explaining its commands too.



2 OVERWIEV OF AUTONOMOUS NAVIGATION

SYSTEMS

2.1 LEVELS OF AUTONOMY

In the last years and in the near future, scientists and engineers are

making  efforts  to  increase  vehicles  autonomy  (especially  for

autonomous cars, considering robots and drones have just got more

autonomy). The Lidar, due to its very good accuracy respect to other

localization technologies, can improve autonomy of vehicles and, for

this  reason,  scientists  and  engineers  are  developing  cheaper  Lidar

sensors,  with  enough  small  dimensions  (especially  for  robots  and

drones), a good range (longer for cars and trucks), a good FOV and a

good  frequency  of  measurements.  A  Lidar  sensor  equipped  on  a

vehicle  can  potentially  avoid  80%  of  accidents,  which  are  caused

almost exclusively (about 90%) by human mistakes.

Scientists and engineers classified vehicles automation in six different

levels.

At  level  0,  called  “no  automation”,  the  human driver  must  manage

every driving task in the whole movement time.

At  level  1,  called  “assisted  driving”,  there  are  few  autonomous

implementation  like  proximity  alert,  cross  traffic  alert,  blind  spot



detection,  those  can  help  the  human  driver  either  to

accelerate/decelerate or to steer the vehicle.

At  level  2,  called  “partial  automation”,  there  are  some autonomous

implementation like lane keeping,  adaptive cruise control,  traffic jam

assist,  front/rear/intersection  collision  avoidance,  autonomous

emergency braking, emergency steer assist, those can both steer both

accelerate/decelerate the vehicle. The human driver must monitor the

driving environment.

At level 3, called “conditional automation”, also monitorization becomes

autonomous,  which  allows  autonomous  driving  in  some modes  like

highway.  The  human  driver  can  intervene,  especially  in  harsh

environment.

At level 4, called “high automation”, the vehicle is enough autonomous

that can manage every driving task in most environmental condition, in

most roads and in almost every instant. Pedals and steering wheels

are still needed, while human driver isn’t mandatory.

At level 5, called “full automation”, the automated driving system can

manage every driving task at every environmental condition, in every

road and in every instant, while pedals, steering wheels and the human

driver aren’t necessary. In this level, vehicles become robotic vehicles.

2.2 OBSTACLE AVOIDANCE ALGORITHMS

2.2.1 VECTOR FIELD HISTOGRAM

The Vector  Field  Histogram (VFH)  isn’t  only  an obstacle  avoidance

algorithm, but also a path planning method. It’s very used on robots, it

can  execute  in  real-time,  it’s  robust  also  in  cluttered  obstacle



environments and it’s suitable with inaccurate sensor fusion and sensor

data.

The VFH utilises a 2d histogram as an environmental map (it’s also

possible consider it as a 2d histogram grid) that is created and updated

at  every  scan  time  of  the  Lidar  sensor.  The  2d  histogram  is  later

reduced to a 1d polar histogram that divides the active window in a

number of sections at a fixed angular resolution. Each section of the

polar  histogram  around  the  temporary  position  contains  a  polar

obstacle  density  value.  The  most  appropriate  section  with  a  small

density  value  is  therefore  chosen  from  all  histogram  sections  and

aligned with the vehicle steering.

2.2.2 MODEL PREDICTIVE CONTROL

The aim of the Model Predictive Control is to use a system model to be

controlled to optimize and predict its future behavior. In fact, the MPC

is an optimal control based state feedback controller. It’s possible to

obtain the feedback law through an iterative online optimization over a

finite moving prediction horizon (one of its advantages is the capacity

to execute real time optimization even with hard constraints).

The most important components of the MPC are the dynamic optimizer,

the cost function and constraints, and the vehicle model. An optimal

control problem is defined through the equations describing the vehicle

dynamics  and  also  the  cost  function  and  constraints.  Later,  the

dynamic  optimizer  is  used  to  solve  the  optimal  control  problem  to

obtain the optimal steering angle to avoid obstacles. The state values

of the given steering sequence are predicted by the vehicle model.



The inputs of MPC are the target direction, the obstacle information

and the estimate vehicle state values.

A 2d  Lidar  sensor  is  used to  obtain  the  obstacle  information in  an

unknown environment. The Lidar sensor (modelled without noise and

delay),  in  every  radial  direction  at  a  negligible  angular  resolution,

returns the  distance to  the nearest  obstacle  boundary.  The  angular

range is [0°; 180°], while the vehicle heading direction is oriented at

90°.  The  Lidar  sensor  returns  the  maximum  detection  range  for

directions without obstacles inside its detection range.

The vehicle  states are necessary  for  the initialization of  the vehicle

model used in MPC.

The control signals for the UGV are the outputs.



3 OVERVIEW OF LIDAR TECHNOLOGY

3.1 INTRODUCTION

The original aim of Lidar (LIght Detection And Ranging, or called also

Laser Imaging Detection And Ranging) was the analysis of atmosphere

with searchlights to measure air  density and to determine scattering

intensity,  height  information and cloud base heights without  sending

instruments up.

Lidar technology would not exist without laser invention (in 1960), that

is based on stimulated emission (theorized by Einstein).

There  are  many  different  tipologies  of  Lidar  which  have  been

developed  like  elastic-backscatter,  differential-absorption,  raman,

resonance fluorescence, doppler, bathymetric, geiger mode, spinning,

solid-state,  mechanical  scanning,  optical  phased array,  flash,  single-

photon.

Lidar,  after  its  development  in  1961,  it  was  used  also  for  different

purposes  like  military  since  Vietnam  war,  space  exploration  since

Apollo  missions,  sea  depths  analysis,  forests  analysis,  mapping,

autonomous navigation (this one is the most fluorishing application of

Lidar  currently)  since DARPA Grand Challenge in  2004,  archeology

since 2000.

Lidar  technology  have  had  improvements  not  only  from  laser

technology (like Q-switched laser),  but  also from optical  filters,  data



acquisition  filters,  detectors,   computer  able  to  analyze  data,  map

techniques and localization algorithms.

Section  3.2  explains  at  first  the  technology  of  Lidar  and  of  its

components, then the differences among different types of Lidar like

spinning, solid-state, mechanical scanning, optical phased array, etc.,

and  finally  the  performances  and  their  roles  of  some Lidar  models

produced by different companies.

Section 3.3 describes at first the characteristics of Lidar, later its error

parameters and finally its data like accuracy, range, field of view, angle

of incidence, etc..

Section 3.4 observes how Lidar can be used in different use cases like

robotics,  automotive,  drones,  military,  space exploration,  archeology,

bathymetry, mapping, forest analysis, agriculture, industrial, etc..

3.2 TECHNOLOGY

In  Lidar,  we  use  wavelengths  between  ultraviolet  and  infrared

bandwidth (including also the visible one).  Older  Lidar  models used

nitrogen, ruby, CO2 and copper-vapor lasers, later high power excimer

and Nd:YAG: these two recent laser types both direct Lidar emitters

both pump secodary laser transmitters.

A Lidar sensor consists of a source and a destination basically. The

source contains a laser and a beam expander, while the destination

contains a telescope, an optical analyzer, a detector and a computer.

The beam expander has the role to reduce light divergence generated

by laser before sending it in the surrounding environment; in this way,



less photons are detected in the atmosphere and background light is

decreased.

Lidar  sensors  rarely  have lenses telescopes because backscattered

beams would not be detected, analyzed and their data would not be

collected;  out  of  those  reasons,  most  of  Lidar  sensors  have  mirror

telescopes.

Only a part of light returning beam is measured because the it can’t be

fully reflected onto the detector at short distance. This happens out of

the  degree  of  compression  of  a  signal  dependent  on  geometric

arrangement of the source and of the destination.

Optical analyzer has a filter (in front of optical detector) that sends a

light  beam  in  a  certain  wavelength  and  limits  light  outside  that

wavelength.

The optical detector has the role to detect received light beams and to

count those photons.  This capability is possible because the optical

detector is usually made of avalanche photodiodes or photomultiplier

tubes. The photoncounting technique is individual, sensitive, made in

Geiger mode and is applied if the deflected signal isn’t enough strong

or the checked region is far from the Lidar sensor.

In the computer stage, Lidar data are coded and extracted.

3.2.1 TIPOLOGIES OF LIDAR



In  this  subsection,  different  Lidar  tipologies  related  to  autonomous

navigation are described. Lidar tipologies can be classified according

to the technology and to the number of dimensions for which a Lidar

sensor can measure distances and/or create maps.

The two most popular Lidar tipologies according to the technology are

the mechanical/scanning and the solid state one, which includes flash

Lidar, MEMS Lidar and OPA Lidar.

Solid state Lidar is cheaper, smaller, lighter, more reliable, has a lower

FOV, better performances, consumes less power and hasn’t  rotating

mechanical components respect to the mechanical Lidar.

SINGLE PHOTON

SPAD (Single Photon Avalanche Diode) Lidar is based on TOF method

and it’s suitable for SLAM, autonomous navigation and ADAS too, due

to its high sensitivity and high reliability in harsh environments like fog.

It  has  a  maximum  range  of  70-80m  and  produces  range  data,

monocular data and peak intensity data.

A SPAD Lidar sensor can have many SPADs, which detectors contain

readout and quench circuits. Inside a SPAD, in the moment where a

single photon triggers an avalanche event, the readout circuit records

an electrical pulse. 

To create a macro pixel, element of SPAD detector array,  the detectors

will share a set of readout and quench circuits. A histogram is created

through photon counts of  returning repeated light  pulses from taken

over  objects.  The  photon  counts  bounced  from objects  in  a  single



accumulation period is much lower (also dozens) because Lidar works

also in harsh environments and laser power is pushed lower.

FLASH 

A Flash Lidar has a single large area laser, where its pulse lights up the

surrounding environment, and a focal plane array of photodetectors,

placed next to the laser source, which collects the returning light. 

Flash Lidar works in a similar way to that of a digital camera and it’s

able  to  obtain  data  very  quickly  because,  respect  to  mechanical

scanning Lidar, it can catch the whole scene in a single image and due

to this reason, it’s more immune to vibration effects, which can distort

the picture.

Unfortunately,  Flash Lidar requires a very high peak laser  power to

enlighten the whole  scene and see far  enough.  Retroreflectors  can

make Flash Lidar sensors useless (they can be blinded) because they

reflect most of the laser beam and deflect very little.

OPTICAL PHASE ARRAY

OPA (Optical Phase Array) Lidar has an optical phase modulator that

checks the light speed going across the lens. The control of the light

speed enables the check of the shape and orientation of the wave-front

from  the  combination  of  the  emission  from  the  synchronized

waveguides. The middle and the bottom light beams are retarded by

increasing quantity, while the top light beam isn’t delayed. This event

allows the deflection of the light beam, that is steered to aim toward

different directions. OPAs can achieve high scanning speed (also over



100k  Hz)  because  they  are  robust  and  insensitive  to  external

constraints  like  acceleration,  due  to  absence of  mechanical  moving

parts. 

OPA  Lidar  can  be  in  a  single  chip  and  compact,  but  has  the

disadvantage of insertion loss of the laser power.

MICROELECTROMECHANICAL SYSTEM

3.3.2 LIDAR MODELS AND CONTEXT

In this subsection, considering this thesis is focused on Lidar based

localization and the large number both of Lidar companies both of their

respective models, only one Lidar model per company specialized on

autonomous navigation will  be included.  In  these Lidar  models,  the

tipology,  the use cases and the measured data will  be explained, if

possible.

The Turtlebot 3 burger it’s not only a Lidar sensor, but also a robot. It

operates at SLAM, navigation and manipulation; it has a range of 3,5m,

an angular resolution of 1°, a precision of 1cm (if the distance is less

than 0,5m) or 3,5% (if the distance is larger) and an accuracy of 1,5cm

(at shorter distances) or 5% (at longer distances).

Puck is  a Lidar  model  produced by Velodyne,  of  which models are

spinning  Lidars.  Puck  works  in  different  sectors  like  robotics,

drone/UAV, mapping, security, industrial, smart city; it has a range of



100m, an accuracy of 3cm, an angular resolution of 0,1°*2° and a FOV

of 360°*30°.

Innoviz One is the latest Lidar model made by Innoviz, of which models

are mechanical scanning Lidars. Its use cases are the automotive, the

mapping, the UAVs, the industrial and the security; it has a range of

250m,  an  accuracy  of  3cm,  an  angular  resoluton  of  0,1°*0,1°,  a

resolution of 1cm and a FOV of 115°*25°.

OS0 is the most recent Lidar model developed by Ouster,  of  which

models  are  spinning  Lidars.  Its  applications  are  robotics,  security,

drones, autonomous vehicles; it has a range of 50m, an accuracy of

5cm (for lambertian tagets) or 10cm (for retroreflectors), a resolution of

0,3cm, a precision of 1,5cm (between 1 and 10m of distance) or 3cm (if

the distance is between 0,25 and 1m and between 10 and 30m) or

10cm (if the distance is larger than 30m) and a FOV of 360°*95° (larger

than other Lidar models made by that company).

Rs-lidar 16 is a Lidar model produced by Robosense. It  operates at

autonomous driving, robotics, industrial, UAV mapping and V2R; it has

a range of 150m, an accuracy of 2cm, an angular resolution of 0,1°*2°

and a FOV of 360°*30°.

Leddar Pixell is the latest Lidar model made by Leddartech, which is

specialized  on  solid-state  Lidars.  It  works  in  different  sectors  like

autonomous shuttles, robotaxis, delivery vehicles, commercial vehicles,

transit  buses;  it  has  a  range  of  41m,  an  accuracy  of  5cm and  an

angular resolution of 1,9°*2°.



S3  is  the  most  recent  Lidar  model  developed  by  Quanergy,  which

focuses  on  optical  phased  array  Lidars.  Its  applications  are

transportation,  industrial  automation,  security  data  analytics  and

mapping; it has a range of 150m, an accuracy of 0,5cm, a resolution of

5cm and a FOV of 120°.

Pandar64  is  a  Lidar  model  made  by  Hesai.  Its  use  cases  are

autonomous driving, hd mapping and autonomous logistics; it  has a

range  of  200m,  an  accuracy  of  5cm  (between  0,3  and  0,5m  of

distance)  or  2cm  (if  the  distance  is  larger  than  0,5m),  an  angular

resolution of 0,2°*0,167° and a FOV of 40°.

UST-20LX is a Lidar model produced by Hokuyo. Its applications are

autonomous  robots,  unmanned  aerial  vehicle,  air  touch  panel,

interactive exhibit, people counting and analysis of human movement

patterns;  it  has  a  range  of  60m,  an  accuracy  of  4cm,  an  angular

resolution of 0,25° and a FOV of 270°.

Sense One is a Lidar model developed by Sense Photonics, of which

models  are  flash  Lidars.  It  operates  at  robotics,  material  handling,

activity monitoring, last-mile delivery, volumetric measurement, motion

tracking,  3d inspection and palletization;  it  has a  range of  28m,  an

accuracy of 3,5cm, an angular resolution of 0,27°*0,27°, a resolution of

10cm and a FOV of 95°*75°.

Opal Performance Series Conical 3d is a Lidar model made by Neptec.

It works in different sectors like security, marine, aerospace, transport,



construction, mining, oil and gas; it has a range of 1000m, an accuracy

of 2,5cm, a precision of 2cm and a FOV of 120°.

3.3 CHARACTERISTICS

When a light beam is sent form the Lidar sensor, an almost conical

space is covered; and when a part of that conical space detects an

object, the light beam gets the infrared reflectivity of that object, then

the light beam turns back to the Lidar sensor, thus in this way we will

get the distance between the Lidar sensor and the object in that time

instant.

The Lidar, compared to other localization systems, guarantees much

lower error localizations (also <2cm) because of light beams, which are

much quicker than other mediums.

Lidar is not only able to localize object, but also to map environments:

in fact it uses point cloud maps.

One of  the  disadvantages of  Lidar  is  the necessity  of  a  very  large

memory because Lidar can collect thousands or even millions of points

for every second out of data point clouds.

Lidar  has two methods to acquire range:  TOF (Time Of  Flight)  and

phase shift. The TOF can give larger range, while the phase shift offers

better accuracy.

According to TOF method, the Lidar emits a light beam to a target and

range  measurement  is  determined  by  time  difference  between  the

emitted and received laser beams.



According to  phase shift  method,  Lidar  range is  obtained by phase

difference  between the emitted  and  received deflected  signal  of  an

AMCW. 

Lidar sensors can be integrated with cameras, IMU and GNSS.

Like every instrument of measuration, the Lidar, because it measures

the  distance  between  the  sensor  and  the  object,  has  some  error

parameters and measurement errors.

3.3.1 MEASURED DATA

The  first  measured  data  is  the  accuracy,  which  is  the  difference

between the measured position and the true position of a Lidar sensor

in the environment. Lidar accuracy errors are generally in the order of

centimeters,  while other localization systems, out  of  lower accuracy,

generally require larger orders of magnitude. There are two types of

accuracy: lateral and longitudinal. Lateral accuracy is generally smaller

than the longitudinal  accuracy because robots  and vehicles  have a

longitudinal  speed much greater than the lateral  speed. Considering

accuracy  errors  can  never  be  equal  in  measurements  of  a  Lidar

sensor,  a  RMSE  is  usually  made  in  datasheets  and  in  sets  of

measurements.

The second measured data is the range, that is the maximum distance

a laser beam sent from a Lidar sensor can detect objects in order to

avoid obstacles. The maximum range of a Lidar model can depend on

its purposes and where it  can be used: if  it’s developed to work on



robots  in  indoor  environments,  it  can  be  <10m;  if  it’s  built  to  be

equipped on autonomous cars in outdoor environments, it can be of

several hundreds of meters out of higher velocity of cars, otherwise the

driver would not have enough time to react and to avoid obstacles; it’s

also possible to find Lidar models which can work both in indoor both in

outdoor  environments,  and  in  these  cases  the  range  is  generally

between 10m and 100m except for few exceptions those have larger

range. The reflectivity can influence the range of Lidar model: at lower

reflectivity,  the  range  will  be  reduced  significantly;  while  at  higher

reflectivity,  the  range  will  be  almost  at  the  maximum  of  that  Lidar

model.  However,  Lidar has problems to detect  objects at  very short

distances.

The  third  error  parameter  is  the  FOV,  which  describes  the  angular

extension of a scene that is projected by a laser beam. Horizontal FOV

(it’s  sometimes  also  360°  and  it’s  called  azimuth  too)  is  generally

bigger  than  vertical  FOV (it’s  rarely  larger  than  90°  and  it’s  called

elevation  too)  because  robots,  cars  and  trucks  moveents  are  in  2

dimensions.

The angular resolution (called angle of incidence too) isn’t only one of

the measured data, but also one of error parameters of Lidar. Most of

Lidar sensors have an angular resolution smaller than 1° and it’s very

hard to find a Lidar model with angular resolution larger than 2°: in fact,

if the angular resolution is very large, part of wave front is rebounced

earlier  and the returning laser beam will  trigger the threshold either

earlier  or  too  late  according  to  detector  design  of  the  front-end.  If

instead the angular resolution of the Lidar model is enough small, its



pulse detects an object surface perpendicularly and the whole laser

wave front is reflected at the same instant.

Another error parameter of Lidar is temporal synchronization, because

Lidar sensors equipped on moving robots can produce skew if it has

been  left  uncompensated.  It’s  possible  to  compensate  through  a

continuous  motion  model,  which  requires  timestamping  and

synchronization of sensor data.

The third error parameter of Lidar are the boundary effects, because

the elliptical wave front, when it’s moving, may cross part of objects

and this means that spurious returns can happen at the boundary of

those  objects.  Due  to  these  reasons,  the  average  of  the  resulting

measurement range is often calculated and a spurious measurement is

generated pendent between objects in empty spaces.

Object surface properties are the forth error parameter, because the

amount of reflected laser beam can vary significantly. Objects which

absorb infrared light  (they generally  pop up dark  for  humans)  often

don’t  reflect  enough  light,  obtaining  measurements  shorter  than

expectations. Mirrors, water and highly specular objects reflect most of

the laser beam, obtaining measurements related to further objects. It’s

possible to get better measurements if an object reflects light diffusely. 

Another error of parameter is ambient light, because direct sunlight and

other strong ambient reduce the range of those Lidar sensors which

use infrared notch filter (it’s also very popular), needful to improve the

SNR and to work in outdoor. A typical sensor model retains there is



free space, which can vary according to the intensity of ambient light,

until a fraction of the Lidar sensor’s maximum range, if the returning

light  beam  isn’t  enough  strong  to  trigger  a  measurement.  It’s

impossible to determine when happens missing Lidar measurements

out of strong ambient light or actual free space, without other sensors.

3.4 USE CASES

Lidar  technology  has  been  used  in  different  sectors  through  its

detection  capability  during  the  years.  It  was  used  at  first  to  detect

atmospheric particles and in the last years to move vehicles such as

cars, robots and drones following a path.

In this section, some use cases will be described.

3.4.1 AUTONOMOUS NAVIGATION

DARPA Grand Challenges, perfomed respectively in 2004, 2005 and

2007,  were  the  first  important  step  about  Lidar  in  autonomous

navigation. In fact, after the first Grand Challenge, Velodyne started the

development  of  spinning  Lidars,  which  were  used  later  by  most  of

participants at the last Grand Challenge. After the spinning Lidar, also

different  tipologies  of  Lidar  like  mechanical  scanning,  flash,  optical

phased array, solid state, single photon have been developed. In this

use case, Lidar is equipped on robots, drones and vehicles (they are

becoming autonomous) like cars and trucks. All of them must localize

their own position, avoid obstacles, follow a path and map surrounding

environments;  robots  and  drones  can  also  watch  over  surrounding

environments,  carry objects.  SLAM is  required especially  in  outdoor



(out of high speed of vehicles in roads), but it’s possible to find moving

objects in indoor too. Autonomous navigation will  continue to be the

most  fluorishing  application  of  Lidar  in  the  near  future  because  of

increasing autonomy of trucks and especially of cars, which market has

a very large size.

3.4.2 SPACE EXPLORATION 

In space exploration, Lidar is used mainly on space probes and space

satellites to map planets and natural satellites surfaces (for example

Icesat). The first uses of Lidar on this use case were in Apollo missions

11 (in 1969), 14 and 15 (these ones in 1971). Mars Global Surveyor

(equipped with Mars Orbiter Laser Altimeter) space probes was sent to

Mars, while Chang’e, Selene and Chandrayan spacecrafts were sent to

the Moon in 2007-2008. In the future, also rovers will be equipped with

Lidar, considering Spirit,  Opportunity and Curiosity haven’t it:  in fact,

rovers  can  use  only  Lidar  with  SLAM,  which  hasn’t  been  fully

developed  and  mature  yet  also  because  of  complexity  of  spatial

missions and of high costs not only of Lidar technology, but also both of

launch both of operations.

3.4.3 SEARCH AND RESCUE

Natural disasters, like earthquakes of higher Richter magnitude, can

modify environments due to the eventual destruction of buildings. For

this reason, in those environments, a priori maps could no longer exist

and in these cases, an USAR response is necessary, but the time to

ago across rubbles, to localize survivors and to create maps is often



limited;  the  Lidar  sensor  with  SLAM  can  help  these  situations.

Considering those environments are not usually safe for people, USAR

robots  have  been  developed,  but  they  are  often  teleoperated  by

humans. The next  aim of  this use case is to improve USAR robots

autonomy.

3.4.4 MILITARY

Military use case is one of the oldest, excluding the atmosphere one.

Lidar  sensors  are  often  equipped  on  robots  and  aircrafts  in  these

situations and they are generally used to localize enemies (for example

nuclear  warheads or  a  group of  soldiers  hidden in  a  forest  or  in  a

building) and to map environments (it’s possible to distinguish a tank

from a photo taken from an aircraft) in order to prevent attacks. War

environments are usually dangerous not only for people, but also for

robots:  in  fact,  explosions  can  change  environments,  causing  the

destruction of  buildings.  Thus,  like  in  search  and rescue use case,

Lidar sensor with SLAM is recommended also because GPS can be

spoofed or jammed. One of the first uses of Lidar technology in war

was in Vietnam.

3.4.5 MINING AND EXTRACTION

The  wish  to  improve  safety  and  rising  labor  costs  have  stimulated

automation in mining industry in the last years. The GPS (its signal

disappears  in  underground)  and  the  UWB  (it  must  be  installed  in

underground) aren’t very useful in those environments. Lidar sensors,

often equipped on autonomous robots and trucks (which move rocks)



in  these  use  case,  are  a  good  solution  because  they  provide

localization and obstacle detection, in order to avoid accidents. This

use case is correlated with “search and rescue”: in fact, also this time

Lidar  sensors  with  SLAM  is  recommended  because  in  those

environments  can  happen  unexpected  accidents  those  modify

environments.

3.4.6 ARCHEOLOGY

Lidar was used in archeology since around 2000 (in fact it’s one of the

most recent use cases). In archeological sites, the Lidar sensor, which

is usually equipped on robots and drones, can scan the surrounding

environment  and  create  digital  elevation  models  through  maps.

Documentaries  are  sometimes  made  and  it’s  even  possible  to

approximate the original status of the archeological site through Lidar

measurements.  SLAM  technology  can  be  requested  especially  if  a

robot  must  navigate  through  tight  spaces  considering  archeological

sites are unknown environments for humans.

3.4.7 ATMOSPHERE

Atmosphere is the oldest use case and also the original aim of Lidar: in

fact,  in  1930s,  scientists  wanted  to  investigate  atmosphere  without

sending instruments up, but laser technology hasn’t existed yet.

The first Lidar measurements were did with searchlights, while in the

following years have been done with aircraft, probes, satellites

In this use case different tipologies of Lidar are used, such as elastic-

backscatter, differential-absorption, raman, fluorescence and doppler.



Lidar  technology did  a  big  contribution  to  the knowledge of  Earth’s

atmosphere in the last decades.

Lidar  can  analyze  atmospheric  compososition  and  can  measure

clouds,  trace  gases,  aerosols,  temperature,  pressure,  wind  and

humidity. It’s possible to study diurnal cycle, meteorolgical phenomena

like  hurricane,  the  measurements  of  water-vapor  and  ozone fluxes.

Stratospheric  measurements  would  be  impossible  without  Lidar.  In

additon,  Lidar  can  recognize  ice  crystals  from  water  droplets,

investigate  stratosphere  after  volcanic  eruptions  and  detect  desert

dust,  air  pollution  and  forest-fire  smoke.  In  mesosphere,  Lidar

demonstrated the presence of layers of metallic ions and atoms. 

3.4.8 BATHYMETRY

Bathymetry use case is one of the oldest, excluding the atmosphere

one.  If  Lidar  sensors  are  equipped  on  flying  vehicles  like  aircrafts,

helicopter and UAVs, they are used for depth sounding, fluorosensing

and to create not only topografic maps but also hydrografic charts. If

Lidar  sensors  are  equipped  on  water  vehicles  like  ships,  boats,

submarines  and  water  robots,  they  need  SLAM  to  avoid  fishes,

cetaceans,  corals,  plancton,  octopi,  reef,  other  ships,  boats,  etc.,

because a priori maps in underwater environments don’t exist.

3.4.9 FOREST

In forests, Lidar sensors weren’t very used in the first years, but there

have been progresses  since  1990s,  like  SLICER in  1994 (to  study

forest composition) and Jigsaw program in 2001 (that uses a Geiger-



mode Lidar to see under tree canopies). In this use case, Lidar sensors

were equipped only on aircrafts and helicopters, while in the last years

they are equipped also on space stations, drones and robots. In this

sector,  Lidar  is  used  to  distinguish  different  types  of  vegetation,  to

measure the thickness of trunks (it’s easier for robots) and tree heights

(also called canopy heights), to calculate biomass and volume, to study

forest composition and to estimate the position of trees; furthermore,

robots, drones and helicopters need SLAM because not only they have

to avoid birds and other animals hidden in the bushes, but forests can

be very far from urban environments. The canopy height is calculated

as the difference between those Lidar  returns aren’t  categorized as

terrain.



4 LOCALIZATION ALGORITMHS AND MAP

EXTRACTION TECHNIQUES

4.1 LOCALIZATION ALGORITHMS

4.1.1 PARTICLE FILTER

The  particle  filter  is  a  sequential  version  of  Montecarlo  localization

algorithms  and  works  well  in  nonlinear-non-gaussian  systems.  The

posterior distribution of a stochastic process is obtained through a set

of particles distributed in a way identical and independent. The particle

filter  has  four  steps  called  inizialization,  prediction,  update  and

resample respectively.

At  the  inizialization  step,  every  generated  particle  has  weight  1/N,

considering N as the number of particles. All the following steps can be

repeated at every time instant.

At the prediction step, the prior probability is predicted by the posteriori

probability  of  the  previous  instant  time,  then  the  set  of  particle  is

sampled  from  that  prior  probability.  The  posteriori  probability  of  a

determined time instant is obtained from the prior probability and the

sampled particles.

At the update step, the particle weights are updated through likehood

functions and later normalized.



At  the resample step,  old  particles  are  replaced by newer  particles

generated and the weight of each particle is updated to 1/N’.

4.1.2 MONTECARLO LOCALIZATION

The Montecarlo  localization  is  a  famous method used by  robots  to

localize. It’s a Bayesian method localization able to estimate almost

any distribution of a robot pose. It has a very good execution time and

it’s applicable with both local  both global  localization problems, with

linear  or  nonlinear  systems,  Gaussian  or  nongaussian  systems,

parameterized or not. Although the Montecarlo localization has many

advantages,  it  isn’t  able  to  find  the local  minima if  there  are  many

particles. The Montecarlo localization has an iterative cycle, which has

two steps called prediction and update.

At  the  prediction  step,  the  motion  model  (based  on  a  conditional

probability) is resampled to create a new set of particles.

At the update step, the weights of new particle are updated according

to the sensor’s measurement model (based on a likehood).

After the iterative cycle, the importance factors are normalized.

4.1.3 ITERATIVE CLOSEST POINT

The Iterative Closest Point is both a localization algorithm both a map

extraction technique. It has an iterative cycle, which includes five steps.

It’s  slower  than other  localization algorithms because of  its  iterative

cycle and its correspondences searches in the whole point cloud to find

the best possible transformation: for these reasons, the ICP isn’t very

good in real-time applications. Although the Iterative Closest Point is



time consuming, its distance metric has quadratic divergence and it

can guarantee good accuracy and robustness in general environments.

Furthermore, it’s applicable in unstructured environments since the aim

of  ICP is  to  align  the  current  scan  and the  reference scan without

extracting features.

At the first step, inertial sensors give initial translation and rotation.

At the second step, the current scan is transformed through current

rotation and translation.

At the third step, a research of the two closest corresponding points in

the reference scan is made for every point of the transformed current

scan.

At the forth step, the sum of the square distance between the point of

transformed  current  scan  and  the  line  segment  containing  the  two

closest corresponding points is minimized.

At the fifth step, there is a convergence check: if it isn’t reached, the

ICP will return to the second step to search new correspondences and

repeat the proceedings; otherwise, the ICP will go on the process of

the next new scan.

4.1.4 KALMAN FILTER

The Kalman filter gives linear (the estimate is a linear combination of

the current  measurements and of  the previous estimates),  unbiased

(the  mean  estimation  error  is  zero),  optimal  (the  variance  of  the

estimate is minimized) and recursive (the current estimate is obtained

only by the current measurement and the previous estimate) estimates

of a dynamical system state from its noisy measurements.



The state of a dynamical system is expressed as the sum between the

input, the system noise and the product between the transition matrix

and the previous state of the system.

The  current  measurement  is  expressed  as  the  sum  between  the

measurement noise and the product between the measurement matrix

and the state of the system.

In  frequency  analysis,  a  filter  is  a  system that  choose  a  particular

bandwidth of the frequency system. Without the filter and the noise, it’s

impossible to obtain the estimate of a trend.

In a non-recursive estimator, the mean value is expressed as the ratio

between the sum of the mean value of measurements and the number

of measurements. Instead, in a recursive estimator, the mean value is

expressed as the ratio between the sum between the product between

the previous mean value and the number of previous measurements,

and  the  mean  value  of  the  new measurement,  and  the  number  of

measurements. The recursive estimator has fixed computational cost

and memory usage, while the non-recursive estimator has both of them

linear.

A classical example of the Kalman filter is the motion of a boat on the

ocean. Moreover, the Kalman filter is often used in localization systems

and its noises are normally distributed.

The system model equation has the same form both in the continuous-

time, both in the discrete-time (in fact the system noise and the input

can be also expressed as integrals, while the transition matrix can be

exponential).  The mean value of  the system noise is equal to zero,

while  the  covariance  of  the  system  noise  (also  called  covariance

matrix) is expressed as the mean value of the product between the

system noise and its transposed.



The estimator is expressed as the sum between the product between

the extrapolated Kalman gain and the extrapolated state estimate and

the  product  between  the  Kalman  gain  and  the  measurement.  The

Kalman gain is linear and recursive.

The estimator is also called as the updated state estimate and can be

expressed also as the sum between the estimation error of the updated

state  estimate  and  the  state  of  the  system.  The  extrapolated  state

estimated is  instead expressed as the sum between the estimation

error of the extrapolated state estimate and the state of the system.

The mean value of the estimation error of the updated state estimate is

equal to zero, in order to have an unbiased estimator.

It’s possible to obtain the Kalman gain only if the estimator is optimal

(the variance of  the estimate is  minimized,  it  means that  the mean

value of the absolute value of the estimation error of the updated state

estimate is minimum).

The mean squared length of the estimation error of the updated state

estimate is easier to be minimized, while the updated error covariance

matrix  is  expressed as the mean value of  the product  between the

estimation error of the updated state estimate and its transposed.

It’s  possible  to  find  the  optimal  estimator  for  the  Kalman  gain  that

minimizes  the  mean  squared  length  of  the  estimation  error  of  the

updated state estimate expressed as the trace of  the updated error

covariance matrix.

Deriving the updated error  covariance matrix,  the extrapolated error

covariance  matrix  is  expressed  as  the  mean  value  of  the  product

between the estimation error of the extrapolated state estimate and its

transposed,  while  the  mean  value  of  the  product  between  the



estimation error of the extrapolated state estimate and the transposed

of the measurement noise is equal to zero.

The updated error  covariance matrix  is  later  expressed as the sum

between the product between the Kalman gain, its transposed and the

mean value between the product between the measurement noise and

its  transposed,  and  the  product  between  the  extrapolated  error

covariance matrix, the difference between the identity matrix and the

product between the Kalman gain and the measurement matrix, and

the transposed of the difference between the identity matrix and the

product between the Kalman gain and the measurement matrix.

The  Kalman  gain  is  expressed  as  the  ratio  between  the  product

between  the  measurement  matrix  and  the  extrapolated  error

covariance matrix, and the sum between the mean value between the

measurement noise and its transponsed, and the product between the

extrapolated error covariance matrix, the measurement matrix and its

transposed.

In  addition,  the  extrapolated  Kalman  gain  is  expressed  as  the

difference between the identity  matrix  and the product  between the

Kalman gain and the measurement matrix. Therefore the updated state

estimate is expressed as the sum between the product between the

Kalman gain and the current measurement, and the product between

the extrapolated state estimate and the difference between the identity

matrix and the product between the Kalman gain and the measurement

matrix.

The state estimate extrapolation is expressed as the sum between the

input and the product between the transition matrix and the previous

updated state estimate. Instead the error covariance extrapolation is

expressed as the sum between the mean value of the product between



the system noise and  its  transposed,  and the  product  between the

previous extrapolated error covariance matrix, the transition matrix and

its transposed.

4.2 MAPS EXTRACTION TECHNIQUES



5 MATLAB’S ROBOTICS SYSTEM TOOLBOX

In this chapter, Matlab’s Robotics System Toolbox (updated to version

2019a) will be described together with its commands relative to Lidar

based localization. In fact, Matlab it’s one of these programs which able

to move a robot equipped with a Lidar sensor from a point “A” to a

point “B” and avoiding both static both moving obstacles.

The  Robotics  System Toolbox  gives  not  only  hardware  connectivity

with many different types of robots like manipulators, humanoid, aerial

and ground vehicles, but also algorithms which allow robots to avoid

obstacles,  to  scan the surrounding  environment,  to  localize  its  own

position, to plan paths, to follow paths.

This toolbox gives an interface with the ROS and at least one between

Matlab and Simulink. The ROS allows tests on robot simulators like

Gazebo and on ROS based robots.

5.1 COMMANDS ABOUT ROS

Robot Operating System (ROS) of Robotics System Toolbox allows the

user to interact with ROS and to use its operations in Simulink and

Matlab. It’s possible to access to ROS networks and robots, to collect

data, to send and receive own messages, and to allow simulations in

Gazebo.



5.1.1  COMMANDS  ABOUT  ROS  NOT  RELATED  TO  GAZEBO

SIMULATOR

rosinit

The  rosinit  has  the  role  to  connect  to  a  ROS node and  its  use  is

mandatory  for  most  ROS-related  tasks  in  Matlab  because  the

communication with a ROS network needs a ROS node linked to a

ROS master and the ROS functions in Matlab work on the global ROS

node or on objects those depend on the global ROS node. It’s usually

used to start a ROS core and a global node, to start a node and link to

the ROS master at specified IP address, to start a global node at given

IP and node name. The command rosinit hasn’t output parameters, but

input parameters like the host name (or IP address), the port number,

the URI for ROS master and the global node name.

rosshutdown

The rosshutdown has the role to shut down a ROS system: in fact it

shuts down the global node and, if it’s operating, the ROS master. It’s

used when all the tasks related to the ROS network are finished and it

has neither input parameters nor output parameters.

rostopic

The rostopic has the role to return informations (usually as messages)

about a specific ROS topic. It’s usually used to get a list of ROS topics,



to get ROS topic informations and to get a ROS topic message type. In

addition,  the  rostopic  command  has  the  ROS  topic  name  as  input

parameter, while its output parameters are the list of topics from the

ROS master, the ROS message for a given topic, the information about

a given ROS topic and the message type for a given ROS topic.

rospublisher

The rospublisher has the role to publish messages. It’s used to create

a  ROS  publisher  before  the  expedition  of  data,  to  create  a  ROS

publisher and view properties, to publish data without a ROS publisher

and to use a ROS publisher object. Moreover, its properties are the

name of the published topic, the message type of published messages,

the  indicator  of  whether  publisher  is  latching  and  the  number  of

subscribers. 

rossubscriber

The rossubscriber has the role to subscribe to messages on a topic. It’s

used  to  create  a  subscriber  and  get  data  from  ROS,  to  create  a

subscriber that uses a callback function and to use a ROS subscriber

object.  Furthermore,  its  properties  are  the  name  of  the  subscribed

topic,  the  message  type  of  the  subscribed  messages,  the  latest

message sent to the topic, the buffer size and the callback property.

rosmessage



The rosmessage has the role to create ROS messages. It’s used to

create an empty string message, to create and access an array of ROS

messages, to preallocate a ROS message array and also to create a

ROS publisher  and  send data.  The  command rosmessage has  the

ROS message as output parameter, while its input parameters are the

message  type,  the  ROS  publisher,  the  ROS  subscriber,  the  ROS

service client and the ROS service server. 

send

The command send has the role to publish a ROS message to the

topic specified by the publisher. It’s used to send ROS messages after

their  creation and before their  reception. The command send hasn’t

output parameters, but input parameters like the ROS publisher and

the ROS message.

receive

The command receive has the role to wait for a new ROS message. It’s

used to get data from ROS after the creation of the subscriber, to read

a  specific  field  from the  point  cloud  message  and  to  receive  ROS

messages after their  creation and expedition. The command receive

has the ROS message as output parameter, while its input parameters

are the ROS subscriber and the timeout for receiving a message.

5.1.2  COMMANDS  ABOUT  ROS  RELATED  TO  GAZEBO

SIMULATOR



5.2  COMMANDS  ABOUT  GROUND  VEHICLE

ALGORITHMS

Ground Vehicle Algorithms of Robotics System Toolbox are specialized

on mobile robotics operations. It’s possible to execute SLAM, develop

robot path planning, create environment maps, regulate controllers to

follow a set of waypoints, estimate localization based on robot sensor

data and to execute obstacle avoidance.

lidarScan

The lidarScan has the role to create object for storing 2d Lidar scan.

It’s used to plot Lidar scan and remove invalid points and also to match

Lidar scans; furthermore,  its properties are the range readings from

Lidar, the angle of  readings from Lidar,  the cartesian coordinates of

Lidar readings and the number of Lidar readings.

robotics.LidarSLAM

The  robotics.LidarSLAM  has  the  role  to  perform  localization  and

mapping  using  Lidar  scans.  It’s  used  to  perform SLAM using Lidar

scans;  moreover,  its  properties  are  the  underlying  pose  graph  that

connects scans, the resolution of occupancy grid map, the maximum

range  of  Lidar  sensor,  the  pose  graph  optimization  function,  the

threshold for accepting loop closing, the search radius for loop closure

detection,  the  number  of  attempts  at  finding  loop  closures,  allow



automatic  rollback  of  addedd  loop  closures,  the  number  of  loop

closures accepted to trigger optimization and the minimum change in

pose required to process scans.

robotics.ParticleFilter

The  robotics.ParticleFilter  has  the  role  to  create  a  state  estimator

based on particle filter. It’s used to predict and correct particle filter and

also to estimate robot position in a loop using particle filter; in addition,

its properties are the number of state variables, the number of particles

used  in  the  filter,  the  callback  function  for  determining  the  state

transition between particle filter steps, the callback function calculating

the likehood of sensor measurements, the indicator if state variables

have a circular distribution, the policy settings that determine when to

trigger  resampling,  the  method  used  for  particle  resampling,  the

method  used  for  state  estimation,  the  array  of  particle  values,  the

particle  weights,  the  best  state  estimate  and  the  corrected  system

covariance.

robotics.MonteCarloLocalization

The  robotics.MonteCarloLocalization  has  the  role  to  localize  robot

using range sensor data and map. It’s  used to estimate robot pose

from range sensor data; furthermore, its properties are the initial pose

of  robot,  the  covariance  of  initial  pose,  the  flag  to  start  global

localization,  the  minimum  and  maximum  number  of  particles,  the

likehood field sensor model, the odometry motion model for differential

drive,  the minimum change in states required to trigger  update,  the



number of filter updates between resampling of particles and the use of

lidarScan object as scan input.

robotics.VectorFieldHistogram

The  robotics.VectorFieldHistogram  has  the  role  to  avoid  obstacles

using  the  vector  field  histogram.  It’s  used  to  create  a  vector  field

histogram object and visualize data; moreover, its properties are the

number of angular sectors in histogram, the limits for range readings,

the radius of  robot,  the safety  distance around robot,  the minimum

turning  radius  at  current  speed,  the  cost  function  weight  for  target

direction, the cost function weight for current direction, the cost function

weight  for  previous  direction,  the  thresholds  for  binary  histogram

computation and the use of lidarScan object as scan input.

robotics.PRM

The robotics.PRM has the role to create a probabilistic roadmap path

planner.  Its  properties  are  the  maximum  distance  between  two

connected nodes, the map representation and the number of nodes in

the map. The command robotics.PRM has the map representation and

the maximum number of nodes in roadmap as input parameters.

robotics.PurePursuit

The robotics.PurePursuit has the role to create a controller to follow a

set of waypoints. Its properties are the desired linear velocity, the look-

ahead distance, the maximum angular velocity and the waypoints. The



command robotics.PurePursuit has the position and orientation of robot

as input parameter, while its output parameters are the linear velocity,

the angular velocity and the look-ahead point on path.

buildMap

The buildMp has the role to build an occupancy grid from Lidar scans.

It’s used to build an occupancy map from Lidar scans and poses, and

at  the end of  execution of  SLAM using Lidar  scans.  The command

buildMap has the occupancy grid as output parameter, while its input

parameters  are  the  Lidar  scans,  the  poses  of  Lidar  scans,  the

resolution of occupancy grid, the maximum range of the Lidar sensor,

the width of occupancy grid and the height of occupancy grid.

robotics.OccupancyGrid

The robotics.OccupancyGrid has the role to create a 2d occupancy

grid with probabilistic values: every cell  in the grid has a value that

corresponds to the probability of having an obstacle in that cell (the

maximum value is equal to 1 and corresponds to certainty, while the

minimum value is equal to 0 and corresponds to absence). It’s used

before inserting laser scans into the occupancy grid and to convert a

portable  graymap  image  to  map;  moreover  its  properties  are  the

threshold to consider cells as obstacle free, the threshold to consider

cells as occupied, the saturation limits for probability, the number of

rows  and  columns  in  grid,  the  grid  resolution,  the  minimum  and

maximum  world  range  values  of  x-coordinates,  the  minimum  and



maximum world range of y-coordinates and the [x, y] world coordinates

of grid.
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