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Summary

Standard CMOS circuits are expected to be no longer able to satisfy nowadays
demand for higher performances and lower power consumption. The research has
traditionally taken two paths: More-Moore and More-Than-Moore. Both paths
brought radical innovations. However, quantum computing, whose fundamental
quantity of information is the qubit, is not just an innovation, it is expected to
be an actual change of paradigm. Not only it demands the exploitation of new
technologies, but it also requires a completely new way of approaching computer
science and logic.

Figure 1: Bloch sphere.

An intuitive tool to visualise one-qubit states is the
Bloch sphere (Figure 1): North pole is state |0〉, while
South pole is state |1〉. They represent the classical bits
0 and 1. The qubit, represented by a blue arrow in the
Bloch sphere, is a linear superposition of both eigen-
states and when measured, it collapses to a classical
bit. The latitude on the sphere represents the probabil-
ity of which pole the state will collapse to. There are
at least two main reasons for which quantum comput-
ing is expected to broaden computation horizons. First,
specific algorithms can be engineered, manipulating the
probability amplitudes of different states, to exploit the
quantum superposition principle and achieve high par-
allelism. Second, quantum computing speaks the same language Nature does:
quantum mechanics. Physical systems may be extremely complex, preventing a
classical computer to perform reliable simulations. The hardware of quantum com-
puters is represented by quantum systems, thus quantum computing is expected
to be spontaneously suitable to handle the complexity of physical systems.

Quantum computing requires the cooperation of several scientific fields: theo-
retical and experimental physics, chemistry, mathematics, electronic engineering,
computer science. Consequently, it is hard to find in the nowadays available litera-
ture a comprehensive source which presents the theory and the physical feasibility
of quantum computing, with an engineering perspective. In order to fill this gap,
the leading idea while writing has been to highlight the operations and algorithms
a quantum computer must be able to perform and, then, to propose a hardware
solution, providing the rigorous physical treatment mandatory for a deep under-
standing and for an appropriate modelling.

Thus, after an introduction devolved to the essential mathematical and phys-
ical preliminaries which lay the foundation for the understanding of the thesis,
the first chapters address the design of quantum algorithms (Figure 3), highlight-
ing the main differences with respect to the classical counterpart and focusing on
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Grover’s search algorithm, whose corresponding circuit is derived from funda-
mentals:

Superposition Oracle Diffusion

|0〉 H • H X • X H

|0〉 H X • X H X Z X H

|1〉 H

The latter is then described in Quantum Assembly (QASM), which can be seen
as the quantum equivalent of VHDL, and simulated on IBM Q Experience [1].

Figure 2: The Zeeman effect for a 13C
nucleus.

Figure 3: Steps for the execution of a
quantum algorithm.

The following chapters deal with a possible physical implementation of quan-
tum processors: the encoding of qubits on nuclear spins in diamagnetic molecules.
When a static magnetic field (∼ 10 T) is applied to a spin-1

2
nucleus, two well-

defined energy eigenstates arise, as a result of the Zeeman effect (Figure 2). Each
of them can be associated with a qubit eigenstate. Thanks to nuclear magnetic
resonance principles, the probability with which one of the two eigenstates is
measured can be handled by the superposition of a radio frequency field at the
resonance frequency of the nucleus. This can be interpreted as a rotation of the
spin (Figure 4), and so of the qubit, about the RF field and enables the execution
of single qubit quantum gates, since they are simple rotations of the state
vector. The two-qubit CNOT gate is obtained through the interaction of spins
via J-coupling. Considering that these gates constitute a universal set, every
quantum algorithm can theoretically be run on an NMR processor.

Different nuclei have different resonant frequencies, but the
addressing of a specific spin can be achieved also in homonu-
clear molecules (as the 13C in crotonic acid) since the resonant
frequency depends also on the nuclear environment. This phe-
nomenon is known as nuclear shielding.

While unwanted J-couplings can be removed thanks to the
application of the refocusing technique, spin decoherence and relaxation phenom-
ena (Figure 5) force an upper limit to the allowed timescale. A main advantage
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of NMR is that this timescale is very long (1 s), even at room temperature. Con-
versely, scalability is still an issue.

Figure 4: Spin precession on resonance
in a rotating coordinate reference sys-
tem.

Figure 5: Relaxation and decoherence:
eventually, the magnetization will be
found along the ẑ axis.

A NMR quantum computer MATLAB model, Quantum MOLE, based on the rela-
tions derived from first principles in the thesis, is proposed to prove the feasibility
of NMR quantum processors. The input technological parameters, as chemical
shielding and J-coupling, can be computed resorting on ORCA [2, 3], or obtained
from experimental data. The model, able to run a universal set of quantum gates
and tested on a benchmark of simple algorithms, can be useful to find an optimal
operating point as a compromise between molecule physical properties and the
quantities which can be controlled by nowadays NMR instrumentation. It can
be run at different levels of approximation, trading off CPU time and accuracy.
Quantum MOLE and takes into consideration several non-idealities, as decoherence,
relaxation, unwanted coupled evolution due to J-coupling during one-qubit opera-
tions and the effect of off-resonance pulses on not-addressed qubits in homonuclear
molecules. Finally, Quantum MOLE is also provided with an embedded support for
Virtual-Z method and refocusing techniques.
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Chapter 1

Linear algebra and quantum

mechanics

A deep understanding of the very core of quantum mechanics and quantum compu-

tation cannot be achieved without getting familiar with some elegant mathematics.

Quantum mechanics is inherently mathematical. After all, quantum mechanics is

a description of Nature and Nature is written in a mathematical language. Never-

theless, the mathematical formalism is definitely the first hurdle a non-insider has

to deal with. The leading idea while writing has been to make things as simple

as possible, assuming the reader has no familiarity with fine mathematical and

physical jargon and leading them in the world of quantum computation, trying

to provide a real feel for the subject in an almost self-contained work. This is

the reason for which the first chapter is completely devolved to the mathematical

and physical preliminaries essential to a basic understanding of quantum compu-

tation. The reader who feels familiar with linear algebra and the matrix formalism

for quantum mechanics can move to chapter 2.
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1 – Linear algebra and quantum mechanics

1.1 Linear algebra for quantum mechanics

1.1.1 Vector spaces

Quantum states are defined using complex vectors belonging to complex vector

spaces. It is useful to review some basic definitions.

Definition 1.1.1. A complex vector space V is a non empty set of objects,

called vectors, with two operations:

(I) Addition: ∀u,v ∈ V =⇒ u+ v ∈ V.

(II) Scalar multiplication: ∀v ∈ V, a ∈ C =⇒ av ∈ V.

and an element called the zero vector 0 ∈ V. For all u,v,w ∈ V and for all

a, b, c ∈ C the following properties must hold true:

(I) Associativity of addition: u+ (v +w) = (u+ v) +w.

(II) Commutativity of addition: u+ v = v + u.

(III) Identity element of addition: u+ 0 = u.

(IV) Every element has an inverse: u+ (−u) = 0.

(V) Identity element of scalar multiplication: 1 · uu.

(VI) Compatibility of scalar multiplication with complex multiplication: a(bu) =

(ab)u

(VII) Scalar multiplication distributes over addition: a(u+ v) = au+ av

(VIII) Scalar multiplication distributes over complex addition: (a+ b)u = au+ bu

Definition 1.1.2. The vectors {u1,u1, . . . ,un} ∈ V are said to be linearly in-

dependent if no vector in the set can be written as the linear combination of the

remaining vectors in the set.

Definition 1.1.3. Every set of n linearly independent vectors {u1,u1, . . . ,un} ∈
Vn realizes a basis of Vn and every v ∈ Vn can be written as a linear combination

of the basis vectors

v =
n∑
i=1

civi ∀i, ci ∈ C (1.1.1)

where n is the dimension of the vector space.

3



1 – Linear algebra and quantum mechanics

In particular, if

ui · uj = δij (1.1.2)

then the set is an orthonormal basis of Vn

The following definition is required to introduce the Dirac formalism.

Definition 1.1.4. Given a matrix A, its Hermitian conjugate is

A† : (A†)jk = A∗kj ∀j,k (1.1.3)

In the framework of quantum mechanics, it is customary to adopt the Dirac

notation to ease the most common calculations.

Definition 1.1.5. An element of Cn is denoted as a ket

|ψ〉 =


ψ1

...

ψn

 =
(
ψ1 . . . ψn

)t
, ψi ∈ C (1.1.4)

where t denotes the transpose operation. The Hermitian conjugate of a ket is

known as bra

〈ψ| =
(
ψ∗1 . . . ψ∗n

)
(1.1.5)

The following properties and definitions are presented using the bra-ket nota-

tion, in order to get familiar with this new way of writing vectors (further examples

in [4]). First of all, the definition of inner product.

Definition 1.1.6. Let |ψ〉, |φ〉 ∈ Vn the inner product is defined as

〈ψ|φ〉 =
n∑
i=1

ψ∗i φi (1.1.6)

Theorem 1.1.1. Let {|ei〉} be an orthonormal basis of Vn, then the complete-

ness relation holds true
n∑
i

|ei〉〈ei| = I (1.1.7)

where I is the identity matrix.

Proof. Let |ψ〉 ∈ Vn, then |ψ〉 =
∑n

i=1 ci |ei〉. The cj component can be rewritten

as

〈ej|ψ〉 =
n∑
i=1

〈ej| ci |ei〉 =
n∑
i=1

ci 〈ej|ei〉 =
n∑
i=1

ciδji = cj

4



1 – Linear algebra and quantum mechanics

Replacing in the expansion of |ψ〉

|ψ〉 =
n∑
i=1

ci |ei〉 =
n∑
i=1

〈ei|ψ〉 |ei〉 =
n∑
i=1

|ei〉 〈ei|ψ〉 =

(
n∑
i=1

|ei〉〈ei|

)
|ψ〉 = I |ψ〉

since 〈ei|ψ〉 is a number.

In the framework of quantum mechanics, quantities are customarily defined in

a specific complex vector space, known as Hilbert space.

Definition 1.1.7. A Hilbert space Hn is a complex vector space with an inner

product.

1.1.2 Linear operators

A linear operator acting on a vector space is represented by a matrix. The latter

depends on the the chosen (orthonormal) basis for the vector space. For the sake

of clearness, suppose {|ei〉} is an orthonormal basis of Hn 1. A generic |ψ〉 ∈ Hn

can be expanded as |ψ〉 =
∑n

i=1 ci |ei〉. Because of linearity, the action of the

operator A : Hn → Hn on an arbitrary vector belonging to Hn is defined when its

action in the basis vectors is specified. As a matter of fact

A |ψ〉 =
n∑
i=1

ciA |ei〉 (1.1.8)

Since, by definition, A |ei〉 is a vector, it can be expanded as

A |ei〉 =
n∑
k=1

Aki |ei〉

Taking the inner product with 〈ej|, one gets

Aji = 〈ej|A |ei〉 (1.1.9)

which are the elements of the matrix representation of the linear operator A,

chosen a specific orthonormal basis {|ei〉}.

1Note that it is actually enough to consider a generic complex finite dimensional vector space.
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1 – Linear algebra and quantum mechanics

Theorem 1.1.2. Given the orthonormal basis {|ei〉} of Hn , the matrix represen-

tation of a linear application A : Hn → Hn is

A =
∑
i,j

Aij |ej〉〈ej| (1.1.10)

Proof. Exploiting theorem 1.1.1 and the equality 1.1.9:

A = IAI =
∑
i

|ei〉〈ei| ·A ·
∑
j

|ej〉〈ej|

=
∑
i,j

|ei〉 〈ei|A |ej〉︸ ︷︷ ︸
Aij

〈ej| =
∑
i,j

Aij |ej〉〈ej|

In the following, some fundamentals linear operators are defined.

Definition 1.1.8. The projection operator

Pk = |ek〉〈ek| (1.1.11)

projects a vector |ψ〉 to a vector parallel to |ek〉

Pk |ψ〉 = |ek〉 〈ek|ψ〉 = α |ek〉 (1.1.12)

where α is a number.

Definition 1.1.9. A matrix A : Hn → Hn is said to be a Hermitian matrix

if and only if A† = A.

Definition 1.1.10. A matrix U : Hn → Hn is said to be a unitary matrix if

and only if U † = U−1.

A unitary matrix with det(U) = 1 is said to be a special unitary matrix

(SU(n)).

1.1.3 Eigenvalues and eigenvectors

Consider the matrix M defined as

M =

(
0 1

2
1
2

0

)
(1.1.13)

6



1 – Linear algebra and quantum mechanics

and suppose that it is applied to a vector a =
(

0 1
)t

:

Ma =

(
0 1

2
1
2

0

)
·

(
0

1

)
=

(
3
2

0

)
=

3

2

(
1

0

)
(1.1.14)

It is evident that M causes a variation of both the length and the direction of the

vector a, to which it is applied: this is the general case when a matrix is applied

to an arbitrary vector (Figure 1.1a).

(a) a is not an eigenvector of M . (b) b is an eigenvector of M .

Figure 1.1: Graphical representation of the action of a matrix on a vector.

Now, consider another vector b =
(

1 1
)t

:

Mb =

(
0 1

2
1
2

0

)
·

(
1

1

)
=

(
3
2
3
2

)
=

3

2

(
1

1

)
(1.1.15)

There is an obvious difference with respect to the previous case: matrix M

prompts just a variation of the length of b, leaving its direction unaffected. It

is as if b were multiplied by a scalar (Figure 1.1b).

This example leads to the definition of eigenvectors and eigenvalues.

Definition 1.1.11. Let A ∈ Cn×n, if there is a number λ ∈ C and a vector

|ψ〉 6= 0 ∈ Cn such that

A |ψ〉 = λ |ψ〉 (1.1.16)

then λ is an eigenvalue of A and |ψ〉 is an eigenvector of A associated with λ.

Theorem 1.1.3. All the eigenvalues of a Hermitian matrix are real and two

eigenvectors associated with different eigenvalues are orthogonal.

7
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Proof. Let A |ψ〉 = λ |ψ〉. The Hermitian conjugate is 〈ψ|A = λ∗ 〈ψ|. So

〈ψ|A |ψ〉 = λ 〈ψ|ψ〉 = λ∗ 〈ψ|ψ〉 =⇒ λ = λ∗

Let A |φ〉 = ζ |φ〉 with ζ 6= λ. Since ζ ∈ R, then 〈φ|A = ζ 〈φ|. Now, consider

〈φ|A |ψ〉 = ζ 〈φ|ψ〉

〈φ|A |ψ〉 = λ 〈φ|ψ〉

The element by element subtraction reads

0 = (λ− ζ) 〈φ|ψ〉 =⇒ 〈φ|ψ〉 = 0

since ζ 6= λ.

The eigenvectors of a Hermitian matrix are chosen to be orthonormal, which

means that
n∑
i=1

|ψi〉〈ψi| = I (1.1.17)

1.1.4 Pauli matrices

Definition 1.1.12. Pauli matrices represent a fundamental set of Hermitian uni-

tary traceless matrices:

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(1.1.18)

It is straightforward to show that

det(σi) = −1 =⇒ σi /∈ SU(2) (1.1.19)

8
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and that the eigenvalues are ±1 and eigenvectors

|ψx〉+ =
1√
2

(
1

1

)
|ψx〉− =

1√
2

(
1

−1

)
(1.1.20)

|ψy〉+ =
1√
2

(
1

i

)
|ψy〉− =

1√
2

(
1

−i

)
(1.1.21)

|ψz〉+ =

(
1

0

)
|ψz〉− =

(
0

1

)
(1.1.22)

Definition 1.1.13. Let A and B be two arbitrary matrices. The commutator

is defined as

[A,B] , AB −BA (1.1.23)

Property 1.1.1. The Pauli matrices satisfy the following relation

[σi,σj] = 2i
∑
k

εijkσk (1.1.24)

which is different from zero is i 6= j. The Levi-Cita symbol ε is defined as

εijk =


+1 if (i,j,k) = (1,2,3), (2,3,1), (3,1,2)

−1 if (i,j,k) = (2,1,3), (1,3,2), (3,2,1)

0 otherwise

Consequently, Pauli matrices do not commute.

1.1.5 Spectral decomposition

Theorem 1.1.4. Let A be a Hermitian matrix 2, then its spectral decomposi-

tion is

A =
∑
i

λi |ψi〉〈ψi| (1.1.25)

where |ψi〉 are the eigenvectors of A and λi the associated eigenvalues.

Proof. From the completeness relation and Equation 1.1.17:

A = AI =
n∑
i=1

A |ψi〉〈ψi| =
n∑
i=1

λi |ψi〉〈ψi|

2It is actully sufficient A is normal.

9
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In order to derive a simple relation to evaluate the exponential of a Pauli

matrix, it is useful to introduce a generic projection operator.

Definition 1.1.14. Let λa be a generic eigenvalue of a Hermitian matrix A and

let {|ψa,k〉 , (1 ≤ k ≤ gi)} be the distinct eigenvectors associated with λa (which

has a degeneracy ga). The projection operator to the ga-subspace corresponding

to λa is

Pa =

∏
m6=a(A− λmI)∏
n 6=a(λa − λn)

(1.1.26)

The following theorem can be easily shown [5, p.21].

Theorem 1.1.5. Let f be an analytic function and A a Hermitian matrix.

Then

f(A) =
∑
a

f(λa)Pa (1.1.27)

Corollary 1.1.5.1. Let n̂ ∈ R3 be a unit vector and α ∈ R. Then

eiαn̂σ = cosα · I + i(n̂σ) sinα (1.1.28)

where σ =
(
σx σy σz

)t
Proof. Let

A = n̂σ = nxσx + nyσy + nzσz =

(
nz nx − iny

nx + iny −nz

)

The eigenvalues of A are λ1 = +1 and λ2 = −1. According to definition 1.1.14,

the projection operators are:

P1 =

∏
m6=1(A− λmI)∏
n 6=1(λ1 − λn)

=
A− (−1)I
1− (−1)

=
A+ I

2
=

1

2

(
1 + nz nx − iny
nx + iny 1− nz

)

P2 =

∏
m6=2(A− λmI)∏
n 6=2(λ2 − λn)

=
A− (+1)I
−1− (+1)

=
A− I
−2

=
1

2

(
1− nz −nx + iny

−nx − iny 1 + nz

)

10
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Theorem 1.1.5 reads

eiαA = eiαλ1P1 + eiαλ2P2

=
eiα

2

(
1 + nz nx − iny
nx + iny 1− nz

)
+
e−iα

2

(
1− nz −nx + iny

−nx − iny 1 + nz

)
= cosα · I + i(n̂σ) sinα

1.1.6 Kronecker tensor product

The tensor product is a fundamental building operation of quantum systems.

Definition 1.1.15. Let A be an m× n matrix and B be a p× q matrix, then

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

. . .

am1B am2B · · · amnB


is an (mp)× (nq) matrix. Formally, the matrix tensor product is a function

⊗ : Cm×n× Cp×q −→ Cmp×nq (1.1.29)

An example may be useful to clarify the introduced operation.

Example 1.1.1. Let

A =

(
a00 a01

a10 a11

)
B =

b00 b01 b02

b10 b11 b12

b20 b21 b22


The tensor product A⊗B is obtained taking the scalar product of each element

11
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of A with the entire matrix B:

A⊗B =



a00 ·

b00 b01 b02

b10 b11 b12

b20 b21 b22

 a01 ·

b00 b01 b02

b10 b11 b12

b20 b21 b22


a10 ·

b00 b01 b02

b10 b11 b12

b20 b21 b22

 a11 ·

b00 b01 b02

b10 b11 b12

b20 b21 b22





=



a00b00 a00b01 a00b02 a01b00 a01b01 a01b02

a00b10 a00b11 a00b12 a01b10 a01b11 a01b12

a00b20 a00b21 a00b22 a01b20 a01b21 a01b22

a10b00 a10b01 a10b02 a11b00 a11b01 a11b02

a10b10 a10b11 a10b12 a11b10 a11b11 a11b12

a10b20 a10b21 a10b22 a11b20 a11b21 a11b22


4

Property 1.1.2. The tensor product satisfies some properties which are exploited

in the following:

(I) (A1 ⊗B1)(A2 ⊗B2)(A3 ⊗B3) = (A1A2A3 ⊗B1B2B3).

(II) A⊗ (B +C) = A⊗B +A⊗C.

(III) (A⊗B)† = A† ⊗B†.

(IV) (A⊗B)−1 = A−1 ⊗B−1.

(V) et A be an m × m matrix and B be a p × p matrix, then tr(A⊗B) =

tr(A) · tr(B) and det(A⊗B) = (det(A))p · (det(B))m.

(VI) Let |a〉 , |b〉 , |c〉 , |d〉 ∈ Cn, then

(|a〉 〈b|)⊗ (|c〉 〈d|) = (|a〉 ⊗ |c〉)(〈b| ⊗ 〈d|) = |ac〉 〈bd|

Theorem 1.1.6. Suppose A is an m × m matrix with eigenvalues λ1, · · · ,λn
and associated eigenvectors |ψ1〉 , · · · , |ψ2〉 and B a p × p matrix with eigenval-

ues ζ1, · · · ,ζn and associated eigenvectors |φ1〉 , · · · , |φ2〉. Then A ⊗ B has mp

eigenvalues {λiζj} and associated eigenvectors {|ψiφj〉}

12
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Proof. |ψiφj〉 is an eigenvector of A⊗B:

(A⊗B) |ψiφj〉 = (A⊗B)(|ψi〉 |φj〉) = A |ψi〉 ⊗B |φj〉 = λiζj |ψiφj〉

λiζj is the associated eigenvalue. Since there are mp eigenvectors, the vectors

|ψiφj〉 represent all and only the eigenvectors.

13



1 – Linear algebra and quantum mechanics

1.2 Quantum mechanics for quantum computa-

tion

When things get extremely small, classical mechanic fails to provide a faithful de-

scription of Nature. Quantum mechanics arose in the first decades of XXth century

to explain experiments and observations which could not be understood applying

classical physics. While a simple and engineer-oriented strongly recommended

introduction to quantum mechanics can be found in [6], here just the concepts

required by the quantum computing world are illustrated.

There are several “interpretations” of quantum mechanics, that is, the way

which the mathematical formalism has to be understood. Here, the most common

one is adopted, the Copenhagen interpretation, with a matrix formalism.

1.2.1 Fundamental postulates

The Copenhagen interpretation of quantum mechanics is founded on some postu-

lates, which, by definition, cannot be proven theoretically but just accepted from

experimental results. There is not a unique universally adopted set of postulates,

and the choice depends on the author and the scenario. Here, a possible set is pre-

sented which is thought to be suitable for the quantum computation field. Other

possible descriptions can be found in [5, 7, 8].

1.2.1.1 Wave function and superposition

Postulate 1.1. Each physical system is associated with a complex Hilbert space

H. A pure state of the system is represented by a normalized vector |ψ〉 ∈ H,

known as the wavefunction, which contains everything that can be known about

the system before an observation. The linear combination of two states, that is

their superposition, is a possible state of the system.

Suppose that {|ei〉}, 1 ≤ i ≤ n represent a set of possible states of a sys-

tem, for instance different locations (states) of a particle (system). Then a Hn

space is associated with the system and the superposition postulate says that the

wavefunction before any observation is

|ψ〉 =
n∑
i=1

ci |ei〉 (1.2.1)

where ci ∈ C are complex weights known as complex amplitudes. The square

14
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norm of the latter gives the probability that, after observation, that system

collapses to a specific state: the wavefunction is a probability wave. According to

this interpretation of the wavefunction, it is clear that

n∑
i=1

|ci|2 = 1 (1.2.2)

since the system must be found in a state. Coming back to the previous exam-

ple, before observation, the particle is in a linear combination of all possible

locations, like a wave. The complex numbers ci say in which superposition the

particle is currently in. Analogously, the wave function |ψ〉 can be thought as the

superposition of n waves |ei〉, each one contributing with intensity ci.

Eventually, since, if observed, the particle must be found somewhere, the sum

of the probabilities associated with all possible locations must be unitary.

There are two essential remarks about superposition which must be discussed.

The first one is that the fact that the probability amplitudes are complex number

is of striking importance. While classical probability allows only for real numbers

between zero and one, quantum mechanics has probability amplitudes which can

be positive, negative or complex. These amplitudes, before measurements, can in-

teract and cancel each other out, giving rise to the phenomenon of interference3,

which is one of the most important concepts in quantum mechanics and quantum

information processing. The second remark is that superposition cannot be fully

understood in classical terms. In the following, an experimental example is pro-

posed to try to help the visualization of the phenomenon, but it is better to accept

superposition as a new ontological category distinctive of quantum mechanics: it

is a complex linear combination of different states.

This fact that a system is in a superposition of all possible states before an

observation is performed and, then, when the observation is carried out, it decays

to a specific state is rather counter-intuitive. Nevertheless, countless experiments

have shown that the predictions of quantum mechanics are accurate, as the well

known double-slit experiment. The arrangement prescribes the presence of a wall

with two splits, behind which a screen is placed. Quantum particles, like electrons

or photons, are fired against the wall, one by one, so that they cannot interact with

each other. If no observation is performed before the wall, the particles arrive at

the screen describing an interference plot, as reported in Figure 1.2. This can only

be explained admitting the single particle which is fired lives in a superposition

3Give a look at [9].
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Figure 1.2: Double slit experiment with electrons. Note that electrons are fired
one by one. Adapted from [10] .

of states and, like a wave, can move through both slits simultaneously, giving rise

to an interference path. Nevertheless, it is not an actual wave, since, if observed

while moving through the wall, it will undoubtedly behave like a classical particle,

that is, like a marble, it will move through a single slit.

In conclusion, a quantum system does live in a superposition of states.

1.2.1.2 Observables

Consider a generic system which can be found in several states, for instance a

particle moving along a line. There are several questions which can be posed to

the system: Which is your velocity? Which is your mass? Which is your position?

and so on. Each question posed to the system, that is, each physical quantity

which can be measured (or observed) is an observable of the system.

Postulate 1.2. To each physical observable there corresponds a Hermitian oper-

ator acting on H.

Some observables and the related operators are reported in table 1.1, which are

derived by similitude. In general the application of an operator to a ket changes

the state. Nevertheless, according to definition 1.1.11 there are special states

(that is ket) which are not changed by the action of the operator. These are the

eigenstates of the operator.
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Observable Hermitian operator
Position r̂ = r
Momentum p = −i~∇
Kinetic energy T = − ~2

2m
∇2

Potential energy V
Hamiltonian H = V + T
Angular momentum L = −r × i~∇
Spin S = ~

2
σ

Total angular momentum J = L+ S

Table 1.1: Main observables and related quantum operators.

1.2.1.3 Measurements

Postulate 1.3. The only possible outcome of an observable a is one of the eigen-

values of the associated Hermitian operator A. After the measurement is carried

out, the state of the system collapses immediately to the eigenstate of A associ-

ated with the measured eigenvalue.

Property 1.2.1. The expectation value 〈A〉 of a is

〈A〉 = 〈ψ|A|ψ〉 (1.2.3)

Proof. Let {|λi〉} be the eigenvectors of A and {λi} the associated eigenvalues.

Since A is Hermitian, according to theorem 1.1.4

A =
∑
i

λi |λi〉〈λi|

Expanding |ψ〉 in terms of the eigenvectors |λi〉 of A

|ψ〉 =
∑
i

ci |λi〉

then

〈ψ|A|ψ〉 =
∑
i,j

c∗jci 〈λj|A |λi〉 =
∑
i,j

c∗jciλiδi,j =
∑
i

λi|ci|2

According to the interpretation of the wavefunction, |ci|2 represents the probability

pi that the outcome of the measurement operation is λi. Since the eigenvalues λi

represent all and only the possible outcomes, the previous expression is in the form∑
i

piλi

17
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which is the well known definition of the expectation value of a random variable

with a finite number of finite outcomes λi occurring with probabilities pi, respec-

tively.

As previously stated, any possible outcome λi is found with a probability |ci|2,

which can be expressed as

|ci|2 = 〈ψ|Pi|ψ〉 (1.2.4)

where

Pi = |λi〉〈λi| (1.2.5)

is the projection operator, which projects |ψ〉 to the eigenstate associated with the

eigenvector |λi〉
Pi |ψ〉√
〈ψ|Pi|ψ〉

(1.2.6)

Proof. The probability is easily shown

〈ψ|Pi|ψ〉 =

(∑
k

c∗k 〈λk|

)
|λi〉〈λi|

(∑
k

ck |λk〉

)
= c∗i ci = |ci|2

If the measured outcome is λi, the system must collapse to state λi, which is an

eigenvector of A:
Pi |ψ〉√
〈ψ|Pi|ψ〉

=
ci |λi〉√
|ci|2

∼ |λi〉

since a quantum state is defined up to a general phase factor.

In summary, given an observable a, the possible outcomes of a measurement

are the eigenvalues of the associated Hermitian operator A. As soon as the mea-

surement is carried out, the system is no longer in a superposition of states but

collapses to the eigenstate associated with the measured eigenvalue. The probabil-

ity with which a specific outcome is found is obtained resorting to the projection

operator, which is built starting from the eigenvectors of A.

Example 1.2.1. Let the system be described by the state vector

|ψ〉 = c0 |e0〉+ c1 |e1〉

where |e0〉 and |e1〉 realize an orthonormal basis. Let a be an observable which

acts on the system and let A be the associated Hermitian operator. Suppose that

A |λ〉 = λ |λ〉
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so that the eigenvalue is λ when the system is in state |λ〉. With which probability

would one obtain the value λ?

The first step is to build the projection operator

Pλ = |λ〉〈λ|

Next, according to Equation 1.2.4, one can evaluate the probability as

pλ = 〈ψ|Pλ|ψ〉 = | 〈λ|ψ〉 |2 = |c0 〈λ|e0〉+ c1 〈λ|e1〉 |2 =

= |c0 〈λ|e0〉 |2 + |c1 〈λ|e1〉 |2 + 2 Re{c0c
∗
1 〈λ|e0〉 〈λ|e1〉∗}

where the last term is an interference term. 4

The previous discussion holds true for a closed system where the possible out-

comes of a measurement are strictly orthogonal (being the eigenvectors of a Her-

mitian operator). In this case, the measurement is said to be projective4. If, on

the other hand, the system is open5, one has to define a more general operator

instead of the simple projection operator.

Definition 1.2.1. The measurement operator M is defined such that the prob-

ability of measuring ζ is

p(ζ) = 〈ψ|M †
ζMζ |ψ〉 (1.2.7)

and the state, immediately after the measurement, collapses to

|ζ〉 =
Mζ |ψ〉√
p(ζ)

(1.2.8)

Moreover, since the total probability must be unitary, the measurement operators

must satisfy the completeness relation∑
ζ

M †
ζMζ = I (1.2.9)

Example 1.2.2. Let

|0〉 =

(
1

0

)
|1〉 =

(
0

1

)
and assume

|ψ〉 = α |0〉+ β |1〉
4More details in [11]
5In short, a closed quantum system is an idealized isolated system while an open system is a

system which interacts with the environment.
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which are the (orthogonal) eigenstates of the operator σz and so they realize an

orthonormal basis of H2. When a measurement is performed, the state vector is

projected to one of the basis vectors.

The measurement operators can be formally defined as follows.

M0 =

(
a b

c d

)

since

p(0) = 〈0|

(
a∗ c∗

b∗ d∗

)
·

(
a b

c d

)
|0〉 = |a|2 + |c|2 = 1

p(1) = 〈1|

(
a∗ c∗

b∗ d∗

)
·

(
a b

c d

)
|1〉 = |b|2 + |d|2 = 0

and the operator must me Hermitian, it follows that

M0 =

(
1 0

0 0

)
= |0〉〈0| = P0

Analogously

M1 =

(
0 0

0 1

)
= |1〉〈1| = P1

which coincide with the projection operators. This is a general result: when the

system is closed, the measurement operators coincide with the projection opera-

tors.

The probability can be computed as

p(0) = 〈ψ|M †
0M0|ψ〉 = 〈ψ|0〉 〈0|0〉 〈0|ψ〉 = α∗ · 1 · α = |α|2

and immediately after the measurement, the system collapses to

M0 |ψ〉√
p(0)

=
α

|α|
∼ |0〉

4

There is an interesting aspect concerning quantum system measurements which

is still missing. Consider, for the sake of concreteness, a marble traveling according

20



1 – Linear algebra and quantum mechanics

to a given trajectory. It is definitely reasonable to ask the marble about its velocity

and its position at the same instant of time. In the same fashion, a car can be

found to travel at 50 km h−1 when it is in Corso Duca degli Abruzzi 24, in Torino.

There is nothing strange about that. Nevertheless, this is no longer the case for

quantum systems.

Theorem 1.2.1. Let a and b be two observables and A and B the associated

Hermitian operators. The variances are defined as

σ2
A =

〈
A2
〉
− 〈A〉2

σ2
B =

〈
B2
〉
− 〈B〉2

The Heisenberg’s uncertainty principle states that

σ2
Aσ

2
B ≥

(
1

2i
〈[A,B]〉

)
(1.2.10)

The proof of this principle is reported in all classical quantum mechanics book,

as [12, p.112]. At first sight, the inequality may seem trivially satisfied by the fact

that i2 = −1. However, the following property holds true.

Property 1.2.2. The expected value of the commutator of two Hermitian oper-

ators is always purely imaginary.

Proof. Let A and B be two Hermitian operators. Then by definition

[A,B] = AB −BA

the Hermitian conjugate is

[A,B]† = (AB)† − (BA)† = B†A† −A†B† = BA−AB = −[A,B]

where the definition of Hermitian operator has been exploited. Since

[A,B]† = −[A,B] (1.2.11)

the commutator of two Hermitian operators is said to be anti-Hermitian. Now,

the expectation value of an anti-Hermitian operator is known to be imaginary. As

a matter of fact, let C be an anti-Hermitian operator C† = −C with eigenvalues
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ci and associated eigenvectors |ci〉. Then

C |ci〉 = ci |ci〉

〈ci|C† = −〈ci|C = −c∗i 〈ci|

so

〈ci|C |ci〉 = ci 〈ci|ci〉 = −c∗i 〈ci|ci〉 =⇒ ci = −c∗i =⇒ Re{ci} = 0

which means that the eigenvalues are imaginary. It follows that if C is anti-

Hermitian, then iC must be Hermitian. Repeating the step proposed in the proof

of property 1.2.1, one immediately gets that the expectation value of an anti-

Hermitian operator can be written as the sum of its eigenvalues. Consequently,

the expectation value of an anti-Hermitian operator is imaginary.

The Heisenberg’s principle states that the commutator of two operators says

how good a simultaneous measure of the two associated observables can possibly

be. If the two operators have non-zero commutator, i.e., they do not commute,

Nature enforces a limit to the accuracy with which the observables can be simul-

taneously known.

Example 1.2.3. Consider a particle in a unidemensional reference system de-

scribed by the wavefunction |ψ〉 and imagine one wants to measure the position

and the momentum of the particle. From table 1.1

[x,p] |ψ〉 = −i~x ∂
∂x
|ψ〉+ i~

∂

∂x
(x |ψ〉) =

~
i

[
x
∂ |ψ〉
∂x
− x∂ |ψ〉

∂x
− |ψ〉

]
= i~ |ψ〉

from which

[x,p] = i~

so the two operators do not commute and it is not possible to know the position

and the velocity of a quantum particle simultaneously with arbitrary accuracy.

The Heisenberg’s principle sets an upper limit to the accuracy:

σ2
xσ

2
p ≥

(
~
2

)2

=⇒ σxσp ≥
~
2

The point is that the wavefunction |ψ〉 can be written in many orthonormal bases,

corresponding to different observables. When |ψ〉 is thought as a wave, it can

be decomposed into sinusoids, whose position is totally undermined but whose
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wavelength is well known. This is the momentum basis6. On the other hand,

when |ψ〉 is thought as a particle, it is decomposed into the position basis, which

is made of “peaks”, that is, of vectors which are zero everywhere but in a point. In

this case, the position in well known, while the momentum is undermined. This is

usually summarized saying that non commuting operators do not have a complete

set of eigenfunctions. 4

Example 1.2.4. Consider a spin-1
2

particle and suppose one wants to determine

the spin vector. The Hermitian operators associated with the three components

of the vector are the Pauli matrices. As stated in §1.1.12, Pauli matrices do not

commute, so it is not possible to measure the three components of the spin vector

simultaneously. 4

1.2.1.4 Schrödinger equation

Postulate 1.4. The time evolution of a state is ruled by the Schrödinger equa-

tion:

i~
∂ |ψ〉
∂t

= H |ψ〉 (1.2.12)

where H is the Hamiltonian, that is, the Hermitian operator associated with the

total energy of the system.

The case in which the Hamiltonian is time independent is of particular interest.

The following result holds true.

Property 1.2.3. If the Hamiltonian is time independent, the Schrödinger equa-

tion is formally solved as

|ψ(t)〉 = exp

(
−Ht

~

)
|ψ(0)〉 , U(t) |ψ(0)〉 (1.2.13)

6The relation between momentum p and wavelength λ is given by the well know De Broglie’s
equation λ = h

p .
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where the time evolution operator is

U(t) = exp

(
−Ht

~

)
(1.2.14)

Proof. First, the Hamiltonian is an operator, which is represented on a proper

basis by a matrix. The matrix exponential is defined as

eA =
∞∑
k=0

Ak

k!
= I +A+

A2

2!
+
A3

3!
+ · · ·

Next, assuming A is time independent, the derivative of the matrix exponential is

deAt

dt
= lim

δ→0

eA(t+δ) − eAt

δ
= eAt

[
lim
δ→0

eAδ − I
δ

]
= eAt

[
lim
δ→0

1

δ

(
Aδ +

A2δ2

2!
+ · · ·

)]
= eAtA = AeAt

where the last equality is obvious from the definition of matrix exponential.

Replacing 1.2.13 in 1.2.12 yields

i~
∂ |ψ〉
∂t

= H |ψ〉

i~
∂
(
e−Ht/~ |ψ(0)〉

)
∂t

= He−Ht/~ |ψ(0)〉

i~ |ψ(0)〉
(
−iH

~

)
e−Ht/~ = He−Ht/~ |ψ(0)〉

He−Ht/~ |ψ(0)〉 = He−Ht/~ |ψ(0)〉

The time evolution operator is obviously unitary since

UU † = exp

(
−Ht

~

)
exp

(
+
Ht
~

)
= I (1.2.15)

and so the time evolution preserves the total unitary probability of the wavefunc-

tion.
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1.2.2 The wavefunction and the state vector

It is more rigorous to refer to the ket |ψ〉 as the state-vector of the system, rather

than the wavefunction. However, starting from the ket, one can extract a complex

scalar function relative to a specific basis [13]. Let H be a Hilbert space spanned

by the complete basis set of the position operator |ri〉. The state vector, being an

inhabitant of the same Hilbert space, can be written with respect to the position

eigenbasis as

|ψ〉 =
∑
i

〈ri|ψ〉 |ri〉 (1.2.16)

If the basis set tends to a continuos basis set, then

|ψ〉 =
∑
i

〈ri|ψ〉 |ri〉 −→
∫
〈r|ψ〉 |r〉 dr (1.2.17)

The expression 〈r|ψ〉 means that |ψ〉 is written in the position eigenbasis, without

explicitly identify the eigenvector |ri〉: for different |ri〉, the inner product out-

puts different numbers. In practice, |ψ〉 is expressed as a function of |r〉. The

wavefunction is customarily defined as the following complex scalar function

ψ(r) = 〈r|ψ〉 (1.2.18)

so that

|ψ〉 =

∫
ψ(r) |r〉 dr (1.2.19)

The inner product of two state vectors expressed with respect to the position

eigenbasis can be written as

〈φ|ψ〉 =

∫
〈φ|r〉 〈r|r〉 〈r|ψ〉 dr =

∫
φ∗(r)ψ(r) dr (1.2.20)

Finally, consider the linear operator A acting on the ket |ψ〉. Since A |ψ〉 is a

vector, it can be expanded in the position eigenbasis as Equation 1.2.18, obtaining

Aψ(r) = 〈r|A|ψ〉 (1.2.21)

Thus, the expectation value of A is simply

〈ψ|A|ψ〉 =

∫
ψ∗(r)Aψ(r)dr (1.2.22)
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1.2.3 Assembled systems, entanglement and superposition

So far, only single-component systems have been discussed. It is clear that a

system made of a single component cannot be actually useful to perform some

quantum computation. It would be somehow similar to have a single bit to per-

form classic electronic computation. So, it is mandatory to deal with multipartite

systems, that is, with systems made of many components. Suppose, for instance,

a system is made of two elements: the first one lives in the Hilbert space Hn
1 which

has an orthonormal basis {e1,i} and the second one lives in the Hilbert space Hm
2

which has an orthonormal basis {e2,i}. The whole system is an inhabitant of

H = H1 ⊗H2 ∈ Cnm (1.2.23)

and is described by the wavefunction

|ψ〉 =
∑
i,j

ci,j |e1,i〉 ⊗ |e2,j〉 =
∑
i,j

ci,j |e1,i,e2,j〉 (1.2.24)

The result is trivially extended to systems composed of N elements.

For the sake of clearness, consider two independent particles, each one being

allowed only two points:

|ψa〉 = a0 |x0〉+ a1 |x1〉 ∈ H2
1 (1.2.25)

|ψb〉 = b0 |x0〉+ b1 |x1〉 ∈ H2
2 (1.2.26)

Now, suppose to “merge” the two quantum systems in a single quantum system.

The latter belongs to

H = H1 ⊗H2 ∈ C4 (1.2.27)

One would be tempted to say that each generic state vector of the assembled

system can be rewritten as as the tensor product of two state vectors, one coming

from the first quantum system, the other from the second. That is

|ψ〉 = |ψa〉 ⊗ |ψb〉

However, this is not true. For example, let

|ψ〉 = |x0〉 ⊗ |y0〉+ |x1〉 ⊗ |y1〉 (1.2.28)

this is a legal inhabitant of H = H1 ⊗ H2 but it turns out that it cannot be
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rewritten as the tensor product of two state vectors. As a matter of fact

|ψa〉 ⊗ |ψb〉 = a0b0 |x0y0〉+ a0b1 |x0y1〉+ a1b0 |x1y0〉+ a1b1 |x1y1〉 (1.2.29)

In order to satisfy Equation 1.2.28, one would have to solve{
a0b0 = a1b1 = 1

a0b1 = a1b0 = 0
(1.2.30)

which, clearly, does not actually admit any solution. Consequently, there are states

which cannot be rewritten as the tensor product of states belonging to subsystems.

These states are known as entangled states.

Definition 1.2.2. A state is said to be entangled if it cannot be written as the

tensor product of two states. Otherwise, it is said to be separable.

Entangled states cannot be classically described. They represent a peculiar

characteristic of quantum systems and their exploitation is a powerful resource for

quantum computation. Nonetheless, it is definitely not trivial to classify entangled

state. Some hints are reported in [5], even if nowadays, no method is known when

the system is composed of three or more components.

Going a little bit deeper in the entanglement business may help the under-

standing of the topics which are presented in next chapters. It is clear the the

dimension of the set of separable states H1 · · ·HN is

N∑
i=1

dimHi (1.2.31)

while

dimH = dim (H1 ⊗H2 ⊗ · · · ⊗HN) =
N∏
i=1

dimHi (1.2.32)

In general
N∏
i=1

dimHi �
N∑
i=1

dimHi (1.2.33)

which means that most states in a multipartite system are entangled. As hinted

in Equation 1.2.24, the most general state vector of H is expressed as a linear

combination of some complex coefficients and the tensor product of the basis

vectors of H1 · · ·HN. In other words, the basis vectors of H are given by the tensor

product of the basis vectors of the subsystem. The point is that |ψ〉 ∈ H can be any
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arbitrary superposition of the basis vectors: many of these superpositions cannot

be expressed taking the tensor product of the basis vectors of the subsystems.

This means that an entangled state is a legitimate state of the system as a whole,

but it is impossible to attribute to the subsystems a definite pure state.

The measurement of entangled states deserves some extra words. Consider

again the case described by Equation 1.2.28 and suppose to perform a measure-

ment on the first particle. Suppose also that the particle is found, immediately

after the measurement, to live in |x0〉. Then, necessarily, the second particle must

collapse to state |y0〉. In other words, a measurement performed on a particle

causes the wavefunction of the whole system to collapse so that also the second

particle collapses to an unequivocally defined state. No matter the actual distance

in space between the two particles.
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1.2.4 Mixed states and density matrix formalism

In many cases of interest, it happens that a quantum system is not just in state

|ψ〉, but is in state |ψi〉 with probability pi, which are properly normalized. It is of

fundamental importance to avoid confusion between the probabilistic behaviour

of |ψ〉 (the outcome of a measurement is a certain state with a probability which

is the square of the related complex amplitude) with the stochastic nature of the

system which has a certain (semi-classical) probability to be in a given state.

The prefix semi is added since, according to [14], the values pi cannot truly be

understood as classical probabilities. Indeed, in classical probability, one can

assign probabilities only to mutually exclusive events. On the other hand, the

states |ψi〉 are distinguishable but not necessarily exclusive. As a matter of fact,

there exist states which are linear superpositions of other states. Thus, the |ψi〉
are, in general, not an orthogonal basis of Hn.

A well-known example is a collection of independent spins-1
2

(an ensemble). At

any instant of time, different spins have different “orientations” (i.e, in a different

state) and the total nuclear magnetization is the sum of the contributions from

the individual spins. In these cases, the state is said to be mixed, in contrast with

the pure states. When dealing with mixed states, the most suitable approach is

to describe the system not by means of a simple state vector |ψ〉 as for pure states,

but by means of a so-called density operator. How is this operator defined?

As known from property 1.2.1, the expectation value of an operator A for the

fraction pi of the ensemble which is in state |ψi〉 is

〈A〉 = 〈ψi|A|ψi〉 (1.2.34)

Since |ψi〉 appears with probability pi, the expectation value of A is naturally

written as

〈A〉 =
∑
i

pi 〈ψi|A|ψi〉 (1.2.35)

The state vector can be expressed according to an orthonormal basis as

|ψ〉 =
∑
i

ci |ei〉 (1.2.36)

which allows to rewrite the previous expression as

〈A〉 =
∑
n,m

cnc∗m 〈em|A|en〉 (1.2.37)
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There are three remarks which are in order. First, the kets |em〉 and |en〉 are not

necessarily eigenvectors of A. Second, the probability pi is “embedded” in the

average value cnc∗m. Third, it is interesting to highlight that, for a given basis set,

the terms 〈em|A|en〉 are constants and, so, the expected value of A depends only

on the products cnc
∗
m. The latter can be conveniently arranged to form a matrix.

Definition 1.2.3. The density matrix is the matrix representation of the density

operator ρ, such that

ρnm = cnc∗m (1.2.38)

The general expression for the density matrix is

ρ =
∑
i

pi |ψi〉〈ψi| (1.2.39)

The physical state is completely described by the associated density matrix.

1.2.4.1 Properties of the density operator

Theorem 1.2.2. Let a be an observable and A the associated Hermitian operator.

Assume the state of the system is described by the density matrix ρ. Then the

expectation value7 of A is

〈A〉 = tr(ρA) (1.2.40)

Proof. Let Ω be the matrix associated with an operator with respect to a basis

|ei〉. The trace ofΩ is, by definition, the sum of the elements of the main diagonal,

that is

tr(Ω) =
∑
i

〈ei|Ω|ei〉

Since the expectation value of A is

〈A〉 =
∑
i

pi 〈ψi|A|ψi〉

exploiting the completeness relation, the previous equation can be rewritten as∑
i

pi 〈ψi|A|ψi〉 =
∑
i

pi 〈ψi|AI|ψi〉 =
∑
i,k

pi 〈ψi|A |ek〉〈ek| |ψi〉

7Strictly speaking, the right hand side is not the expectation value, but the statistical average
contribution of each ensemble member to the final macroscopic result.
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Since 〈ek|ψi〉 is just a number∑
i,k

pi 〈ψi|A |ek〉〈ek| |ψi〉 =
∑
i,k

pi 〈ek|ψi〉 〈ψi|A|ek〉

exploiting the definition of trace and the linearity

〈A〉 =
∑
i

pi tr(|ψi〉〈ψi|A) = tr

(∑
i

pi |ψi〉〈ψi|A

)
= tr(ρA) (1.2.41)

It is clear that the elements on the main diagonal are the probabilities to find

the system in a basis state. Since the sum of probabilities must be unitary, one can

imagine that the density matrix has unit trace. As a matter of fact, the following

property holds true.

Property 1.2.4. The trace of a density matrix is unitary.

tr(ρ) = 1 (1.2.42)

Proof.

tr(ρ) = tr

(∑
i

pi |ψi〉〈ψi|

)
=
∑
i,k

pi 〈ek|ψi〉 〈ψi|ek〉

=
∑
i

pi 〈ψi|

(∑
k

|ek〉〈ek|

)
|ψi〉 =

∑
i

pi 〈ψi|ψi〉

Property 1.2.5. The density matrix is a Hermitian operator.

ρ = ρ† (1.2.43)

Proof. The proof follows immediately from the fact that pi is real and |ψi〉〈ψi| =

|ψi〉〈ψi|†.

Property 1.2.6. The density matrix is positive semi-definite. Consequently,

all its eigenvalues are non-negative.

Proof. For a generic vector |ζ〉

〈ζ|ρ|ζ〉 =
∑
i

pi 〈ζ|ψi〉 〈ψi|ζ〉 =
∑
i

pi |〈ψi|ζ〉|2 ≥ 0
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Finally, in case of a pure state

ρ = |ψ〉〈ψ| (1.2.44)

Theorem 1.2.3. A state ρ is pure if and only if ρ2 = ρ.

Proof. According to property 1.2.5, ρ is Hermitian and so its eigenvectors are

orthogonal (Cf. theorem 1.1.3).

If ρ2 = ρ then ρ is a pure state Assume ρ admits the following spectral

decomposition

ρ =
∑
i

λi |λi〉〈λi|

since

ρ2 = ρ =⇒
∑
i

λi |λi〉〈λi| =
∑
i

λ2
i |λi〉〈λi|

it must be true that λi = λ2
i , that is

λi =

{
0

1

Since, according to property 1.2.4

tr(ρ) =
∑
i

λi = 1

it follows that λχ = 1 for some χ and λi = 0 for i 6= χ. This implies that ρ is a

pure state |λχ〉〈λχ|.

If ρ is a pure state then ρ2 = ρ Let

ρ = |ψ〉〈ψ|

then

ρ2 = |ψ〉〈ψ| |ψ〉〈ψ| = |ψ〉 〈ψ|ψ〉 〈ψ| = ρ
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1.2.4.2 Time evolution

The following theorem describes the time evolution of a system represented by a

density matrix.

Theorem 1.2.4. The temporal evolution of a system described by a density matrix

ρ is given by the Liouville - von Neumann equation

i~
dρ

dt
= [H,ρ] (1.2.45)

Proof. Each |ψi〉 follows the Schrödinger equation

i~
d |ψi〉

dt
= H |ψi〉

the Hermitian conjugate is

−i~d 〈ψi|
dt

= 〈ψi|H

consequently, the time derivative of the density matrix is simply

i~
dρ

dt
= i~

∑
i

pi
d

dt
(|ψi〉〈ψi|) = i~

∑
i

pi

(
d |ψi〉

dt
〈ψi|+ |ψi〉

d 〈ψi|
dt

)
= i~

∑
i

pi (H |ψi〉〈ψi| − |ψi〉〈ψi|H) = Hρ− ρH = [H,ρ]

As it is routinely done for pure states, also the time evolution of mixed states

described by density matrices is represented by means of the time evolution oper-

ator

ρ(t) = U

(∑
i

pi |ψi〉〈ψi|

)
U † = UρU † (1.2.46)

where U is defined in Equation 1.2.14.
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1.2.4.3 Density operator of a subsystem

Statistical quantum mechanics often deals with subsystems, considering exclu-

sively one of the parts which realize the composite system. In practice, starting

from a composite system H = Ha⊗Hb, it is necessary to eliminate the subsystem

b in order to focus on a, which is the subsystem of interest.

The first step is the introduction of the partial trace.

Definition 1.2.4. The partial trace of operator A over Hb is an operator acting

only on Ha defined as

Aa = trb(A) =
∑
k

(I⊗ 〈k|)A (I⊗ |k〉) (1.2.47)

The partial trace, as the standard trace, does not depend on the basis.

The partial trace can be used to somehow forget about the second subsystem

and retrieve the density matrix of the first subsystem from that of the composite

system.

Property 1.2.7. The density operator describing the subsystem belonging to Ha

is obtained from the density operator of the composite system H = Ha ⊗ Hb,

tracing out the subsystem Hb.

ρa = trb(ρ) =
∑
k

(I⊗ 〈k|)ρ (I⊗ |k〉) (1.2.48)

Example 1.2.5. Let the basis vectors of a two dimensional space be

|0〉 =

(
1

0

)
|1〉 =

(
0

1

)

ans suppose that the wavefunction of the composite system is

|ψ〉 =
|10〉+ |00〉√

2
=
|1〉+ |0〉√

2
⊗ |0〉
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Hence, the system is not entangled. The overall density matrix is

ρ = |ψ〉〈ψ| = 1

2
(|10〉〈10|+ |10〉〈00|+ |00〉〈10|+ |00〉〈00|) =

1

2


1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0


The density matrix relative to the first subsystem is computed according to Equa-

tion 1.2.48:

ρa = (I⊗ 〈0|)ρ(I⊗ |0〉) + (I⊗ 〈1|)ρ(I⊗ |1〉)

The first term on the right hand side becomes

(I⊗ 〈0|)ρ(I⊗ |0〉) =
1

2
(I |1〉〈1| I)⊗ (〈0|0〉 〈0|0〉) +

1

2
(I |1〉〈0| I)⊗ (〈0|0〉 〈0|0〉)

+
1

2
(I |0〉〈1| I)⊗ (〈0|0〉 〈0|0〉) +

1

2
(I |0〉〈0| I)⊗ (〈0|0〉 〈0|0〉)

=
1

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)

The second term on the right hand side becomes

(I⊗ 〈1|)ρ(I⊗ |1〉) =
1

2
(I |1〉〈1| I)⊗ (〈1|0〉 〈0|1〉) +

1

2
(I |1〉〈0| I)⊗ (〈1|0〉 〈0|1〉)

+
1

2
(I |0〉〈1| I)⊗ (〈1|0〉 〈0|1〉) +

1

2
(I |0〉〈0| I)⊗ (〈1|0〉 〈0|1〉)

=0 · (|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)

The density matrix is therefore

ρa =
1

2

(
1 1

1 1

)

Finally, it is trivial to get the density matrix of subsystem b

ρb =

(
1 0

0 0

)

and to prove that

ρ = ρa ⊗ ρb

4
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Example 1.2.6. Suppose, now, that the composite system is entangled, let, for

instance, the wavefunction be

|ψ〉 =
|01〉 − |10〉√

2

The corresponding density matrix is

ρ = |ψ〉〈ψ| = 1

2
(|01〉〈01| − |01〉〈10| − |10〉〈01|+ |10〉〈10|) =

1

2


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0


The density matrix relative to the first subsystem is computed according to Equa-

tion 1.2.48:

ρa = (I⊗ 〈0|)ρ(I⊗ |0〉) + (I⊗ 〈1|)ρ(I⊗ |1〉)

The first term on the right hand side becomes

(I⊗ 〈0|)ρ(I⊗ |0〉) =
1

2
(I |0〉〈0| I)⊗ (〈0|1〉 〈1|0〉) +

1

2
(I |0〉〈1| I)⊗ (〈0|1〉 〈0|0〉)

+
1

2
(I |1〉〈0| I)⊗ (〈0|0〉 〈1|0〉) +

1

2
(I |1〉〈1| I)⊗ (〈0|0〉 〈0|0〉)

=
1

2
|1〉〈1|

The second term on the right hand side becomes

(I⊗ 〈1|)ρ(I⊗ |1〉) =
1

2
(I |0〉〈0| I)⊗ (〈1|1〉 〈1|1〉) +

1

2
(I |0〉〈1| I)⊗ (〈1|1〉 〈0|1〉)

+
1

2
(I |1〉〈0| I)⊗ (〈1|0〉 〈1|1〉) +

1

2
(I |1〉〈1| I)⊗ (〈1|0〉 〈0|1〉)

=
1

2
|0〉〈0|

The density matrix is therefore

ρa =
1

2

(
1 0

0 1

)
=

1

2
I

and represents the so-called maximally mixed state: all the information about

the subsystem a is clearly lost. This is a general result, because the partial trace

acting on pure entangled states produces maximally mixed states.
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Finally, it is trivial to get the density matrix of subsystem b

ρb =
1

2

(
1 0

0 1

)
=

1

2
I

and to prove that

ρ 6= ρa ⊗ ρb

4
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1.2.4.4 Measurements

The measurement operation on a density matrix can be understood in similarity

[14] to the measurement of pure states described in postulate 1.3.

Theorem 1.2.5. Let Mi be the measurement operators defined in 1.2.1. The

probability of measuring ρζ is

p(ρζ) = tr
(
M †

ζMζρ
)

(1.2.49)

and the state, immediately after the measurement, collapses to

ρζ =
M †

ζρMζ

p(ζ)
(1.2.50)

Proof. When dealing with pure states

p(ζ) = 〈ψ|M †
ζMζ |ψ〉

in case of mixed states, the previous equation can be rewritten as

p(ρζ) =
∑
i

pi 〈ψi|M †
ζMζ |ψi〉

exploiting the definition of the trace operator it follows immediately that

p(ρζ) =
∑
i

pi tr
(
M †

ζMζ |ψi〉〈ψi|
)

= tr

(
M †

ζMζ

∑
i

pi |ψi〉〈ψi|

)
= tr

(
M †

ζMζρ
)

Next, a pure state collapses, after measurement, to

|ζ〉 =
Mζ |ψ〉√
p(ζ)

(1.2.51)

in analogy, a mixed state collapses to

∑
i

pi
Mζ |ψi〉√
p(ζ)

〈ψi|M †
ζ√

p(ζ)
=
M †

ζρMζ

p(ζ)

Example 1.2.7. Suppose a projective measurement is carried out so that

Mζ = Pζ = |λζ〉〈λζ |
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The state, immediately after the measurement, changes to

M †
ζρMζ

p(ζ)
=

|ζ〉〈ζ|ρ |ζ〉〈ζ|∑
i pi 〈ψi| |ζ〉〈ζ| |ζ〉〈ζ| |ψi〉

=
|ζ〉〈ζ|

∑
i pi |ψi〉〈ψi| |ζ〉〈ζ|∑
i pi |〈ψi|ζ〉|

2

=
|ζ〉
∑

i pi |〈ψi|ζ〉|
2 〈ζ|∑

i pi |〈ψi|ζ〉|
2 ∼ |ζ〉〈ζ|

It is clear that the measurement forces the mixed state to collapse to a pure state

|ζ〉〈ζ|. 4

1.2.4.5 Spearable and inseparable states

Pure states can be classified in separable and entangled states. A generalization

holds for mixed states.

Definition 1.2.5. A state ρ is

• Uncorrelated if it can be written as

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN (1.2.52)

• Separable if it can be written as

ρ =
∑
i

piρ
i
1 ⊗ ρi2 ⊗ · · · ⊗ ρiN (1.2.53)

where ρij are mixed states of the respective subsystems.

• Inseparable otherwise.

1.2.4.6 Fidelity

It is often interesting to evaluate how close two density matrices are to each other.

For instance, one may be willing to compare the density matrix obtained as a

result of an experiment with the theoretically expected one. For this purpose, it

is customary to define the following figure of merit [15].

Definition 1.2.6. Let ρ1 and ρ2 be two density matrix. The fidelity is defined

as

F (ρ1,ρ2) =

(
tr

(√√
ρ1ρ2

√
ρ1

))2

(1.2.54)
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where the square root of the density matrix is

√
ρ =

∑
i

√
pi |ψi〉〈ψi| (1.2.55)

if

ρ =
∑
i

pi |ψi〉〈ψi| (1.2.56)

is the spectral decomposition of ρ.

The fidelity is always a non negative number equal or smaller than 1. The

equality holds only when the two density matrices are equal.
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Chapter 2

Theory of quantum computing

Quantum computing is the art of using the force of quantum mechanics to perform

computations. It is a field that requires the cooperation of scientists from differ-

ent backgrounds: theoretical and experimental physics, chemistry, mathematics,

electronic engineering, computer science. The first question that arises naturally

when approaching this new world is: why quantum computing?

After many decades devolved to the research and development of technology,

architecture and software, the standard, classical, computation has reached in-

credible results. The always inflating number of applications that are leveraging

high performance integrated systems has increased the pressure and diversified

the requirements on both IC architectures design and on technological evolution.

Nowadays electronic systems are high performance, low-power and low-cost. The

predictions of Moore’s law have been met for several decades but standard CMOS

circuits are expected to be no longer able to satisfy nowadays increasing demand

for systems with even higher performances and lower power consumption. This

commits to looking for new solutions. The research has taken two main paths:

More-Moore and More-Than-Moore.

More-Moore is the micro and nano-electronic approach to evolution: the minia-

turisation as the via to increase transistor density and keep Moore’s Law effec-

tiveness alive, introducing completely new structures, as FD-SOI, Fin-FET and

GAA-FET, while countless smart solutions have been investigated, discovered and

exploited in the history of electronics to improve the performances, using supe-

rior technologies and boosting data flow speed. The beyond-CMOS era which is

beginning in this time partially follows the lines of this tradition: new solutions,

not-CMOS based, are being tested to improve performances, increase the den-

sity and reduce the power consumption of electronic systems. The after-Moore

nano-electronic is moving towards magnetic and molecular solutions.

More-Than-Moore means diversification: the digital integrated circuit is no

longer able to satisfy the needs of nowadays society. Multi-functional diversified

systems are required by the market and the expectations in terms of pervasiveness

and effectiveness of electronics pave the way to the realization of systems which
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are interacting with people and the environment. In this field, the world of MEMS

finds its natural place.

Both paths brought radical innovations. However, quantum computing is not

just an innovation, it is expected to be an actual change of paradigm. Not only it

demands the exploitation of new technologies1, but it also requires a completely

new way of approaching computer science and logic.

The beginning of the quantum computation era dates back the 1980s, when

Charles Bennet and Paul Benioff published their first papers and Richard Feyn-

man was involved about the feasibility of quantum computer. In the same years,

Deutsch proposed the first quantum algorithm, showing the power of quantum

superposition.

In the 1990s, Peter Shor and Lov Grover presented their famous algorithms,

which demonstrated the advantages of quantum computation over the classical

one. In 1998 the first experimental demonstration of a quantum algorithm became

possible thanks to a working two-qubit NMR quantum computer, used to solve

Deutsch’s problem2.

During the first and second decade of the third millennium, new technologies

are introduced: superconducting quantum dots, trapped ions, nuclear magnetic

resonance, molecular magnets and many others. The availability, in recent years,

of experimental quantum processors renewed the interest towards this field.

There are at least two main reasons for which quantum computing is expected

to broaden the computation horizons.

Firstly, rough computational power. While a classical computer is in one state

every moment, the superposition principle of quantum mechanics allows a quan-

tum computer to be in a superposition of states every instant of time. Proper

handling of complex probability amplitudes brings a formidable improvement of

parallel processing. Moreover, entanglement proves to be a compelling resource for

quantum computation. These properties can be exploited, for instance, in search

algorithms and for cryptography.

Secondly, quantum computing speaks the same language Nature does: quan-

tum mechanics. Physical systems may be extremely complex, preventing a classi-

cal computer to perform reliable simulations. The hardware of quantum computers

1A highly recommended reading where the different technologies are presented, the feasibility
of quantum computing is discussed starting from DiVincenzo criteria and, then, the possibilities
provided by nano-magnets are analyzed in great details is [16].

2A short but interesting summary of the early history of quantum computing can be found
in the introduction of [17].
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is represented by quantum systems: molecules, magnets, superconductors. Sim-

ulating a complex quantum system with a quantum computer means to exploit

Nature to simulate itself: quantum computing is spontaneously suitable to handle

the complexity of physical systems. For instance, quantum chemistry is expected

to be one of the most promising application areas of quantum computing.

Nevertheless, quantum computation is not expected, at least in the short time,

to replace classical computation. It will probably provide new computational

power to tackle challenging complex problems in specific fields of applications.

Quantum computing is still at its dawn and, at the time of writing, the so-called

quantum supremacy, that is the ability of a quantum computer to solve a problem

a classical computer cannot solve efficiently, is still under debate. Moreover, the

research for useful quantum algorithms is still ongoing. As far as the hardware

is concerned, the quest for reliable and scalable qubits, characterized by long

decoherence times is not over and it is still not known which of the many hardware

solutions under research will be identified as the reference one.

One of the plausible scenarios is that future quantum processors will be used

for research applications and be remotely available for consumers. When the

classical processor will recognize a task which a quantum processor would solve

more efficiently, it will exploit the latter, connecting to the remote server.

In the first part of this chapter, the general concepts of quantum computing

are introduced, using, as far as possible, a graphical approach. The second part is

devolved to the discussion of Grover’s search algorithm.
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2.1 Introduction to quantum computing

2.1.1 Bits and qubits

A classical bit is a classical unit of information, describing a two-dimensional

system. Instead of representing bits as 0 and 1, as every electronic engineer or

computer scientist is used to do, it is more convenient to adopt a vector notation:

bit 0 is associated with state |0〉 and has a 1 in the zero’s row and a 0 in the one’s

row; conversely, bit 1 is associated with state |1〉 and has a 0 in the zero’s row and

a 1 in the one’s row.

|0〉 =

(
1

0

)
|1〉 =

(
0

1

)
(2.1.1)

A classical bit can be only either 0 or 1. This is no longer true for quantum

systems: the superposition principle states that a quantum system can be found

in a superposition of states.

Definition 2.1.1. A quantum bit is a unit of information describing a two di-

mensional quantum system. It is represented by a vector belonging to H2, whose

basis vectors are classical bits.

|ψ〉 = c0 |0〉+ c1 |1〉 =

(
c0

c1

)
(2.1.2)

where c0 and c1 are complex number with the property that |c0|2 is the probability

that the qubit collapses to |0〉 immediately after the measurement and |c1|2 is the

probability that the qubit collapses to |1〉. Consequently, |c0|2 + |c1|2 = 1.

It has to be remarked that even if a qubit exists in infinitely many superpo-

sitions of |0〉 and |1〉, the quantity of information which can be obtained through

measurement is the same as the one which can be extracted from a classical bit.

As a matter of fact, when a measurement is carried out, according to postulate 1.3,

the qubit is projected to one of the basis vectors and becomes, definitely, either

|0〉 or |1〉.
There is one aspect which deserves an additional remark. It is customary to

say that the outcome of a measurement is “zero” or “one” and that, after the

measurement, the system must be found either in state-zero or state-one. It has

to be clear that zero and one are just labels which are associated with specific
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outcomes, whose actual value depends on the physical system which implements

the qubits. The following example may be of help.

Example 2.1.1. As it will be clear reading the coming chapters, a possibility

to implement qubits is represented by spin states of spin-1
2

nuclei. Since the

Hermitian operators associated with the three components of the spin do not

commute, it is possible to measure only one component. Routinely, the component

along the so-called quantization axis is measured. This is conventionally associated

with the z-component of the spin. Assume the wavefunction describing the spin

of the nucleus is

|ψ〉 = c0 |↓〉+ c1 |↑〉

where |↓〉 and |↑〉 represent the up and down spin states. The Hermitian operator

associated with the z-component of the spin is

σz =
~
2

(
1 0

0 −1

)

The eigenvalues are +~
2

and −~
2
. The associated eigenvectors are

+
~
2
−→ |↑〉 =

~
2

(
1

0

)

− ~
2
−→ |↓〉 =

~
2

(
0

1

)

Note the following aspects:

• The wavefunction is written with respect to the eigenbasis of σz.

• The possible measurement outcomes are ±~
2

which are the eigenvalues of σz.

• The eigenvalue +~
2

can be arbitrarily3 associated with logic 0 and the cor-

responding eigenstate |↑〉 to |0〉. The probability to obtain this outcome is

|c0|2.

• The eigenvalue −~
2

can be arbitrarily associated with logic 1 and the corre-

sponding eigenstate |↓〉 to |1〉. The corresponding probability is |c1|2.

4

3The actual sign convention for the NMR will be discussed in the following.
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2.1.2 Multi-qubit systems

As outlined in §1.2.3, a quantum computer with a single qubit would be useless.

A multi-qubit system is usually referred to as a quantum register.

Consider a classical register and, for the sake of definiteness, assume it has a

parallelism of 1 B. It is clear that the state of the register is unequivocally defined

specifying the state of each bit. For instance

R = 01001101 (2.1.3)

Adopting the vector formalism introduced in the previous section, R can be rewrit-

ten as

R =

(
1

0

)
⊗

(
0

1

)
⊗

(
1

0

)
⊗

(
1

0

)
⊗

(
0

1

)
⊗

(
0

1

)
⊗

(
1

0

)
⊗

(
0

1

)
(2.1.4)

which is a 28 = 256 row vector, numbered from 00000000 to 11111111 with all 0

entries but a single 1 in correspondence of 01001101. That is all the story for a

classical register: every possible state of R is the tensor product of the states of

the single bits. As a consequence, it is sufficient to indicate the state of each bit,

that is, to write eight real numbers (0 or 1).

Now, consider eight qubits. The state of each qubit is

qi = ai |0〉+ bi |1〉 (2.1.5)

If these eight qubits realize a quantum register of one qubyte, the state of the

register can be written as

|Q〉 =

(
a0

b0

)
⊗

(
a1

b1

)
⊗

(
a2

b2

)
⊗

(
a3

b3

)
⊗

(
a4

b4

)
⊗

(
a5

b5

)
⊗

(
a6

b6

)
⊗

(
a7

b7

)
(2.1.6)

In this case, Q is written as the tensor product of n = 8 qubits, that is, specifying

2n = 16 complex numbers. However, from the basic properties of the tensor

product, it is well known that the space generated by the tensor product of n

two-dimensional complex vectors is not 2n but it is 2n. Wherefore, a generic

state of Q must be specified determining 28 = 256 complex numbers. What has

happened? The answer is entanglement and superposition. The quantum

register is forced by nobody to live only in tensor product states, but it is free to

live in every superposition of these states. These superpositions are not necessarily
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decomposable into a tensor product form. In other words, they may be entangled

states.

The most comfortable way to figure out this superposition is probably the

following one. Consider that n qubits generate a 2n complex vector space, whose

basis vectors are all possible strings of n qubits. The n-qubit quantum register

can live in every superposition of these basis vectors. For instance, coming back

the previous eight qubit example, the basis vectors are:

|e0〉 = |00000000〉

|e1〉 = |00000001〉

|e2〉 = |00000010〉

· · ·

|e255〉 = |11111111〉

(2.1.7)

and a generic state of Q can be written as

|Q〉 =
2n−1∑
i=0

ci |ei〉 (2.1.8)

In conclusion, all tensor products of n qubits are proper states of an n qubit

register, but not all states of an n qubit register can be written as the tensor

product of n qubits.
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2.1.3 Matrix formalism for classical logic gates

As classical bits can be expressed according to a vector formalism, so classical logic

gates can be represented by matrices. In particular, a logic gate which receives n

input bits and provides m output bits is a 2m× 2n matrix.

2.1.3.1 NOT gate

The truth table is

a ¬a

0 1

1 0

when the input is |0〉 the output must be |1〉 and viceversa. This can be written

as

NOT = |1〉〈0|+ |0〉〈1| =

(
0 1

1 0

)
(2.1.9)

This way of writing matrices is quite useful and deserves some attention. One can

read it as:

• When |0〉 enters, |1〉 exits

NOT |0〉 = |1〉〈0| |0〉+ |0〉〈1| |0〉 = |1〉

• When |1〉 enters, |0〉 exits

NOT |1〉 = |1〉〈0| |1〉+ |0〉〈1| |1〉 = |0〉

2.1.3.2 AND gate

The truth table is

a b a ∧ b

0 0 0

0 1 0

1 0 0

1 1 1

The matrix is

AND = |0〉〈00|+ |0〉〈01|+ |0〉〈10|+ |1〉〈11| =

(
1 1 1 0

0 0 0 1

)
(2.1.10)
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2.1.3.3 NAND gate

The truth table is

a b ¬(a ∧ b)

0 0 1

0 1 1

1 0 1

1 1 0

The matrix is

NAND = |1〉〈00|+ |1〉〈01|+ |1〉〈10|+ |0〉〈11| =

(
0 0 0 1

1 1 1 0

)
(2.1.11)

It is clear that a NAND gate is equivalent to an AND gate followed by a NOT

gate. As a matter of fact, the same matrix can be found as

NAND = NOT [AND] =

(
0 1

1 0

)(
1 1 1 0

0 0 0 1

)
=

(
0 0 0 1

1 1 1 0

)
(2.1.12)
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2.1.4 Parallel and sequential operations

In the previous section, the NAND gate is obtained as the cascade of an AND gate

and a NOT gate, giving a first hint about how to deal with sequential operations.

2.1.4.1 Sequential operations

If the algorithm requires to apply operator A and, then, operator B to state |ψ〉,
one has to compute the outer product of the two matrices and apply the result to

the vector describing the system state according to the following order:

BA

Figure 2.1: Sequential operations: B is applied after A. Adapted from [18].

2.1.4.2 Parallel operations

If the algorithm requires to apply oper-

ator A and operator B in parallel, one

has to compute the tensor product of

the two matrices:

A⊗B Figure 2.2: Parallel operations: A and
B are applied in parallel. Adapted
from [18].

2.1.4.3 Mixed operations

Assume that the first step consists of operator A receiving n input bits and pro-

viding m output bits. During the second step, operator B acts on p < m bits and

provides q output bits; the other m−p bits are unaffected during the second step.

The matrix representation is

(B ⊗ Im−p)A (2.1.13)
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where Im−p is the 2m−p × 2m−p identity matrix. The corresponding circuit is

reported in Figure 2.3.

Figure 2.3: Mixed operations. Adapted from [18].
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2.1.5 Bloch sphere

A beautiful graphical tool to visualize one-qubit states and operations is the Bloch

sphere.

2.1.5.1 Pure states

Property 2.1.1. Given a generic qubit in the form

|ψ〉 = c0 |0〉+ c1 |1〉 (2.1.14)

it can be rewritten as

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 =

(
cos
(
θ
2

)
eiφ sin

(
θ
2

)) (2.1.15)

where the longitude 0 ≤ φ ≤ 2π and the latitude 0 ≤ θ ≤ π.

Proof. Since c0 and c1 are complex numbers, Equation 2.1.14 can be written in

polar form as

|ψ〉 = r0e
iφ0 |0〉+ r1e

iφ1 |1〉

A quantum state is defined up to a phase, consequently, without loss of generality,

it is customary to choose the global phase such that c0 is real, that is |ψ〉 is

multiplied by e−iφ0

e−iφ0 |ψ〉 = r0 |0〉+ r1e
i(φ1−φ0) |1〉

Since

|c0|2 + |c1|2 = 1 =⇒ r2
0 + r2

1 = 1

renaming

r0 = cos

(
θ

2

)
r1 = sin

(
θ

2

)
φ = φ1 − φ0

one gets

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

where the factor 1/2 for θ is chosen, in analogy with the definition of spherical

coordinates, so that each qubit is mapped once on the sphere.
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The Cartesian coordinates can be retrieved as

x = cosφ sin θ

y = sinφ sin θ

z = cos θ

(2.1.16)

Each pure state is represented by a point on the surface on the sphere, spanned

by the unit Bloch vector

b̂(θ,φ) =
(

cosφ sin θ sinφ sin θ cos θ
)′

(2.1.17)

The Bloch sphere for a generic state vector |ψ〉 is reported in Figure 2.4. The

Figure 2.4: Bloch sphere.

North pole is the state |0〉, while the South pole is the state |1〉: they represent

the classical bit 0 and 1. As one can see, the state |ψ〉 is a linear combination of

both states: it is not |0〉, it is not |1〉, it is not |0〉 and |1〉 simultaneously, it is not

|0〉 or |1〉. It is a superposition of |0〉 and |1〉, whose nature is described, in the

Bloch sphere formalism, by means of the longitude φ and the latitude θ. When

the qubit is measured according to the standard basis, that is, the eigenbasis of

σz, it collapses either to the North pole or to the South pole, i.e., to a classical

bit. The probability of which pole the state will collapse to depends solely on the

latitude. Therefore, the probability is not affected by a change of phase of the

qubit, i.e., by a rotation of the latter about ẑ.
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2.1.5.2 Mixed states

As extensively detailed in §1.2.4, mixed states are described according to the

density matrix formalism. The following property is useful to understand how

mixed states are represented in the Bloch sphere.

Property 2.1.2. Every density matrix ρ ∈ H2×2 can be written as

ρ =
1

2
(I + nxσx + nyσy + nzσz) =

1

2

(
1 + nz nx − iny
nx + iny 1− nz

)
(2.1.18)

The generalized Bloch vector

n =
(
nx ny nz

)′
(2.1.19)

spans all points of the Bloch ball.

Proof. The density matrix associated with a pure state can be rewritten as

|ψ〉〈ψ| =

(
cos
(
θ
2

)
eiφ sin

(
θ
2

))(cos
(
θ
2

)
e−iφ sin

(
θ
2

))
=

(
cos2

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
e−iφ

sin
(
θ
2

)
cos
(
θ
2

)
e+iφ sin2

(
θ
2

) )
=

1

2
(I + cosφ sin θσx + sinφ sin θσy + cos θσz)

=
1

2
(I + bxσx + byσy + bzσz)

where b̂ is the Bloch vector of Equation 2.1.17.

A mixed state is

ρ =
∑
i

pi |ψi〉〈ψi| =
∑
i

piρi

Since each contributing pure state density matrix ρi can be represented by a unit

Bloch vector b̂i, also the overall mixed state density matrix can be represented by

a vector

n =
∑
i

pib̂i

It si obvious that |n| ≤ 1 since |b̂i| = 1,∀i.

Once the density matrix is assigned, the components of the generalized Bloch
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vector are immediately computed from Equation 2.1.18 as

nx = 2 Re{ρ01}

ny = 2 Im{ρ10}

nz = ρ00 − ρ11

(2.1.20)

An example is reported in Figure 2.5: it is interesting to see that the generalized

Bloch vector does not point to the surface of the unit Bloch sphere (in pale gray

in the figure), since it has a magnitude smaller than one.

Figure 2.5: Bloch ball for a mixed state.
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2.1.6 Quantum gates

The whole world of classical digital electronics is founded on the application of

logic gates to classical bits: complex processors are built properly combining logic

gates. In analogy with this world, when a simple operator is applied on a qubit

to change the state of the latter, in the quantum computing jargon one would say

that a quantum gate (qugate) has been applied to the qubit. Elaborated quantum

circuits are obtained composing quantum gates. The action of a quantum gate U

on a qubit |ψin〉 can be expressed as

|ψout〉 = U |ψin〉 (2.1.21)

In a classical computer, the information travels around the circuit, moving from

the processor to the memory back and forth and reaching the I/O devices. On the

other hand, in a quantum processor, the quantum bits which carry the information

are stored in a quantum register. Properly designed external stimuli are applied

to the latter to produce the desired gate operation. Hence, the information does

not travel around but sits in a specific register and successive gates are applied

one after the other to the register.

Every quantum gate must be characterized by the following requirements.

Definition 2.1.2. A quantum gate is a linear unitary reversible operator.

Unitarity The unitary property of quantum mechanics requires that the norm

of the state vector is preserved during every evolution. After all, it is reasonable

to require that no probability leak can occur. As stated in property 1.2.3, the

time evolution of a quantum state is described by the unitary operator

U = exp

(
−Ht

~

)
Since a quantum gate acting on the state vector of a closed quantum system

prompts an evolution of the latter, it must be a unitary time operatorU , where the

Hamiltonian depends on the actual physical processes by which it is implemented.

Reversibility Every unitary gate satisfies

U †U = I (2.1.22)
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which ensures that it can always be undone. As a matter of fact, a reversible

logic gate has always a unique input associated with a unique output. Therefore,

knowing the output, it is always possible to retrieve the input and vice versa. A

simple example of a reversible gate in the classical NOT gate, while, for instance,

the AND gate is not reversible.

Linearity The linearity ensures that the action of a quantum gate on a generic

state vector is unmistakably determined once the action on the basis vectors is

stated. This means, for example, that a one-qubit gate is fully defined describ-

ing its action on |0〉 and |1〉 (according to the standard convention of using the

eigenbasis of σz).

The fundamental quantum gates are presented in the following, distinguishing

between one-qubit and multi-qubit qugates.

2.1.6.1 One-qubit quantum gates

The I gate This gate maps state |0〉 to state |0〉 and |1〉 to state |1〉:

I :

{
|0〉 −→ |0〉

|1〉 −→ |1〉
(2.1.23)

Consequently

I = |0〉〈0|+ |1〉〈1| =

(
1 0

0 1

)
(2.1.24)

As it is possible to appreciate in Figure 2.6, the I gate leaves |ψ1〉 = c0 |0〉+ c1 |1〉

Figure 2.6: Identity gate.
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unaffected

|ψ2〉 = I |ψ1〉 = |0〉 〈0|ψ1〉+ |1〉 〈1|ψ1〉 = c0 |0〉+ c1 |1〉 = |ψ1〉 (2.1.25)

The X gate This gate maps state |0〉 to state |1〉 and |1〉 to state |0〉:

X :

{
|0〉 −→ |1〉

|1〉 −→ |0〉
(2.1.26)

Consequently

X = |1〉〈0|+ |0〉〈1| =

(
0 1

1 0

)
= σx (2.1.27)

As it is possible to appreciate in Figure 2.7, the X gate introduces a rotation of

π about x̂ and implements the logic NOT operation4

|ψ2〉 = X |ψ1〉 = |1〉 〈0|ψ1〉+ |0〉 〈1|ψ1〉 = c0 |1〉+ c1 |0〉 (2.1.28)

Figure 2.7: The X gate.

The Y gate This gate maps state |0〉 to state i |1〉 and |1〉 to state −i |0〉:

Y :

{
|0〉 −→ i |1〉

|1〉 −→ −i |0〉
(2.1.29)

4Some authors, as [19], state that the X gate is not an actual NOT gate since it does not
map every qubit to the antipodes of the Bloch sphere. In any case, the important thing is to
understand the operation performed by this gate, then one can call it as they prefer.
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Consequently

Y = i |1〉〈0| − i |0〉〈1| =

(
0 −i
i 0

)
= σy (2.1.30)

As it is possible to appreciate in Figure 2.8, the Y gate introduces a rotation of

π about ŷ

|ψ2〉 = Y |ψ1〉 = i |1〉 〈0|ψ1〉 − i |0〉 〈1|ψ1〉 = i (c0 |1〉 − c1 |0〉) (2.1.31)

Figure 2.8: The Y gate.

The Z gate This gate maps state |0〉 to state |0〉 and |1〉 to state − |1〉:

Z :

{
|0〉 −→ |0〉

|1〉 −→ − |1〉
(2.1.32)

Consequently

Z = |0〉〈0| − |1〉〈1| =

(
1 0

0 −1

)
= σz (2.1.33)

As it is possible to appreciate in Figure 2.9, the Z gate introduces a rotation of π

about ẑ

|ψ2〉 = Z |ψ1〉 = |0〉 〈0|ψ1〉 − |1〉 〈1|ψ1〉 = c0 |0〉 − c1 |1〉 (2.1.34)
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Figure 2.9: The Z gate.

The T gate This gate maps state |0〉 to state |0〉 and |1〉 to state ei
π
4 |1〉:

T :

{
|0〉 −→ |0〉

|1〉 −→ ei
π
4 |1〉

(2.1.35)

Consequently

T = |0〉〈0|+ ei
π
4 |1〉〈1| =

(
1 0

0 ei
π
4

)
(2.1.36)

As it is possible to appreciate in Figure 2.10, the T gate introduces a rotation of
π
4

about ẑ

|ψ2〉 = T |ψ1〉 = |0〉 〈0|ψ1〉+ ei
π
4 |1〉 〈1|ψ1〉 = c0 |0〉+ c1e

iπ
4 |1〉 (2.1.37)

Figure 2.10: The T gate.
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The S gate This gate maps state |0〉 to state |0〉 and |1〉 to state ei
π
2 |1〉:

S :

{
|0〉 −→ |0〉

|1〉 −→ ei
π
2 |1〉

(2.1.38)

Consequently

S = |0〉〈0|+ ei
π
2 |1〉〈1| =

(
1 0

0 ei
π
2

)
= T 2 (2.1.39)

As it is possible to appreciate in Figure 2.11, the S gate introduces a rotation of
π
2

about ẑ

|ψ2〉 = S |ψ1〉 = |0〉 〈0|ψ1〉+ ei
π
2 |1〉 〈1|ψ1〉 = c0 |0〉+ i |1〉 (2.1.40)

Figure 2.11: The S gate.

The H gate The Hadamard transformation is a fundamental unitary operation

which maps state |0〉 to state 1√
2

(|0〉+ |1〉) and |1〉 to state 1√
2

(|0〉 − |1〉):

S :

|0〉 −→
1√
2

(|0〉+ |1〉)

|1〉 −→ 1√
2

(|0〉 − |1〉)
(2.1.41)

Consequently

H =
|0〉+ |1〉√

2
〈0|+ |0〉 − |1〉√

2
〈1| = 1√

2

(
1 1

1 −1

)
(2.1.42)
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As it is possible to appreciate in Figure 2.12, the H gate sends |0〉 (and obviously

|1〉) to a superposition state. As a matter of fact, if H is applied to a generic state

|ψ2〉 = H |ψ1〉 =
|0〉+ |1〉√

2
〈0|ψ1〉+

|0〉 − |1〉√
2
〈1|ψ1〉 =

c0 + c1√
2
|0〉+

c0 − c1√
2
|1〉

(2.1.43)

In the specific case of |0〉

|ψ2〉 = H |0〉 =
1√
2

(|0〉+ |1〉) (2.1.44)

The Hadamard transformation is routinely employed in quantum algorithms to

Figure 2.12: The H gate.

send an initial fiduciary state |00 · · · 0〉 to a superposition of all basis states. Let

H1 ⊗H2 ⊗ · · · ⊗Hn = H⊗n (2.1.45)

Applying H⊗n to the initial fiduciary state

H⊗n |00 · · · 0〉 =
1√
2n

2n−1∑
x=0

|x〉 (2.1.46)

one obtains a superposition of all basis states, as expected.

Example 2.1.2. Consider a three-qubit system and suppose it is initialized to
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the fiduciary state |ψ1〉 = |000〉. Next, H⊗3 is applied to the initial state.

|0〉 H
|0〉+|1〉√

2

|0〉 H
|0〉+|1〉√

2

|0〉 H
|0〉+|1〉√

2

|ψ1〉 |ψ2〉

The output state is the tensor product of the three output qubits

|ψ2〉 = H⊗3 |000〉 =

(
|0〉+ |1〉√

2

)
⊗
(
|0〉+ |1〉√

2

)
⊗
(
|0〉+ |1〉√

2

)
=
|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉√

23

=
1√
23

7∑
x=0

|x〉

Therefore, it is the superposition of all possible eigenstates. As it is clear from this

example, these eigenstates represent all the possible bit strings one can write using

n bits. The use of the Hadamard transformation, is one of the most important

tools of quantum computing.

Each basis vector has a probability

pi =

(
1√
8

)2

=
1

8

to be the outcome when a projective measurement is performed. 4

Generic one-bit gates As reported in [20], the most general form of a one

qubit gate is

U(θ,φ,λ) =

(
cos
(
θ
2

)
−eiλ sin

(
θ
2

)
eiφ sin

(
θ
2

)
eiλ+iφ cos

(
θ
2

)) (2.1.47)

Other useful qugates are the ones which allow to perform arbitrary rotations about

a specific axis:
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• A rotation of α about x̂:

Rx(α) = exp
(
−iα

2
σx

)
=

(
cos
(
α
2

)
−i sin

(
α
2

)
−i sin

(
α
2

)
cos
(
α
2

) ) = cos
(α

2

)
I−i sin

(α
2

)
X

(2.1.48)

In particular, note that a rotation of π about x̂ is

Rx(π) = −iX ∼X (2.1.49)

where the last equality follows from the fact that a quantum state is defined

up to a phase contribution.

• A rotation of α about ŷ:

Ry(α) = exp
(
−iα

2
σy

)
=

(
cos
(
α
2

)
− sin

(
α
2

)
sin
(
α
2

)
cos
(
α
2

) ) = cos
(α

2

)
I− i sin

(α
2

)
Y

(2.1.50)

In particular, note that a rotation of π about ŷ is

Ry(π) = −iY ∼ Y (2.1.51)

• A rotation of α about ẑ:

Rz(α) = exp
(
−iα

2
σz

)
=

(
e−i

α
2 0

0 e+iα
2

)
= cos

(α
2

)
I− i sin

(α
2

)
Z (2.1.52)

In particular, note that a rotation of π about ẑ is

Rz(π) = −iZ ∼ Z (2.1.53)

2.1.6.2 Multi-qubit and controlled quantum gates

Generic controlled gate A generic two-qubit controlled gate is a gate which

acts on the target qubit if and only if the control qubit is in state |1〉. It is a kind

of if-then-else gate. Let

U =

(
u0 u1

u2 u3

)
(2.1.54)
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the associated controlled CU gate is

CU = |0〉〈0| ⊗ I + |1〉〈1| ⊗U =


1 0 0 0

0 1 0 0

0 0 u0 u1

0 0 u2 u3

 =

(
I 0

0 U

)
(2.1.55)

where 0 is a matrix of zeros. The circuital symbol is

control •

target U

The behavior of a controlled gate is trivial if the control qubit is in state |0〉 or

in state |1〉. What does it happen when the control qubit is a linear combination

of |0〉 and |1〉? Well, the controlled gate acts on the superposition state and the

control actions are performed in parallel: the “degree” of each action depends on

the amplitude of the corresponding eigenstate in the input superposition state.

Example 2.1.3. Consider the following quantum circuit

control |ψc〉 •

target |ψt〉
|ψin〉

A B
|ψout〉

where the A gate is applied to the target bit if the control bit is in |0〉, while the

B gate is applied if the target bit is in |1〉. The corresponding matrix is

(
A 0

0 B

)
=


A11 A12 0 0

A21 A22 0 0

0 0 B11 B12

0 0 B21 B22


Suppose the target qubit is in a generic state

|ψt〉 = t0 |0〉+ t1 |1〉
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When the control qubit is in state |0〉, the output state is

|ψout〉 = |0〉 ⊗A(t0 |0〉+ t1 |1〉)

while, when it is in state |1〉, the output becomes

|ψout〉 = |1〉 ⊗B(t0 |0〉+ t1 |1〉)

Suppose, now, that the input is a general superposition state

|ψin〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉

Then, the gate acts on each input eigenstate proportionally:

a |00〉 −→ a |0〉 ⊗A |0〉

b |01〉 −→ b |0〉 ⊗A |1〉

c |10〉 −→ c |1〉 ⊗B |0〉

d |11〉 −→ d |1〉 ⊗B |1〉

Thanks to linearity, the proper control actions are performed, in the correct pro-

portions

|ψout〉 = |0〉 ⊗A(a |0〉+ b |1〉) + |1〉 ⊗B(c |0〉+ d |1〉)

4

The extension to multi-qubit controlled quantum gate is trivial.

The CNOT gate The controlled NOT gate, also known as CX gate, is an

important quantum gate which flips the second qubit (the target qubit) if and

only if the first qubit (the control qubit) is in state |1〉. Otherwise, the target

qubit is unaffected.

CX :



|00〉 −→ |00〉

|01〉 −→ |01〉

|10〉 −→ |11〉

|11〉 −→ |10〉

(2.1.56)

66



2 – Theory of quantum computing

Consequently

CX = |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|

= |0〉〈0| ⊗ I + |1〉〈1| ⊗X =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(2.1.57)

Since the target qubit is flipped only if the control qubit is in state |1〉, the oper-

ation performed by the CX gate corresponds to the logic XOR operation, even

if, differently from the classical XOR logic gate, it is reversible since the control

qubit is “conserved” and provided in output:

|x〉 |y〉 CX−−→ |x〉 |x⊕ y〉 (2.1.58)

The circuital symbol is

control •

target

The Toffoli gate The Toffoli or Controlled-Controlled-NOT gate, also known

as CCX, flips the target qubit if and only if both control qubits are in state |1〉.
The corresponding matrix is derived as

CCX = (|00〉〈00|+ |01〉〈01|+ |10〉〈10|)⊗ I + |11〉〈11| ⊗X

=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(2.1.59)
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The circuital symbol is

|x〉 •

|y〉 •

|z〉 |z ⊕ (x ∧ y)〉
Using basic logic theorems, it is straightforward to realize that classical AND and

OR operations can be performed resorting to the Toffoli gate, even if the latter is

reversible, while the former are not.

The OR gate:

|x〉 X •

|y〉 X •

|0〉 X |x ∨ y〉

The AND gate:

|x〉 •

|y〉 •

|0〉 |x ∧ y〉

The SWAP gate The SWAP gate swaps two qubits:

|x〉 × |y〉

|y〉 × |x〉

The corresponding matrix is

USWAP = |00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11| =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (2.1.60)

The Fredkin gate The Fredkin gate is a Controlled-SWAP gate, which swaps

the two target qubits if and only if the control qubit is in state |1〉:

|x〉 • |x〉

|y〉 × |y′〉

|z〉 × |z′〉
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The corresponding matrix is

UFredkin = |0〉〈0| ⊗ I⊗2 + |1〉〈1| ⊗USWAP =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


(2.1.61)

2.1.6.3 Some useful equivalences

Controlled-Z gate The Controlled-Z gate can be obtained using two Hadamard

gates and a CNOT gate:

• •
=

Z H H

The Pauli decomposition Defining the phase gate as

Φ(δ) ,

(
eiδ 0

0 eiδ

)
(2.1.62)

every unitary gate U can be rewritten as the product of the phase gate and a

special unitary gate V :

U = Φ(δ)× V (2.1.63)

It is easy to show [19] that a special unitary gate can always be rewritten as the

product of three rotation gates

V = Rz(α)Ry(β)Rz(γ) (2.1.64)

for some angles α, β and γ. Consequently, every unitary gate can be expressed as

U = Φ(δ)Rz(α)Ry(β)Rz(γ) (2.1.65)

Standard decompositions for controlled and controlled-controlled quantum gates

are well known and can be found in almost every book on quantum computing,
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as [21, 5, 19].

Flipped control qubit According to the hardware configuration of the quan-

tum processor, it often happens that a correlation can be arranged only among

some qubits. In these cases, it can be useful to flip the control and target qubit

of a controlled quantum gate. The following equivalence holds true:

U × • ×

=

• × U ×

Control on |0〉 If the action of the controlled gate on the target qubit is

prompted by a control qubit in state |0〉, one can adopts the following circuit:

X • X

=

U U

Other interesting equivalences can be found in [22].

2.1.6.4 Universal set of quantum gates

A universal set of quantum gates is a set from which every quantum circuit can be

implemented. The following universality theorem ensures that every quantum

circuit can be decomposed in elementary quantum gates.

Theorem 2.1.1. The set of single qubit gates and CNOT gate is universal:

any unitary gate acting on an n-qubit register can be implemented with single qubit

gates and CNOT gates.

The proof can be found in the original paper [21] and in [5]. It has to be

remarked that this is not the only possible set of universal quantum gates. Ac-

cording to the hardware implementation, the physical realization of some quantum

gates can be more or less simple. Some possibilities are presented in [19].

2.1.7 No-cloning theorem

A striking difference with respect to classical computing is that quantum informa-

tion cannot be copied exactly.
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Theorem 2.1.2. There is no deterministic quantum procedure by which an un-

known arbitrary pure quantum state can be cloned exactly.

Proof. Suppose ad absurdum that there exists a unitary transformation which is

able to clone a quantum state:

|ψ〉 |0〉 Uclone−−−→ |ψ〉 |ψ〉

which means that the quantum state of the first qubit is replicated on the second

qubit. In particular, for the basis vectors |0〉 and |1〉, the action of Uclone is

|00〉 Uclone−−−→ |00〉

|10〉 Uclone−−−→ |11〉

Now, consider the expected action of the cloning gate on the following superposi-

tion states

|0〉+ |1〉√
2
⊗ |0〉 Uclone−−−→ |0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2
|0〉 − |1〉√

2
⊗ |0〉 Uclone−−−→ |0〉 − |1〉√

2
⊗ |0〉 − |1〉√

2

Nevertheless, because of linearity, the actual action of Uclone is

|0〉+ |1〉√
2
⊗ |0〉 Uclone−−−→ |00〉+ |11〉√

2
|0〉 − |1〉√

2
⊗ |0〉 Uclone−−−→ |00〉 − |11〉√

2

One should agree upon the fact that the obtained states are not clones of the input

state. Thus, ifUclone copies the basis states, it does not clone non-orthogonal states

and vice versa.

There is a final remark which is of interest. The no-cloning theorem states

that it is not possible to copy unknown arbitrary states. If, on the other hand,

states are limited to |0〉 and |1〉, qubits can be copied, as highlighted in [5].
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2.2 Quantum algorithms

At this time, it is interesting to understand why one should use a quantum com-

puter and which are the main advantages compared to classical computation. The

discussion of quantum algorithms, that is, the algorithms which are tailored to

be executed on a quantum processor, is not the main core of this research. Some

recommended readings addressing this topic are [16, 18, 19, 23]. Nevertheless, the

basic tricks exploited by quantum algorithms are detailed in the following and a

well-known example is presented, following a graphical, non standard-approach.

As hinted in the introduction of this chapter, the research for useful quantum

algorithms is still ongoing, but the embedded computational power and the fields

in which it is expected to outperform classical computers when the hardware will

be ready, are becoming well known to the scientific community. In [19], some

interesting applications are reviewed, ranging from the simulation of quantum

systems, to quantum chemistry and mathematics.

2.2.1 Quantum parallelism and interference

A quantum computer has several shots in its locker to solve a problem. The first

one is a technique known as quantum parallelism. Suppose that there exists a

linear unitary operator Uf whose action is:

|x〉 |y〉
Uf−→ |x〉 |y ⊕ f(x)〉 (2.2.1)

which implements a function f . In quantum computing jargon, Uf is routinely

addressed as the oracle.

|x〉
Uf

|x〉

|y〉 |y ⊕ f(x)〉
This construction ensures that Uf is unitary and thus reversible. As a matter of

fact, it is trivial to see that Uf is its own inverse:

|x〉
Uf Uf

|x〉

|y〉 |y〉
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Now, assume the first qubit is sent to a superposition state applying a Hadamard

gate

H⊗n |x〉 =
1√
2

2n−1∑
x=0

|x〉 (2.2.2)

When the input is a superposition of 2n states, being Uf a linear operator, it

computes 2n values f(xk), 1 ≤ k ≤ n simultaneously.

Uf

(
1√
2n

2n−1∑
x=0

|x〉 |y〉

)
=

1√
2n

2n−1∑
x=0

|x〉 |y ⊕ f(x)〉 (2.2.3)

This seems to be an exponential speedup obtained almost for free: calling a sin-

gle time the oracle, all the 2n possible outcomes of the function are computed.

Unluckily, things are not so simple. The point is that, even if the quantum state

produced by the oracle function is actually a superposition of all possible out-

comes, when a measurement is performed, the system collapses to a single state.

What is worse, all outputs have the same probability to be measured, namely

1/2n, and, at this point, it is not possible to choose a specific vector at will. In

other words, the probability to pick up the desired output is just 1/2n.

However, quantum parallelism is a powerful tool. As a matter of fact, quan-

tum algorithms are tailored such that, once this superposition is obtained, some

special operations are performed to increase the probability of the desired outcome

and reduce the probability of the others. The aforementioned “special operations”

resort on the quantum interference, that is, the fact that the probability ampli-

tudes are complex numbers and can be properly combined to increase or reduce

the probability of a specific outcome. It will be clearer when analysing an actual

quantum algorithm.

A generic quantum algorithm can be divided in four main steps:

1. Prepare superposition: the input qubits are sent to a superposition state,

often adopting the Hadamard gate.

2. Manipulate: some operations, depending on the specific algorithm, are

performed on the superposition state.

3. Consolidate: the output superposition is consolidated, that is, exploiting

the quantum interference the desired output is given a larger probability.

4. Measure.
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Figure 2.13: Schematic representation of a quantum algorithm.

It is interesting to highlight that, even if the probability of the desired outcome

is increased, it is still a probability, meaning that there is no certainty to get the

proper answer. After all, quantum mechanics is all about probability. However, as

suggested in [24], one can always verify the answer: for many problems, verifying

the solution is much easier than finding it.
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2.2.2 Grover’s search algorithm

Search is a pervasive task in many fields. Such a task is particularly demanding

when the problem is unstructured, which means that the discovery that a specific

possibility is incorrect does not allow to learn anything useful about the solution

of the problem. It is a classical look-for-a-needle-in-a-haystack problem. A simple

example of an unstructured search problem is a standard telephone directory:

instead of looking for the number given the name (this is a structured problem),

one can look for the name given the number. The fact that a certain number is not

the searched one does not allow to advance any hypothesis on where the desired

number is.

A classical algorithm tackles the problem with a generate-and-test approach:

all possible solutions are generated and then tested, one by one. It is obvious that

if there are N = 2n elements, it will take, on average, O(N/2) iterations of the

algorithm to find the searched result. Nevertheless, if one is very unlucky, they

will find the solution on the N -th repetition. Hence, the cost of the classical algo-

rithm is O(N). The quantum counterpart, Grover’s search algorithm, can achieve

the same result with a O(
√
N) cost. This is a quadratic, and so polynomial,

speedup. Other well-known quantum algorithms, such as Deutsch-Jozsa algo-

rithm, allow gaining a more impressive exponential speed-up with respect to their

classical counterpart. Nevertheless, Grover’s search algorithm has a significantly

larger range of possible applications.

For the sake of simplicity, in the following, it will be given for granted that

a solution to the problem exists and is unique. Grover’s search algorithm can

be easily extended to deal with problems which may have many solutions or no

solution at all. For further details, the reader is suggested to look at [19, 25, 26].

2.2.2.1 The oracle

The word oracle comes from the Latin verb orare and refers to an omniscient

person uttering predictions and knowing answers to all questions. In computer

science, the oracle is a mathematical tool useful to evaluate the complexity of

an algorithm. It is a kind of black-box to which one provides an input and asks

whether or not it is the searched solution. In mathematical terms, assuming that

one has to find a target item amongst N = 2n candidates, each of them labelled

by a proper index x in the range 0 ≤ x ≤ N − 1 and that the searched element
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corresponds to the label s, the oracle function is defined as

f(x) =

{
0 if x 6= s

1 if x = s
(2.2.4)

Thus, if x = s the oracle says yes, otherwise it says no.

The oracle is probably one of the most counter-intuitive concepts of this sec-

tion, for people without a background in computer science. As a matter of fact,

one could argue that the solution s has to be known to realize the oracle func-

tion, which, in turns, is used to find s. It seems meaningless. Two remarks are

needed. The first one is that the oracle is used to compare the costs of different

implementations of an algorithm, even if parts of the latter are not thoroughly

understood. One evaluates the cost in units of the number of calls to the oracle:

an algorithm which addresses the oracle fewer times, has a lower cost. The second

remark is that when dealing with real problems, the oracle is replaced by a testing

procedure which does not have an explicit foreknowledge of the solution, but only

an implicit one, via the properties that a valid solution must have. There is a

substantial difference between a circuit which can recognize a solution and which

knows the solution in advance.

2.2.2.2 Geometrical interpretation

As previously stated, one of the main tricks of quantum computation is the proper

exploitation of quantum parallelism. If the solution state |s〉 is completely

unknown, a reasonable starting state is an equal superposition of all possible

search solutions:

|E〉 = H⊗n |0〉 =
1√
N

∑
x∈{0,1}n

|x〉 (2.2.5)

Even if obvious, it is worth highlighting that the possible solutions coincide with

the computational basis states and so they are mutually orthogonal. It is clear

that if it is known in advance that some state |x〉 cannot be a legal solution to

the problem, the initial superposition can be arranged by making sure |x〉 is not

included, in order to speed up the algorithm. Nevertheless, here the worst case in

which the initial state has to be an equal mixture of all possible outcomes is dealt

with.

At the time being, if a measurement is performed, the system has a probability

ps =

(
1√
N

)2

=
1

N
(2.2.6)
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to collapse to the searched solution. The aim, now, is to increase the probabil-

ity of getting |E〉 → |s〉 while reducing the probability that the outcome is any

other undesired state. This is the realm of quantum interference and Grover’s

algorithm makes advantage of the latter through two expedients:

1. Reflection about |s〉 via the application of the oracle operator.

2. Reflection about |E〉 via the application of the diffusion operator.

The starting state Pure quantum states have always unitary magnitude and

the latter is not changed when quantum gates are applied.

Figure 2.14: Initial state.

Consequently, a nice pictorial way of

representing a quantum state is on a

unitary circle, as the one reported in

Figure 2.14. The initial state is |E〉,
which is an equal superposition of all

basis states. Note that |E〉 is close to

be orthogonal to the solution state vec-

tor |s〉. Clearly, this is due to the fact

that the component of |E〉 in the direc-

tion of |s〉 has a magnitude of 1/
√
N ,

which is small, when N is large. If |Ē〉
is obtained from |E〉 removing |s〉 and

denoting with δ the angle between |E〉
and |Ē〉, it is just a matter of trivial

trigonometry to realize that

sin(δ) =
1√
N
−→ δ = asin

(
1√
N

)
≈ 1√

N
(2.2.7)

The aim is to rotate |E〉 so that it will end up to be as close as possible to the

solution |s〉. At the end, when a measurement is performed, the probability that

the system will collapse to |s〉 must be very high.

Finally, consider that the symbol |ψ〉 is adopted to represent a generic state at

a certain step of the algorithm.

Reflection about |s〉 The main problem is that, unfortunately, the solution |s〉
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Figure 2.15: Reflection about |s〉.

is not known. Thus, the desired ro-

tation cannot be achieved in a single

step. A possibility comes from elemen-

tary geometry which states that two

consecutive reflections about different

axes result in a rotation.

Now, suppose that it is possible

somehow to perform a reflection of |ψ〉
about |s〉. Letting θ be the angle be-

tween |ψ〉 and |s〉, 2θ is the total an-

gle between |ψ〉 and |ψ1〉, as reported

in Figure 2.15. How to perform this

reflection will be clear in the follow-

ing, when discussing the circuital im-

plementation.

Reflection about |E〉 Now, imagine that also a reflection about the initial state

Figure 2.16: Reflection about |E〉.

|E〉 is feasible. Since the angle between

|ψ1〉 and the extension of |E〉 is π −
(2θ + φ), the overall angle between the

original |ψ〉 and |ψ2〉 is α = 2θ + 2φ.

Since the angle between |E〉 and |Ē〉
can be expressed as δ = π

2
− θ − φ, the

rotation angle becomes

α = 2θ + 2φ = π − 2δ (2.2.8)

At this point, a rotation of an angle 2δ

has been achieved. As a matter of fact,

it has to be remarked that |ψ2〉 is closer

to − |s〉 than − |ψ〉 of an angle 2δ.

Get rid of the π factor It is well

known that a global phase factor makes no difference at the end of a quantum

computation. Hence

|ψ2〉 ∼ − |ψ2〉 (2.2.9)

Consequently, the state |ψ2〉 can be multiplied by a phase factor −1, getting |ψ3〉.
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At this time, it should be evident that the consecutive reflections about |s〉 and

|E〉 have the effect of rotating |ψ〉 a 2δ angle closer to the solution |s〉. Thus, this

procedure can be repeated several times (say M times) to force the initial state

to get closer and closer to |s〉. If the total angle between |E〉 and |s〉 is

Θ ,
π

2
− δ (2.2.10)

the required number of iterations is computed dividing Θ by the angle of each

rotation and taking the closest integer

M = round

(
Θ

2δ

)
= round

(
π

4δ
− 1

2

)
(2.2.11)

Since δ ∼ 1/
√
N , the previous expression can be approximated as

M ∼ π
√
N

4
(2.2.12)

It has to be noted the promised quadratic speedup with respect to the classical

counterpart.

Figure 2.17: The rotation of 2δ.

Measurement In the final step, the

maximum angle between |ψf〉 and the

searched solution |s〉 is δ, as it is clear

from Figure 2.18. Consequently, the

system collapses to |s〉 with a probabil-

ity which is equal to the square of the

probability amplitude of |s〉 in |ψf〉:

ps = cos2(δ) = 1− sin2(δ) ∼ 1− 1

N
(2.2.13)

The probability to get a wrong result

is very small. Anyway, it is also pos-

sible to check if the obtained outcome

is wrong: it is enough to use the ora-

cle operator and discover whether the

algorithm has provided a proper solution or not.
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Figure 2.18: The final step.

2.2.2.3 Quantum circuit

In order to develop a circuital implementation of the discussed algorithm, it is nec-

essary to focus on a specific case, so to be able to define a specific oracle function.

Suppose the Grover’s algorithm has to find the state |10〉: this is just an example

useful to provide an actual quantum circuit which can be simulated on a quan-

tum simulator. As detailed in section §2.2.2.1, in real-world implementations, the

oracle is replaced by a proper testing procedure. From the previous discussion, it

follows that the there are three main steps which have to be converted in quantum

circuits:

1. Initial superposition.

2. Oracle.

3. Diffusion operator.

When there are only two qubits, and so N = 4, the δ angle is

δ = asin

(
1

2

)
=
π

6
(2.2.14)

Consequently, the number of rotations is just

M = round

(
π

4δ
− 1

2

)
= round

(
3

2
− 1

2

)
= round (1) = 1 (2.2.15)
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which means that after one rotation the initial state |E〉 coincides exactly with

the solution |s〉. Hence, one can reasonably expect to find out that the probability

of getting the desired state when a measurement is performed is 100%.

Initial superposition As discussed several times, an equal superposition of all

possible basis vectors can be achieved applying a Hadamard gate to each qubit,

previously initialized to |0〉:

|E〉 = H⊗n |0〉 =
1√
N

∑
x∈{0,1}n

|x〉 (2.2.16)

The corresponding circuit for the n-qubit case is

|0〉 H

|0〉 H

|0〉 H
· · ·
· · ·
· · ·

|0〉 H
|E〉

and the quantum circuit for the 2-qubit case can be trivially derived.

The oracle operator The oracle operator is a unitary operator associated with

the oracle function f(x) presented in section §2.2.2.1. As discussed in section

§2.2.1, it has the following form:

|x〉 |y〉
Uf−→ |x〉 |y ⊕ f(x)〉 (2.2.17)

where |y〉 is an extra qubit, known to the scientific community as the ancilla

qubit.

The intent of this step is to perform a reflection about |s〉. In practice, this

means to leave the |s〉 state alone and take every other computational basis state

|x〉 to − |x〉. This operation can be implemented by the following operator

2 |s〉〈s| − I (2.2.18)
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Example 2.2.1. Assume that N = 4, the computational basis vectors are

|00〉 |01〉 |10〉 |11〉

Suppose that the desired state is |s〉 = |10〉, then the previous operator becomes

2 |10〉〈10| − I

The effect of this operator on the basis vectors is

|00〉 −→ (2 |10〉〈10| − I) |00〉 = 0 |00〉 − |00〉 = − |00〉

|01〉 −→ (2 |10〉〈10| − I) |01〉 = 0 |01〉 − |01〉 = − |01〉

|10〉 −→ (2 |10〉〈10| − I) |10〉 = 2 |10〉 − |10〉 = + |10〉

|11〉 −→ (2 |10〉〈10| − I) |11〉 = 0 |11〉 − |11〉 = − |11〉

4

Since the global phase of a quantum state can be ignored, it should be clear

that the same outcome is obtained if only |s〉 is subjected to a sign change,

while all other basis states are left untouched. This operation can be obviously

implemented by the following operator

− (2 |s〉〈s| − I) = I− 2 |s〉〈s| (2.2.19)

This operator can be obtained from the oracle. As a matter of fact, assume that

the ancilla qubit is initialized in state |1〉 and then a Hadamard gate is applied,

so that

|y〉 = |1〉 H−→ |0〉 − |1〉√
2
, |−〉 (2.2.20)

The application of the oracle operator, when the n input qubits are in state |x〉
and the ancilla is in state |−〉, leads to

Uf (|x〉 |y〉) = |x〉 ⊗ |y ⊕ f(x)〉 =
|x〉 |0⊕ f(x)〉 − |x〉 |1⊕ f(x)〉√

2

= (−1)f(x) |x〉 |−〉 =

+ |x〉(|0〉−|1〉)√
2

if x 6= s

− |x〉(|0〉−|1〉)√
2

if x = s

(2.2.21)

In practical terms, the oracle operator has to change the sign of the ancilla
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qubit if and only if the input n qubits (all qubits apart from the ancilla qubit)

are in state |x〉 = |s〉.

Letting

|ψ1〉 = |E〉 ⊗ |−〉 (2.2.22)

the application of the oracle function leads to

|ψ2〉 = Uf |ψ1〉 =
1√
N

∑
x∈{0,1}n

(−1)f(x) |x〉 |−〉 (2.2.23)

The quantum circuit obtained so far can be represented as follows:

|0〉 H

Uf

|0〉 H

· · ·
· · ·
· · ·

|0〉 H

|1〉 H

|ψ1〉 |ψ2〉

Consider again the case under analysis, that is, when |s〉 = |10〉 and n = 2. The

oracle function must change the sign of the ancilla qubit if and only if the top

qubit is in state |1〉 and the bottom one is in |0〉. The Toffoli gate, presented in

section §2.1.6.2, flips the target qubit when both control qubits are in state |1〉. In

this regard, it is interesting to note that flipping the |−〉 is equivalent to multiply

it by −1:

|−〉 =
|0〉 − |1〉√

2

X−→ |1〉 − |0〉√
2

= − |−〉 (2.2.24)

As a consequence, it is possible to build the oracle operator up with just a Toffoli

gate, provided that the second qubit is properly flipped by an X gate. The
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resulting quantum circuit is

Oracle

|0〉 H •

|0〉 H X • X

|1〉 H
|ψ1〉 |ψ2〉

Clearly, the target qubit of the Toffoli gate, that is the ancilla qubit, is flipped

only if the input to the oracle is

|ψ1〉 = |10〉 |−〉 (2.2.25)

While the first X gate is needed to flip |0〉 −→ |1〉 the second control qubit, so

that the Toffoli gate can flip the target qubit when the input is |10〉, the second X

gate is mandatory to send back the second qubit to its initial state. This allows

to get the desired |ψ2〉, that is, to get a −1 coefficient in front of state |10〉.

It is useful to analyze the working principle of this quantum circuit investi-

gating all possible cases. The input Hadamard gates create the following state:

|ψ1〉 = |E〉 |−〉 =
|00〉+ |01〉+ |10〉+ |11〉

2
⊗ |0〉 − |1〉√

2
(2.2.26)

Since the quantum gates are linear operators, it is possible to understand their

action imagining that, downstream of the Hadamard gates, instead of a single

oracle working on a superposition of four basis states, there are four parallel

oracles, each of them acting on a single basis state. Then, the overall output

state vector |ψ2〉 is the averaged sum of the four state vectors produced by the

four parallel oracles.

Input |00〉 The application of the oracle operator produces

|ψ1a〉 = |00〉 ⊗ |0〉 − |1〉√
2
−→ |00〉 ⊗ |0〉 − |1〉√

2
= |ψ2a〉 (2.2.27)
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|0〉 • |0〉

|0〉 X • X |0〉
|0〉−|1〉√

2

|0〉−|1〉√
2

Input |01〉 The application of the oracle operator produces

|ψ1b〉 = |01〉 ⊗ |0〉 − |1〉√
2
−→ |01〉 ⊗ |0〉 − |1〉√

2
= |ψ2b〉 (2.2.28)

|0〉 • |0〉

|1〉 X • X |1〉
|0〉−|1〉√

2

|0〉−|1〉√
2

Input |10〉 The application of the oracle operator produces

|ψ1c〉 = |10〉⊗ |0〉 − |1〉√
2
−→ |10〉⊗ |1〉 − |0〉√

2
= − |10〉⊗ |0〉 − |1〉√

2
= |ψ2c〉 (2.2.29)

|1〉 • |1〉

|0〉 X • X |0〉
|0〉−|1〉√

2

|1〉−|0〉√
2

As expected, when the input coincides with the target state, the output sign is

changed thanks to the flip of the ancilla qubit.

Input |11〉 The application of the oracle operator produces

|ψ1d〉 = |11〉 ⊗ |0〉 − |1〉√
2
−→ |11〉 ⊗ |0〉 − |1〉√

2
= |ψ2d〉 (2.2.30)

|1〉 • |1〉

|1〉 X • X |1〉
|0〉−|1〉√

2

|0〉−|1〉√
2

The overall output state vector can be computed exploiting the linearity of
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quantum mechanics

|ψ2〉 =
|ψ2a〉+ |ψ2b〉+ |ψ2c〉+ |ψ2d〉

2

=
|00〉+ |01〉− |10〉+ |11〉

2
⊗ |0〉 − |1〉√

2

(2.2.31)

There is one subtle point which is worth some extra words. One should note

that with the proposed quantum circuit, the ancilla is fixed to state |−〉 (apart

from a possible phase factor) regardless of the values assumed by the input qubits.

At first sight, one may misleadingly be brought to think it is just a chance. On the

contrary, it is a mandatory prerequisite to exploit quantum interference, usually

known as clean computation. As a matter of fact, it is quite obvious that if

the circuit forced the ancilla qubit to change as a function of the input qubits, the

output state would look like

|ψ2〉 ∝
∑
x

|x〉 |g(x)〉 (2.2.32)

In this case, it would be impossible to get any sort of cancellation/sum between

terms with different values of g(x).

Finally, while the proposed oracle is somehow general, some optimized circuits

can be derived for some specific cases. For instance, a possible implementation

which does not require the extra ancilla qubit is

Oracle

|0〉 H S • S

|0〉 H
|ψ1〉

Z
|ψ2〉

Exploiting the linearity of quantum mechanics as previously explained, it is trivial

to prove that this circuit is fully equivalent to the previous one.

The diffusion operator The purpose of this step is to perform a reflection

about |E〉. At first glance, this job seems more demanding than the reflection

about |s〉, since |E〉 is a superposition state. Nevertheless, it is well known that

the effect of the application of a Hadamard gate H⊗n to a superposition state is
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to send it back to |00 · · · 0〉. For instance

|0〉 H−→ |0〉+ |1〉√
2

H−→|0〉 (2.2.33)

Thus, the basic intuition is to use the Hadamard gates to send |E〉 −→ |00 · · · 0〉,
perform a simple reflection about |00 · · · 0〉 and, eventually, send the obtained

result back to a superposition state applying again the Hadamard gates.

More rigorously, since a reflection about |E〉 can be written as

|E〉〈E| − I (2.2.34)

and since, by construction, |E〉 = H⊗n |00 · · · 0〉, then

|E〉〈E| − I = H⊗n (|00 · · · 0〉〈00 · · · 0| − I)H⊗n (2.2.35)

which means that the core of the reflection operator has to perform, as expected,

a simple reflection about |00 · · · 0〉, or, that is the same up to a global phase factor,

a change of sign of state |00 · · · 0〉 only.

Which circuit can implement this reflection? It is well known that the Z gate

add a −1 factor to |1〉 while it leaves |0〉 unaffected. Adding a control qubit, the

action of the Z gate on the target qubit is fulfilled only if the control is in state

|1〉. In the case n = 2, the effect of the controlled-Z gate is to add a −1 phase

factor when the input is in state |11〉. In order to get the desired sign change for

the state |00〉 instead of |11〉 it is enough to add a couple of X gates:

X • X

|ψ3〉
X Z X

|ψ4〉

The downstream X gates are added to get a clean computation, so that |ψ4〉 is

equal to |ψ2〉 apart from a possible phase factor. As previously detailed, thanks to

this ploy, the quantum interference can be exploited and the desired cancellation

and sum of probability is achieved. It is straightforward to see that the behaviour
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of the quantum circuit is:

|00〉 −→ − |00〉

|01〉 −→ + |01〉

|10〉 −→ + |10〉

|11〉 −→ + |11〉

(2.2.36)

Consequently, the desired phase change of |00〉 is achieved. In order to obtain the

inversion about |E〉, Equation 2.2.35 says that it is enough to add some Hadamard

gates upstream and downstream the circuit which performs the phase inversion of

|00〉. For the 2-qubit case, one gets

H X • X H

|ψ2〉
H
|ψ3〉

X Z X
|ψ4〉

H
|ψ5〉

The overall quantum circuit Cascading the two quantum circuits, one ob-

tains:

Superposition Oracle Diffusion

|0〉 H S • S H X • X H

|0〉 H Z H X Z X H

where the measurement operators have been added at the end of the circuit.

Obviously, a fully equivalent circuit can be obtained using the other oracle operator

proposed:

Superposition Oracle Diffusion

|0〉 H • H X • X H

|0〉 H X • X H X Z X H

|1〉 H

Note the extra qubit for the ancilla, initialized to |1〉.
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2.3 Quantum assembly

The astonishing development of digital electronics has been made possible by

the introduction of several levels of abstraction. The increasing complexity of

electronic systems committed to looking for fast and rational ways of detailing

how transistors have to be combined to realize processing units. It would not be

possible to describe a processor starting from the exhaustive physical behaviour of

transistors. Hardware description languages, such as VHDL and Verilog, are well

known to electronic engineers and allow the design of a circuit without having a

deep knowledge of the physics behind the hardware.

Quantum assembly (QASM) is the quantum counterpart of a hardware de-

scription language for standard digital electronics. An important caveat is that

the name is misleading: QASM is much more similar to VHDL or Verilog, than it is

to classical assembly language. It is not a programming language; on the contrary,

it is a description of quantum hardware and quantum operations, which does not

require to known the details of the physics (for instance, it does not depend on

how qubits are physically stored, initialized, measured and so on), but which is

designed to control a physical system.

A basic intuition about the working principle of a quantum computer is schemat-

ically reported in Figure 2.19. The classical computer, which is the master of the

Figure 2.19: Schematic representation of a quantum computer.

system, stores classical bits and executes some given algorithm. When it needs

some quantum capability to speed up the execution, it wakes the quantum pro-

cessor up, sending some QASM instructions. The quantum processor plays the

role of the slave and performs the required quantum operations. At the end, a

measurement is carried out and the output, which is classical, is provided back to

the classical computer.
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2.3.1 Syntax

The presentation of a detailed description of QASM would be thoroughly redundant

and useless, since several good user manuals are already available on the internet.

Moreover, the syntax is simple and self-evident. The interested reader is suggested

to consult [27], which is a very good and exhaustive reference text. Here, just the

main features are reported.

QASM is a case sensitive language, where statements are separated by semicolons

and comments are introduced by a pair of forward slashes and terminated by a

new line. The order in which statements are presented is the order in which they

are applied.

The first line must always be OPENQASM M.m, where M is the major version and

m the minor version. The statement include “filename” has the same effect of

copying and pasting the contents of the file “filename”.

Storage elements There are two kinds of storage elements:

• Classical register: the statement creg name [size] declares an array of bits

with the given size and name.

• Quantum register: the statement qreg name [size] declares an array of

qubits with the given size and name.

Qubits are initialized in |0〉 and bits in 0. To access a particular bit/qubit in a

register, one uses the statement name [i]. Numeration starts from 0.

Quantum gate

• One-qubit gates: the statement name gate q[i] applies the gate name gate

to the i-th qubit of the q quantum register.

• CNOT: the statement CX q[i], q[j] applies a CNOT gate which flips the

target qubit q[j] only if the control qubit q[i] is in state |1〉.

• Custom gates: new unitary gates can be introduced using the following

subroutine:

1 gate name(params) qargs

2 {

3 //body

4 }
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where params is an optional comma-separated list of parameter names and

qargs is a comma-separated list of qubit arguments.

Measurement and reset

• Measurement: the statement measure q[i] -> c[j] measures the qubit

q[i] and save the result in the classical bit c[i]. The measurement is

performed in the computational Z-basis, which means that it is a projective

measurement on the eigenstates of σz.

• Reset: the statement reset q[i] initializes qubit q[i] to state |0〉.
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2.3.2 Grover’s search algorithm QASM

The QASM for an implementation of the Grover’s search algorithm for the |10〉
case discussed in section §2.2.2.3 is reported in the following. It is a simple example

useful to see how quantum circuits are described in quantum assembly.

1 // Grover 's search algorithm: 10 case

2

3 OPENQASM 2.0;

4 include "qelib1.inc";

5

6 qreg q[2];

7 creg c[2];

8

9 // Initial superposition

10

11 h q[0];

12 h q[1];

13

14

15 // Oracle operator

16

17 s q[0];

18 id q[1];

19

20 id q[0];

21 h q[1];

22

23 cx q[0], q[1]; //q[0] is the control and q[1] the target

24

25 id q[0];

26 h q[1];

27

28 s q[0];

29 id q[1];

30

31

32 // Grover diffusion operator

33

34 h q[0];
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35 h q[1];

36

37 x q[0];

38 x q[1];

39

40 id q[0];

41 h q[1];

42

43 cx q[0], q[1];

44

45 id q[0];

46 h q[1];

47

48 x q[0];

49 x q[1];

50

51 h q[0];

52 h q[1];

53

54

55 // Measurement: from qubits to classical bits

56

57 measure q[0] -> c[1];

58 measure q[1] -> c[0];

The identity gates have been added just for clarity, so that it is possible to identify

immediately the different parts of the quantum circuit. Finally, the fact that qubit

q[0] is mapped to bit c[1] and q[1] is mapped to bit c[0] depends exclusively

on the chosen convention for the order in which bits are shown by the simulator.

2.3.3 Simulation of Grover’s search algorithm

The quantum assembly description proposed in section §2.3.2 can be provided

as input to a QASM simulator. A cloud-available quantum service is IBM Q

experience [1], which has been used to obtain the circuit reported in Figure 2.20.

IBM Q experience allows to run the code on an actual quantum processor

or on a quantum simulator. The result provided by the latter can be analyzed

in Figure 2.21. As expected, the result is |10〉. The interesting point is that, as
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Figure 2.20: Grover’s quantum circuit.

Figure 2.21: Simulation for |10〉 case.

discussed in section §2.2.2.3, when dealing with just two qubits, a single iteration is

enough to obtain the desired result with 100% probability. Indeed, the histogram

presented in Figure 2.21 is in total agreement with the theoretical derivation.
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Chapter 3

Introduction to magnetism

The purpose of this chapter is to provide the fundamental tools to understand

the nuclear magnetic resonance. First, the general concepts of magnetism are

introduced from a classical point o view. Second, the quantum mechanical in-

terpretation is proposed, analyzing the differences among electronic and nuclear

magnetism.

3.1 Classical magnetism

3.1.1 The fundamental concepts

An electric current flowing in the +ẑ direction generates a magnetic field H which

lies in the x-y plane. The magnitude of H is given by the Biot-Savart law:

|H| = I

2πr
[A m−1] (3.1.1)

where r is the distance from the center of the current. Conversely, an electric

current flowing in a closed loop causes a magnetic field to arise in the perpendicular

plane, whose magnitude is

H =
I

2r
(3.1.2)

The direction of the field is obtained using the well known right-hand rule, as

reported in Figure 3.1.

The term magnetic field is commonly adopted both for the H field and the

B field. In order to describe how the two fields are related, it is necessary to

introduce another vector quantity: the magnetization M .

Definition 3.1.1. The magnetization field is defined as

M =
dm

dV
[A m−1] (3.1.3)

where dm is the elementary magnetic moment and dV is the infinitesimal volume
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Figure 3.1: The direction of the magnetic field. Adapted from [28].

element. The magnetization defines the magnetic properties of the material and

its magnitude is the volume density of the magnetic moment.

The three fields are related according to

B = µ0 (H +M ) [T] (3.1.4)

where u0 is the vacuum magnetic permeability.

Definition 3.1.2. The magnetic permeability in a homogeneous medium can

be defined as

µ = µmµ0 (3.1.5)

where µm is the adimensional relative magnetic permeability.

It is clear that if µm = 1, then µ = µ0. The quantity which measures how far

µm is from unit is the magnetic susceptibility.

Definition 3.1.3. The magnetic susceptibility is defined as

χ = µm − 1 (3.1.6)

The magnetization can be expressed as

M = χH (3.1.7)

According to the developed formalism, it is possible to classify magnetic sub-

stances.
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Diamagnetic substances Isotropic diamagnetic substances are characterized

by a magnetic permeability which is constant and less than one. Consequently:

µm < 1 −→ χ < 0 (3.1.8)

and the magnetization M has opposite direction with respect to the field H .

Paramagnetic substances Isotropic paramagnetic substances are character-

ized by a magnetic permeability which is constant and larger than one. Conse-

quently:

µm > 1 −→ χ > 0 (3.1.9)

and the magnetization M has the same direction the field H .

Ferromagnetic substances In ferromagnetic substances, both the permeabil-

ity and the susceptibility depend on the value of the magnetic field and the mag-

netic history of the sample. Indeed, ferromagnetic substances are characterized

by hysteresis and retain a residual magnetization even when the external field is

switched off. The hysteresis is not discussed here, since it is not fundamental for

aim of this research, but can be found in every book about magnetism, as [29, 30].

In both isotropic paramagnetic and diamagnetic substances, the following sim-

ple relation holds true

B = µ0µmH = µH (3.1.10)

In the following, the focus will be on diamagnetic substances and the magnetic field

will be mainly identified with B-field, also to avoid confusion with the Hadamard

gate (H), the system Hamiltonian (H) and the Hilbert space (H).
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3.1.2 The magnetic moment

It is always possible to isolate a positive or a negative charge. This is a consequence

of the existence, in Nature, of the fundamental positive charge of the proton and

the fundamental negative charge of the electron. On the contrary, it is not possible

to obtain an isolated magnetic pole. However, fictitious positive p+ = −p and

negative p− = −p magnetic charges can be defined.

Definition 3.1.4. According to Gilbert model, the magnetic dipole is formed

by a fictitious positive magnetic charge (north) and an fictitious negative magnetic

charge (south) at a fictitious distance d. The magnetic dipole moment m points

from the south pole to the north pole, has units of [Am2] and has expression

m = pd [Am2] (3.1.11)

The magnetic field B points from the north pole to the south pole.

Figure 3.2: The magnetic moment and the magnetic field. Adapted from [28].

Figure 3.3: The magnetic
moment of a current loop.
From [28].

A closed current loop generates a magnetic field

which can be shown to be equal to that of a dipole.

This is known as the Ampère model of the magnetic

moment. It is interesting to remark that classical

magnetism traces all magnetic phenomena back to

moving charges. Consequently, the Ampère model

is physically correct, while the Gilbert model is not

physically accurate, but can be sometimes useful to

get an intuitive understanding the problem. The

associated magnetic dipole moment has magnitude given by

|m| = I · S [Am2] (3.1.12)
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where I is the current and S the area enclosed by the loop, while the direction is

given by the right-hand rule, as clear from Figure 3.3. The proof can be found in

[28].

3.1.2.1 The magnetic moment of a rotating electron

The magnetic moment generated by a rotating electron is proportional to the

classical angular momentum, due to the rotation of a particle with mass me and

charge q = −e:

m = − e

2me

l = −µB
~
l (3.1.13)

where µB is the Bohr magneton and is defined as

µB =
e~

2me

∼ 9.274× 10−24 J T−1 ∼ 5.788× 10−5 eV T−1 (3.1.14)

Equivalently

m = γl (3.1.15)

where γ is the electron gyromagnetic ratio, defined as

γ =
q

2me

= − e

2me

= −µB
~

= −8.794× 1010 rad

s · T
(3.1.16)

The minus sign, which arises from the negative charge of the electron, implies that

the angular momentum and the magnetic moment of an electron are

antiparallel.

Proof. Consider a charge q which is rotating around a current loop, whose area is

S = r2π. The resulting current is

I =
qω

2π

According to Equation 3.1.12, the magnitude of the magnetic moment is

|m| = qr2

2
ω

Since the vector angular frequency ω and m have the same direction, the previous
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equation can be rewritten in vector form as

m =
qr2

2
ω

Replacing ω = (r× v) /r2 in the previous equation one gets

m =
q

2
(r× v)

The classical angular momentum is

l = r× p = mr× v

where p is the linear momentum. Replacing q = −e one obtains

m = − e

2me

l

Figure 3.4: The rotating electron. From [28].

3.1.2.2 The energy and the force of a magnetic dipole in a magnetic

field

The potential energy of a magnetic dipole in a field B is

E = −m ·B [J] (3.1.17)

The energy is minimized when the magnetic moment is parallel to the magnetic

field, while it is maximized when they are anti-parallel. Hence, the energetically

favored configuration is with m and B parallel.
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The force acting on an infinitesimal loop with dipole moment m in a field B

is the negative gradient of the potential energy:

F = ∇ (m ·B) [N] (3.1.18)

This relation is obtained using the Ampère model of the current loop. As pre-

viously stated, the (nonphysical) Gilbert model can help in understanding some

phenomena at an intuitive level. The force derived using the latter has the follow-

ing expression

F = (m∇)B (3.1.19)

The two expressions turn out to be equivalent is m× ∇×B = 0, as shown is

[31].

Example 3.1.1. Suppose there is a non-homogeneous magnetic field increasing

along +ẑ and that a magnetic dipole is oriented along +ẑ, as in Figure 3.5.

According to Equation 3.1.19, the force experienced by the magnetic dipole is

Fz = mz
∂Bz

∂z
ẑ (3.1.20)

From which one understands that:

• A magnetic moment parallel to the magnetic field perceives a force toward

increasing field.

• A magnetic moment antiparallel to the magnetic field perceives a force to-

ward decreasing field.

4

Figure 3.5: The magnetic moment in a non-homogeneous field. From [28].
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3.1.2.3 Torque and classical precession

Consider a magnetic moment in a homogeneous magnetic field B. The two ficti-

tious charges experience an equal but opposite force F = pB and so the net force

is zero. However, there is a net torque T acting on the dipole.

τ = m×B (3.1.21)

Proof. From the definition of torque

τ = r× F

replacing F = pB

τ = r× F = r× pB = m×B

The everyday experience is that a compass needle, which can be seen as a

magnetic dipole, turns into the direction of the applied field. Indeed, the torque

of Equation 3.1.21 does line up a static magnetic moment with the magnetic field

B. The picture, however, is different if the magnetic moment arises from an

angular momentum, as the orbital angular momentum of a rotating electron or

the spin moment. As well known from Newton’s mechanics, the effect of a torque

is to force the angular momentum l to move according to

dl

dt
= τ = m×B (3.1.22)

Proof.
dl

dt
=

dr

dt
×mv +mr× dv

dt
= v× p+ r× F = τ

Since p and v are parallel and so their cross product is zero.

The so-called equation of motion of a magnetic moment m in a field B can

be immediately derived from Equation 3.1.22 and reads:

dm

dt
= γm×B = γτ (3.1.23)

The magnetic moment precesses about the magnetic fieldB and the phenomenon

is usually referred to as the Larmor precession. Qualitatively, Equation 3.1.23
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says that the rate of change of m depends on the field B and its motion is

perpendicular to both m and B.

More quantitatively, the magnitude of m remains constant as time flows, that

is, its time derivative is zero:

d|m|
dt

=
dm

dt
= 0 (3.1.24)

Proof.

2m
dm

dt
=

dm2

dt
=

dmm

dt
= 2m

dm

dt
= 2m (γm×B) = 0 =⇒ dm

dt
= 0

Where m (γm×B) = 0 since m is perpendicular to m×B.

Figure 3.6: The precession of the magnetic moment for positive γ. Adapted from
[32].

So, the magnitude of m is constant as expected, but its direction is not: the

vectorm performs a rotation aboutB. As a matter of fact, Equation 3.1.23 states

clearly that the differential increment dm is perpendicular to the plane defined

by m and B, thus forcing m in a rotation around a circular path.

Consider Figure 3.61. Let dφ be the angle by which m precesses in the time

interval dt and θ the angle betweenB andm. The component ofm perpendicular

to B is

m⊥ = m sin(θ) (3.1.25)

1A caveat: as it will be clear as the theory is developed, the sense of rotation depends on the
sign of the gyromagnetic ratio γ, which can be positive for particles different from the electron.
Figure 3.6 is drawn assuming γ > 0, because this will be the most common case of interest.
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The infinitesimal increment dm can be expressed as

dm = m⊥dΦ = m sin(θ)dΦ (3.1.26)

Moreover, from Equation 3.1.23, one gets that

dm = |γ| · |m×B|dt = |γ|mB sin(θ)dt (3.1.27)

From which the frequency of precession has magnitude

ω = |ω| ,
∣∣∣∣dΦdt

∣∣∣∣ = |γ|B (3.1.28)

The sign of the vector precession frequency is clear from the geometry of Fig-

ure 3.6.

A magnetic moment

m = γl (3.1.29)

in a static magnetic field

B = Bẑ (3.1.30)

describes a precession about B at a vector frequency

ω = −γB [rad s−1] (3.1.31)

known as the Larmor frequency. The magnitude is

ω = |ω| = |γ|B (3.1.32)

There is some confusion in the scientific literature about the sign convention for

the Larmor frequency. The most reasonable solution seems to define the vector

frequency as a quantity with sign, while the magnitude ω of ω is always assumed to

be positive. This research is written according to this convention. Many authors

define a sign for ω and extend it to ω, but it is not rigorous to give a sign to the

magnitude of a vector.

As a consequence:
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• If the gyromagnetic ratio γ

is positive, then ω is nega-

tive and the precession occurs

clockwise at a frequency ω =

γB.

• If the gyromagnetic ratio γ is

negative, then ω is positive

and the precession occurs anti-

clockwise at a frequency ω =

|γ|B.
Figure 3.7: The sign of the preces-
sion. Adapted from [33].

It is interesting to highlight that Equation 3.1.31 does not depend on the an-

gle θ between m and B. Thus, it does not depend on m⊥: this is a remarkable

aspect which has to be kept in mind and which justifies the fact that the quantum

mechanical approach delivers the same result. As it will be clear in the following,

in quantum mechanics the component of m perpendicular to B remains undeter-

mined when a measurement (on the standard basis) is carried out. Nevertheless,

independently of m⊥, the magnetic moment precesses at ω.

Moreover, θ does not change when a static field B is applied. Wherefore, the

energy of the system is unchanged: it remains constant, during precession, at a

value which is not necessarily the minimum one. Actually, this is not the whole

truth, since eventually the magnetic moment will collapse to the direction of the

applied field and the energy of the system will be minimized; but this is quite a

complex story which is treated in details for the NMR case in section §4.3. For

the time being, it is enough to stick to the fact that the energy is constant when

a static field is applied.
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3.2 Quantum mechanical interpretation of mag-

netism

This section is devolved to present the basic concepts to understand how quantum

mechanics treats the magnetic phenomena.

Magnetism is intimately connected with angular momentum of particles. Con-

sequently, the first step towards the quantum mechanics understanding of mag-

netism is to deal with the quantum mechanics picture of angular momentum.

3.2.1 The angular momentum in the quantum mechanics

picture

Suppose the instantaneous position of a classical particle is

r = xx̂+ yŷ + zẑ (3.2.1)

and the linear momentum is

p = pxx̂+ pyŷ + pzẑ (3.2.2)

Then, the classical angular momentum is a vector with components

l = r× p = (ypz − zpy) x̂+ (zpx − xpz) ŷ + (xpy − ypx) ẑ (3.2.3)

The magnitude has the traditional expression of the magnitude of a vector

l2 = l2x + l2y + l2z (3.2.4)

with |lk| ≤ l.

According to postulate 1.2, a Hermitian operator is associated with each phys-

ical observable. The quantum mechanical operators for angular momentum can

be constructed replacing the position and the linear momentum by the operators

of table 1.1. In the position representation one gets:

lx =
~
i

(
y
∂

∂z
− z ∂

∂y

)
ly =

~
i

(
z
∂

∂x
− x ∂

∂z

)
lz =

~
i

(
x
∂

∂y
− y ∂

∂x

)
(3.2.5)

Letting l2 be the quantum operator associated with the magnitude of the angular
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momentum, it is trivial to see that the following commutation relations hold:

[lx,ly] = i~lz
[ly,lz] = i~lx
[lz,lx] = i~ly[
l2,lk

]
= 0 k = x,y,z

(3.2.6)

These relations are at the real basis of the theory of the angular momentum. Thus,

an observable can be considered an angular momentum if the associated Hermitian

operator satisfies these commutation relations.

Figure 3.8: The angular mo-
mentum and its projection
along ẑ. From [34].

Since lx, ly and lz do not commute with each

other, according to theorem 1.2.1, it is not possible

to specify more than one component of the angu-

lar moment. On the other hand, since l2 commutes

with all three components, one is allowed to deter-

mine the magnitude of the angular momentum and

one of its components, for instance the one along

the ẑ axis, as reported in Figure 3.8. The bluish

cone is used to represent pictorially the fact the

magnitude of the angular moment (the side of the

cone) and its ẑ projection (the height of the cone)

are determined, while the orientation of the angular momentum is unknown, since

the x̂ and ŷ components are undetermined. This representation is known to the

scientific community as the vector model. However, it is important to note that l is

not a vector, but a quantum mechanical operator. For instance, the commutation

relations can be rewritten in a compact fashion as

l× l = i~l (3.2.7)

The cross product of l with itself is not zero and so l cannot be an actual vector.

3.2.1.1 The eigenvalues and eigenstates of the angular moment

The simultaneous eigenstates of l2 and lz are specified by two quantum numbers:

l and ml. The full derivation and the theoretical justification are quite involved

and can be found in quantum mechanics books, as the recommended [34, Chapter

4]. The interesting point, however, is the result. Starting from the unique hy-

pothesis that the angular momentum is a Hermitian operator which satisfies the
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commutation relations of equations 3.2.6, it is possible to show that:

1. The magnitude of the angular momentum can assume only the val-

ues

~
√
l(l + 1) (3.2.8)

with l = 0, 1
2
, 1, 3

2
, · · · .

2. The component of the angular momentum along an arbitrary ẑ di-

rection is limited to the 2l + 1 values

ml~ (3.2.9)

with ml = −l, − l + 1, · · · , l − 1, l.

There is one interesting remark about this result. For orbital angular momenta,

the quantum numbers follow the previously introduced notation: l and mL. In this

case, angular momenta can be classically understood as generated by a particle

rotating around a specified centre and it can be shown that cyclic boundary condi-

tions must be applied to the wavefunction. The consequence is that the quantum

number l can take only integral values. On the other hand, when intrinsic angular

momenta are considered, the quantum numbers are denoted as s and ms. More-

over, s can take both integral and half-integral values, since no cyclic boundary

condition is applied. Finally, a general angular momentum, which can be both

intrinsic and orbital, is usually specified with quantum numbers j and mj.

3.2.1.2 The spin

Some elementary particles present an intrinsic angular momentum, known as

spin. The word spin is misleading because it conveys the wrong idea that the

angular momentum is originated by the spinning of a particle. On the other hand,

it is much better to accept that a particle can have an intrinsic angular moment.

After all, a particle can have, for instance, mass and charge. Why should not it

have spin?

Spin is a purely quantum mechanical effect and has no classical counterpart.

The first experiment to prove the existence of the spin was carried out in 1921 by

Otto Stern and Walther Gerlach, but the actual understanding of spin is due to

George Uhlenbeck and Samuel Goudsmit, who, in 1927, attributed the result of the
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experiment to the spin of the electron. In the experiment, a beam of silver atoms

Figure 3.9: The Stern-Gerlach experimental setup: (1) furnace, (2) beam of sil-
ver atoms, (3) inhomogeneous magnetic field, (4) classically expected result, (5)
observed result. From [35].

is directed through a magnetic field which is inhomogeneous along the ẑ direction,

as illustrated in Figure 3.9. Silver has 47 electrons and, as it will be clearer in the

following, the outer 5s electron is unpaired and gives rise to a spin-only magnetic

moment. Ideal classical magnetic dipoles cannot change their orientation relative

to the magnetic field because of the necessity to conserve energy and angular

momentum, as explained in [28]. According to Equation 3.1.20, the force acting

on the dipole is

F = |m| cos θ
∂Bz

∂z
ẑ (3.2.10)

where θ is the angle between m and the ẑ axis. Since the dipoles are initially

randomly oriented, one would observe a continuous distribution on the screen. On

the contrary, after the inspection of the detector screen, only two separated Ag

spots are observed. The magnetic field, acting on the spin, exerts a force which

drives the atoms towards the two spots: since the electron spin can have only two

observable discrete ẑ orientations, parallel or antiparallel to the magnetic field, all

atoms end in only two spots. It should be clear from this discussion that Stern-

Gerlach experiment can be explained only admitting the existence in Nature of

this peculiar intrinsic angular moment, known as spin.

Spin is an angular momentum and, so, it is described by the same operators

discussed for the general angular momentum. Consequently, the commutation

relations 3.2.6 still hold true. As mentioned above, the spin quantum number s

can take also half-integral values. More formally, it is conventionally defined as

s = k
2
, k ∈ N and particles with

• Half-integer spin are known as fermions.
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• Integer spin are known as bosons.

According to Equation 3.2.8, the magnitude of the total spin angular momentum,

usually denoted as capital S, is

S = ~
√
s(s+ 1) (3.2.11)

Similarly, the component of the spin angular momentum along an arbitrary ẑ

direction is limited to the 2s+ 1 values

ms~ (3.2.12)

with ms = −s, − s+ 1, · · · , s− 1, s.

Spin-1
2

systems The case in which s = 1
2

is of peculiar interest. For instance,

electrons have s = 1
2
, but also several nuclei used in NMR quantum computing

are characterized by the same spin quantum number. In this case, ms = ±1
2

and

the observable projections along ẑ are simply sz = ±~
2
. The possible basis states

can be denoted as

|↑〉 =

(
1

0

)
|↓〉 =

(
0

1

)
(3.2.13)

and constitute an orthonormal basis set. They represent, respectively, a state in

which the spin is parallel and antiparallel to an external applied magnetic field

B which defines the quantization axis ẑ. The spin operators are sx, sy and sz.

Conventionally, the latter is chosen to be the diagonal one: it must have ±~
2

eigenvalues and |↑〉 and |↓〉 as eigenvectors. All the properties [36] of the spin-1
2

operators are expressed by the Pauli matrices presented in section §1.1.12. As

a matter of fact, the matrix representation of the spin operators is

sk =
~
2
σk, k = x, y, z

s2 = s2
x + s2

y + s2
x =

3~2

4

(
1 0

0 1

)
(3.2.14)
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It is interesting to remark that, by construction, the eigenvalues and eigenvectors

of sz are

+
~
2
←→ |↑〉

− ~
2
←→ |↓〉

(3.2.15)

while both eigenvectors of s2 operator are associated with the eigenvalue 3~2
4

whose

square root is equal to S. As expected, the measurable outcomes are the eigenval-

ues of the Hermitian operators, as stated by postulate 1.2. It is well known that

postulate 1.1 requires that the superposition of two states is a state of the system.

Indeed, a general spin wavefunction can be written as

|ψ〉 = c0 |↑〉+ c1 |↓〉 (3.2.16)

that is, as the superposition of the two basis eigenstates. It is clear that, accord-

ing to postulate 1.3, |c0|2 is the probability that, after a measurement, the system

collapses to |↑〉, while |c1|2 is the probability that, after a measurement, the system

collapses to |↓〉. Note the strong similarity with the definition of qubit.

3.2.1.3 Angular momenta of composite system

Consider a system in which there are two separated sources of angular momentum,

j1 and j2. It can be a single particle which is characterized by both spin and orbital

angular momenta, or a couple of particles with an angular momentum each. It

turns out [34] that the operators for independent sources of angular momentum

commute with each other, so that the operators j2
1 , j2

2 , j1z and j2z can be specified

simultaneously. The total angular momentum is

j = j1 + j2 (3.2.17)

which can easily be shown to satisfy the commutation relations 3.2.6 so that it is

an actual angular momentum.

A fast computation shows that j2 commutes with jz but not with j1z and j2z.

This means that there are two possibilities when one wants to specify a composite

system:
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1. The uncoupled picture: the quantum numbers j1, j2, mj1, mj2 are spec-

ified while j is unknown. In this case, the total angular momentum is un-

determined and there is no information about the orientations of the two

momenta.

2. The coupled picture: the quantum numbers j1, j2, j, mj are specified

while mj1 and mj2 are unknown. In this case, the total angular momentum

is determined but there is no information about the two components. The

derivation of the allowed values of j can be proved [34] to follow the Clebsh-

Gordon series:

j = j1 + j2, j1 + j2 − 1, · · · , |j1 − j2| (3.2.18)

A possible pictorial representation is the so-called vector model, reported in Fig-

ure 3.10. In the coupled case, the vector j has a well defined length given by

Figure 3.10: The vector model: the uncoupled picture on the left and the coupled
picture on the right. Adapted from [35].

~
√
j(j + 1). It lies on a cone since jx and jy cannot be determined. Moreover,

the lengths of the two contributing angular momenta are known and given by

~
√
j1(j1 + 1) and ~

√
j2(j2 + 1). As far as the projections along ẑ are concerned,

mj1 and mj2 are not specified, while mj = mj1 +mj2 is known.

On the other hand, in the uncoupled picture, both mj1 and mj2 are known,

while j is undetermined. As a consequence, the magnitude of the total angular

momentum is not specified and, so, the relative orientations of j1 and j2 are not

known. Note that, however, the projection along ẑ is well defined.
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3.2.2 Microscopic magnetism

There are three sources of magnetism at microscopic level:

• The orbital magnetic moment of circulating electrons.

• The intrinsic magnetic moment of electrons.

• The intrinsic magnetic moment of atomic nuclei.

Figure 3.11: The microscopic sources of magnetism in a Hydrogen atom. Adapted
from [33].

The first two belong to the field of electron magnetism, while the latter is a nuclear

magnetic phenomenon.
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3.2.2.1 Electron magnetism

The electron shows two well defined sources of angular momentum: the first is

associated with the orbital motion around the nucleus, the second is the spin.

According to the semi-classical model discussed in section §3.1.2.1, the mag-

netic moment associated with the orbital angular momentum is

m = −µB
~
l = γl

Moving to the quantum mechanics interpretation, one has to replace the observ-

ables with the corresponding Hermitian operators. As extensively analysed in

section §3.2.1, the three components of the angular momentum operator cannot

be specified simultaneously. It is customary to identify the ẑ axis as the quanti-

zation axis of the system: the operator which corresponds to the projection of

the orbital magnetic moment to the ẑ axis is

mz = −µB
~
lz = γlz (3.2.19)

and the possible outcomes are

mz = −µB
~
~ml = −µB ·ml (3.2.20)

The orbital magnetic moment is also responsible for diamagnetism. In a non

rigorous way, one could say that when an external field B is applied, the electron

speeds up or slows down so that, according to Lenz’s law, the change in the

magnetic moment is opposite to the direction of B. This effect corresponds to

an extra magnetic moment antiparallel to the field. Diamagnetism is a universal

phenomenon, but, being typically much weaker than paramagnetism, it is observed

only when the latter is absent. Note that this description is just qualitative and

the reader is invited to consult dedicated texts as [37] for a proper discussion.

The spin is an angular momentum and so it is reasonably associated with

a magnetic moment. In analogy with Equation 3.1.13, one can write the spin

magnetic moment as

m ∝ γs =⇒ m = g · γs (3.2.21)

The dimensionless proportionality constant, known as g-factor, comes from the

quantum electrodynamics theory and has value

g = 2.002319304 (3.2.22)
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usually approximated with 2, when discussing magnetism.

Since the three components of the spin operator do not commute, one usually

deals with the ẑ component

mz = g · γsz = −gµB
~
sz (3.2.23)

whose possible outcomes are

mz = −g · µBms (3.2.24)

It is interesting to highlight that the spin angular momentum accounts for para-

magnetism. Consequently, the latter usually occurs in atoms or molecules with

unpaired electrons, since Pauli principle forces electrons in pairs to have opposing

spins.

The total magnetic moment of an electron is

m = −µB
~

(l + g · s) (3.2.25)

and has a ẑ component given by

mz = −µB (ml + g ·ms) (3.2.26)

In this regard, note that the total angular momentum, defined, according to Equa-

tion 3.2.17, as

j = s+ l (3.2.27)

is not parallel to the total magnetic moment because of the g-factor in the defini-

tion of the magnetic moment associated with the spin angular momentum.

The two magnetic moments interact with each other giving rise to the so-

called spin-orbit coupling. In an elementary and rough way, this coupling can

be grasped as follows. From the electron’s point of view, the nucleus revolves

around it. Being the nucleus a charged particle, the motion is equivalent to a

current loop which gives rise to a magnetic field which influences the spin of the

electron. The energy associated with the spin-orbit coupling is such that [36, 34]:

• It depends on the Z number of the nucleus. Hence, the spin-orbit coupling

is stronger for heavy atoms.

• It is minimized if the two moments are antiparallel.
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Many electron atom When several electrons are present in the same atom,

one has to evaluate the total momenta of the system, in order to compute the

corresponding magnetic moment. The approach to follow depends on the relative

strength of the spin-orbit coupling and the Coulomb interactions among electrons.

When the latter prevails, as it is usually the case for systems of interest in mag-

netism, the Russel-Saunders coupling (or LS coupling) is applicable [34, 36]. In

this case, the orbital angular momenta li couple into a resultant total orbital an-

gular momentum L and the spin angular momenta si couple into a resultant total

spin angular momentum S. The weak spin-orbit interaction, eventually, couples

L and S into a total angular momentum J . The corresponding quantum numbers

are evaluated according to an appropriate application of the Clebsh-Gordon series.

For the two-electron case:

S = s1 + s2, s1 + s2 − 1, · · · , |s1 − s2|

L = l1 + l2, l1 + l2 − 1, · · · , |l1 − l2|

J = L+ S, L+ S − 1, · · · , |L− S|

(3.2.28)

When, on the other hand, the spin-orbit coupling is very strong, as it is in heavy

atoms, the orbital and spin angular momenta of each single electron couple to

give a combined angular momentum ji. J is obtained coupling all the ji. This is

known as the jj-coupling.

Magnetism is usually concerned with the ground state, that is, the lowest-

energy state. There is an empirical prescription, the so-called Hund’s rule,

which can be used to determine the ground state for systems which obey to the

Russel-Saunders coupling [36]:

1. The energy level with the highest value of total spin angular momentum

quantum number S lies lowest in energy. The physical reason is that, in order

to minimize the Coulomb repulsion, the electrons tend to occupy different

degenerate orbitals. It turns out, moreover, that energy is minimized if they

have parallel spin.

2. For a given S, the energy level with the highest value of total orbital angular

momentum quantum number L lies lowest in energy. The justification is that

electrons orbit in the same sense whenever possible. Indeed, in this case they

will meet less often than if they orbit in opposite directions. The mutual

repulsion is thus minimized.
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3. For atoms with less than half-filled shells, the level with the lowest value

of J lies lowest in energy (J = |L − S|). When a shell is more than half

full, the level with the highest value of J lies lowest in energy (J = L + S).

When the shell is exactly half full, L = 0 and J = S. This turns out to be

a consequence of the spin-orbit coupling.

Example 3.2.1. Consider a carbon atom which has six electrons. The electronic

configuration is

1s2 2s2 2p2

Which is the total angular momentum j for the ground state? First of all, the

core electrons can be neglected in the computation since the angular momentum

of a closed shell always turns out to be zero. Then, since sk = 1/2 and lk = 1 with

k = 1, 2, according to equations 3.2.28, the allowed values are

S = 1, 0

L = 2, 1, 0

The first Hund’s rule requires to select S = 1, which means that the two electrons

must be in two separated 2p orbitals. This granted, the second Hund’s rule forces

to choose the orbitals with ml equal to 0 and 1, so that

L = 0 + 1 = 1

The corresponding configuration is

��

1s

��

2s

� �

2p

Since the 2p shell is less than half filled, the total angular moment quantum

number is

J = |1− 1| = 0 =⇒ Mj = 0

where Mj is the ẑ projection of the total angular momentum. Consequently, the

carbon ground state is non-magnetic [36].

4

Zeeman energy The application of a magnetic field affects the energy levels

of atoms. As it is clear from the above discussion, electrons possess magnetic

moments as a consequence of orbital and spin angular momenta. These moments
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interact with an applied B field.

As previously remarked, the total angular momentum J is not collinear to

the total magnetic moment m because of the g-factor in the expression of the

spin magnetic moment. It can be shown [36, 34] that, because of the spin-orbit

coupling, the spin and orbital angular momenta precess about J . Consequently,

also the total magnetic moment m precesses, as reported in Figure 3.12. This

motion has the effect to average to zero all components ofm which are not parallel

to J . The average value of the total magnetic moment can be shown [34] to be

m = gJ · γJ (3.2.29)

where gJ is the Landé g-factor [34], whose expression is

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(3.2.30)

Note that when J = 0, the Landé g-factor is undetermined, but the magnetic

Figure 3.12: The precession of L and S about J on the left and the precession of
J about B on the right. Adapted from [35].

moment is zero [38].

According to Equation 3.1.17, when a magnetic dipole is placed in static mag-

netic field, the classical energy can be computed as

E = −m ·B

As reported in table 1.1, the quantum mechanical operator associated with the

total energy is the Hamiltonian of the system:

H = −m ·B = −γ(L+ 2S) ·B ∼ −gJ · γJ ·B (3.2.31)
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The consequence is the splitting of the energy levels. Let ẑ be the axis of orienta-

tion of the static field B. Then the Hamiltonian can be rewritten as

H = −gJ · γJzB (3.2.32)

The energy levels EMJ
can be easily found [39] replacing the eigenvalues of the

operator Jz in the previous equation

EMJ
= gJ · µBMjB (3.2.33)

where B is the magnitude of B. The energy levels are clearly equidistant and the

energy differences between two adjacent ones is

∆E = |EMJ
− EMJ−1

| = gJµBB (3.2.34)

The phenomenon will be analyzed in greater details for the simple (and useful)

case of spin-1
2

systems. Finally, as represented in Figure 3.12, according to a semi-

classical model, the total angular momentum J precesses about B, similarly to

the classical precession described in section §3.1.2.3.
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3.2.2.2 Nuclear magnetism

Nowadays physics states that everything in the Universe is made up of three

elementary particles:

• Quarks: up and down, charm and strange and top and bottom.

• Leptons: electron and electron neutrino, muon and muon neutrino, tau and

tau neutrino.

• Bosons: they are particles responsible for mediating the action of forces.

The photons for the electromagnetic force, the gluons for the strong nuclear

force and the vector bosons for the weak nuclear force.

Figure 3.13: The elementary particles according to the standard model. From
[40].

The proton is a fermion, since it is a spin-1
2

particle. Until the 1980s, it was

thought that the three quarks that make up a proton, two up and one down, had

spin such that one is in the opposite direction of the other two. The proton’s spin

would arise naturally as
1

2
+

1

2
− 1

2
=

1

2
(3.2.35)

It was later experimentally discovered that the three above mentioned quarks

only contributed about 30% to the proton’s spin. At the time of writing, the

exact origin of the proton spin is still an open question. However, it is thought to
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be due to the spin of gluons which mediate the strong nuclear force and to some

orbital angular momentum. Clearly, the same issue exists for neutrons.

This is the realm of particle physics, which falls outside the scope of this

research, for which it is definitely enough to know that both neutrons and protons

possess spin, with s = 1
2
. Nonetheless, it is considered important to warn the

reader of the ongoing debate about the spin of these particles.

The nucleus consists of protons and neutrons and it is characterized by:

• Atomic number Z: it is the number of protons. It determines the chemical

properties of the atom.

• Mass number A: the total number of nucleons. Nuclei with the same

atomic number but different mass numbers are called isotopes.

• Spin number I: It is the quantum number associated with the total an-

gular momentum of the nucleus2, which depends on the total spin angular

momentum and total orbital angular momentum of the nucleons which make

it up. The value of I in the lowest energy nuclear state is called the ground

state nuclear spin.

The determination of the nuclear spin ground state is by no means trivial and

no generic relation does exist which is able to give satisfactory results for all nuclei.

One of the models adopted is the shell model in which nucleons fill nuclear energy

shells as electrons fill atomic shells. Then, the total nuclear angular momentum

(the nuclear spin) is computed according to the LS-coupling or, more commonly,

to the jj-coupling. Some generic practical rules can be derived:

• If the nucleus has an even number of protons and an even number of neu-

trons, the ground spin quantum number is zero.

• If the nucleus has an odd number of protons and an odd number of neutrons,

the ground spin quantum number takes an integer value.

• If the nucleus has an even number of protons and an odd number of neutrons

or, vice versa, an odd number of protons and an even number of neutrons,

the ground spin quantum number takes a half integer value.

The nuclear spins of magnetic isotopes are reported in Figure 3.14.

A nucleus with non-zero spin must exhibit a magnetic moment. In analogy with

the magnetism of the electron, one defines the nuclear magneton as

2Note that the total angular momentum when the nucleus is regarded as an individual particle
is conventionally named spin and the symbol I is used instead of J .

122



3 – Introduction to magnetism

Figure 3.14: The nuclear spins. From [41].

µN =
q~

2mp

= 5.051× 10−27 J T−1 (3.2.36)

The magnetic moment is proportional to the total angular momentum Hermitian

operator I:

m ∝ µN
~
I (3.2.37)

Calling the proportionality constant as nuclear g-factor, one can write

m = gn ·
µN
~
I = γnI (3.2.38)

where γn is the nuclear gyromagnetic ratio:

γn = gn ·
µN
~

[
rad

s · T

]
(3.2.39)

The nuclear g-factor, which is embedded in the definition of γn, can be either

positive or negative. The gyromagnetic ratio, thus, has a sign:

• If γn is positive, then m and I are parallel3.

3Note that m and I are actually quantum operators, so the property of being parallel refers
to the vector model or to the related observables.
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• If γn is negative, then m and I are anti-parallel.

The spin operator I is obviously an angular momentum operator and so its

three components do not commute and cannot be specified simultaneously. More-

over

• Its magnitude can assume only the values

~
√
I(I + 1) (3.2.40)

where the spin quantum number can be I = 0, 1
2
, 1, 3

2
, · · · .

• Its component along an arbitrary ẑ direction is limited to the 2I + 1 values

mI~ (3.2.41)

with mI = −I, − I + 1, · · · , I − 1, I.

Zeeman effect In analogy with the case of the electron, the 2I + 1 states are

degenerate when no field is present. When a strong magnetic field4 B0 is applied

along the ẑ axis, the Hamiltonian of the system is

H = −γnB0Iz (3.2.42)

and 2I + 1 well defined energy eigenstates arise

EmI = −~γnmIB0 (3.2.43)

The energy difference between two adjacent energy levels is

∆E = ~|γn|B0 (3.2.44)

According to the Planck-Einstein relation

∆E = hf (3.2.45)

a radiation of frequency

ω = |γn|B0 (3.2.46)

4Henceforth, a static magnetic field will be denoted with the symbol B0.
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is needed to stimulate the transition to the state of higher energy. Note that this is

exactly the same expression for the Larmor frequency obtained in section §3.1.2.3

from a classical model.

3.2.2.3 Some remarks on microscopic magnetism

The magneton can be regarded as the unit of measurement of magnetic effects,

to some extent. In this regard, one should note that the Bohr magneton, that is,

the electron magneton is

µB =
e~

2me

∼ 9.274× 10−24 J T−1 ∼ 5.788× 10−5 eV T−1

while the nuclear magneton is

µN =
q~

2mp

∼ 5.051× 10−27 J T−1 ∼ 3.152× 10−8 eV T−1

which means that
µB
µN
∼ 1836 (3.2.47)

Hence, the magnetic phenomena related to the electron are roughly three orders

of magnitude larger than those related to the nucleus. Consequently, the energy

separation between energy levels is three orders of magnitude larger, in the case

of the electron. Assuming a field B0 = 10 T, the Larmor frequency can be in the

order5 of 100 MHz for a nucleus and 280 GHz for an electron. The corresponding

energy differences between adjacent energy levels are in the order of

∆Ee ∼ 1.159× 10−3 eV

∆EN ∼ 4.429× 10−7 eV
(3.2.48)

There are approximately three-four orders of magnitude between the energy re-

quired to promote an electron to an higher energy state and that required to

promote a nucleus6.

When discussing the magnetic property of materials and molecules, one usu-

ally neglects the contribution coming from the nuclear magnetism. Consequently,

5Considering 13C, f = 107.084 MHz
6Even if obvious, it is worth underlying that the discussion is focused on the ground state

and the considered energy levels are the 2J + 1 (or 2I + 1) levels which split when a magnetic
field is applied, because of the Zeeman effect.
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the difference among diamagnetic, paramagnetic and ferromagnetic behaviour de-

pends on the electronic magnetism. It turns out that most substances do not

have a magnetic moment in the electronic ground state, because electrons pair up

according to the Pauli principle. However, the majority of materials is weakly dia-

magnetic in ground state [33] because of the electron orbital currents induced by

the applied field. The following chapters will mainly focus on nuclear magnetism

in diamagnetic substances, when the electronic magnetism can be, more or less,

ignored. At first sight, this statement could appear to be quite senseless, since,

as discussed at the beginning of this section, electronic magnetism is significantly

larger than nucleus’s. However, the point is that it is larger, but the fields which,

as will be clear in the following, are applied to provide the ∆EN , do not affect

the electronic magnetism. Eventually, the latter can be considered as a time in-

dependent contribution to the bulk magnetic field of the sample. Except for the

chemical shift, which will be discussed later on.
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Chapter 4

Nuclear magnetic resonance

In the previous chapter, the phenomena related to magnetism have been intro-

duced from a classical and a quantum mechanical point of view. In particular, the

semi-classical precession of an ideal magnetic dipole has been discussed. Then, the

behaviour of the orbital and spin angular momenta has been analysed, highlighting

the differences between nuclear and electronic magnetism. The latter gives birth

to an interesting physical phenomenon, the nuclear magnetic resonance, which can

be exploited to build a quantum processor up. In this chapter, the behaviour of

the spin angular momentum in presence of an applied field is analysed in greater

details, relating it to the semi-classical picture of the precession, which is of help

to understand how to realize quantum gates. In particular, it is known that nuclei

with I > 1
2

are characterized by short decoherence times, resulting to be unsuitable

for quantum computation. Hence, this chapter mainly focuses on spin-1
2

nuclear

systems.

The first part is devolved to the analysis of a single spin-1
2

in a magnetic field,

while the second part discusses the behaviour of an ensemble of spins.
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4.1 Single spin

Consider a nucleus whose spin quantum number is I = 1
2
, for instance 13C. In

analogy with Equation 3.2.14, all the properties of the nuclear spin-1
2

operators

are expressed by the Pauli matrices presented in section §1.1.12. As a matter of

fact, the matrix representation of the spin operators is

Ik =
~
2
σk, k = x, y, z

I2 = I2
x + I2

y + I2
z =

3~2

4

(
1 0

0 1

)
I =

(
Ix Iy Iz

)t
(4.1.1)

As discussed in section §3.2.2.2, when an external static field B0 is applied,

the Hamiltonian of the system is

H = −γnB0Iz (4.1.2)

Since I = 1
2
, only two energy eigenstates arise as a consequence of the Zeeman

splitting. The associated basis states, known as Zeeman eigenstates, are the

eigenvectors of σz:

|↑〉 =

(
1

0

)
|↓〉 =

(
0

1

)
(4.1.3)

while the corresponding energy levels, that is, the eigenvalues of the Hamiltonian,

are

E↑ = −γn~B0

2
= −gnµNB0

2

E↓ = +
γn~B0

2
= +

gnµNB0

2

(4.1.4)

The energy difference between the two eigenstates is

∆E = ~|γn|B0 (4.1.5)

One should note that it is directly proportional to the magnitude of the applied

field. The case of 13C is reported in Figure 4.1, for typical values of B0. A spin-
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Figure 4.1: The Zeeman effect for a 13C nucleus.

1
2

system can be in a generic superposition of the two basis states. The spin

wavefunction, at time t = 0, can be written as

|ψ(0)〉 = c0 |↑〉+ c1 |↓〉 (4.1.6)

According to property 1.2.3, since the Hamiltonian is time independent, the time

evolution is ruled by the time operator

U(t) = exp

(
−Ht

~

)
= Rz(−γnB0t) (4.1.7)

Proof. Replacing the expression of H and applying corollary 1.1.5.1, one gets

U(t) = exp

(
i
γnB0Iz

~
t

)
= cos

(
γnB0

2
t

)
· I + i sin

(
γnB0

2
t

)
· σz

=

(
cos
(
γnB0

2
t
)

+ i sin
(
γnB0

2
t
)

0

0 cos
(
γnB0

2
t
)
− i sin

(
γnB0

2
t
))

=

(
ei
γnB0

2
t 0

0 e−i
γnB0

2
t

)
= Rz(−γnB0t)

The last equivalence follows directly from the definition of the rotation operator

Rz(α) introduced in section §2.1.6.1.

The wavefunction at time t is therefore

|ψ(t)〉 = Rz(−γnB0t) |ψ(0)〉 = c0e
i
γnB0

2
t |↑〉+ c1e

−i γnB0
2

t |↓〉 (4.1.8)
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Proof.

|ψ(t)〉 = Rz(−γnB0t) |ψ(0)〉

=

(
ei
γnB0

2
t 0

0 e−i
γnB0

2
t

)[
c0

(
1

0

)
+ c1

(
0

1

)]
= c0e

i
γnB0

2
t |↑〉+ c1e

−i γnB0
2

t |↓〉

As time flows, the static field forces a change in the phase between the up

and down spin eigenstates, but the probability to measure a specific outcome

(|↑〉 or |↓〉) in unchanged. Even if this is a pure quantum mechanical effect, it

Figure 4.2: The spin precession assuming γn > 0.

is possible to give a pictorial representation of the phenomenon. The spin can

be represented as an arrow precessing about the applied magnetic field at a

frequency ω0 = −γB0. This is a powerful tool to get a feel for the behaviour of

the spin and fix the ideas, since it builds a bridge to the semi-classical precession

of the magnetic moment, but it should not be overinterpreted. The latitude of

the spin (|ψ〉) gives the probability with which the two Zeeman eigenstates can be

measured, which is unaffected by the precession about B0. When a measurement

is carried out, the spin collapses to one of the two allowed eigenstates and it is

represented by a vector lying along the ẑ axis. It should be obvious that it does

not mean that the x̂ and ŷ components are zero. On the other hand, they are

simply undefined, since the three components of the spin operator do not commute

and cannot be measured simultaneously.
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The product γnB0 has the dimensions of an angular frequency. In section

§3.1.2.3, this product is defined as the Larmor frequency1 and associated with

the precession of an ideal magnetic dipole about an external field:

ω0 = −γnB0 =⇒ ω0 = |γn|B0

It was pointed out that the classically derived expression for ω0 does not depend on

the component of the magnetic moment perpendicular to the applied field. This

justifies the fact that the result obtained adopting the classical model agrees with

the one provided by quantum mechanics, where the perpendicular component is

not specified.

The sign of the precession As well known, the Hamiltonian is

H = −γnB0Iz = −γnB0
~σz

2

and has eigenvalues and and associated eigenvectors

E↓ = +
γn~B0

2
−→ |↓〉 E↑ = −γn~B0

2
−→ |↑〉 (4.1.9)

Calling the ground state Eground and the high energy state Ehigh:

• For a particle with γ < 0 and, so, with the magnetic moment antiparallel

to the spin, the energy states are:

Eground = E↓ = −~ω0

2
−→ |↓〉 Ehigh = E↑ = +

~ω0

2
−→ |↑〉 (4.1.10)

The vector angular frequency ω0 is positive and the spin precesses anti-

clockwise. The electron and few nuclei, as 15N and 29Si, have negative

gyromagnetic ratio.

• For a particle with γ > 0 and, so, with the magnetic moment parallel to

the spin, the energy states are:

Eground = E↑ = −~ω0

2
−→ |↑〉 Ehigh = E↓ = +

~ω0

2
−→ |↓〉 (4.1.11)

The vector angular frequency ω0 is negative and the spin precesses clock-

wise. Most nuclei have positive gyromagnetic ratio.
1Here the Larmor frequency corresponding to the field B0 is denoted with the subscript 0,

for the sake of clearness.
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4.1.1 The radio-frequency field

In short, one can say that the application of a static field to a single spin-1
2

system

has two effects: the rise of two well-defined energy levels and the spin precession

about B0. It is also known, from the previous discussion that, assuming γn > 02,

the system energy is minimized when the spin is parallel to the applied field and

maximized in the opposite case. However, it is clear that the spin does not live in

one or the other energy state, but rather in a linear superposition of both.

In order to encode the information carried by a qubit on a spin-1
2
, one has to

find a tool which allows changing the “orientation” of the spin. In other words,

one must be able to change the ẑ component of the spin, something which cannot

be achieved by the simple and spontaneous precession about B0. However, this

requires to change the θ angle and, consequently, the energy of the system. What

is needed, in practice, is an interaction that can favour the transitions between

levels. According to Equation 4.1.5, the required energy is ∆E = ~|γn|B0.

The most commonly used coupling is an alternating magnetic field applied

perpendicularly to the static field, for instance along the x̂ axis

Br(t) = −2 ·Br cos(ωrt− φ)x̂ (4.1.12)

where ωr and φ are the angular frequency and the phase of Br, respectively. The

minus sign is arbitrarily chosen to simplify the successive discussion about quan-

tum gates, while the factor 2 allows the Hamiltonian to have a cleaner expression.

The latter is

Hr = 2 · γn ·Br cos(ωrt− φ)Ix (4.1.13)

Defining the angular frequency

ω∗ , γn ·Br (4.1.14)

the radio-frequency Hamiltonian can be rewritten as

Hr = 2 · ω∗ cos(ωrt− φ)Ix (4.1.15)

Since Br is typically around 10−4 T, while B0 is of the order of 10 T, it results

that ωr � ω0 and so the contribution induced by the alternating field can be

written as a perturbation of the main Hamiltonian H0. It follows that the overall

2Henceforth, unless otherwise specified, γn will be always assumed positive, since this is the
case of interest for molecules routinely adopted in quantum computation.
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Hamiltonian is

H = H0 +Hr = −ω0Iz + 2 · ω∗ cos(ωrt− φ)Ix (4.1.16)

The explicit time dependence makes it hard to solve the associated Schrödinger

equation and find the time evolution operator. A special technique is introduced

to simplify the job: the use of a rotating coordinate system S ′. If γn > 0,

Figure 4.3: The rotating frame S ′: ω = −ωẑ with ω > 0.

then the static field B0 forces the spin to precess clockwise about ẑ. The reference

frame is chosen such that it rotates in the same sense of the spin. Consequently,

the angular frequency which characterizes the rotation of the x̂′ and ŷ′ is

ω = −ωẑ, ω > 0 (4.1.17)

The frame axes, as reported in Figure 4.3, are related as

x̂′ = cos(ωt)x̂− sin(ωt)ŷ

ŷ′ = sin(ωt)x̂+ cos(ωt)ŷ

ẑ′ = ẑ

(4.1.18)

The analysis of the effects induced by the alternating magnetic field on the

spin can be carried out adopting a semi-classical or a quantum mechanical model.

The main aspects of both are presented in the following, since the first one is

useful to have a pictorial understanding of what is going on, while the second one

is extensively used to perform quantum computation. For a more rigorous and
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detailed analysis, the reader is suggested to make reference to [42], which is one

of the fundamental texts on NMR.

4.1.1.1 The classical picture

The radio frequency field introduced in Equation 4.1.12 can be broken in two

rotating components, each of amplitude Br:

Br(t) = B+
r (t) +B−r (t) (4.1.19)

where

B+
r (t) = −Br [cos(ωrt− φ)x̂− sin(ωrt− φ)ŷ]

B−r (t) = −Br [cos(ωrt− φ)x̂+ sin(ωrt− φ)ŷ]
(4.1.20)

The component rotating in the same sense as the spin precession (negative for

γ > 0 and positive for γ < 0) is known as the resonant component, while the

component rotating in the opposite sense to the spin precession (positive for

γ > 0 and negative for γ < 0) is referred to as the non-resonant component.

Figure 4.4: The resonant and the non-resonant components. Adapted from [33].

Near resonance, that is, when ωr ∼ ω0, B+
r rotates coherently with the Larmor

precession, while B−r rotates in the opposite sense. Consequently, if ω ∼ ω0,

B+
r is stationary in the rotating frame while B−r rotates at twice the Larmor

frequency. Therefore, only B+
r will have an effective influence on the nuclear

spins, provided that both fields have magnitude much smaller than that of the

static field B0. Hence, B−r can be neglected. This is known as the rotating

wave approximation in the scientific literature.

The equation of motion of the spin including both the effects ofB0 andB+
r can

be written in the laboratory reference system S in analogy with Equation 3.1.23
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as (
dm

dt

)
S

= γm×
[
B0 +B+

r (t)
]

(4.1.21)

The time dependence of B+
r can be eliminated using a coordinate system S ′ which

rotates about ẑ at frequency ω = −ωẑ, enforcing ω = ωr. In this reference system,

B+
r is static. Moreover, since the axis of rotation coincides with the direction of

B0, also B0 is static.

The equation of motion of the magnetic moment in the rotating frame is

(
dm

dt

)
S′

= γnm×Beff (4.1.22)

where

Beff ,

(
B0 −

ωr
γn

)
ẑ −Br (cos(φ)x̂′ + sin(φ)ŷ′) (4.1.23)

Proof. The point is to compute the derivative of Equation 4.1.21 in the rotating

coordinate system. It is known from basic kinematics that, if S is the laboratory

reference system and S ′ is a system rotating at angular frequency ω with respect

to S, then the derivative of a generic vector a is(
da

dt

)
S

=

(
da

dt

)
S′

+ ω× a

For the proof, see for instance [43]. The derivative of the magnetic moment is

therefore (
dm

dt

)
S

=

(
dm

dt

)
S′

+ ω×m

Replacing Equation 4.1.21, one gets in the rotating frame(
dm

dt

)
S′

=

(
dm

dt

)
S

− ω×m = γm×
[
B0 +B+

r (t)
]
− ω×m

The rotating magnetic field can be rewritten with respect to the rotating reference

frame as

B+
r (t) = −Br [cos(ωrt− φ)x̂− sin(ωrt− φ)ŷ]

= −Br {cos(φ) [cos(ωrt)x̂− sin(ωrt)ŷ] + sin(φ) [sin(ωrt)x̂+ cos(ωrt)ŷ]}

= −Br (cos(φ)x̂′ + sin(φ)ŷ′)
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Replacing in the equation of motion(
dm

dt

)
S′

= γm× [B0ẑ −Br (cos(φ)x̂′ + sin(φ)ŷ′)] +m× ω

= m [(γnB0 − ωr) ẑ − γnBr (cos(φ)x̂′ + sin(φ)ŷ′)]

= γnm×
[(
B0 −

ωr
γn

)
ẑ −Br (cos(φ)x̂′ + sin(φ)ŷ′)

]

The proposed classical model is interesting for a number of reasons. First of

all, Equation 4.1.22 states that the magnetic moment precesses clockwise3 about

the direction of Beff at an angular frequency, whose value, one resonance, is γnBr.

However, when the alternating field is far from resonance, that is, when

Figure 4.5: The precession of the spin on resonance in the rotating coordinate
reference system for φ = 225°.

ξ , ω − ω0 = ωr − ω0 (4.1.24)

is large, the spin precesses in the rotating frame about an axis tilted away from

3As known from the discussion about the Larmor precession, if γn > 0, the spin precesses
clockwise about Beff or anticlockwise about −Beff. The reason for the minus sign in Equa-
tion 4.1.12 is that with this choice, the spin performs a positive (anticlockwise) precession about
an axis which describes a φ angle with x̂′.
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the ẑ axis by a very small angle [44] given by

α = atan

(
ω∗
ξ

)
(4.1.25)

As a matter of fact

atan

(
ω∗
ξ

)
∼ 0 (4.1.26)

when |ξ| � ω∗. It follows that the effect of a radio frequency field on spins which

are far off resonance is practically immaterial. On the other hand, if ω ∼ ω0, that

is, near resonance, the effective field becomes

Beff ∼ −Br (cos(φ)x̂′ + sin(φ)ŷ′) (4.1.27)

and the spin precesses about B+
r , which is stationary in the rotating frame, at

frequency ω∗, as reported in Figure 4.5.

The main results obtained so far can be summarized as follows:

• When just a static fieldB0 = B0ẑ is applied to the system, the spin precesses

about the ẑ axis at the Larmor frequency in the laboratory reference system,

while it is constant in the rotating frame, given that the latter rotates at the

Larmor frequency.

• When an alternating field Br(t) = −2 · Br cos(ωrt− φ)x̂ and a static field

B0 are applied to the system, the spin follows a complex trajectory in the

laboratory system, while it simply rotates about B+
r in the rotating frame,

assuming the resonance condition. An off-resonance field has a very small

impact on the spin trajectory, since Br is usually four-five orders of magni-

tude smaller that B0.

4.1.1.2 The quantum picture

The spin Hamiltonian reported in Equation 4.1.16 depends on time. In order

to remove such dependence, the previous section presents the introduction of a

rotating reference as a good solution. The quantum mechanical equivalent of

the rotating coordinate transformation is a unitary transformation described by a

unitary operator. It is clear that if the x̂′ and ŷ′ axes rotate clockwise at angular

frequency ω, a generic state vector |ψ〉 in S is mapped to the corresponding state

vector |ψ̃〉 in S ′ by a unitary operator which describes an anticlockwise rotation
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about ẑ:

|ψ̃〉 = Rz(ωt) |ψ〉 (4.1.28)

The matrix representation, for the spin-1
2

case, is therefore

UR , Rz(ωt) = exp
(
−iωσz

2
t
)

=

(
e−i

ω
2
t 0

0 e+iω
2
t

)
(4.1.29)

The evolution of the state vector |ψ̃〉 is ruled by the Schrödinger equation, which,

in the rotating frame, has the following expression

d |ψ̃〉
dt

= − i
~
H̃ |ψ̃〉 (4.1.30)

where the rotating frame Hamiltonian is

H̃ = URHU †R − i~UR
dU †R
dt

(4.1.31)

Proof. The time derivative of the wavefunction in the rotating frame is

d |ψ̃〉
dt

=
d

dt
(UR |ψ〉) =

dUR

dt
|ψ〉+UR

d |ψ〉
dt

Replacing the Schrödinger equation in the previous expression one gets

d |ψ̃〉
dt

=
d

dt
(UR |ψ〉) =

dUR

dt
|ψ〉+UR

[
− i
~
H |ψ〉

]
=

[
dUR

dt
−UR

i

~
H
]
|ψ〉

= − i
~

[
i~

dUR

dt
+URH

]
U †RUR |ψ〉

= − i
~

[
i~

dUR

dt
U †R +URHU †R

]
UR |ψ〉

Now consider that the time derivative of the identity operator is the zero operator

dI
dt

= 0
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Then, since UR is unitary

dI
dt

=
dUU †

dt
=

dU

dt
U † +U

dU †

dt
= 0 =⇒ dU

dt
U † = −U dU †

dt

Replacing in the time derivative of |ψ̃〉

d |ψ̃〉
dt

= − i
~

[
URHU †R − i~UR

dU †R
dt

]
|ψ̃〉 = − i

~
H̃ |ψ̃〉

When UR = RZ(ωt), the rotating frame Hamiltonian becomes

H̃ = Rz(ωt)HRz(−ωt) + ωIz (4.1.32)

Proof. Equation 4.1.31 is rewritten as

H̃ = Rz(ωt)HRz(−ωt)− i~Rz(ωt)
dRz(−ωt)

dt

The derivative of the rotation operator is

dRz(−ωt)
dt

=
d

dt

[
exp
(
iωt
σz
2

)]
= iω

σz
2

exp
(
iωt
σz
2

)
= iω

σz
2
Rz(−ωt)

and so

H̃ = Rz(ωt)HRz(−ωt) + ~ω
σz
2

As known from the classical model, the non-resonant field component which rotates

in the opposite sense as the nuclear spin precession can be neglected, according to

the rotating wave approximation. The resulting approximated Hamiltonian

takes the following form
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H̃ = ξIz + ω∗(cosφIx + sinφIy) (4.1.33)

One should note that the Hamiltonian is now time independent.

Proof. The rotating operators satisfy [42, 33] the following useful properties

Rz(α)IxRz(−α) = cos(α)Ix + sin(α)Iy

Rz(α)IyRz(−α) = − sin(α)Ix + cos(α)Iy

Rz(α)IzRz(−α) = Iz

The approximated Hamiltonian, when only

B+
r (t) = −Br [cos(ωrt− φ)x̂− sin(ωrt− φ)ŷ]

is considered, takes the form

H = −ω0Iz + ω∗ [cos(ωrt− φ)Ix − sin(ωrt− φ)Iy]

= −ω0Iz +Rz(−ωrt+ φ)IxRz(ωrt− φ)

Moving to the rotating frame

H̃ = ξIz +Rz ((ω − ωr)t+ φ) IxRz ((ωr − ω)t− φ)

If the rotating frame angular frequency coincides with that of the alternating field,

that is, if

ω ≡ ωr

then the Hamiltonian takes a simpler form

H̃ = ξIz +Rz (φ) IxRz (−φ)

= ξIz + ω∗(cosφIx + sinφIy)

When the resonance condition is completely fulfilled, the Hamiltonian be-

comes
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H̃ = ω∗(cosφIx + sinφIy) (4.1.34)

The matrix representation In order to see the effect of the non-resonant

component of the magnetic field and be convinced that the rotating wave approxi-

mation is definitely reasonable, it is possible to write explicitly the rotating frame

Hamiltonian matrix expression for the spin-1
2

case:

H̃ =
~
2

(
−ω0 + ω ω∗[e

−i[(ω−ωr)t+φ] + e−i[(ω+ωr)t−φ]]

ω∗[e
i[(ω−ωr)t+φ] + ei[(ω+ωr)t−φ]] ω0 − ω

)
(4.1.35)

Proof. Replacing Equation 4.1.16 in Equation 4.1.32, one gets

H̃ = Rz(ωt) [−ω0Iz + 2ω∗ cos(ωrt− φ)Ix]Rz(−ωt) + ωIz

which can be immediately rewritten as

H̃ = 2ω∗ cos(ωrt− φ)Rz(ωt)IxRz(−ωt) + (ω − ω0)Iz

The first term on the right hand side is developed as

Rz(ωt)IxRz(−ωt) =
~
2
Rz(ωt)σxRz(−ωt)

=
~
2

(
e−iωt/2 0

0 e+iωt/2

)(
0 1

1 0

)(
e+iωt/2 0

0 e−iωt/2

)

=
~
2

(
0 e−iωt

e+iωt 0

)

The Hamiltonian becomes

H̃ = ~

(
0 ω∗e

−iωt cos(ωrt− φ)

ω∗e
+iωt cos(ωrt− φ) 0

)
+

~
2

(
ω − ω0 0

0 ω0 − ω

)

= ~

(
ω−ω0

2
ω∗e

−iωt cos(ωrt− φ)

ω∗e
+iωt cos(ωrt− φ) ω0−ω

2

)
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Replacing

cos(ωrt− φ) =
ei(ωrt−φ) + e−i(ωrt−φ)

2

in the previous expression, one obtains Equation 4.1.35.

If the rotating frame angular frequency coincides with that of the alternating field,

that is, if

ω ≡ ωr (4.1.36)

then the Hamiltonian takes a simpler form

H̃ =
~
2

(
ξ ω∗[e

−iφ + e−i(2ωrt−φ)]

ω∗[e
iφ + ei(2ωrt−φ)] −ξ

)
(4.1.37)

The terms oscillating rapidly with 2ωr derive from the non-resonant field compo-

nent which rotates in the opposite sense with respect to the nuclear spin precession.

If the time scale is sufficiently longer that 1/ωr, then these terms are averaged to

zero and can be safely neglected. This is, once more, the rotating wave approx-

imation. The rotating frame Hamiltonian is now time independent

H̃ ≈ ~
2

(
ξ ω∗e

−iφ

ω∗e
iφ −ξ

)
=

~
2

[ξσz + ω∗(cosφσx + sinφσy)] (4.1.38)

where ξ = 0 when the resonance condition is met.

The time evolution operator Once the Hamiltonian is made time indepen-

dent, the time evolution operator can be trivially obtained. Let the generalized

Rabi frequency be

Ω =
√
ω2
∗ + ξ2 (4.1.39)

The time evolution operator is

Ũ(t) =

(
cos Ωt

2
− i sin Ωt

2
· ξ
Ω

−i sin Ωt
2
· ω∗
Ω
e−iφ

−i sin Ωt
2
· ω∗
Ω
eiφ cos Ωt

2
+ i sin Ωt

2
· ξ
Ω

)
(4.1.40)

When the resonance condition is fulfilled and so Ω ≡ ω∗, the operator
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becomes

Ũ (t) =

(
cos ω∗t

2
−i sin ω∗t

2
· e−iφ

−i sin ω∗t
2
· eiφ cos ω∗t

2

)
= Rz(φ)Rx(ω∗t)Rz(−φ)

(4.1.41)

Proof. The Hamiltonian of Equation 4.1.33, can be rewritten as

H̃ = Ω

(
ξ

Ω
Iz +

ω∗ cos(φ)

Ω
Ix +

ω∗ sin(φ)

Ω
Iy

)
which allows the definition of the unit vector

n̂ =

(
ξ

Ω
ẑ +

ω∗ cos(φ)

Ω
x̂+

ω∗ sin(φ)

Ω
ŷ

)
Then, the Hamiltonian can be rewritten as

H̃ = Ωn̂I = Ω (nxIx + nyIy + nzIz)

Next, the time evolution operator is

Ũ (t) = exp

(
−iH̃

~
t

)
= exp

(
−iΩn̂I

~
t

)
= exp

(
−iΩn̂σ

2
t

)

According to corollary 1.1.5.1, the previous exponential function can be rewritten

as

Ũ(t) = exp

(
−iΩn̂σ

2
t

)
= cos

Ωt

2
I − in̂σ sin

Ωt

2

=

(
cos Ωt

2
0

0 cos Ωt
2

)
− sin

Ωt

2
·

[(
iξ
Ω

0

0 − iξ
Ω

)

+

(
0 iω∗ cosφ

Ω
iω∗ cosφ

Ω
0

)
+

(
0 ω∗ sinφ

Ω

−ω∗ sinφ
Ω

0

)]

=

(
cos Ωt

2
− i sin Ωt

2
· ξ
Ω

−i sin Ωt
2
· ω∗
Ω

[cosφ− i sinφ]

−i sin Ωt
2
· ω∗
Ω

[cosφ+ i sinφ] cos Ωt
2

+ i sin Ωt
2
· ξ
Ω

)

=

(
cos Ωt

2
− i sin Ωt

2
· ξ
Ω

−i sin Ωt
2
· ω∗
Ω
e−iφ

−i sin Ωt
2
· ω∗
Ω
eiφ cos Ωt

2
+ i sin Ωt

2
· ξ
Ω

)
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It is satisfying to see that the unitary operator Ũ(t) = Rz(φ)Rx(ω∗t)Rz(−φ)

prescribes the same precession as the classical model: a positive anticlockwise

precession of an angle ω∗t about an axis which describes a positive φ angle with

x̂′.

The approach to change the probability of the measurement outcome, that is,

to “rotate” the spin vector about the xy-plane, is to apply a resonant field, with

a proper phase φ and such that

ω∗τ = θ (4.1.42)

where θ is the desired rotation angle, τ the pulse width and ω∗ the pulse amplitude,

as one can see in Figure 4.6.

Figure 4.6: A π-pulse (or X-pulse) assuming τ = 10 µs on a 13C nucleus spin and
its Fourier transform. Note that the carrier is not represented for the sake of
simplicity.

The Rabi oscillations It is interesting to study the behavior of the probabilities

of the two possible outcomes when an alternating field is applied. Assume that

the resonance condition is met and that the state of the system at time t = 0 is

described by the following wavefunction in the rotating frame

|ψ̃(0)〉 =

(
c0

c1

)
(4.1.43)
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The state at time t is obtained applying the time operator to the state vector

|ψ̃(t)〉 =

(
cos ω∗t

2
−i sin ω∗t

2
· e−iφ

−i sin ω∗t
2
· eiφ cos ω∗t

2

)(
c0

c1

)

=

(
c0 · cos ω∗t

2
− ic1 · sin ω∗t

2
· e−iφ

−ic0 · sin ω∗t
2
· eiφ + c1 · cos ω∗t

2

) (4.1.44)

At resonance, as reported in Figure 4.7, the probabilities with which the system

Figure 4.7: The Rabi oscillations for the |↑〉 state.

is found in the ground or in the excited eigenstate of H0 oscillate at the Rabi

frequency Ω = ω∗:

P0 =

(
c0 cos

ω∗t

2

)2

+

(
c1 sin

ω∗t

2

)2

P1 =

(
c0 sin

ω∗t

2

)2

+

(
c1 cos

ω∗t

2

)2
(4.1.45)

Applying an alternating field for a specific amount of time allows the complete

inversion of the probability of the outcome. There is one point which has to

be remarked. When saying that the energy difference between the two Zeeman

eigenstates is ∆E = ~|γn|B0, one could be brought to think that applying a

resonant field, all spins will effectuate a transition to the higher energy state.

This reasoning is clearly fallacious. First of all, the spins do not exist in one or the

other state but in a linear superposition of both. Second, as clear from equations

4.1.44, the probability amplitudes are complex numbers: the coupling with the

external radio frequency field generates complex oscillating coefficients and, thus,

a sinusoidal behaviour of the probabilities. This is pictorially interpreted as the

precession of the spin vector about the applied field.
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4.1.2 The off-resonance field: the Bloch-Siegert effect

What does it happen when an off-resonance field is applied to a spin? In section

4.1.1.1, it is pointed out that the effect is almost negligible if the field is significantly

off-resonance. The aim, now, is to make things more quantitative, following the

quantum approach. In the proof of Equation 4.1.40, the unit vector n̂ is defined

as

n̂ =

(
ξ

Ω
ẑ +

ω∗ cos(φ)

Ω
x̂+

ω∗ sin(φ)

Ω
ŷ

)
(4.1.46)

and the Hamiltonian is expressed as

H̃ = Ωn̂I (4.1.47)

The generalized Rabi frequency can be rewritten as

Ω =
√
ω2
∗ + ξ2 = ξ

√
1 + ε2 (4.1.48)

where

ε =
ω∗
ξ

(4.1.49)

The Hamiltonian becomes

H̃ = ξ
√

1 + ε2n̂I (4.1.50)

and the unit vector

n̂ =
1√

1 + ε2
(ẑ + ε cos(φ)x̂+ ε sin(φ)ŷ) (4.1.51)

The time development operator is

Ũ(t) = exp

(
−iξ
√

1 + ε2n̂σ

2
t

)
(4.1.52)

If the detuning ξ is significantly larger than ω∗, then |ε| � 1 and

n̂ ∼ ẑ =⇒ Ũ (t) ∼ exp

(
−iξ
√

1 + ε2σz
2

t

)
(4.1.53)

The rotation axis n̂ is just slightly tilted from the ẑ. Therefore, the probability

of finding the system in one or the other state is almost unaffected. However, the

effect on the phase cannot be neglected when the long-term behaviour of the spin

is taken into consideration.
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When no alternating field is applied, the spin precesses according to

Ũ(t) = exp

(
−iξσz

2
t

)
(4.1.54)

given that the rotating field is characterized by the frequency ω. Comparing

Equation 4.1.54 with Equation 4.1.53, it is clear that the effect of the off-resonance

field is to cause a shift of the precession frequency

ξ(1−
√

1 + ε2) (4.1.55)

Even if this quantity is small, the phase shift

|t · ξ(1−
√

1 + ε2)| (4.1.56)

is not necessarily small because t can be large. This effect is known as Bloch-

Siegert effect [45].

Example 4.1.1. Consider, as an example, to apply a radio frequency field such

that

θ = ω∗τ = π

with a pulse width

τ = 2 · 2π

ξ

The amplitude is therefore

ω∗ =
ξ

4

It follows that

ε =
ω∗
ξ

= 0.25

which is not much smaller than 1. As a consequence, n̂ is close but not coincident

with ẑ. Since the spin precesses about n̂, there is not only a shift in the reference

phase ∣∣∣∣∣4πξ ξ
(

1−
√

1 +
1

4

2
)∣∣∣∣∣ ∼ 22.16°

but also a variation of probability, as clear from Figure 4.8. 4

It is relevant that, once ξ is fixed4, increasing the pulse width τ results in a

4In actual implementations, the differences between the Larmor frequencies of separate nuclei
depend on the specific molecule adopted.
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Figure 4.8: The Bloch-Siegert effect. Since ξ > 0, |ψ1〉 precesses about n̂ according
to the positive sense of rotation and evolves in |ψ2〉. Note that the spin is observed
from a reference frame which rotates at frequency ω = ωr 6= ω0.

reduction of ω∗, which, in turns, lowers the value of ε, resulting in a minimized

Bloch-Siegert effect. However, a very long τ , a kind of pulse known as soft pulse

in the scientific literature, is not always a convenient choice, because the effect

of spin-spin couplings (cf. chapter 5) may become not negligible. For clarity, the

Bloch-Siegert effect is analysed in Figure 4.9 for the case presented in example

4.1.1, letting τ ranging from 0 to 8π/ξ.

Figure 4.9: The Bloch-Siegert effect: the phase shift for the case presented in
example 4.1.1, assuming τ ∈ [0,8π/ξ]. It is assumed that ξ = 1 Mrad s−1.
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4.2 Spin ensemble

The description presented in the previous section, which adopts a vector model

to detail the changes in the nuclear magnetization caused by the application of

static and oscillating magnetic fields, is oversimplified. Liquid-state NMR is most

suitably described by density operators, rather than state vectors.

Consider a sample of magnetically equivalent spin-1
2

subsystems, which, ap-

proximately, do not influence each other. Such a collection of a large number

(∼ 1022) of independent, identical subsystems is known as ensemble. At any

instant of time, each spin has a different orientation. A very few of them are

close to state |↑〉 or to state |↓〉, while the largest number is in a superposition of

the two eigenstates of the central Hamiltonian. The overall nuclear magnetization

results from the sum of the small contributions from the single spins. It is rather

inconvenient to treat each spin individually and then add the results together.

This kind of system is naturally described by the density operator, which is an

elegant approach to represent the whole ensemble, without referring to the single

spin states. Let

ρ =
∑
i

pi |ψi〉〈ψi| =

(
c0c∗0 c0c∗1

c1c∗0 c1c∗1

)
=

(
ρα ρ+

ρ− ρβ

)
(4.2.1)

be the matrix representation of the density operator, where the overline denotes

an average value. Some nomenclature is now useful: the diagonal elements are

called populations while the off-diagonal elements are known as coherences.

Relationships and properties Let

|ψ〉 =

(
c0

c1

)
(4.2.2)

be a generic state of a certain spin. The normalization condition requires that

c0c
∗
0 + c1c

∗
1 = 1 (4.2.3)

Since this applies to all spins in the ensemble, it must be true that

c0c∗0 + c1c∗1 = 1 =⇒ ρα + ρβ = 1 (4.2.4)
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coherently with property 1.2.4 which requires every density matrix to have unitary

trace. Moreover, the populations are by definition real and positive.

As far as the coherences are concerned, it follows from the construction of the

density matrix that

c0c∗1 =
{
c1c∗0

}∗
=⇒ ρ+ = ρ∗− (4.2.5)

Thus, coherences come in conjugate pairs.

Physical interpretation The populations represent the probability of finding

a member of the ensemble in one of the basis states when performing a measure-

ment. It should be remarked the similarity with the case in which the state of a

system is described by a simple state vector written as the linear superposition of

the static Hamiltonian eigenstates

|ψ〉 = c0 |↑〉+ c1 |↓〉 (4.2.6)

and the probability of finding the spin in one or the other state is |c0|2 and |c1|2.

The populations, consequently, do not indicate the actual fraction of spins which

is in a peculiar state, since very few spins are effectively in one of the eigenstates,

the vast majority being in a linear superposition of the latter.

Since the trace of a density matrix is unitary, only the difference in populations

has a physical meaning:

• If ρα > ρβ there is a net polarization of spins along the external field.

• If ρα < ρβ there is a net polarization of spins against the external field.

• If ρα = ρβ there is no net polarization in the direction of the field.

The coherences are related to the presence of a transverse spin magnetization.

The off-diagonal terms can be generated only by spins which are in superposition

states and not in some eigenstate. Nevertheless, this is not enough. Coherences do

exist only if the transverse polarizations are also partially aligned. Conversely, if

the polarization vectors of the subsystems are uniformly distributed in the trans-

verse plane, no coherence can arise.

Eventually, it is useful to note that the phase of ρ− denotes the angle of the

transverse magnetization with respect to +x̂. On the other hand, ρ+, being the

complex conjugate of ρ−, does not carry any useful additional information.
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4.2.1 Thermal equilibrium

It is possible to prove [17, 33], resorting on quantum statistical mechanics, that in

thermal equilibrium at temperature T :

• The coherences are identically zero.

• The populations follow the Boltzmann distribution and in the basis of the

Hamiltonian eigenstates are expressed as

(ρ0)mm =
e−

Em
kbT∑

j e
−
Ej
kbT

(4.2.7)

where Ej for −I ≤ j ≤ I are the eigenvalues of the Hamiltonian and the

denominator is known as the partition function

Z(T ) =
∑
j

e−
Ej
kbT (4.2.8)

The thermal equilibrium density matrix is therefore

ρ0 =
e−

H
kbT∑

j e
−
Ej
kbT

=
e−

H
kbT

tr
(
e−

H
kbT

) (4.2.9)

As thoroughly discussed, the laboratory frame Zeeman Hamiltonian for an ensem-

ble of identical non interacting nuclei with spin quantum number I is

H = −ω0Iz

When the high temperature limit holds true, that is for temperatures above

1 K, replacing the Hamiltonian, the density matrix acquires a simpler expres-

sion:

Let

∆ ,
~ω0

kbT
(4.2.10)

then

ρ0 =

(
1

2I + 1

)
I +

(
∆

2I + 1

)
σz
2

(4.2.11)
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Proof. Consider the numerator of Equation 4.2.7 and replace the expression of the

Zeeman Hamiltonian. One gets

exp

(
mI~ω0

kbT

)
, mI = −1

2
, +

1

2

As computed in section §3.2.2.3, the energy difference between the eigenvalues is

small

~ω0 ∼ (1× 10−7 to 1× 10−6) eV

while the thermal energy at room temperature (25 ◦C) is roughly

kbT ∼ 2.57× 10−2 eV (4.2.12)

As a consequence

∆ =
~ω0

kbT
∼ (1× 10−5 to 1× 10−4)

which means that the exponential function can be approximated with its Maclau-

rin series truncated to the first order

exp

(
mI~ω0

kbT

)
∼ 1 +

mI~ω0

kbT

Similarly, the denominator of Equation 4.2.7 is approximated as

I∑
mI=−I

e
mI~ω0
kbT ∼ 2I + 1

It follows that

(ρ0)mm ∼
1 + mI~ω0

kbT

2I + 1

and so the overall density matrix is

ρ0 =

(
1

2I + 1

)
I +

(
∆

2I + 1

)
σz
2

(4.2.13)

One should note that the first term on the right hand side of Equation 4.2.11 is

simply the identity matrix. As well known, the latter commutes with all operators

and so it does not evolve in time. This term describes a uniform background which

is not acted upon by the applied magnetic field. On the other hand, the second

term, which is a traceless matrix customarily referred to as the deviation matrix
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∆ρ, is directly related to the operator Iz.

∆ρ0 =
∆

2I + 1

σz
2

(4.2.14)

It is this term which does interact with the applied field and does evolve in time.

The explicit matrix expression for the spin-1
2

case is

ρ0 =
1

2

(
1 0

0 1

)
+

∆

4

(
1 0

0 −1

)
(4.2.15)

It is interesting to highlight that the Boltzmann distribution favors the lowest

energy state, whose population is expected to be the highest one. However, since

∆≪ 1, the low-energy state is just slightly more populated than the high-energy

state. The population difference, at customary temperatures and fields, is only

about one part in 105! The physical interpretation is that, at thermal equilibrium,

there is only a very slight polarization of the spins along the direction of the

applied field B0, as one can appreciate in Figure 4.10.

Figure 4.10: The thermal equilibrium density matrix, obtained for unrealistic
∆ = 0.5 for the sake of representation. As one can see, even for a ∆ three orders
of magnitude larger than the common one, the magnetization (represented by the
Bloch vector) along the direction of the applied static field is weak.
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4.2.2 The magnetization vector

As extensively discussed, the state of a single spin-1
2

is classically described by

an arrow indicating the “orientation” of the spin angular momentum. The same

approach is feasible for an ensemble of non-interacting spins. The magnetization

vector M is introduced as the vector indicating the net magnitude and direction

of the ensemble magnetization. Equation 3.1.23, which describes the precession

of a magnetic moment, has been derived for a single spin. Anyhow, considering

a group of non-interacting spins, where the magnetic moment of the k-th spin is

mk, the total magnetic moment is

m =
∑
k

mk (4.2.16)

It is trivial to show [42] that 3.1.23 holds true also for the total magnetization

dM

dt
= γM ×B (4.2.17)

The point, now, is to find a meaningful way to provide a pictorial representation

of the magnetization vector related to the density matrix. An obvious possibility

is to use the Bloch vector as introduced in section §2.1.5.2. However, as seen in

Figure 4.10, the Bloch vector does not have a convenient normalization. As a

matter of fact, letting ∆ ∼ 10−5, the arrow would simply be not visible. As a

consequence, the magnetization vector is conventionally defined [33] such that the

thermal equilibrium magnetization vector is equal to a unit vector along the ẑ

axis.

The magnetization vector is defined as

M = Mxx̂+Myŷ +Mzẑ (4.2.18)

where

Mx =
4 Re{ρ−}

∆

My =
4 Im{ρ−}

∆

Mz =
2 (ρα − ρβ)

∆

(4.2.19)
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Proof. Since the ẑ component of the Bloch vector at thermal equilibrium is

nz = ρα − ρβ =
∆

2

the ẑ component of the magnetization vector can be defined as

Mz = nz ·
2

∆
= 1

In section §2.1.5.2 it is shown that a generic density matrix matrix can always be

expressed as

ρ =
1

2
(I + nxσx + nyσy + nzσz)

which is rewritten as

ρ =
1

2
I +

1

2
· 2

∆
· ∆

2
(nxσx + nyσy + nzσz)

=
1

2
I +

∆

4

(
2

∆
· nxσx +

2

∆
· nyσy +

2

∆
· nzσz

)
=

1

2
I +

∆

4
(Mxσx +Myσy +Mzσz)

where

Mx =
2 · nx
∆

=
4 Re{ρ−}

∆

My =
2 · ny
∆

=
4 Im{ρ−}

∆

Mz =
2 · nz
∆

=
2 (ρα − ρβ)

∆
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4.2.3 Free precession

In this section the spin ensemble free precession is analyzed in the idealized case

in which the relaxation phenomena are neglected.

It is well known that a single spin, under the influence of a static field B0,

performs a precession about the ẑ axis at the Larmor frequency. In the laboratory

frame

|ψ(t)〉 = Rz(−ω0t) |ψ0〉

The time evolution of a density operator, according to theorem 1.2.4, is ruled by

the Liouville - von Neumann equation. If the Hamiltonian of the system is time

independent, the Liouville - von Neumann equation can be solved introducing the

familiar time evolution operator

U(t) = exp

(
−Ht

~

)
and the density operator evolves as

ρ(t) = U(t)ρ(t)U(t)†

Repeating the arguments proposed for the single spin, one gets

ρ(t) = Rz(−ω0t)ρ(0)Rz(ω0t) =

(
ρα(0) e+iω0tρ+(0)

e−iω0tρ−(0) ρβ(0)

)
(4.2.20)

The corresponding equations for the components of the magnetization vector

are

Mx(t) = Mx(0) cos(ω0t) +My(0) sin(ω0t)

My(t) = My(0) cos(ω0t)−Mx(0) sin(ω0t)

Mz(t) = Mz(0)

(4.2.21)

Proof. The density matrix at time t is related to the density matrix at time t = 0

by

ρ(t) = Rz(−ω0t)ρ(0)Rz(ω0t) =

(
ρα(0) e+iω0tρ+(0)

e−iω0tρ−(0) ρβ(0)

)
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The x̂ and ŷ components of the magnetization vector at time t are

Mx(t) =
4 Re{ρ−(t)}

∆
My(t) =

4 Im{ρ−(t)}
∆

Then

ρ−(t) = e−iω0tρ−(0) = [Re{ρ−(0)}+ i Im{ρ−(0)}] e−iω0t

= [Re{ρ−(0)}+ i Im{ρ−(0)}] · [cos(ω0t)− i sin(ω0t)]

=
∆

4
{[Mx(0) cos(ω0t) +My(0) sin(ω0t)] + i [My(0) cos(ω0t)−Mx(0) sin(ω0t)]}

The magnetization vector performs a clockwise precession about the applied static

field at the Larmor frequency, exactly as the magnetic moment of a single spin, pic-

tured in Figure 4.2. Moreover, one should note that the ẑ component is constant,

since there is no variation in the populations corresponding to the two eigenstates.
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4.2.4 The radio-frequency field

As seen in section §4.1.1 for the case of a single spin, the customary approach

to, classically speaking, rotate the spin vector is to apply a radio-frequency field

(Equation 4.1.12). The effect of the latter on the ensemble overall magnetization

is better understood in a rotating coordinate system, as the one introduced in

Equation 4.1.18. The time evolution of the magnetization in the rotating frame can

be described by the same classical model introduced in section §4.1.1.1, formally

replacing the magnetic moment m with the total magnetization M . One gets

that the latter turns out to precess clockwise about the direction of the effective

magnetic field Beff in the rotating frame, as represented in Figure 4.5 for the single

spin case.

On the other hand, the quantum mechanical interpretation requires some ex-

tra details. The evolution of the density operator ρ(t) is ruled by the Liouville

- von Neumann equation, which, in the rotating frame [46], has the following

expression

dρ̃

dt
= − i

~

[
H̃, ρ̃

]
(4.2.22)

where the rotating frame density matrix is

ρ̃ = URρU
†
R =

(
ρα e−iωtρ+

e+iωtρ− ρβ

)
=

(
ρ̃α ρ̃+

ρ̃− ρ̃β

)
(4.2.23)

and the rotating frame Hamiltonian is

H̃ = URHU †R − i~UR
dU †R
dt

(4.2.24)

Proof. The time derivative of the density operator in the rotating frame is

dρ̃

dt
=

dURρU
†
R

dt
=

dUr

dt
ρU †R +UR

dρ

dt
U †R +URρ

dU †R
dt

Replacing the Liouville - von Neumann equation in the previous expression one
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gets

dρ̃

dt
=

dUr

dt
ρU †R −

i

~
UR [H,ρ]U †R +URρ

dU †R
dt

=
dUr

dt
U †RURρU

†
R −

i

~
UR [H,ρ]U †R +URρU

†
RUR

dU †R
dt

=
dUr

dt
U †Rρ̃−

i

~
UR [H,ρ]U †R + ρ̃UR

dU †R
dt

The commutator, which constitutes the second term on the right hand side, can

be expanded as

UR [H,ρ]U †R = UR [Hρ− ρH]U †R

= URHU †RURρU
†
R −URρU

†
RURHU †R

= URHU †Rρ̃− ρ̃URHU †R
=
[
URHU †R, ρ̃

]
As shown in the proof of Equation 4.1.31

dU

dt
U † = −U dU †

dt

Replacing one gets

dρ̃

dt
= − i

~

[
URHU †Rρ̃− ρ̃URHU †R

]
−U dU †

dt
ρ̃+ ρ̃UR

dU †R
dt

= − i
~

[
URHU †Rρ̃− ρ̃URHU †R − i~U

dU †

dt
ρ̃+ i~ρ̃UR

dU †R
dt

]

= − i
~

[
URHU †R − i~UR

dU †R
dt

, ρ̃

]
= − i

~

[
H̃, ρ̃

]

One should remark that Equation 4.2.24 is identical to Equation 4.1.31. As a

consequence, the analysis carried out in section §4.1.1.2 still holds and the time

operator of Equation 4.1.40 can be used to describe the evolution of the density

matrix.

Moreover, the thermal equilibrium density matrix has exactly the same expres-

sion both in the laboratory frame and in the rotating one.
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Finally, the magnetization vector in the rotating frame is

M̃ = M̃xx̂
′ + M̃yŷ

′ + M̃zẑ
′ (4.2.25)

where the components M̃x, M̃y and M̃z are computed as prescribed by Equa-

tion 4.2.19, using the rotating frame density matrix instead of the laboratory

frame density matrix.

4.2.4.1 Excitation of coherences

Consider again the thermal equilibrium density matrix in the rotating frame

ρ̃0 =
1

2
I +

∆

2

σz
2

(4.2.26)

and suppose to apply a π
2
-pulse about the x̂ axis. After the pulse, the density

operator is

ρ̃(t) = Rx(π/2)ρ̃0Rx(−π/2) =
1

2
I− ∆

4
σy (4.2.27)

In terms of the matrix representation(
1
2

+ ∆
4

0

0 1
2
− ∆

4

)
(π/2)x

−−−−−−−−−−−−→

(
1
2
− ∆

4i
∆
4i

1
2

)
(4.2.28)

There is an interesting physical interpretation. The pulse leads to an equaliza-

tion of the populations of the two eigenstates and converts the populations into

coherences. As mentioned above, the coherences are related to the transverse mag-

netization. Indeed, it is trivial to see that the π
2
-pulse rotates the magnetization

vector from ẑ (thermal equilibrium) to −ŷ′:

M̃ = ẑ
(π/2)x

−−−−−−−−−−−−→ M̃ = −ŷ′ (4.2.29)

The equalization of populations means that there is no magnetization along the ẑ

axis, while the rise of coherences denotes the presence of a magnetization in the

transverse plane.

4.2.4.2 Inversion of populations

Now, suppose to apply a π-pulse about the x̂ axis. After the pulse, the density

operator is

ρ̃(t) = Rx(π)ρ̃0Rx(−π) =
1

2
I− ∆

4
σz (4.2.30)
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In terms of the matrix representation(
1
2

+ ∆
4

0

0 1
2
− ∆

4

)
(π/2)x

−−−−−−−−−−−−→

(
1
2
− ∆

4
0

0 1
2

+ ∆
4

)
(4.2.31)

Once more, there is an interesting physical interpretation. The pulse promotes the

inversion of populations, while no coherence is generated. Note that the higher

energy state turns out to be more populated than the lower energy state. As a

consequence, the magnetization vector is rotated from ẑ (thermal equilibrium) to

−ẑ:

M̃ = ẑ
(π/2)x

−−−−−−−−−−−−→ M̃ = −ẑ′ (4.2.32)
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4.3 Phenomenology of relaxation and decoher-

ence

As mentioned in section §4.2.2, the magnetization vector satisfies the equation

of motion 3.1.23, whose Cartesian components, in the laboratory frame, can be

expressed as

dMx(t)

dt
= γn [My(t)Bz(t)−Mz(t)By(t)]

dMy(t)

dt
= γn [Mz(t)Bx(t)−Mx(t)Bz(t)]

dMz(t)

dt
= γn [Mx(t)By(t)−My(t)Bx(t)]

(4.3.1)

Considering Equation 4.1.23, it is trivial to get the rotating frame equations [46]

dM̃x(t)

dt
= −ξM̃y(t) + ω∗ sin(φ)M̃z(t)

dM̃y(t)

dt
= +ξM̃x(t)− ω∗ cos(φ)M̃z(t)

dM̃z(t)

dt
= ω∗ cos(φ)M̃y(t)− ω∗ sin(φ)M̃x(t)

(4.3.2)

The solution of this linear system describes the evolution of the magnetization

when both the static field and the alternating field are applied to the system.

Now, suppose that only the static field is applied. Then

dM̃x(t)

dt
= −ξM̃y(t)

dM̃y(t)

dt
= +ξM̃x(t)

dM̃z(t)

dt
= 0

(4.3.3)

It can be shown that the solution is

M̃x(t) = M̃x(0) cos(ξt)− M̃y(0) sin(ξt)

M̃y(t) = M̃y(0) cos(ξt) + M̃x(0) sin(ξt)

M̃z(t) = M̃z(0)

(4.3.4)

The meaning of Equation 4.3.4 is straightforward. When no alternating field

is present, the magnetization continues unceasingly to precess about the ẑ axis
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in the rotating frame, at the frequency offset, forever and ever. However, the

experimental behaviour is radically different.

The application of the radio-frequency field to the spin ensemble forces the

state of the spin system to depart from the thermal equilibrium. If the spins were

completely isolated from the outer world and if there were no interactions be-

tween them, the non-equilibrium condition would actually last forever. Yet, after

some time the magnetization returns to the initial ẑ direction, re-establishing the

thermal equilibrium condition. There are two phenomena which occur simultane-

ously and which are responsible for the recover of the equilibrium: the transverse

relaxation and the longitudinal relaxation.

In this section, the description is tackled from a phenomenological point of

view, according to the well-known Bloch model. The latter is built ad hoc to

meet the experimental results and introduces two phenomenological time con-

stants:

• The longitudinal relaxation time constant T1 which describes the fact that

the populations gradually drift towards the equilibrium values.

• The transverse relaxation time constant T2 which describes the fact that

the coherences gradually decay to zero.

It is interesting to highlight that the quantum information carried by a qubit

encoded on a nuclear spin can be thought to be related to the θ and φ angles

describing the position of the Bloch vector in the Bloch ball. Since relaxation

phenomena cause randomization of both angles, there is a consequent loss of

quantum information. Relaxation phenomena represent one of the main char-

acteristics which have to be carefully considered when realizing hardware for quan-

tum processors.

4.3.1 Transverse relaxation

It is experimentally observed that the transverse components of the nuclear magne-

tization disappear exponentially when the radio-frequency field is switched-off. In

many simple cases, this phenomenon can be described including, in the previously

introduced differential equations, some additional relaxation terms. Assuming
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there is no alternating field:

dM̃x(t)

dt
= −ξM̃y(t)−

M̃x(t)

T2

dM̃y(t)

dt
= +ξM̃x(t)−

M̃y

T2

(4.3.5)

The solution of this linear system of differential equations yields

M̃x(t) =
[
M̃x(0) cos(ξt)− M̃y(0) sin(ξt)

]
e
− t
T2

M̃y(t) =
[
M̃y(0) cos(ξt) + M̃x(0) sin(ξt)

]
e
− t
T2

(4.3.6)

where the alternating field is turned off at time t = 0. In practice, the trans-

verse components of the magnetization vector decay at the same time as they

precess, as represented in Figure 4.11. They are related to the coherences, which,

Figure 4.11: The transverse relaxation or decoherence. The magnetization in the
transverse plane decays while precessing about the ẑ axis, as time goes on.

consequently, are subjected to an exponential decay:

ρ̃−(t) =
[
ρ̃−(0)eiξt

]
e
− t
T2

ρ̃+(t) =
[
ρ̃+(0)e−iξt

]
e
− t
T2

(4.3.7)

There is a clear physical interpretation of this phenomenon. As mentioned above,

the presence of a transverse magnetization requires spins to “have coherence”.

Now, it should be clear from the previous discussion that the precession frequency

of each spin is a direct consequence of the local magnetic field perceived by the
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nucleus itself along the ẑ direction. This field depends, obviously, mainly on the

external field B0, but there are many other sources of local fields which super-

impose to the external one and alter the resulting field. The consequence is that

all spins feel the same average field. However, each particular spin feels a slightly

different local field, which, as time flows, causes a gradual loss of coherence5. This

is the reason for which this phenomenon is also known as decoherence. After some

time, the spins distribute randomly and the transverse magnetization dies out.

4.3.2 Longitudinal relaxation

From experimental observations, it turns out that the longitudinal component of

the magnetization tends to come back to the equilibrium value, when there is

no longer an alternating field applied to the ensemble. Similarly to the transverse

relaxation, the phenomenon can be described by the following differential equation

dM̃z(t)

dt
=
M̃eq − M̃z(t)

T1

(4.3.8)

where Meq is the thermal equilibrium magnetization. Note that with the definition

given in section §4.2.2, Meq = 1. The time-domain solution is

M̃z(t) = (M̃z(0)− M̃eq)e
− t
T1 + M̃eq (4.3.9)

where the radio frequency field is assumed to be switched off at time t = 0.

Proof. Equation 4.3.8 can be rewritten as(
M̃z − M̃eq

)′
= − 1

T1

·
(
M̃z − M̃eq

)
Defining

ζ(t) = M̃z − M̃eq

one gets
ζ ′

ζ
= − 1

T1

=⇒ ln(|ζ|)′ = − 1

T1

Using the Fundamental Theorem of Calculus

ln(|ζ|) = − t

T1

+ C

5In [33], the author proposes a very useful comparison saying that the loss of spin coherence
is conceptually similar to the loss of synchronization of several clocks, all started at the same
time.
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Taking the exponential of both members

ζ(t) = ±e−
t
T1 · eC =⇒ ±αe−

t
T1

Replacing the definition of ζ, one finally gets

M̃z(t) = ±αe−
t
T1 + M̃eq

Exploiting the initial condition Mz(t = 0) = M(0), the solution of the associated

Cauchy problem reads

M̃z(t) = (M̃z(0)− M̃eq)e
− t
T1 + M̃eq

The longitudinal component of magnetization is strictly related to the popu-

lations. There is a natural tendency for the system to re-establish the thermal

equilibrium Boltzmann distribution making transitions preferably from the upper

to the lower energy level. This process, differently with respect to the transver-

sal relaxation, implies an exchange of energy between the system of nuclear spins

and the lattice [33]. The behaviour of populations is described by the following

equations

ρ̃α(t) = (ρ̃α(0)− ρ̃eq
α ) e

− t
T1 + ρ̃eq

α

ρ̃β(t) =
(
ρ̃β(0)− ρ̃eq

β

)
e
− t
T1 + ρ̃eq

β

(4.3.10)

where ρ̃eq is the equilibrium population. Note that, as expected, as t approaches

infinite, the two populations tend to their equilibrium values.

4.3.3 Relaxation phenomena

Longitudinal and transversal relaxations can usually be considered as two different

phenomena occurring simultaneously. The two time constants are strictly related

to each other: the individual spin polarizations cannot be rotated towards the ẑ

axis, while maintaining transverse coherence. Thus, T1 enforces an upper limit on

the possible values of T2. It can be shown that it is always true that

T2 ≤ 2T1 (4.3.11)

Nevertheless, in most practical cases it turns out [33] that
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T2 ≤ T1 (4.3.12)

Here, the equations describing the evolution of the three Cartesian components of

the magnetization vector in the rotating frame are reported for the convenience

of the reader

M̃x(t) =
[
M̃x(0) cos(ξt)− M̃y(0) sin(ξt)

]
e
− t
T2

M̃y(t) =
[
M̃y(0) cos(ξt) + M̃x(0) sin(ξt)

]
e
− t
T2

M̃z(t) = (M̃z(0)− M̃eq)e
− t
T1 + M̃eq

(4.3.13)

Example 4.3.1. Suppose that a (π/2)x pulse is applied to a thermal equilibrium

system. The magnetization vector is rotated from the ẑ axis to the −ŷ axis.

Figure 4.12: The evolution of the magnetization vector for ξ = 2π rad s−1 and
T1 = T2 = 2 s. At time t = 0 the magnetization vector lies along the −ŷ axis
(blue) and the alternating field is switched off, while the static field is maintained.
As t approaches infinite, the magnetization performs a helicoidal motion about
the ẑ axis. Eventually, it will be found to lie along the ẑ axis itself (red).

Assume that the time constants have values

T1 = T2 = 2 s
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and that the frequency shift is

ξ = 2π rad s−1

Let the radio frequency field be switched off at time t = 0: the evolution of

the magnetization vector is obtained from Equation 4.3.13.

M̃x(t) = sin(ξt)e
− t
T2

M̃y(t) = − cos(ξt)e
− t
T2

M̃z(t) = 1− e−
t
T1

(4.3.14)

Since Meq = 1 and Mz(0) = 0. The trajectory of the magnetization vector is

pictured in Figure 4.12.

4
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Chapter 5

Nuclear spin interactions

In the previous chapters, nuclear magnetic phenomena have been described for

an ensemble on non interacting spins. If this where the whole story, NMR could

not be used for quantum computation (how to implement a two-qubit gate?) and

would have proved quite useless also for chemical applications. However, nuclear

spins are well away from being isolated from each other and the surrounding

environment. Indeed, nuclear spins feel several magnetic fields, due to the presence

of electrons and other nuclei, which superimpose resulting in a local field which

is, generally speaking, different in different nuclear sites. Distinct local fields mean

distinct resonance frequencies, a phenomenon which allows gathering information

on the internal interactions between the nucleus of interest and its neighbourhood.

The standard approach to describe the spin interactions is to write down the

nuclear spin Hamiltonian, in the Zeeman eigenbasis, as the sum of Hext, which

represents the interactions of the nucleus with the externally applied magnetic

fields, and Hint which takes into account the internal interactions of the nucleus

with the surrounding environment:

H = Hext +Hint (5.0.1)

The external Hamiltonian describes the contributions arising from the application

of the static and radio-frequency fields

Hext = H0 +Hr (5.0.2)

and usually represents the main contributions to the overall Hamiltonian and the

internal interactions can be dealt with according the the methodologies of the

perturbation theory.

On the other hand, there are several internal interactions, whose peculiar na-

ture depends on the specific physical system. For diamagnetic substances, it is

usually reasonable [17, 33] to write

Hint = Hcs +Hd +Hj +Hq (5.0.3)
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where Hcs represents the chemical shift of the nucleus with the surrounding elec-

trons, Hd the direct dipolar spin-spin interaction, Hj the indirect spin-spin cou-

pling (customarily referred to as J-coupling) and Hq the quadrupolar coupling

between nuclei with spin quantum number I > 1/2 and the local electric field

gradient. It has to be highlighted that the quadrupolar coupling is not present for

spin-1
2

nuclei. Since it can be shown that it causes a reduction of the decoherence

time, it is one of the main reasons for which NMR based quantum computers

usually exploit only spin-1
2

nuclei. Hence, the quadrupolar coupling will not be

addressed any further in the following.

While the contributions to the external Hamiltonian are thoroughly detailed in

chapter 4, this chapter is dedicated to the discussion of the internal Hamiltonian,

with a particular focus on chemical shift and J-coupling, which prove to be essential

for the actual implementation of a quantum processor.

Figure 5.1: A summary of spin-interactions and their magnitudes. From [33].
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5.1 Direct spin-spin coupling

A nucleus characterised by a non-zero spin is associated with a magnetic mo-

ment m = γnI. Every magnetic moment generates a magnetic field which “loops

around” in the surrounding, according to the orientation of the former. This

magnetic field can influence other spins and the interaction is obviously mutual:

referring to figure, spin k interacts with the magnetic field generated by nucleus j

and spin j interacts with the magnetic field generated by nucleus k. It is known

Figure 5.2: The direct spin-spin coupling: the magnetic field generated by spin k
affects spin j and vice versa. Adapted from [33].

as direct spin-spin coupling or dipolar coupling, since it is not mediated by the

electron cloud but takes place directly between the nuclei, because of direct field

propagation, differently from the J-coupling.

Consider two nuclear magnetic moments m1 and m2 and let r̂ = r
|r| be the

adimensional unit vector which identifies the direction joining the two nuclei, then

the Hamiltonian describing the system is [47, 42]

Hd = −µ0

4π

γ1γ2

r3

(
3I†1 |r̂〉〈r̂| I2 − (I1 · I2)

)
(5.1.1)

where · denotes the inner product and the symbols I1 and I2 are used to identify

a I vector operator which acts only on spin 1 or on spin 2, that is

I1 = I ⊗ I

I2 = I⊗ I
(5.1.2)

The reader is reminded that the nuclear spin vector operator is defined according

171



5 – Nuclear spin interactions

to Equation 4.1.1 as

I =

IxIy
Iz



Proof. From classical magnetism, the magnetic field generated by a magnetic

dipole m2 is known to be

B(r̂) =
µ0

4πr3
(3 (m2 · r̂) r̂ −m2)

where · denotes the inner product and r̂ is a unit vector:

r̂ =

rxry
rz


It is just a matter of trivial computation to realize that

(m2 · r̂) r̂ =
(
r̂r̂†
)
m2

Consequently, the field can be rewritten as

B(r̂) =
µ0

4πr3

(
3
(
r̂r̂†
)
m2 −m2

)
or in braket notation as

B(r̂) =
µ0

4πr3
(3 |r̂〉〈r̂| |m2〉 − |m2〉)

When a magnetic moment m1 interacts with the field originated by m2, the

resulting energy is

E = −m1 ·B(r̂) = − µ0

4πr3
(3 〈m1|r̂〉 〈r̂|m2〉 − 〈r̂|m2〉)

In order to determine the system Hamiltonian, one has to replace the physical

observables with the respective quantum mechanical operators:

|m1〉 −→ γ1I1

〈m2| −→ γ2I
†
2

The resulting equation is as in 5.1.1.
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One should note that the direct coupling interaction, described by the Hamil-

tonian of Equation 5.1.1 decays with the inverse cube of the distance between the

two nuclei and is directly proportional to the product of the nuclear gyromagnetic

ratios.

If no external static field B0 is applied, then there is not an “externally im-

posed” direction in space, meaning that all orientations are equivalent and, so, the

complete dipolar Hamiltonian must be used to describe the direct coupling. On the

other hand, when an externally applied field enforces a preferred direction in space

(for instance, the ẑ direction along which a field B0 lies), the dipolar Hamiltonian

is customarily simplified applying the so-called secular approximation, which is

briefly presented in the next further information.

Further information 5.1. The secular approximation is routinely applied in the

study of nuclear magnetic resonance when the system Hamiltonian can be written

as the sum of two terms [33]

H = A+B (5.1.3)

where the symbol A identifies a “large” Hermitian operator and B a “small” one.

Since A is Hermitian, its eigenvectors realize a complete orthonormal basis. Let

A |ψn〉 = λn |ψn〉 (5.1.4)

where |ψn〉 are the eigenvectors of A and λn the corresponding eigenvalues. The

operator A is obviously represented by a diagonal matrix in its eigenbasis:

A =



• 0 0 . . . 0

0 • 0 . . . 0

0 0 • . . . 0
...

. . .

0 0 0 . . . •


(5.1.5)

In general, B does not commute with A and so its matrix representation is

not diagonal in the eigenbasis of A. On the contrary, B is expected to have finite

values everywhere:

B =



• • • . . . •
• • • . . . •
• • • . . . •
...

. . .

• • • . . . •


(5.1.6)
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The secular approximation consists in dropping all non-diagonal elements bmn of

B in the eigenbasis of A such that

|bmn| � |λm − λn| , δλ (5.1.7)

that is, bmn can be neglected if its magnitude is significantly smaller than the

corresponding difference in the eigenvalues of the operator A. In practice, the

only non-diagonal elements of B which survive the secular approximation are

those which connect degenerate or near-degenerate eigenstates of A. It is possible

to express B as

B =
∑
n

bnn |ψn〉〈ψn|+
∑
n 6=m

|bmn|�δλ

bnm |ψm〉〈ψn| (5.1.8)

Additional information can be found in [33, 42]. ♦

The dipolar Hamiltonian of Equation 5.1.1 can be rewritten as the sum of six

matrices. The detailed justification is not reported because it requires some quite

long computations which are not physically interesting, but can be found in [47].

For the purposes of this research, it is enough to know that

Hd = A+B +C +D +E + F (5.1.9)

where

A =


• 0 0 0

0 • 0 0

0 0 • 0

0 0 0 •

 B =


0 0 0 0

0 0 • 0

0 • 0 0

0 0 0 0

 C =


0 • • 0

0 0 0 •
0 0 0 •
0 0 0 0



D =


0 0 0 0

• 0 0 0

• 0 0 0

0 • • 0

 E =


0 0 0 •
0 0 0 0

0 0 0 0

0 0 0 0

 F =


0 0 0 0

0 0 0 0

0 0 0 0

• 0 0 0


(5.1.10)

Consider for the sake of definiteness a two-spin-1
2

system with quantum numbers

m1 and m2. The Zeeman energy, when a static external field B0 is applied, can

be simply written as

EZ = −m1γ1~B0 −m2γ2~B0 (5.1.11)

where mi = ±1
2
. Considering the Zeeman energy associated with each energy level

174



5 – Nuclear spin interactions

(refer to diagram reported in Figure 5.3), one should agree upon the fact that the

matrix elements of C, D, E and F can usually be neglected, since the difference

between the corresponding eigenvalues is of the order1 of | ∼ 2γn · ~B0| and

Equation 5.1.7 is expected to be satisfied. On the other hand, the terms of matrix

B are usually larger than the difference between the corresponding eigenvalues,

which is roughly zero, since states |↑↓〉 and |↓↑〉 are near-degenerate.

The consequence of this long discussion is that the dipolar Hamiltonian, in the

homonuclear case, can be written as

Hd ∼ −
µ0

4π

γ1γ2

r3
(A+B) = −µ0

4π

γ1γ2

r3

3 cos2(θ)− 1

2
(3I1zI2z − I1 · I2)

(5.1.12)

Where θ is the angle between the vector r̂ joining the two spins and the field B0

(Figure 5.4). For additional details, one can consider [42, 47].

ω0 ω0

ω0ω0

|01〉

|00〉

|11〉

|10〉

Figure 5.3: The Zeeman energy levels for a two-spin system. For the sake of
simplicity, the two nuclei are assumed to have the same gyromagnetic ratio, so
that |01〉 and |10〉 are degenerate.

When dealing with nuclei characterized by different gyromagnetic ratios or

different chemical shifts (heteronuclear case), the corresponding spins precess

with distinguishable frequencies [48].

1The actual value depends on the gyromagnetic ratios.
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Figure 5.4: The θ angle.
Adapted from [33].

As a consequence, from a semi-classical point of

view, the x̂ and ŷ components of m2 can be seen as

rapidly oscillating in the rotating frame of m1, thus

averaging to zero and vice versa. From a quantum

mechanical perspective, the secular approximation

usually kills also the elements of matrix B, since

energies associated with |↑↓〉 and |↓↑〉 can be quite

different. The dipolar Hamiltonian, thus, can be

expressed as

Hd ∼ −
µ0

4π

γ1γ2

r3

3 cos2(θ)− 1

2
· 2I1zI2z (5.1.13)

It has to be highlighted that the secular dipole-dipole coupling constant

d12 , −
µ0

4π

γ1γ2

r3

3 cos2(θ)− 1

2
(5.1.14)

presents an explicit dependence on the orientation of the spin pair with respect to

the external field.

In an isotropic liquid, which is the main focus of this research, the dipole-

dipole coupling can usually be safely neglected [33]. Indeed

• The intramolecular direct coupling averages to zero. The point is that the

vector r̂ has only two ways to be oriented parallel to B0, namely, in the

same (θ = 0) or in the opposite (θ = π) direction, while there are infinite

ways in which it can be oriented perpendicularly (θ = π/2) to the magnetic

field. In an ensemble of freely moving molecules, the different orientations

of the vector r̂ average to zero the intramolecular coupling.

• The short-distance intermolecular direct coupling averages to zero because

of rapid tumbling of molecules.

• The long-distance intermolecular direct coupling does not average to zero,

but can be neglected thanks to the dependence on the inverse cube of |r̂|.

In the remainder of this text, the dipolar Hamiltonian will always be assumed

to vanish

Hd ∼ 0 (5.1.15)
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5.2 Chemical shielding

The experimental evidence shows that the same isotopes in different molecular

surroundings are characterized by different resonant frequencies. For instance,

it is possible to identify three well-differentiated proton resonant frequencies in

CH3CH2OH: they correspond to the three “kinds” of protons, the CH3 group,

the CH2 group and the OH group. The reason is that the three kinds of protons

experience slightly different local fields. The variation of the local fields on a

submolecular distance scale is due to molecular electrons. At a very rough but

intuitive level, this phenomenon, known to the scientific community as chemical

shielding, can be seen as a three-step process:

1. The externally applied static field B0 induces circulating currents in molec-

ular electron clouds.

2. The currents, in turn, give rise to an induced field Bind.

3. The nuclear spins sense a local field Bloc = B0 +Bind.

As a rule of thumb, the local field is in the order ofBind ∼ 10−4 ·B0, but the actual

value depends on the nucleus of interest, the electronic structure of the molecule

and the orientation of the latter with respect to the applied field.

The local field can alternatively be expressed as

Bloc = (1− σ)B0 (5.2.1)

where σ is 3× 3 tensor2 known as the shielding tensor and defined as

σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (5.2.2)

The local field is not necessarily oriented in the same direction as the applied field.

Even if, in the general case, the shielding tensor is not symmetric, it can be shown

that the observable first-order response is symmetric [49]. The symmetric part of

σ can be diagonalized in a proper reference system, known as the principal axes

coordinate system [50]. The chemical shielding principal axes are conventionally

denoted using the capital letters X̂, Ŷ and Ẑ and defined by the following prop-

erty: if the external field is applied along a principal axis of a certain nucleus, then

2Even if the same symbol is used, it is obvious that the shielding tensor has nothing to do
with the Pauli matrices.
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the induced field, at the same nucleus, has the same direction. Is this reference

system, the shielding tensor turns out to be diagonal

σpas =

σXX 0 0

0 σY Y 0

0 0 σZZ

 (5.2.3)

In order to relate the theoretical computations of the shielding tensor to NMR

experiments, it proves useful to define the so called isotropic chemical shielding

as the averaged trace of the shielding tensor

σ =
1

3
tr(σpas) =

1

3
(σXX + σY Y + σZZ) =

1

3
tr(σ) (5.2.4)

where the last equality follows from the fact that the isotropic chemical shielding is

independent of the chosen reference frame [50]. There are several conventions for

the definition of the X̂, Ŷ and Ẑ axes. The choice has fallen on the Haeberlen’s

[50], since it is the one adopted by ORCA [3, 2] which is one of the most known open

source computational chemistry tools freely available to the scientific community.

This convention defines the three components according to the following rule:

|σY Y − σ| ≤ |σXX − σ| ≤ |σZZ − σ| (5.2.5)

A useful figure of merit is the chemical shielding anisotropy defined as

σaniso , σZZ −
σXX + σY Y

2
=

3

2
(σZZ − σ) (5.2.6)

which is a measure of the maximum deviation of the shielding from the isotropic

value (according to 5.2.5). Finally, the difference between the X̂ and Ŷ principal

values is quantified by the bixiality or asymmetry:

η =
σY Y − σXX
σZZ − σ

(5.2.7)

Actually, what is routinely measured in NMR experiments, at least for the

liquid state cases, is not the chemical shielding tensor, but just the shift in the

resonance frequency caused by the variation of the local field with respect to the

externally applied field. This shift, known as chemical shift, is usually evaluated

with respect to a reference compound. If ωref is the Larmor frequency of the nuclei

of interest in the reference compound and ωmol is the one in the molecule under

experiment, then the adimensional chemical shift constant is defined as
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δ =
ωmol − ωref

ωref

(5.2.8)

Typical values for δ ranges from few to few hundreds of ppm (parts per million).

For instance, the reference compound usually chosen for 1H, 13C and 29Si is the

tetramethylsilane Si(CH3)4 (abbreviated in TMS) which is chemically rather inert

and gives NMR signals at frequencies far away from the typical ones of the pre-

viously mentioned nuclei. Conventionally, TMS spins are assumed to have zero

chemical shift3 and are placed at the origin of the chemical shift scale, which in-

creases from right to left, as clear from Figure 5.5, where some typical values are

given with respect to TMS.

Figure 5.5: Chemical shift scale for 1H and 13C NMR experiments, with respect
to TMS. From [33].

The relation between the chemical shift (experimentally measured) and the

isotropic chemical shielding (theoretically computed) is

δ =
σref − σmol

1− σref

∼ σref − σmol (5.2.9)

Proof. Using the isotropic chemical shielding, the local magnetic field at the nu-

cleus can be written as

Bloc = (1− σ)B0

3From an experimental point of view, a small amount of TMS is often added to the sample
and the corresponding resonant frequency is assumed to occur at 0 ppm.
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for both the molecule and the reference compound. The corresponding chemically

shifted Larmor frequency is

ω0 = |γn| · (1− σ)B0

Replacing in Equation 5.2.8, one gets

δ =
ωmol − ωref

ωref

=
|γn| (1− σmol)B0 − |γn| (1− σref)B0

|γn| (1− σref)B0

=
σref − σmol

1− σref

∼ σref − σmol

(5.2.10)

It is worth highlighting that nuclei with large chemical shift are strongly

deshielded, since as σmol gets smaller, δ increases. Another interesting aspect which

has to be remarked is that the chemical shift ranges depend on the atomic number:

nuclei with more electrons are characterized by a greater range of shielding.
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5.2.1 The Hamiltonian of the chemical shielding

The nuclear spin interacts with the local field, which is different from the applied

(along ẑ) field, because of the chemical shift. The corresponding Hamiltonian is

H = −γnI ·Bloc = −γnI · (1− σ)B0ẑ = H0 +Hcs (5.2.11)

from which the chemical-shift Hamiltonian is

Hcs = +γnB0I · σẑ (5.2.12)

It can be shown [33, 17] that applying the secular approximation, the previous

expression reduces to

Hcs ∼ +γnB0σzzIz (5.2.13)

and for an isotropic liquid it is enough to compute the isotropic chemical shield-

ing

Hcs ∼ +γnB0σIz (5.2.14)
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5.2.2 The origin of the chemical shielding

Chemical shifts are originated by the simultaneous interaction of nuclei with elec-

trons and that of electrons with the applied magnetic field. The physics behind

is not trivial and a full understanding requires advanced knowledge at least in

quantum mechanics, molecular orbital theory, perturbation theory and group the-

ory. Moreover, the computation of reliable chemical shifts, demanding detailed

information about the electron density in the ground and excited states, is still

nowadays a challenging task for computational chemistry software, which, in turn,

requires the user to have some understanding of the computational theory beneath.

However, being the chemical shift one of the most relevant aspects of NMR,

a basic understanding is mandatory for the engineer who desires to implement a

NMR quantum computer. In the following, a semi-classical approach is proposed,

which is an integrated and simplified review of Slichter’s interpretation [42] of

Ramsey’s general theory of magnetic shielding [51, 52].

5.2.2.1 Time independent perturbation theory: some hints

When exact solutions to physical problems cannot be (efficiently) found, one has

to look for methods of approximation. This is a necessary step because the

Schrödinger equation can be solved exactly for very few quantum chemistry prob-

lems. There are basically two approaches: perturbation theory and self-consistent

field procedures. While the second one is an iterative method routinely exploited

by computational chemistry tools, in this section the main results of the first one

are presented, since it proves more useful to get a physical understanding. The

only simple case which is dealt with here is that of a quantum system characterized

be many non-degenerate energy levels, for which the time independent perturba-

tion theory can be applied. For a comprehensive treatment, the reader is referred

to the specialized literature, as [34].

Suppose that the Hamiltonian of the unperturbed system is H(0) and that

|ψn〉 realize a complete orthonormal basis set of the corresponding Hilbert space.

Assume that the solutions of the equations

H(0) |ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 (5.2.15)

are known. Then, a small perturbation is applied to the system, such that the

Hamiltonian of the perturbed system can be written as

H = H(0) + λH(1) + λ2H(2) + · · · (5.2.16)
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where λ is an arbitrary parameter added to keep track of the order of the pertur-

bation. Suppose that the perturbation is computed from the unperturbed state

|ψ(0)
0 〉, which is not necessarily the ground state of the system. The perturbed

state vector can be expanded as

|ψ0〉 = |ψ(0)
0 〉+ λ |ψ(1)

0 〉+ λ2 |ψ(2)
0 〉+ . . . (5.2.17)

Similarly, the energy is

E0 = E
(0)
0 + λE

(1)
0 + λ2E

(2)
0 + · · · (5.2.18)

where E
(1)
0 is the first-order correction to the energy, E

(2)
0 the second-order cor-

rection and so on.

The perturbed Schrödinger equation which has to be solved is

H |ψ0〉 − E0 |ψ0〉 = 0 (5.2.19)

Replacing, collecting the terms with the same power of λ and equating to zero the

coefficient of each power of λ4, one gets

H(0) |ψ(0)
0 〉 = E

(0)
0 |ψ

(0)
0 〉[

H(0) − E(0)
0

]
|ψ(1)

0 〉 =
[
E

(1)
0 −H(1)

]
|ψ(0)

0 〉[
H(0) − E(0)

0

]
|ψ(2)

0 〉 =
[
E

(2)
0 −H(2)

]
|ψ(0)

0 〉+
[
E

(0)
0 −H(1)

]
|ψ(1)

0 〉

· · ·

(5.2.20)

Once this background is built, it is simple to compute the corrections to the energy

and the state vector.

4Since λ is an arbitrary parameter, the coefficient of each power of λ must be equated to zero
separately.
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First-order correction The first-order corrections to the state |ψ(0)
0 〉 are

• The first-order correction to the energy is

E
(1)
0 = 〈ψ(0)

0 |H(1)|ψ(0)
0 〉 (5.2.21)

which is the first-order perturbation Hamiltonian averaged over the

unperturbed state vector.

• The state vector corrected to first-order is

|ψ0〉 ∼ |ψ(0)
0 〉+

∑
n6=0

〈ψ(0)
k |H(1)|ψ(0)

0 〉
E

(0)
0 − E

(0)
k

|ψ(0)
k 〉 (5.2.22)

which is a linear superposition of all the unperturbed states of the

systems.

Proof. The first step is the derivation of the first-order correction to the energy.

The first-order correction to the wavefunction can be written as the linear com-

bination of unperturbed state vectors, which constitute a complete orthonormal

basis set

|ψ(1)
0 〉 =

∑
n

an |ψ(0)
n 〉

Replacing in the second equation of 5.2.20, one gets∑
n

an

[
H(0) − E(0)

0

]
|ψ(0)
n 〉 =

[
E

(1)
0 −H(1)

]
|ψ(0)

0 〉∑
n

an

[
E(0)
n − E

(0)
0

]
|ψ(0)
n 〉 =

[
E

(1)
0 −H(1)

]
|ψ(0)

0 〉

The trick to get an expression for E
(1)
0 is to multiply everything by 〈ψ(0)

0 |:∑
n

an

[
E(0)
n − E

(0)
0

]
〈ψ(0)

0 |ψ(0)
n 〉 = 0 = E

(1)
0 − 〈ψ

(0)
0 |H(1)|ψ(0)

0 〉

from which Equation 5.2.21 follows immediately.

Turning, now, to the second topic of this derivation, a first-order perturbed

state vector is

|ψ0〉 ∼ |ψ(0)
0 〉+ |ψ(1)

0 〉 = |ψ(0)
0 〉+

∑
n

an |ψ(0)
n 〉
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and the scope is to find the coefficients an. The first step is to multiply everything

in the second equation of 5.2.20 by a generic 〈ψ(0)
k | with k 6= 0∑

n

an

〈
ψ

(0)
k

∣∣∣ [E(0)
n − E

(0)
0

] ∣∣∣ψ(0)
n

〉
=
〈
ψ

(0)
k

∣∣∣ [E(1)
0 −H(1)

] ∣∣∣ψ(0)
0

〉
ak

[
E

(0)
k − E

(0)
0

]
= −〈ψ(0)

k |H
(1)|ψ(0)

0 〉

where the second line follows from the orthonormality of the eigenstates.

Since the state |ψ(0)
0 〉 is not degenerate by hypothesis, then

E
(0)
k − E

(0)
0 6= 0 ∀ k 6= 0

and the coefficient ak can be written as

ak =
〈ψ(0)

k |H(1)|ψ(0)
0 〉

E
(0)
0 − E

(0)
k

and so

|ψ0〉 ∼ |ψ(0)
0 〉+

∑
k 6=0

〈ψ(0)
k |H(1)|ψ(0)

0 〉
E

(0)
0 − E

(0)
k

|ψ(0)
k 〉

from which it is clear that the perturbed state vector is approximated by “mixing”

into |ψ(0)
0 〉 the other states of the system.

Second-order correction The second-order correction to the energy is

E
(2)
0 = 〈ψ(0)

0 |H(2)|ψ(0)
0 〉+

∑
k 6=0

〈ψ(0)
k |H(1)|ψ(0)

0 〉 〈ψ
(0)
0 |H(1)|ψ(0)

k 〉
E

(0)
0 − E

(0)
k

(5.2.23)

The justification is similar to the first-order case and can be found in [34].
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5.2.2.2 Perturbation Hamiltonian

The theory of chemical shift is initially worked out for a simple case of one electron

in a molecule where there is only a single magnetic nucleus (and an undetermined

number of non magnetic nuclei). The derivation can be split in three steps:

1. The calculation of the perturbation energy.

2. The determination of the current density induced by the external field.

3. The deduction of the magnetic field produced by this current at the nucleus

of interest and the corresponding chemical shielding.

This section deals with the first step, but, first of all, the concept of vector potential

must be introduced.

Further information 5.2. A generic vector function is a function which asso-

ciates a vector (output) with another vector or with a scalar (input). Here, the

focus is on R3 → R3 maps which relate each point of the real three-dimensional

space to a three-dimensional vector

G = gxx̂+ gyŷ + gzẑ (5.2.24)

The derivatives of a vector functions are described resorting to the del or nabla

operator which is, in R3, a three-dimensional vector defined as

∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ (5.2.25)

The divergence of a vector function is a scalar computed as the inner product of

the nabla operator and the vector function itself

∇ ·G =
∂gx
∂x

+
∂gy
∂y

+
∂gz
∂z

(5.2.26)

The other possible derivative of a vector function is the curl of the function which

is a vector defined as the cross product of the nabla operator and the vector

function itself

∇×G =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

gx gy gz

∣∣∣∣∣∣∣ (5.2.27)
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Finally, when the nabla operator is applied to a scalar function f , then it is

known as the gradient of the function and the output is a vector defined as

∇f =
∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ (5.2.28)

In order to build up the Schrödinger equation for a particle acted upon by

a magnetic field, it turns out that is is mandatory to find a magnetic vector

potential A, measured in T m, which describes the magnetic field. By definition,

the magnetic field is the curl of the vector potential

B = ∇×A (5.2.29)

Example 5.2.1. For example, a potential

A0 =
1

2
B (−yx̂+ xŷ)

corresponds to a field

B =
1

2
B · ∇× (−yx̂+ xŷ) = Bẑ

that is, to a field uniformly applied along ẑ. 4

Example 5.2.2. Another useful example is the magnetic potential correspond-

ing to the field produced by a single nucleus, whose magnetic dipole is m (the

expression is reported in the proof of Equation 5.1.1) which can be shown to be

Anuc =
µ0

4πr3
m× r

since m = γnI, the potential can be rewritten as

Anuc =
γnµ0

4πr3
I × r

4

It is well known that the curl of the gradient of an arbitrary scalar function f

is always zero

∇×∇f = 0 (5.2.30)

As a consequence, the same magnetic field is obtained if an arbitrary vector ∇f
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is added to the vector potential

B = ∇×A = ∇× (A+∇f) (5.2.31)

This property is known as gauge invariance. Accordingly, one can always select

a proper gradient of a scalar function (a physicist would say a “gauge”) such that

the divergence of the vector potential is zero. In this case, the gauge is said to be

a Coulomb gauge. ♦

The point, now, is to find an expression for the contribution Bind = −σB0 to

the local field which causes the resonant frequency shift. It has been stated several

times that the energy of a magnetic dipole in a fieldB is E = −m·B. Hence, once

the energy due toBind is known, it is possible to derive an expression forBind itself

and, then, for −σ. It proves, thus, reasonable to compute the Hamiltonian of the

system. In particular, a single electron under a potential energy V is associated

with the energy

H(0) =
p2

2me

+ V (5.2.32)

where the superscript refers to the absence of magnetic fields (i.e. the Hamiltonian

is zero-order in the potential). When both the external field and the magnetic field

originated by the nucleus are taken into consideration, the Hamiltonian has to be

properly modified. Letting

A = A0 +Anuc (5.2.33)

it is possible to argue [34] that the new Hamiltonian5 can be obtained from H0

simply replacing p with p+ eA, where q = −e. It turns out that

H =
p2

2me

+ V − q

me

A · p+
q2

2me

A2 =
1

2me

(p− q(A0 +Anuc))
2 + V (5.2.34)

Proof. The square of the momentum operator is p2 = p·p. Replacing p→ p+eA,

one gets

(p+ eA)(p+ eA) = p2 + e(p ·A+A · p) + e2A2

It is known from table 1.1 that the momentum operator is a differential operator.

When the wavefunction is added

p ·Aψ = −i~∇ · (Aψ) = −i~A · ∇ψ = A · pψ

5Obviously, this rule applies to every potential A and not only when the latter is the sum of
the external potential and the nuclear one.
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assuming a Coulomb gauge is chosen. Hence

(p+ eA)(p+ eA) = p2 + 2eA · p+ e2A2

from which Equation 5.2.34 follows immediately.

Since there are two “sources of perturbation”, the external field and the nuclear

field, it proves sensible to split the problem in two stages. The first step is the

evaluation of the perturbation energy treating only Anuc as perturbation source.

To this end, it is useful [42] to define a quantity which is a kind of generalized

momentum operator which includes the external field potential

χ = p+ eA0 (5.2.35)

Being the linear combination of two Hermitian operators, it is a Hermitian oper-

ator. The Hamiltonian becomes

H =
χ2

2me

+
e

2me

(χ ·Anuc +Anuc · χ) +
e2

2me

A2
nuc + V

∼ χ2

2me

+
e

2me

(χ ·Anuc +Anuc · χ) + V

(5.2.36)

where the second-order term in Anuc is dropped because the nuclear moment

is very small compared with the electron moments. As a consequence, Anuc is

reasonably treated according to a first-order perturbation theory.

The Hamiltonian presents a term which does not depend onAnuc, a term which

is linear with Anuc and a term which is quadratic with Anuc. Defining

H(0) =
χ2

2me

+ V

H(1) =
e

2me

(χ ·Anuc +Anuc · χ)

H(2) =
e2

2me

A2
nuc

(5.2.37)

one can write explicitly

H = H(0) +H(1) +H(2) ∼ H(0) +H(1) (5.2.38)

Now, let j be the electron current density which flows in the molecule when the

external static field is applied. In other words, j is the current due to the field B0

and the electrostatic potential V , but not to the nuclear field. Then, the magnetic
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moment of the magnetic nucleus couples with the current j, causing a shift in the

energy of the nucleus itself. At first-order, the correction to the nuclear energy is

E
(1)
0 = −

∫
Anuc · jdτ (5.2.39)

Proof. It is convenient to write the first-order correction to the energy reported

in Equation 5.2.21 according to the methodology introduced in section §1.2.2

E
(1)
0 = 〈ψ0|H(1)|ψ0〉 =

e

2me

∫
ψ∗0 (χ ·Anuc +Anuc · χ)ψ0dτ

where τ is the integration variable and ψ0 is the exact unperturbed solution when

the potential V and the field B0 act on the electron. The reader is reminded

that at this level, only the nuclear field contribution is treated according to the

perturbation theory, while the effects of the external field are “included” in ψ0.

Hence, the first-order (inAnuc) correction to the energy is computed as the average

value of the first-order Hamiltonian over the unperturbed ψ0. The subscript 0 is

introduced to highlight that the state taken into consideration is the ground-state

“modified” by the application of the external field.

It is known that an operator T is Hermitian if and only if

〈φ|Aψ〉 = 〈Aφ|ψ〉

which means ∫
φ∗Aψdτ =

∫
(Aφ)∗ ψdτ

Consequently, exploiting the Hermiticity of χ, the fact that ψ0 is a scalar function

and the Coulomb gauge choice for Anuc, the first-order correction to the energy

can be rewritten as

E
(1)
0 =

e

2me

∫
Anuc · [(χψ0)∗ ψ0 + ψ∗0χψ0] dτ

Replacing the definition of χ, the term in brackets becomes

e

2me

[(χψ0)∗ ψ0 + ψ∗0χψ0]

=
e

2me

{ψ0 [pψ0 + eA0ψ0]∗ + ψ∗0 [pψ0 + eA0ψ0]}

=
~
i

e

2me

[−ψ0∇ψ∗0 + ψ∗0∇ψ0] +
e2A0

2me

[ψ∗0ψ0 + ψψ∗0]
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At this point, it is interesting to note that the current density in presence of a

magnetic field, whose corresponding potential is A, can be shown [34, 42] to have

expression

j = −
{
~
i

e

2me

[ψ∗∇ψ − ψ∇ψ∗] +
e2A

me

ψ∗ψ

}
for an electron described by a wavefunction ψ. Hence, the first-order energy

acquires the expression reported in Equation 5.2.39.

Inserting the expression of the nuclear potential, the first-order energy becomes

E
(1)
0 = −µ0γn

4π

∫
(I × r) · j

r3
dτ = −µ0γn

4π
I ·
∫
r× j
r3

dτ (5.2.40)

As previously stated, this expression represents the energy of a nuclear magnetic

moment γnI interacting with the current due to the external field B0 and the

electrostatic potential. This energy shift can be written as the inner product of

the moment and a field Bind originated by the current

E
(1)
0 = −µ0γn

4π
I ·
∫
r× j
r3

dτ = −mBind (5.2.41)

from which

Bind =
µ0

4π

∫
r× j
r3

dτ (5.2.42)

This is the very core of chemical shift: once the current j is known, the field at the

nucleus can be computed and the chemical shift obtained consequently. There is

one interesting remark which can already be made. The sensitivity of the chemical

shift depends on the inverse cube of r and so “nearby currents”, unless extremely

small, are expected to have the greatest effect on the value of σ. The point, now,

is to compute the current density.
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5.2.2.3 Computation of the current density

At this point, the second part of the problem can be addressed. The current

density j, as mentioned above, depends exclusively on the external field B0 and

the electrostatic potential. Now, it is the external field which is treated as a per-

turbation. Assuming that the molecular orbitals are non-degenerate, which is the

common case, the corresponding wavefunctions can be shown to be real [42, 34].

Under this hypothesis, if the gauge of the vector potential is a Coulomb gauge,

then the current density can be arbitrarily split in two contributions: a param-

agnetic current density and a diamagnetic current density, which give opposite

contributions to the induced field.

j = jp + jd (5.2.43)

Their expressions are

jd = −
(
e2

me

)
A0

(
ψ

(0)
0

)2

jp =
~
i

e

2me

∑
n6=0

(an − a∗n)
(
ψ(0)
n ∇ψ

(0)
0 − ψ

(0)
0 ∇ψ(0)

n

) (5.2.44)

The diamagnetic current density depends only on the ground state (ψ
(0)
0 ), while

the paramagnetic contribution is an admixture of ground and excited states.

Proof. The first step is to describe the electron acted upon by electrostatic poten-

tial and the external field by means of a Hamiltonian

H =
1

2me
(p+ eA0)2 + V

=
p2

2me

+
e

2me

(p ·A0 +A0 · p) +
e2

2me

A2
0 + V

The external field can be regarded as a perturbation element. The unperturbed

Hamiltonian (no external field applied) is clearly

H(0) =
p2

2me
+ V

and the solution of Schrödinger equations are assumed to be known when no ex-

ternal field is applied, as explained in section §5.2.2.1. According to the definition
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introduced in the proof of Equation 5.2.39, the current density has expression

j = −
{
~
i

e

2me

[ψ∗∇ψ − ψ∇ψ∗] +
e2A0

me

ψ∗ψ

}
where the wavefunction is not necessarily real. What is routinely done at this

point is the computation of the first-order (in B0) current density. It is clear that

the terms that are first-order in A0 are also first-order in B0. Consequently, the

first-order correction to the Hamiltonian is

H(1) =
e

2me

(p ·A0 +A0 · p)

According to Equation 5.2.22 and section §1.2.2, the first-order perturbed wave-

function is

ψ0 ∼ ψ
(0)
0 + ψ

(1)
0 = ψ

(0)
0 +

∑
n6=0

〈ψ(0)
n |H(1)|ψ(0)

0 〉
E

(0)
0 − E

(0)
n

ψ(0)
n = ψ

(0)
0 +

∑
n6=0

anψ
(0)
n

The exact wavefunction ψ0 is approximated as the sum of the unperturbed and the

first-order perturbed wavefunctions. In other words, the switch-on of the external

field causes the unperturbed ground-state ψ
(0)
0 to be distorted to ψ0 ∼ ψ

(0)
0 +ψ

(1)
0 ,

which takes into account both the electrostatic potential and the applied field.

Replacing in the definition of the current density, one gets

j =
~
i

e

2me

{
ψ

(0)
0 ∇ψ

(0)∗
0 − ψ(0)∗

0 ∇ψ(0)
0 +

∑
n6=0

an

(
ψ(0)
n ∇ψ

(0)∗
0 − ψ(0)∗

0 ∇ψ(0)
n

)
−
∑
n6=0

a∗n

(
ψ(0)∗
n ∇ψ

(0)
0 − ψ

(0)
0 ∇ψ(0)∗

n

)}
− e2

me

(
ψ

(0)
0

)2

A0

Assuming, now, that the eigenfunctions ψ
(0)
n and ψ

(0)
0 are real, the current

density becomes

j =
~
i

e

2me

∑
n6=0

(an − a∗n)
(
ψ(0)
n ∇ψ

(0)
0 − ψ

(0)
0 ∇ψ(0)

n

)
− e2

me

(
ψ

(0)
0

)2

A0

which can be arbitrarily split in the two contributions of Equation 5.2.44.

It is interesting to highlight that when the molecular orbitals are non-degenerate,

the net current density is zero if no external field is applied. Another way of visu-

alizing this physical phenomenon is to realize that under the same hypothesis, the
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orbital angular momentum turns out to be null [34, 42]. According to the physical

jargon, one would say that the angular momentum is quenched. On the other

hand, when a magnetic field is applied, the wavefunctions get distorted, are no

longer real [34] and the overall current density is, in general, not null. The orbital

angular momentum gets “unquenched”.

Another aspect which deserves to be mentioned is that the current density

shows an explicit dependence on the “shape” of the wavefunctions. Consequently,

it will definitely not be a surprise that chemical shifts for different kinds of orbitals

(i.e. s, p and so on) can be strongly mismatched. In the following two examples,

just the main results for s and p orbitals are reported to highlight the noteworthy

characteristics.

Example 5.2.3. The perturbation Hamiltonian H(1) introduced in the proof of

Equation 5.2.44, can be rewritten [42] to highlight the ẑ component of the angular

momentum operator

H(1) =
e

2me

B0lz = −γeB0lz

Consider now an s orbital, which is spherically symmetric. It is known that lzψ
(0)
0 =

0 and so

ψ0 = ψ
(0)
0 ←→ an = 0 ∀n 6= 0

As a matter of fact, an s orbital wavefunction can be expressed [53] as

ψ ∼ e−r/α or ψ ∼ (β − r)e−r/α

where α and β are two constants. In both cases, the application of the angular

momentum operator gives a null result. As a consequence, the coefficients an are

equal to zero and the overall current density has only the diamagnetic contribution

j = jd = − e2

me

A0

(
ψ

(0)
0

)2

= −e
2B0

2me

(−yx̂+ xŷ)
(
ψ

(0)
0

)2

(5.2.45)

It is simple to realize that this current circles around the ẑ axis in such a way

that it gives rise to an induced field which opposes the externally applied field and

shields the nucleus, as shown in Figure 5.6. Hence, the diamagnetic character of

this contribution to the current density. 4

Example 5.2.4. Consider a p-state and suppose that the surrounding of the

nucleus is such that the three orbitals are non-degenerate, so that the orbital

angular momentum, in absence of an external field, is quenched. By the way,

this is a common case for atoms in molecules and solids and it is strictly related

194



5 – Nuclear spin interactions

Figure 5.6: The shielding arising from the induced diamagnetic current. From
[54].

to the fact that most substances are actually diamagnetic since atoms do not

have permanent electronic magnetic moments. Suppose [42] that the ground-state

wavefunction has the following shape

ψ
(0)
0 = xf(r)

where f(r) is a function with spherical symmetry. Since lzψ
(0)
0 6= 0 for a p-orbital,

one would expect a non-null paramagnetic current contribution. As a matter of

fact, is is possible to prove that

Jp =
~2e2

2m2
e

B0

∆E0n

(−yx̂+ xŷ) f 2(r)

Jd = −e
2B0

2me

(−yx̂+ xŷ)x2f 2(r)

where ∆E0n = E0−En. Both currents circulate about ẑ, but in opposite directions:

Jp gives rise to a magnetic field which reinforces B0, while Jd gives rise to a

magnetic field which opposes B0. 4
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5.2.2.4 Computation of the chemical shielding

Once the current density is known, it is possible to come back to the expression of

the induced field (Equation 5.2.42) and, remembering that Bind = −σB0, write

down the following equations:

Bd
ind = −σdB0 =

µ0

4π

∫
r× jd

r3
dτ

Bp
ind = −σpB0 =

µ0

4π

∫
r× jp

r3
dτ

(5.2.46)

from which the two contributions to the chemical shielding can be derived.

Diamagnetic chemical shielding The isotropic diamagnetic chemical shield-

ing is given by the well known Lamb formula

σd =

(
e2µ0

12πme

)〈
1

r

〉
(5.2.47)

which shows a strong dependence of the diamagnetic chemical shielding on the

distance of the electron from the nucleus in question (for the choice of the Coulomb

gauge mentioned above).

Proof. The first step is the computation of the cross product

r× jd = −e
2B0

2me

(
ψ

(0)
0

)2

r× (−yx̂+ xŷ)

= −e
2B0

2me

(
ψ

(0)
0

)2 (
−xzx̂− yzŷ + (x2 + y2)ẑ

)
It is evident that, in general, the induced field has components in all the three

Cartesian directions, as expected. However, to evaluate the isotropic shielding, it

is enough to know the diagonal terms σxx, σyy and σzz. Since the external field

is assumed to be applied along the ẑ axis, only the z-component of the previous

product is of interest

σd
zz =

e2µ0

8πme

∫
x2 + y2

r3

(
ψ

(0)
0

)2

dτ
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By analogy, one immediately gets

σd
xx =

e2µ0

8πme

∫
y2 + z2

r3

(
ψ

(0)
0

)2

dτ

σd
yy =

e2µ0

8πme

∫
x2 + z2

r3

(
ψ

(0)
0

)2

dτ

Since σ = 1
3
(σxx + σyy + σzz), one gets

σd =
1

3

e2µ0

8πme

∫
2r2

r3

(
ψ

(0)
0

)2

dτ =

(
e2µ0

12πme

)〈
1

r

〉

Paramagnetic chemical shielding Differently from the diamagnetic shielding,

the paramagnetic shielding arises when the applied field “mixes” excited states in

the ground state. As a matter of fact, the isotropic paramagnetic shielding can be

expressed as

σp = −
(

e2µ0

12πm2
e

)∑
n6=0

〈0|l|n〉 〈n|r−3l|0〉
∆En0

(5.2.48)

where ∆n0 = En−E0 and the notation has been simplified introducing the symbols

|0〉 = |ψ0
0〉 and |n〉 = |ψ0

n〉. It is interesting to highlight that σp is negative, thus

forcing an increase in the local field.

Proof. As done for the derivation of the diamagnetic chemical shielding, one has

to substitute the paramagnetic current density in Equation 5.2.46. It proves con-

venient to use the momentum operator p:

σpB0 = −µ0

4π

∫
r× jp

r3
dτ

= − eµ0

8πme

∑
n6=0

(an − a∗n)

∫ r×
(
ψ

(0)
n pψ

(0)
0 − ψ

(0)
0 pψ

(0)
n

)
r3

dτ

= − eµ0

8πme

∑
n6=0

(an − a∗n)

∫
ψ

(0)
n lψ

(0)
0 − ψ

(0)
0 lψ

(0)
n

r3
dτ

= − eµ0

8πme

∑
n6=0

(an − a∗n)

{〈
n

∣∣∣∣ lr3

∣∣∣∣0〉−〈0

∣∣∣∣ lr3

∣∣∣∣n〉}
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where, as well known, l = r × p. Exploiting the hermiticity of the angular

momentum operator 〈
0

∣∣∣∣ lr3

∣∣∣∣n〉 =

〈
n

∣∣∣∣ lr3

∣∣∣∣0〉∗
Next, since |0〉 and |n〉 are real states and the the off-diagonal terms between real

states of l are imaginary [34], then〈
n

∣∣∣∣ lr3

∣∣∣∣0〉∗ = −
〈
n

∣∣∣∣ lr3

∣∣∣∣0〉
Consequently,

σpB0 = − eµ0

4πme

∑
n6=0

(an − a∗n)

〈
n

∣∣∣∣ lr3

∣∣∣∣0〉
Remembering the expression of the first-order correction to the Hamiltonian pre-

sented in example 5.2.3, the mixing coefficient an can be rewritten as

an =
〈n|H(1)|0〉
E

(0)
0 − E

(0)
n

=
γeB0

∆En0

〈n|lz|0〉

Exploiting the same reasoning proposed before, one can write

〈n|lz|0〉 = 〈0|lz|n〉∗ = −〈0|lz|n〉

And so

an − a∗n =
γeB0

∆En0

(〈n|lz|0〉 − 〈n|lz|0〉∗)

=
γeB0

∆En0

(〈0|lz|n〉∗ − 〈n|lz|0〉∗)

=
γeB0

∆En0

(−〈0|lz|n〉 − 〈0|lz|n〉)

= −2γeB0

∆En0

〈0|lz|n〉

Once more, the resulting induced field will have components in all three directions.

Anyway, in order to compute the isotropic shielding, it is enough to focus on the

diagonal terms. Replacing, one gets

σp
zz = −

(
e2µ0

4πm2
e

)∑
n6=0

〈0|lz|n〉 〈n|r−3lz|0〉
∆En0

The other diagonal components can be derived by analogy, assuming the external
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field is applied first along x̂ and then along ŷ. Averaging, the resulting isotropic

shielding is

σp = −
(

e2µ0

12πm2
e

)∑
n6=0

〈0|l|n〉 〈n|r−3l|0〉
∆En0

Many-electron chemical shielding The equations derived above hold true for

one electron only, but can be simply generalized to the case in which there are N

electrons which are spanned by the index k = 1 −→ N . According to Ramsey’s

theory, when computing the chemical shielding for a specific magnetic nucleus,

it proves convenient to assume that the other nuclei in the molecule have zero

magnetic moment. As a matter of fact, the generic ij-component of the chemical

shielding vector for a system with N electrons is [51, 50]

σij =

σd
ij︷ ︸︸ ︷(

e2µ0

8πm2
e

)〈
0

∣∣∣∣∣
N∑
k=1

rk · rk∆ij − rkirkj
r3
k

∣∣∣∣∣0
〉

−
(
e2µ0

4πm2
e

)∑
n6=0

1

∆En0

〈
0

∣∣∣∣∣
N∑
k=1

lki

∣∣∣∣∣n
〉〈

n

∣∣∣∣∣
N∑
k=1

lkj
r3
k

∣∣∣∣∣0
〉

︸ ︷︷ ︸
σp
ij

(5.2.49)

Proof. While a complete demonstration is found in [42], here just some useful

hints are reported since the strategy is extremely similar to the one pursued for

the previous derivations.

As far as the diamagnetic contribution is concerned, it is trivial to realize that

the expression
rk · rkδij − rkirkj

r3
k

is just a generalization of (r × (−yx̂ + xŷ))/r3 for a field which can be applied

along x̂, or ŷ or ẑ. In the latter case, it reduces to

rk · rkδij − rkirkj
r3
k

=
x2 + y2 + z2 − z2

r3
=
x2 + y2

r3
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For what concerns the paramagnetic contribution, the expression is obtained fol-

lowing the procedure proposed in the proof of Equation 5.2.48, formally replacing

the orbital angular momentum operator with the sum of the operators of all elec-

trons

l −→
N∑
k=1

lk

It has to be pointed out that only the sum of the paramagnetic and diamagnetic

contributions has a physical meaning, while the numerical values individually as-

sociated with the two components are just a consequence of the gauge choice. A

different gauge will result in different paramagnetic and diamagnetic shieldings,

but their sum will remain unchanged. Actually, this is true only for exact solu-

tions. However, one hardly ever deals with exact solutions and so a number of

complications arise for the best choice of the gauge in practical computations.

Moreover, while the computation of σd, having contributions from the ground

state wavefunction only, is relatively simple and can be achieved with satisfactory

accuracy, the computation of σp, requiring the knowledge of excited wavefunc-

tions, is significantly more involving. As a matter of fact, Ramsey’s formulation,

being simple and rational, is useful to understand the physical behaviour but it is

suitable only for small molecules. Indeed, nowadays quantum chemistry computa-

tion software does not exploit these relations [50, 55]. In conclusion, the practical

accurate evaluation of chemical shielding is rooted in the computational chemistry

realm and it is still today a challenging task.

Some considerations on the contributions to shielding The diamagnetic

contribution depends on the ability of the external field to force a circulating

current in the electron ground state. These moving charges induce a field which

opposes, at the nucleus of interest, the external field, thus resulting in an actual

shielding of the latter. It is interesting to note that closed-shell free atoms, having

a null electron orbital angular momentum (as already remarked in example 3.2.1),

do not have any paramagnetic contribution. It is also the only contribution arising

from inner shells (for instance s orbitals) of atoms in molecules, if they, as it is the

usual case, maintain a spherical symmetry [53]. A rule of thumb which helps in

quantifying this contribution follows from the fact that σd depends on the electron

density of the atom of interest. Consequently, an increase in the electronegativity

of a neighbouring atom leads to a withdraw of the electron cloud around the
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Figure 5.7: The current density in C2F2. The external field is perpendicular to
and directed out of the paper. From [56].

nucleus of interest and, so, to a reduction in shielding.

On the other hand, the paramagnetic contribution turns out to be zero

in closed shell free atoms and around linear molecules axes, as the alkynes. A

paramagnetic component arises when there are low-lying excited states, as it is

clear from Equation 5.2.48, where the dependence on the inverse of the energy gap

between ground and excited states is explicit, and the external field can “mix” the

excited states into the ground state.

There is an important caveat which has to be remarked. In many NMR text-

books it is stated that for atoms different from H, the paramagnetic contribution is

dominant. This statement is quite misleading since it should not be interpreted in

reference to the absolute magnitude of the two components of the shielding vector,

but in reference to the extent to which these quantities vary. It is clear that if σp is

almost zero and σd is small, then σ is not expected to show large variations. This

is, for instance, the case of hydrogen, which has σd ∼ 18 ppm and a theoretically

null paramagnetic contribution. On the other hand, for the majority of magnetic

nuclei, the paramagnetic variation turns out to larger than the diamagnetic one

and it is broadly comparable with the overall variation of σ (and so of δ). A direct

consequence is that atoms like carbon, fluorine and so on presents chemical shift

ranges much wider than that of hydrogen for instance. The physical reason is that

σd, even being a sum over all electrons (and so orbitals), is mainly affected by

closer orbitals, which are not significantly “affected” changing from one chemical

compound to the another. On the contrary, σp is wildly affected.
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Atom σd σp σ
F(0) 467.276 3.443 470.719
F(1) 467.276 3.443 470.719
C(2) 406.825 -259.879 146.946
C(3) 406.825 -259.879 146.946

Table 5.1: Chemical shielding for C2F2. The number in parenthesis are used
to identify the atoms inside the molecule, even if in this case the molecule is
symmetric.

Example 5.2.5. As clear from Equation 5.2.49, the chemical shielding in mainly

influenced by “near electrons”, because of its inverse dependence on the distance,

and, as a consequence, by “near currents”. A graphical representation is often

useful to get a feel for the subject. Figure 5.7 reports the current density distribu-

tion which arises in C2F2, when the external field is perpendicular to and directed

out of the paper. The arrows denote the sense of circulation. There is a large

external region where the current flows clockwise, giving rise to a magnetic field

which opposes, or shields, the applied one. Nevertheless, in the basins of the two

carbon atoms, there are small regions where the current circulates anticlockwise,

giving rise to a field which reinforces the external one. However, it has to be high-

lighted that the different currents can contribute to the local magnetic field at a

particular nucleus with a shielding or deshielding effect, according to the position

of the nucleus. For instance, the anticlockwise current which flows around the

fluorine nuclei generates a magnetic field which opposes the external one at these

nuclei, but it also has a deshielding effect on carbon nuclei.

The chemical shieldings reported in Table 5.1 are computed exploiting ORCA, at

DSD-PBEP86 theory level with pcSseg-2 basis set, as suggested in [57], assuming

water solvent and removing the frozen-core approximation 6. The results are in

good agreement with the previous discussion, showing a modest paramagnetic

shielding for F atoms and a more important one for C atoms. One should note

that the paramagnetic shieldings for fluorine atoms are positive: this may seem

wrong at first sight. Nevertheless, this is a simple consequence of the gauge choice

carried out by ORCA: the reader is reminded that even if useful, the subdivision in

paramagnetic and diamagnetic contributions is just arbitrary and only their sum

has a sure physical meaning. Indeed, for different choices of the basis set and the

numerical method, the paramagnetic and diamagnetic contributions change, but

their sum is reasonably constant, for a similar level of accuracy. 4
6No RIJCOSX approximation is used since, being the molecule small, the CPU time is already

reasonable. The results obtained adopting pcSseg-3 basis set are extremely similar.
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5.2.3 A practical approach to chemical shielding

For the sake of completeness, it is worth mentioning the so-called empirical ap-

proach, which is sometimes adopted to simplify the analysis of the different con-

tributions to the resulting shielding. It is customary to express the latter as

σ = σ(local) + σ(neighbour) + σ(solvent) (5.2.50)

where σ(local) is the well-known sum of the paramagnetic and diamagnetic shield-

ings limited to the electrons of the atoms which include the magnetic nucleus. The

local contribution has to be corrected with σ(neighbour), which arises from the

interactions with the other atoms of the molecule. Finally, the liquid state NMR

is usually performed on substances diluted in a solvent7, which, in turn, may affect

the resulting shielding.

As far as the second contribution is concerned, if atoms are analysed on an

individual basis, every nucleus is reasonably influenced by the circulating current

induced in the neighbouring atoms. Consider an A-X group in a molecule: the

currents induced in X by the external field give rise to a magnetic moment which

can be expressed [53] as

mx
ind = χB0 (5.2.51)

where χ is the magnetic susceptibility of X. The resulting magnetic field perceived

by nucleus A can be computed similarly as done in the proof of Equation 5.1.1.

The resulting isotropic chemical shielding is given by the McConnell equation [54]

σ(neighbour) = (χ‖ − χ⊥)
1− 3 cos2(θ)

3r3
(5.2.52)

where θ is the angle between the direction of the induced moment mx
ind and the

A-X axis; r is the distance between the two nuclei and (χ‖ − χ⊥) is the difference

between the parallel and the perpendicular susceptibilities with respect to the

symmetry axis of X [54]. Because of rapid tumbling in liquid solution, if X is

magnetically isotropic, then χ‖ = χ⊥ and σ(neighbour) = 0.

An interesting case occurs in aromatic compounds: the benzene ring, which,

from the point of view of an atom bonded to it, can be regarded as single entity

(as if it were the X atom of the previous discussion), has a strong magnetic sus-

ceptibility anisotropy.

7For instance, when optimizing the geometry of a molecule or when computing the NMR
parameters with software like ORCA, it is always recommended to add a proper solvent, in order
to obtain reliable results.
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Figure 5.8: From [53].

At first-order, it may be assumed that the

π-electrons of the ring are free to circle around.

When an external field is applied, an over-

all ring current arises, which is the origin of

a magnetic field. The latter opposes the ap-

plied field at the centre of the nucleus (blue

lines in Figure 5.8). Hence, hydrogen atoms

which lie in the same plane of the ring are

strongly deshielded. On the contrary, those

which lie above or below, for instance as sub-

stituent groups, are shielded.

Finally, as mentioned above, the presence of solvent molecules can vary the

resulting field at one of the magnetic nuclei of interest. This effect can be a

consequence of the field produced by strongly anisotropic solvent molecules (as

aromatic compounds), or of some solute-solvent interactions (as hydrogen-bonds).
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5.3 Indirect spin-spin coupling

Several experimental liquid state NMR spectra show the splitting of resonance

lines, reported in Figure 5.9 for the ethanol, known as fine structure.

Figure 5.9: From [53].

The practical evidence reveals that the latter is indepen-

dent of temperature and applied field, thus it cannot be a

simple consequence of chemical shielding. Moreover, both

the multiplicity of the line splitting and the relative inten-

sities of a nucleus (for instance the H in CH2 group) show

a dependence on the z-component of the spin of the other

species (as the H in CH3 group). Finally, the frequency

separations of adjacent lines ∆ωj in different species are

identical. These properties led the first researchers to un-

derstand that this coupling must be related to the nuclear

magnetic moments. However, it cannot be an effect of di-

rect spin-spin coupling since it does not vanish in rapid

tumbling molecules. Consequently, it must depend only

on the relative orientation of the nuclear magnetic moments. Since the angle be-

tween two vectors is measured by their scalar product, the energy of the coupling

must be

EJ ∝m1 ·m2 (5.3.1)

The constant of proportionality is actually a 3×3 tensor known as the J-coupling

tensor or indirect coupling tensor and defined as

J =

Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 (5.3.2)

Since the latter is always measured in hertz, the corresponding Hamiltonian is

HJ =
2π

~
I1 · JI2 (5.3.3)

In order to relate the theoretical computations of the J-coupling tensor to NMR

experiments, it proves useful to define the so called isotropic J-coupling as the

averaged trace of the coupling tensor

J =
1

3
tr(J) =

1

3
(Jxx + Jyy + Jzz) (5.3.4)
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and the Hamiltonian becomes

HJ =
2πJ

~
I1 · I2 = QI1 · I2 (5.3.5)

It is clear that some configurations of the spin will increase the energy of the

system, while others will decrease it, according to the sign of the J constant. To

earn an intuitive understanding of the phenomenon, it is convenient to focus on

the weak coupling case: consider two nuclei, A and X, whose relative coupling is

much smaller than the difference between the respective resonance frequencies. In

this case, as it will be clear in the following, the Hamiltonian can be approximated

as

HJ ∼
2πJ

~
IzA · IzX (5.3.6)

The energy eigenstates for a spin-1
2

system are

EJ = hJmA
I m

X
I = ±hJ

4
(5.3.7)

It has to be pointed out that J-constant can be either

• Positive, if the antiparallel orientation of the two spins leads to a reduction

of the system energy.

• Negative, if the parallel orientation of the two spins leads to a reduction of

the system energy.

In Figure 5.10, an AX system is presented. In the absence of J-coupling, the

four energy levels arise as a consequence of the Zeeman effect and depend on the

orientation of the nuclear spins with respect to the externally applied field. Since

it is a fundamental theoretical result that the allowed transitions have ∆mI = 1,

when a transition of nucleus A takes place, nucleus X remains unchanged. The

two possible transitions for the former are |00〉 −→ |10〉 and |01〉 −→ |11〉 and they

require exactly the same amount of energy, that is, they are degenerate. Therefore,

the A resonance consists of a single line, centred at the (chemically shifted) Larmor

frequency and similarly for X. Conversely, when an indirect positive coupling is

included, the antiparallel states |01〉 and |10〉 are lowered in energy of−hJ/4, while

the parallel states |00〉 |11〉 show a +hJ/4 higher energy. It follows that, focusing

again on the transitions of A, the |00〉 −→ |10〉 transition is lower in energy

(−hJ/2) with respect to the |01〉 −→ |11〉 (+hJ/2). Hence, the A resonance
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Figure 5.10: On the left, the energy levels for two uncoupled spins are reported in
light blue, while those for two J-coupled spins are reported in orange. The Larmor
frequencies of the two spins are f 1 and f 2. On the right, the AX spectrum is shown
[53].

consists of two lines, separated by J and centred on the chemically shifted Larmor

frequency of A. The X resonance, also, consists of two lines, separated by J and

centred on the chemically shifted Larmor frequency of X.

There are several interesting remarks which help in understanding first-order

(i.e. weak coupling) spectra. First, magnetically equivalent nuclei resonate like a

single nucleus. Two or more nuclei are said to be magnetically equivalent if they

have the same resonant frequency and a single characteristic J-interaction with

the nuclei of other groups. Magnetically equivalent nuclei are usually also chemi-

cally equivalent, but chemically equivalent nuclei are not necessarily magnetically

equivalent. The point is that magnetically equivalent nuclei can couple together.

However, the relative orientations of the nuclear spins cannot be changed, since it

is not possible to address a single nucleus in magnetically equivalent groups. As a

consequence, the J-coupling is undetectable (and cannot be “used” for quantum

computation purposes).

Second, for spin-1
2

nuclei, the multiplicity of the line splitting is n + 1, where

n is the number of nuclei in the neighbouring group. Different groups must be

considered separately.

Third, the relative intensities of the resonant lines can be read directly from

the Pascal triangle [53].

Example 5.3.1. Focus, for instance, on an AX3 system. Considering the possible

spin configurations of the X group reported in Table 5.2, it is clear that the A

resonant lines must be 4, as expected since n + 1 = 3 + 1 = 4. Moreover, there

are three combinations whose total spin is −3
2

or +3
2
, while there is only one

combination whose total spin is −1
2

or +1
2
. Consequently, the relative intensities

of A spectral lines must be 1:3:3:1, as expected from the Pascal triangle. Finally,
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the X spectrum consists of two lines, because the the three magnetically equivalent

X nuclei behave like a single nucleus.

Configuration Total Spin Combinations

|000〉 −1
2

1

|001〉 |010〉 |100〉 −3
2

3

|011〉 |101〉 |110〉 +3
2

3

|111〉 +1
2

1

Table 5.2: The allowed spin configurations of a X3 magnetically equivalent nuclear
group.

4
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5.3.1 The origin of the J-coupling

It should be clear that the J-coupling phenomenon cannot be due to a direct

magnetic interaction between nuclear spins since the latter averages to zero in rapid

tumbling molecules. Indeed, it is an indirect coupling phenomenon mediated by

the electrons: a nucleus somehow interacts with its electrons, these interact with

the electrons of another nucleus, which, in turn, interact with their nucleus. The

interaction orientation dependence is changed by the participation of electrons

and an isotropic part of the coupling tensor which survives motional averaging in

isotropic liquids is generated. The key point is to understand how the nucleus

couples with the electrons via the so-called hyperfine interactions. The nuclear

magnetic field can induce a magnetic field [58] in the electrons according to two

main classes of phenomena:

• Electron spin polarization which occurs thanks to

– Spin-dipole mechanism (SD).

– Fermi contact mechanism (FC).

– SD-FC cross term.

• Orbital ring current induction which occurs thanks to

– Paramagnetic spin-orbital mechanism (PSO).

– Diamagnetic spin-orbital mechanism (DSO).

Spin polarization The simple point-dipole approximation with which the nu-

clear magnetic field has been treated up to now is not satisfactory to describe

the hyperfine interactions. Indeed, the electrons which have a finite probability of

being located at the contact surface of the nucleus, that is the s-orbital electrons,

can perceive the approximately uniform internal field of the nucleus (Figure 5.11).

This gives rise to an electron spin polarization which is accounted for by the FC

mechanism. Conversely, p, d, f-electrons see only the external field of the nucleus,

which can be safely treated with the point dipole approximation. The consequent

spin polarization is at the origin of the SD term. The main difference between

FC and SD mechanism is that the former is described by an isotropic operator,

while the latter by an anisotropic operator which must be isotropically averaged.

Finally, the FC-SD term occurs when the FC mechanism on one nucleus if per-

ceived via the SD mechanism by the second nucleus. This cross term usually
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Figure 5.11: The nuclear field. From [59].

averages to zero in the computation of the isotropic J constant, but gives non-null

contributions to the J tensor [58].

Spin-orbit As the externally applied magnetic field causes electronic currents

which modify the magnetic field perceived by the nucleus (chemical shielding),

also the magnetic moment of the nucleus can induce electronic currents. Accord-

ing to the gauge choice, the induced current can be split into paramagnetic and

diamagnetic contributions, giving rise, respectively, to the PSO and DSO terms.

Spin information transport As previously suggested, the magnetic field of

the perturbing nucleus can induce either electronic currents or spin polarization

in the electron system. Then, these local effects are transferred to other parts of

the molecule, via chemical bonds. Finally, the responding nucleus perceives an

extra magnetic field.

SD, PSO and DSO terms usually yield small contributions which are negligible

for an intuitive understanding of the spin-spin coupling. Consequently, in this

section, the focus is on the FC term, although some hints are given also on the

SD term.
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5.3.1.1 The spin-dipole mechanism

The SD mechanism is a simple direct dipolar interaction between the magnetic

moment of the nucleus and of the electron, assuming that both behave as point

magnetic dipoles and that they are far away from each other (s, d, f orbitals).

An actual treatment of the spin-spin SD coupling requires the definition of an

operator for each nucleus and a description of the interaction. Nevertheless, it

is quite simple to understand why this contribution is very small without long

calculations. The SD hyperfine Hamiltonian is obtained immediately from Equa-

tion 5.1.1, formally replacing the nuclear spin operator with the electron spin

operator

HSD =
µ0geγeγn

4πr3

(
s · I − 3(s · r)(r · I)

r2

)
(5.3.8)

where r is the (not normalized) electron-nucleus position vector. Here too, the

secular Hamiltonian in the presence of an external field applied along ẑ can be

expressed as

HSD ∼
µ0geγeγn

4πr3

(
1− 3 cos2(θ)

)
sz · Iz (5.3.9)

As known from the above discussion, the first-order correction to the energy is the

average value of the Hamiltonian for the ground-state wavefunction. It is clear

that for a spherically symmetric s-orbital〈
1− 3 cos2(θ)

r3

〉
= 0 (5.3.10)

On the other hand, in non-s-orbitals, the expectation value is non zero. How-

ever, even if the SD interaction is non-zero for a specific relative orientation of

the nuclear field and the electron orbital, when the molecule is allowed to freely

tumble, then the average mean interaction is zero [34]. Hence, the spin-dipolar

mechanism can be neglected in liquid-state NMR. A rigorous analysis of the small

SD contribution to spin-spin coupling falls outside the scope of this research and

can be found in [59].
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5.3.1.2 The Fermi contact mechanism

The point magnetic dipole approximation is valid for all non-s-orbitals, since the

probability to find a l 6= 0 electron at the nucleus is always zero.

However, an s-electron can be found at the nucleus, which,

consequently, cannot be regarded as dimensionless point. In this

case, the nuclear magnetic moment can be thought to be originated

from the circulation of a current in a loop whose radius is that of

the nucleus itself. Close or inside the loop, the field is significantly

different from that of a point dipole. The electron, then, perceives

a non-zero average field. The Hamiltonian which describes the in-

teraction, known as the Fermi contact Hamiltonian, is reported without providing

a proof, which can be found in [34, 60]. Yet, some guesses can be advanced based

on the physical background. One can expect that the Hamiltonian will depend

on the relative orientation of the electron spin and the nuclear spin and, thus, be

proportional to their scalar product. Moreover, it shall include a “contact term”.

HFC = −2µ0geγeγnδ(rn)

3
s · I (5.3.11)

where ∆(rn) is the Dirac delta distribution and it represents the aforementioned

contact term. As a matter of fact, the procedure requires the integration of the

Dirac distribution which samples the electron wavefunction at the nucleus (rn =

0):

E(1) = −2µ0geγeγn|ψe0(0)|2

3
〈0|s · I|0〉 (5.3.12)

where ψe0 is the unperturbed total electron ground state wavefunction, |ψe0(0)|2 is

the probability to find the electron at the nucleus and |0〉 is the total unperturbed

ground state (see the proof for clarification).

Proof. In order to compute the first-order correction to the energy, the theory

outlined in section §5.2.2.1 can be exploited. However, differently from the deriva-

tion of chemical shielding, the complete Hamiltonian of the system must take into

account the electron Hamiltonian He, the nuclear Hamiltonian Hn and the inter-

action hyperfine Hamiltonian Hen [42], which is here assumed to be limited to the

FC term:

H = He +Hn +Hen
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Since the hyperfine structure of the energy levels, arising from the nuclear spins,

is here under investigation, nuclear spin variables must be included in the wave-

function and in the basis functions. In particular, assuming a weak interaction, the

complete unperturbed wavefunction can be written as the product of the electron

and the nuclear wavefunctions

ψ = ψeψn

This wavefunction would be the exact one ifHen were zero. The computation of the

first-order correction to the energy requires to average the first-order perturbation

Hamiltonian on the total ground state

E(1) = 〈ψe0ψn0 |HFC |ψn0ψe0〉

where the subscript zero refers to the ground state. The latter can be rewritten,

according to [61, 34], making explicit the integration of the delta distribution

E(1) = −2µ0geγeγn
3

(∫
ψe∗0 δ(rn)ψe0 dτ

)
〈ψe0ψn0 |s · I|ψn0ψe0〉 (5.3.13)

Finally, denoting with |0〉 the total unperturbed ground state, Equation 5.3.12 is

trivially obtained.

Note that in the final expression for the first-order correction to the energy,

the ground state vector |0〉 acts only on the spin state. In this respect, it proves

useful to introduce8 an effective Hs Hamiltonian which contains only (electron

and nuclear) spin operators: the spin Hamiltonian. The latter describes a kind

of model spin system, whose behaviour obeys to the eigenvalue equation

Hsζ = Eζ (5.3.14)

where ζ is the spin wavefunction. The spin Hamiltonian can be regarded as a

simplification of the actual system Hamiltonian, from which all the complexities

associated with electronic motion have been dropped, which is convenient to justify

the experimental results, as seen for the NMR case.

In particular, the same first-order energy of Equation 5.3.12 is obtained if the

following term is added to the spin Hamiltonian

Hs
FC = −2µ0geγeγn|ψ0(0)|2

3
s · I (5.3.15)

8Actually, the spin Hamiltonian has already been adopted in the previous chapters. Indeed,
while discussing NMR, the focus has always been on a Hamiltonian limited to the spin.

213



5 – Nuclear spin interactions

In fact, assuming now that |0〉 is the spin-only ground state, the first-order cor-

rection to the energy is simply

E(1) = 〈0|Hs
FC |0〉 = −2µ0geγeγn|ψ0(0)|2

3
〈0|s · I|0〉 (5.3.16)

If the external field is very strong so that only the z-component is relevant, the

previous expression can be rewritten as

E(1) ∼ +
2µ0geµBµN |ψ0(0)|2

3
msmI (5.3.17)

The energy, then, is minimized if the nuclear spin and the electron spin are

antiparallel.
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5.3.1.3 The computation of the J constant

As previously highlighted, there are several indirect mechanisms which can con-

tribute to the nuclear coupling. In this section, the focus is on the Fermi contact

mechanism for an AX system, bonded by a couple of electrons. This simplified

case allows the understanding of the physical phenomenon at an intuitive level,

adopting the so-called Dirac vector model. First, there is a hyperfine interaction

Figure 5.12: The electron mediated indirect coupling between two neighbouring
nuclei, considering exclusively the Fermi contact contribution. From [53].

according to the Fermi contact mechanisms between the first nucleus and the cor-

responding electron. The antiparallel arrangement of the two spins is energetically

favoured. Then, because of the Pauli exclusion principle, the two bonding elec-

tron spins are forced to have opposite orientations (actually, the spin information

transport occurs via exchange interactions [59]). Finally, the second nuclear spin

has an energy advantage to be antiparallel to the electron spin. Consequently,

the antiparallel orientation of the nuclear spins lies lower in energy, as shown in

Figure 5.12 and the FC mechanism contribution to the total J-coupling is usually

positive. Note that, as previously suggested, the indirect spin-spin coupling causes

an energy difference between the relative orientations of the nuclear spins. The

pq-component of the J tensor due to the FC term only can be written as

Jpq = −8

9
µ2

0g
2
eγ

2
eγAγB

∑
n 6=0

1

∆En0

〈
0

∣∣∣∣∣
N∑
i=1

spiδ(r
A
pi)

∣∣∣∣∣n
〉〈

n

∣∣∣∣∣
N∑
i=1

sqiδ(r
X
qi )

∣∣∣∣∣0
〉

(5.3.18)

and the isotropic constant is

J =
1

3
tr(J) (5.3.19)
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where |n〉 denotes an unperturbed (i.e. without considering nuclear spin) electron

state, spi is the p-component of the i-th electron spin operator and rXqi is the

q-component of the vector from nucleus X to electron i.

Proof. Defining

A =
∑
i

siδ(r
A
i ) X =

∑
i

siδ(r
X
i )

and considering Equation 5.3.11, the contact interaction Hamiltonian for the two

nuclei is

H(1) = −2

3
µ0geγe [γAIA ·A+ γXIX ·X] , −C [γAIA ·A+ γXIX ·X]

The first-order correction to the energy is zero since in singlet-state molecules, that

is, in molecules where all electrons are coupled and, so, the overall spin is null, the

expectation value of the spin operator is zero. Conversely, the second-order cor-

rection is, in general, non zero and can be evaluated from Equation 5.2.23, taking

into consideration H1 only. Once more, one has to use both the electron and the

nuclear wavefunctions. In particular, let |ψe0〉 be the many electrons unperturbed

ground state with energy Ee
0 and |ψem〉 a corresponding excited state with energy

Ee
m, while the unperturbed nuclear ground state is denoted as |ψn0 〉 and similarly

the excited states. Thus according to [42, 61]

E
(2)
0 =

∑
k,m6=0

〈ψemψnk |H(1)|ψe0ψn0 〉 〈ψe0ψn0 |H(1)|ψemψnk 〉
(Ee

0 − Ee
m) + (En

0 − En
k )

Since

(Ee
0 − Ee

m)� (En
0 − En

k )

then

E
(2)
0 ∼

∑
k,m6=0

〈ψemψnk |H(1)|ψe0ψn0 〉 〈ψe0ψn0 |H(1)|ψemψnk 〉
Ee

0 − Ee
m

Replacing the first-order Hamiltonian

E
(2)
0 = C2

∑
k,m6=0

1

Ee
0 − Ee

m

〈ψemψnk |γAIA ·A+ γXIX ·X|ψe0ψn0 〉 ·

〈ψe0ψn0 |γAIA ·A+ γXIX ·X|ψemψnk 〉

216



5 – Nuclear spin interactions

The numerator N can be rewritten as

N = [〈ψemψnk |γAIA ·A|ψe0ψn0 〉+ 〈ψemψnk |γXIX ·X|ψe0ψn0 〉] ·

[〈ψe0ψn0 |γAIA ·A|ψemψnk 〉+ 〈ψe0ψn0 |γXIX ·X|ψemψnk 〉]

According to [42], the terms which are quadratic in IA or IX represent the energy

changes if one or the other nuclei were the only one, while the terms bilinear in

IA and IX represent the energy changes due to the interaction between the two

nuclei. Since the aim is to determine the interaction energy, the quadratic terms

are dropped and the numerator becomes

N = 〈ψemψnk |γAIA ·A|ψe0ψn0 〉 〈ψe0ψn0 |γXIX ·X|ψemψnk 〉

+ 〈ψe0ψn0 |γAIA ·A|ψemψnk 〉 〈ψemψnk |γXIX ·X|ψe0ψn0 〉

Since IA and A are Hermitian operators and do commute, their inner product is

still Hermitian and similarly for IX andX. Hence, the second term in the previous

equation is simply the complex conjugate of the first one. If the wavefunctions are

real, then

N = 2 〈ψe0ψn0 |γAIA ·A|ψemψnk 〉 〈ψemψnk |γXIX ·X|ψe0ψn0 〉

Developing the inner product, the matrix elements separate into a product of

electronic and nuclear factors [42, 61]

N = 2γAγX
∑
p,q

〈ψe0|Ap|ψem〉 〈ψem|Xq|ψe0〉 〈ψn0 |IAp|ψnk 〉 〈ψnk |IXq|ψn0 〉

where p and q denote the Cartesian coordinates. Next, the second-order correction

to the energy is written as

E
(2)
0 = 2C2γAγX

∑
p,q

∑
m 6=0

〈ψe0|Ap|ψem〉 〈ψem|Xq|ψe0〉
Ee

0 − Ee
m

∑
k

〈ψn0 |IAp|ψnk 〉 〈ψnk |IXq|ψn0 〉

= 2C2γAγX
∑
p,q

∑
m 6=0

〈ψe0|Ap|ψem〉 〈ψem|Xq|ψe0〉
Ee

0 − Ee
m

〈ψn0 |IApIXq|ψn0 〉

where the second line follows form the hypothesis that the set of nuclear spin

states is complete [61]. It is trivial to realize that the same energy is obtained as
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a first-order correction of an extra term in the spin effective Hamiltonian

Hs = −8

9
µ2

0g
2
eγ

2
eγAγX

∑
p,q

IApIXq

[∑
m6=0

〈ψe0|Ap|ψem〉 〈ψem|Xq|ψe0〉
Ee
m − Ee

0

]

The interesting point is that the term inside the square bracket is actually a con-

stant. In other words, the J-coupling tensor when only the FC term is considered

must be a constant. Indeed, it can be shown [62] that the spin vectors embedded

in A and X operators must have the same Cartesian component. In order to

simplify the notation, the electron ground state can be identified with |0〉 with

energy E0 and similarly for the excited states. According to [42], the previous

equation becomes

Hs = −8

9
µ2

0g
2
eγ

2
eγAγX

∑
n 6=0

IA ·
〈0|A|n〉 〈n|X|0〉

En − E0

· IX

Replacing the expressions of A and X and keeping in mind the above mentioned

property of their Cartesian components, the xx, yy and zz-components of the

J-coupling tensor can be computed. Moreover, the latter turns out to be isotropic

(Jxx = Jyy = Jzz) [58, 62]. As a consequence, the isotropic constant is [34, 59]

J = − 8

27
µ2

0g
2
eγ

2
eγAγX

∑
n6=0

1

δEn0

〈
0

∣∣∣∣∣
N∑
i=1

siδ(r
A
i )

∣∣∣∣∣n
〉〈

n

∣∣∣∣∣
N∑
i=1

si∆(rXi )

∣∣∣∣∣0
〉
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5.3.1.4 Hints on the molecular orbital interpretation of FC J-coupling

In molecular orbital theory, the electrons do not belong to a specific atom or bond

but they spread throughout the whole molecule. IfH is the electronic Hamiltonian

of the molecule, the molecular orbitals (MO) Ψ could in principle be found as the

solutions of the Schrödinger equation

HΨ = EΨ (5.3.20)

However, an analytic solution can be found only for very simple cases. Hence

an approximation must be introduced. A widely adopted one prescribes to write

a molecular orbital as a linear combination of atomic orbitals (LCAO-MO)

Ψ =
∑
i

ciφi (5.3.21)

where the atomic orbitals (AO) φi constitute a basis set for the calculation of

MOs. For instance, if an electron can be found in the AO φA of nucleus A and φB

of B, then the corresponding MO is a superposition of the two:

Ψ± = N(φA ± φB) (5.3.22)

where N is a normalization constant. If the + sign is chosen in the superposition,

then

Ψ+ = N(φA + φB) (5.3.23)

is a bonding orbital, since the probability density of the electron is

|Ψ+|2 = N2(φ2
A + φ2

B + 2φAφB) (5.3.24)

where the +2φAφB overlap density increases the probability of finding the electron

in the internuclear region. In other words, the AOs overlap with constructive

interference.

Conversely,

Ψ− = N(φA − φB) (5.3.25)

is an antibonding orbital, since the probability density of the electron is

|Ψ−|2 = N2(φ2
A + φ2

B − 2φAφB) (5.3.26)

where the −2φAφB overlap density decreases the probability of finding the electron
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in the internuclear region. In other words, the AOs overlap with destructive inter-

ference. It turns out the antibonding orbitals lay higher in energy than bonding

orbitals.

In general, from N atomic orbitals, N molecular orbitals are obtained, which

are schematically arranged according to their energy. In particular, the high-

est occupied molecular orbital is known as HOMO, while the lowest unoccupied

molecular orbital is named LUMO. They are the frontier orbitals.

Finally, a molecular orbital that has cylindrical symmetry and zero orbital

angular momentum around the internuclear axis is a σ orbital, while MOs which

have one unit of orbital angular momentum around the internuclear axis are named

π orbitals. At an intuitive level, σ-MOs are similar to s-AOs, while π-MOs to p-

AOs.

It turns out [58] that instead of using a sum over excited state wavefunction

to represent the perturbation of the ground state, as in Equation 5.3.27, one can

write a mixing of unoccupied and occupied MOs

Jpq =
8

9
Re

{
occ∑
n

un∑
m

µ2
0g

2
eγ

2
eγAγB

En − Em

〈
Ψn

∣∣∣∣∣
N∑
i=1

spi∆(rApi)

∣∣∣∣∣Ψm
〉

〈
Ψm

∣∣∣∣∣
N∑
i=1

sqi∆(rXqi )

∣∣∣∣∣Ψn
〉}

(5.3.27)

where Ψn are the occupied orbitals with energy En, Ψm the unoccupied orbitals

with energy Em. Similarly to the excited states in the sum over states equation,

the mixing of unoccupied orbitals in the occupied orbitals is a tool to describe

the deformations spin polarizations and orbital currents cause to the occupied

orbitals.

A term like 〈
Ψn

∣∣∣∣∣
N∑
i=1

spi∆(rApi)

∣∣∣∣∣Ψm
〉

(5.3.28)

samples the value of the product between occupied and unoccupied orbitals at

the A nucleus. At this point, it is clear that, since an LCAO-MO is written as

a combination of AOs and since only s-AOs have a non zero probability density

at the nucleus, only MOs with a remarkable s character on both nuclei can

contribute to the FC coupling. Moreover, the intensity of the coupling is inversely

proportional to the energy gap between the couple of occupied-unoccupied MOs.
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Hence, a large coupling is expected if both low-lying unoccupied σ MOs and high-

lying occupied σ MOs are available.

The J constant contribution arising from each occupied MO can be simply

expressed as

Jn =
un∑
m

Jmn (5.3.29)

so that the overall J-coupling constant is

J =
occ∑
n

Jn (5.3.30)

Instead of using canonical MOs, it proves useful to give a pictorial insight the

adoption of localized molecular orbitals (LMOs), which can be shown to be

fully equivalent to canonical MOs and which can be constructed from the latter

by linear operations. LMOs are the theoretical representation of bonds and core

orbitals and are closer to the standard chemical intuition. Moreover, differently

from canonical MOs, for LMOs the total J constant is

J =
∑
ab

Jab =
∑
a

Ja (5.3.31)

where a and b refer to a pair of LMOs and Ja =
∑

b Jab. This means that the

summation only involves occupied orbitals since the contributions from unoccupied

orbitals are already taken into consideration by each term [58].

Example 5.3.2. Consider the ethyne molecule C2H2. The canonical MOs are

computed resorting on ORCA at BP86 level of theory with def2-TZVPP basis set,

according to [58]. Then, the LMOs reported in Figure 5.13 are constructed from

the canonical MOs adopting the Intrinsic Atomic Orbitals and Intrinsic Bond

Orbitals (IAOIBO) method which does not allow any σ − π mixing, to get a

simple pictorial representation very close to the chemical intuition. The obtained

LMOs are visualized thanks to Avogadro [63].

It is known from fundamental chemical theory that the carbon presents an

sp-hybridization in C2H2 molecule. Thus, each carbon atom is expected to use

an sp-orbital to bond to the hydrogen atom and the other sp-orbital and the

two non-hybrid p-orbitals to bond to the other carbon atom. This expectation

is met by the chosen MO decomposition: HOMO−6 and HOMO−5 are the core

1s orbitals; HOMO−4 is the σ-MO originated by the superposition of the two

sp-AOs; HOMO−3 and HOMO−1 are the π-MOs originated by the superposition
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(a) HOMO (b) HOMO−1

(c) HOMO−2 (d) HOMO−3

(e) HOMO−4 (f) HOMO−5

(g) HOMO−6

Figure 5.13: The occupied LMOs of C2H2 plotted with ±0.060
√

e
a30

isosurface.

of the four p-AOs; finally, HOMO−6 and HOMO−5 are the σ-MOs originated by

the superposition of a carbon sp-AO and a hydrogen s-orbital.

As expected from the previous discussion and as reported in [58], the main

contribution to J-coupling arises from the σ HOMO−4 orbital, since it has a large
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s-character on both nuclei. On the other hand, HOMO−3 and HOMO−2, being

π-orbitals and having zero s-character, do not contribute to the FC mechanism.

Another interesting result is that HOMO−1 and HOMO yield a negative contribu-

tion. A possible justification is that the carbon atoms have to share some of their

electrons to the C−H bonds, which, consequently, cannot participate to the C−C

coupling. Finally, also HOMO−6 and HOMO−5 give a small contribution, which

cannot be intuitively explained, being a consequence of the fact that, since all

LMOs are mutually orthogonal, each of them must participate in the J-coupling

[58].

In conclusion, the analysis of J-coupling from ethyne to ethene and ethane

shows a strongly decreasing trend. The physical justification has to be looked for

in two concomitant phenomena. First, the C−C distances increase. Second, there

is a reduction of the s-character in the σ orbital, due to a variation of the carbon

hybridization from sp to sp2 to sp3. 4

5.3.1.5 The transmission of coupling

The previous discussion focuses on the coupling mechanism only between neigh-

bouring nuclei. However, the experimental evidence shows that the coupling can

be transmitted through more than one bond and even through non-magnetic nu-

clei. If a detailed discussion would be quite involved, a simple intuition can be

earned considering the case reported in Figure 5.14. Suppose that the Y nucleus

Figure 5.14: The transmission of the J-coupling. From [53].

has pointing-up spin |↑〉. It polarizes its electron through a hyperfine interaction

and, consequently, the latter is likely to be |↓〉. Then, a |↑〉 spin is likely to be

found near the non-magnetic nucleus C. Because of Hund’s rule (section §3.2.2.1),

the most energetically favourable arrangement for the electron of the neighbouring

bond is |↑〉. It follows that the X nucleus minimizes the overall energy if it has a

|↑〉 spin. Note that, in this case, the J-coupling is negative.
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Part III

Physical implementation of an

NMR quantum computer



Chapter 6

The NMR quantum computer

The qubits can be encoded on several quantum systems. The main requirements

are the possibility of characterizing them and manipulating them through an ex-

ternal perturbation, or, in other words, there shall exist a physical procedure to

prepare the qubits and control them in order to perform the intended quantum cal-

culation. Moreover, the physical representation must be unique and the relaxation

and decoherence time constants shall be sufficiently long to allow the execution of

quantum algorithms. Finally, techniques to initialize the system and measure the

outcomes must be known. The nuclear magnetic system arises as a spontaneously

suitable solution, able to satisfy the requirements. An isolated spin-1
2

in a static

magnetic field is a natural implementation of a qubit. Thanks to the Zeeman

effect, two well-defined energy eigenstates |↑〉 and |↓〉 arise, which can be asso-

ciated with the quantum states |0〉 and |1〉, respectively. Diamagnetic molecules

with magnetic nuclei can be exploited as quantum registers, as 13CHCl3. The 13C

and 1H interacting nuclear spins can be associated with two qubits. This chap-

ter aims to outline how given such a system, described by a system Hamiltonian

Hsys = H0 +Hint and a control Hamiltonian Hr, a desired unitary transformation

U can be efficiently implemented. The task is to find the control parameters η(t)

in the total Hamiltonian H = Hsys +Hr such that the time development operator

U [η(t)] = T exp

[
− i
~

∫ τ

0

H(η(t))dt

]
= e−i

H(η(tn))
~ ∆tn · · · e−i

H(η(t1))
~ ∆t1 (6.0.1)

where T is the time-ordered product and the control parameters are assumed to

be piecewise constant.
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6.1 The Hamiltonian for weakly coupled spins

Since every non trivial quantum algorithm requires at least two qubits, it is funda-

mental to describe the behaviour of molecules with two coupled spins. A typical

NMR experiment is carried out on a macroscopic number (∼ 1020) of liquid-state

molecules in thermal equilibrium. Since each molecule is free to rotate with re-

spect to the other molecules in the sample, the intramolecular interactions average

to zero. As far as the intermolecular interactions are concerned, it is known from

chapter 5 that short-range direct dipolar coupling averages to zero because of the

translational motion of molecules. It follows that most liquid-state substances

present only chemical shielding and J-coupling. Hence, the internal Hamiltonian

is simply

Hint =
2πJ

~
∑

k=x,y,z

Ik ⊗ Ik (6.1.1)

and the total Hamiltonian is

H = Hsys +Hr,1 +Hr,2 (6.1.2)

where

Hsys = −ω0,1Iz ⊗ I− ω0,2I⊗ Iz +
2πJ

~
∑

k=x,y,z

Ik ⊗ Ik (6.1.3)

assuming that ω0,1 and ω0,2 are the chemically shifted Larmor frequencies. As

far as the control Hamiltonian is concerned, assume that there are two oscillating

RF fields along −x̂ with amplitudes 2Br,1 and 2Br,2 and frequencies ωr,1 and ωr,2.

The corresponding Hamiltonians are

Hr,1 = +2 · ω∗,1 cos(ωr,1t− φ1)

(
Ix ⊗ I +

γ2

γ1

I⊗ Ix
)

Hr,2 = +2 · ω∗,2 cos(ωr,2t− φ2)

(
γ1

γ2

Ix ⊗ I + I⊗ Ix
) (6.1.4)

For the same reasons presented for the analysis of non interacting spins, it is

convenient to describe the system using the concept of the rotating frame again.

Actually, now it is mandatory to introduce two independent rotating frames, at

frequencies ω1 and ω2. By analogy with Equation 4.1.29, the operator which

describes the transformation to the two rotating frames is

UR = exp
(
−iω1σz

2
t
)
⊗ exp

(
−iω2σz

2
t
)

(6.1.5)
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and, as shown for Equation 4.1.31, the rotating frame Hamiltonian is

H̃ = URHU †R − i~UR
dU †R
dt

= UR (Hsys +Hr,1 +Hr,2)U †R − i~UR
dU †R
dt

(6.1.6)

At this point it is necessary to differentiate the analysis between two types of

molecules with multiple spins: heteronuclear molecules and homonuclear molecules.

The former are easier to control, but the achievable number of qubits is limited

by technical NMR limitations [45].

6.1.1 Heteronuclear molecules

In heteronuclear molecules, the difference in the Larmor frequencies ∆ω0 = ω0,2−
ω0,1 is large and allows to easily address individual spins. Without loss of gener-

ality, in the following it is always assumed that ω0,2 > ω0,1. Assuming that the

frequency of each rotating frame is equal to the corresponding RF field frequency

ωi = ωr,i, it follows that

URHsysU
†
Ri~UR

dU †R
dt
∼ (ωr,1−ω0,1)Iz⊗I+(ωr,2−ω0,2)I⊗Iz+

2πJ

~
Iz⊗Iz (6.1.7)

Proof. The first step is the computation of the derivative of the UR operator:

dU †R
dt

=
d

dt

[
exp
(
i
ω1σz

2
t
)
⊗ exp

(
i
ω2σz

2
t
)]

= i
ω1σz

2
exp
(
i
ω1σz

2
t
)
⊗ exp

(
i
ω2σz

2
t
)

+ exp
(
i
ω2σz

2
t
)
⊗ iω1σz

2
exp
(
i
ω2σz

2
t
)

then

− i~UR
dU †R
dt

= ω1IZe
−iω1σz

2
te+i

ω1σz
2

t ⊗ e−i
ω2σz

2
te+i

ω2σz
2

t+

ω2e
−iω1σz

2
te+i

ω1σz
2

t ⊗ IZe−i
ω2σz

2
te+i

ω2σz
2

t = ω1IZ ⊗ I + ω2I⊗ IZ

since Iz obviously commutes with itself. Next

URHsysU
†
R = −ω0,1Iz ⊗ I− ω0,2I⊗ Iz +

2πJ

~
Iz ⊗ Iz

e−i
ω1σz

2
t ⊗ e−i

ω2σz
2

t

(
2πJ

~
∑
k=x,y

Ik ⊗ Ik

)
e+i

ω1σz
2

t ⊗ e+i
ω2σz

2
t

The last term can be rewritten exploiting the useful properties presented in the
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proof of Equation 4.1.33:

e−i
ω1σz

2
tIxe

+i
ω1σz

2
t ⊗ e−i

ω2σz
2

tIxe
+i

ω2σz
2

t + e−i
ω1σz

2
tIye

+i
ω1σz

2
t ⊗ e−i

ω2σz
2

tIye
+i

ω2σz
2

t

= (cos(ω1t)Ix + sin(ω1t)Iy)⊗ (cos(ω2t)Ix + sin(ω2t)Iy)+

(cos(ω1t)Iy − sin(ω1t)Ix)⊗ (cos(ω2t)Iy − sin(ω2t)Ix)

= cos(∆ωt)Ix ⊗ Ix + sin(∆ωt)Ix ⊗ Iy − sin(∆ωt)Iy ⊗ Ix + cos(∆ωt)Iy ⊗ Iy

from which

2πJ

~
∑
k=x,y

Ik ⊗ Ik = πJ~


0 0 0 0

0 0 ei∆ωt 0

0 e−i∆ωt 0 0

0 0 0 0


Assuming that ωi = ωr,i, in heteronuclear molecules the difference in RF fre-

quencies is very large. Hence, in the weak coupling limit [64], that is for

|∆ωr| � |2πJ |, it is always possible to choose a time scale τ such that

|∆ωr|τ � 2π � |2πJ |τ

where the last inequality must be satisfied for the effect of the J-coupling to be

negligible in one-qubit operations. Thus, the exponentials in the previous matrix

oscillate rapidly and are averaged to vanish. Equation 6.1.7 follows immediately.

At an intuitive level, the disappearance of the Ix and Iy operators from the rotating

frame Hamiltonian can be explained as follows. When no RF field is applied to

the system, the two spins precess at the respective Larmor frequencies about the

ẑ axis. Since the difference in Larmor frequencies is ∆ω0 ∼ ∆ωr, the x̂ and ŷ axes

in the rotating frames precess with relative frequency ∆ω0. As a consequence, for

|∆ω0τ | � 2π, the Ix ⊗ Ix and Iy ⊗ Iy contributions are averaged to vanish.

Turning, now, to the RF fields, the corresponding resonance Hamiltonians in

the rotating frames are

URHr,1U
†
R = ω∗,1 [cos(φ1)Ix ⊗ I + sin(φ1)Iy ⊗ I]

URHr,2U
†
R = ω∗,2 [cos(φ2)I⊗ Ix + sin(φ2)I⊗ Iy]

(6.1.8)

Proof. Considering the first RF field, in the doubly rotating field
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URHr,1U
†
R = 2ω∗,1 cos(ωr,1t− φ1)

[
e−i

ω1σz
2

t ⊗ e−i
ω2σz

2
t(Ix ⊗ I)e+i

ω1σz
2

t ⊗ e+i
ω2σz

2
t+

γ2

γ1

e−i
ω1σz

2
t ⊗ e−i

ω2σz
2

t(I⊗ Ix)e+i
ω1σz

2
t ⊗ e+i

ω2σz
2

t

]

= 2ω∗,1 cos(ωr,1t− φ1)

[
e−i

ω1σz
2

tIxe
+i

ω1σz
2

t ⊗ I+

γ2

γ1

I⊗ e−i
ω2σz

2
tIxe

+i
ω2σz

2
t

]
= 2ω∗,1(A+B)

Writing the cosine as the sum of two complex exponentials, the A term becomes

A =
1

2

[
ei(ωr,1t−φ1) + e−i(ωr,1t−φ1)

]
[cos(ω1t)Ix + sin(ω1t)Iy]⊗ I

=
1

2

[
ei(ωr,1t−φ1) + e−i(ωr,1t−φ1)

]( 0 e−iω1t

e+iω1t 0

)
⊗ I

=
1

2

[(
0 e−iφ1

ei(2ωr,1t−φ1) 0

)
+

(
0 e−i(2ωr,1t−φ1)

eiφ1 0

)]
⊗ I

where ω1 = ωr,1 is assumed. As known from the aforementioned rotating wave

approximation, the terms oscillating at 2ωr,1 average to zero. Then

A ∼ 1

2

(
0 e−iφ1

e+iφ1 0

)
⊗ I

Defining ∆ωr = ωr,2 − ωr,1 and Ωr = ωr,1 + ωr,2, the B term is easily rewritten as

B =
γ2

2γ1

[
ei(ωr,1t−φ1) + e−i(ωr,1t−φ1)

]
I⊗

(
0 e−iω2t

e+iω2t 0

)

=
γ2

2γ1

I⊗

(
0 e−i(∆ωrt+φ1) + e−i(Ωt−φ)

e+i(∆ωrt+φ1) + e+i(Ωt−φ) 0

)

Since for heteronuclear molecules |∆ωr| � ω1, for a time scale τ such that |∆ωrτ | �
2π and Ωrτ � 2π, the B matrix vanishes. It follows that

URHr,1U
†
R = ω∗,1 [cos(φ1)Ix ⊗ I + sin(φ1)Iy ⊗ I]
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The derivation of URHr,2U
†
R proceeds in the same way.

It is of fundamental importance to highlight that an RF field at frequency ωr,1

influences only spin i, leaving the other unaffected. The reason is that the typical

pulse width for heteronuclear molecules is τ ∼ 10 µs =⇒ 100 kHz, while the

difference in resonant frequencies ∆ω0 is much larger. Consequently, the pulses at

ωr,1 do not have the Fourier components which resonate with the other spin.

In conclusion, the Hamiltonian for a heteronuclear weakly coupled two-qubit

molecule in the rotating frames is

H̃ = ω∗,1 [cos(φ1)Ix ⊗ I + sin(φ1)Iy ⊗ I] + ω∗,2[cos(φ2)I⊗ Ix+

sin(φ2)I⊗ Iy] + (ωr,1 − ω0,1)Iz ⊗ I + (ωr,2 − ω0,2)I⊗ Iz +
2πJ

~
Iz ⊗ Iz

(6.1.9)

Under the assumption that |∆ωrτ | � 2π � |2πJτ |. The extension to an n-qubit

system is straightforward. Assuming, for the sake of simplicity, that ωr,i = ω0,1,

the previous equation becomes

H̃ =
n∑
i=1

ω∗,i [cos(φi)Ix,i + sin(φ1)Iy,i] +
n∑
i<k

2πJi,k
~

Iz,iIz,k (6.1.10)

6.1.2 Homonuclear molecules

The homonuclear case is more involved, since |∆ω0| � ω0,i. However, in the weak

coupling limit |∆ω0| � 2πJ , it is still possible to approximate

URHsysU
†
R − i~UR

dU †R
dt
∼ 2πJ

~
Iz ⊗ Iz (6.1.11)
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assuming ωr,i = ω0,i for simplicity. On the other hand, the rotating-frame RF

contributions to the Hamiltonian, after the application of the rotating frame ap-

proximation, that is the dropping of terms oscillating at ∼ 2ω0, are

URHr,1U
†
R = ω∗,1 [cos(φ1)Ix ⊗ I + sin(φ1)Iy ⊗ I] + ω∗,1[cos(∆ω0t+ φ1)(I⊗ Ix)+

sin(∆ω0t+ φ1)(I⊗ Iy)]

URHr,2U
†
R = ω∗,2 [cos(φ2)I⊗ Ix + sin(φ2)I⊗ Iy] + ω∗,2[cos(−∆ω0t+ φ2)(Ix ⊗ I)+

sin(−∆ω0t+ φ2)(Iy ⊗ I)]
(6.1.12)

where the approximation ω0,1 ∼ ω0,2, reasonable for homonuclear systems, is

adopted. The proof follows the same procedure as for the heteronuclear case.

The second bracket of each Hamiltonian, which differentiates this result from the

one obtained for heteronuclear molecules and which makes the Hamiltonian time

dependent, can be neglected only if the pulse width τ is sufficiently long such that

|∆ω0τ | � 2π or if ω∗,i � |∆ω0|. A pulse which satisfies this requirement is known

as soft pulse.

In conclusion, Equation 6.1.10 can be used also for homonuclear molecules if the

hard pulses, that is, the short and strong pulses used for heteronuclear molecules,

are replaced by soft pulses and the weak coupling approximation is satisfied. A

typical pulse width for selective addressing is 10 µs for heteronuclear molecules and

1 ms for homonuclear molecules. On the other hand, a hard pulse with τ ∼ 10 µs

can be applied to homonuclear systems to address all spins simultaneously.
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6.2 NMR quantum gates

It is known that one-qubit quantum gates and the CNOT gate constitute a uni-

versal set of quantum gates. In this section it is explained how to employ the

previously introduced Hamiltonians to implement quantum gates. The key idea,

derived from section §4.1.1.2, is to apply to the molecular system a static field B0

and a resonant radio frequency field Br. The latter is applied for a time τ , the

so-called pulse width and with an amplitude ω∗, the so-called pulse amplitude.

Figure 4.6 is reported here for the sake of clearness.

Figure 6.1: A π-pulse (or X-pulse) assuming τ = 10 µs on a 13C nucleus spin and
its Fourier transform.

6.2.1 One-qubit gates in many-qubit molecules

Single-qubit quantum gates can be implemented starting from the Hamiltonian of

Equation 6.1.10, if the following conditions are satisfied

• Weak coupling regime |∆ω0| � 2πJ .

• Resonant condition ωr,i = ω0,i.

• Difference in the Larmor frequencies such that selective addressing is achiev-

able, that is |∆ω0τ | � 2π or |∆ω0| � ω∗,i.

• Pulse width short enough to ignore at first order the indirect spin-spin cou-

pling during the pulses τ � |1/J | or ω∗,i � |2πJ |.

• Time duration τ such that |∆ω0τ | � 2π � |2πJτ |.
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Under these hypotheses, if only the RF field resonant with qubit 1 is switched on

for a time τ , then the time evolution operator associated with the Hamiltonian of

Equation 6.1.10 is

U(τ) = exp

(
− i
~

∫ τ

0

H̃dt

)
= exp

(
−iθ

2
[cos(φ1)σx + sin(φ1)σy]

)
⊗ I

(6.2.1)

where

θ = ω∗,1τ (6.2.2)

where I = I2 ⊗ I3 ⊗ . . . ⊗ In. This operator describes a rotation of an angle θ

about the axis
(

cos(φ) sin(φ) 0
)

. In the following of this section, the tensor

product ⊗I is dropped for convenience of notation. There are two properties of

the corresponding Hamiltonian which have to be pointed out. First, it is clearly

traceless and the following theorem holds true for traceless Hamiltonians.

Theorem 6.2.1. A traceless HamiltonianH can generate only elements of SU(2n).

Proof. Let λk be the eigenvalues of H and V be a unitary matrix which diagonal-

izes H and, hence, the corresponding time evolution operator U . Then

det(U ) = det
(
V UV †

)
= det

(
diag(e−iλkt)

)
=
∏
k

e−iλkt = e−i tr(H)t = 1

However, this is by no means a limitation. Every unitary gate G can be

mapped to a special unitary gate e−iαG ∈ SU(2n), multiplying by a phase factor

e−iα. The reader is reminded that every quantum state is defined up to a phase

factor.

Second, it lacks the Iz generators. Nevertheless, this is not an issue, since a

rotation about ẑ can be implemented in several ways. A first possibility is to note

that

Rz(α) = Rx

(π
2

)
Ry(α)

(
−π

2

)
(6.2.3)
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so that a rotation about ẑ is decomposed in rotations about x̂ and ŷ. A second and

more efficient approach is to adopt the so-called virtual-z method [65]. Instead

of rotating the spin of an angle α about the ẑ axis, one can rotate the frame of

an angle −α about ẑ, which, in practice, corresponds to add a phase shift to the

RF field for all subsequent pulses. In order to understand the approach, consider

that after a generic G gate, one wants to perform an α-rotation about ẑ, followed

by a θ-rotation about X (cf. Table 6.1):

Rx(θ)Rz(α)G (6.2.4)

Instead of introducing the z-rotation, a phase offset −α is added to the following

pulse

exp

(
−θ

2
[cos(−α)σx + sin(−α)σy]

)
G (6.2.5)

which can be decomposed as usual as

e
iφ
2
σze−

iθ
2
σxe−

iφ
2
σzG = Rz(−α)Rx(θ)Rz(α)G (6.2.6)

The additional Rz(−α) gate, due to the fact that the analysis is carried out in

the qubit reference frame, keeps track of the fact that the phase offset −α must

be carried through for all subsequent gates. For instance, if the previous group of

gates is followed by a θ-rotation about ŷ, then

exp

(
−θ

2

[
cos
(π

2
− α

)
σx + sin

(π
2
− α

)
σy

])
Rz(−α)Rx(θ)Rz(α)G

= Rz(−α)Ry(θ)Rz(α)Rz(−α)Rx(θ)Rz(α)G

= Rz(−α)Ry(θ)Rx(θ)Rz(α)G

(6.2.7)

This approach allows the implementation of perfect z-rotations, whose duration

is zero. For further details the reader is referred to [65]. Finally, if some z-rotations

can be shifted to the end of the quantum algorithm execution, then they can be

ignored if the measurement is carried out in the Zeeman eigenbasis since a quantum

state is defined up to a phase factor.

As a consequence of this discussion, all fundamental SU one-qubit quantum

gates can be implemented resorting only to Ix and Iy generators, which are con-

tained in the Hamiltonian. The control parameters θ and φ required for the

execution of the quantum gates are reported in Table 6.1.

There is still a frequently used gate which is missing: the Hadamard gate. The
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Rotation QASM Matrix φ θ

Rx(π/2)
1√
2

(
1 −i
−i 1

)
0 π

2

Rx(π) −iX
(

0 −i
−i 0

)
0 π

Rx(−π/2)
1√
2

(
1 i
i 1

)
π π

2

Ry(π/2)
1√
2

(
1 −1
1 1

)
π
2

π
2

Ry(π) −iY
(

0 −1
1 0

)
π
2

π

Ry(−π/2)
1√
2

(
1 1
−1 1

)
−π

2
π
2

Table 6.1: The control parameters for one-qubit quantum gates.

SU gate equivalent to the Hadamard gate can be obtained multiplying H by i or

by −i. Since, as stated in section §2.1.6.3, every SU gate can always be rewritten

as the product of three rotation gates, one shall enforce

Rz(α)Ry(β)Rz(γ) = −iH (6.2.8)

It turns out that α = π, β = −π/2 and γ = 0. Another convenient way to write

a generic SU is [5, 44]

Rx(α)Ry(β)Rx(γ) (6.2.9)

where α = π, β = π/2 and γ = 0 allow the implementation of the Hadamard gate.

Therefore, the Hadamard gate can be decomposed as

H ∼ −iH = Rz(π)Ry

(
−π

2

)
= Rx(π)Ry

(π
2

)
(6.2.10)
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6.2.2 Two-qubit gates in two-qubit molecules

6.2.2.1 The CNOT gate

As well known from the previous discussion, every quantum algorithm can be

implemented with one-qubit gates and CNOT gates only. Since det(CX) = −1,

the CNOT gate must be multiplied by e±iπ/4 to obtain an element of SU(4). The

CNOT gate cannot be decomposed into a tensor product of one-qubit quantum

gates, hence the J-coupling mechanism must be properly employed. When no RF

field is applied to the molecule and assuming, for the sake of simplicity, that there

are only two qubits, Equation 6.1.10 becomes

H̃ =
2πJ1,2

~
Iz ⊗ Iz (6.2.11)

and the associated time evolution operator is

U (t) = exp

(
−iπJ1,2

2
σz ⊗ σzt

)
=


e−i

πJ
2
t 0 0 0

0 e+iπJ
2
t 0 0

0 0 e+iπJ
2
t 0

0 0 0 e−i
πJ
2
t

 (6.2.12)

In order to understand the complex evolution of J-coupled spins and see how

this can be engineered to obtain the CNOT gate, it proves reasonable to focus on

a simple case. Suppose that J > 0 and that one of the two qubits is in a Zeeman

eigenstate. From the energy level diagram reported in Figure 5.10, it is clear that

if qubit 2 is in the |0〉 eigenstate, then the energy required for the transition

|00〉 ←→ |10〉 (6.2.13)

is reduced by the J-coupling. Similarly, if qubit 1 is in the |0〉 eigenstate, then the

energy required for the transition

|00〉 ←→ |01〉 (6.2.14)

is reduced by the J-coupling. Therefore, it follows immediately that the precession

frequency of spin a is shifted by −Ja,b
2

if spin b is in |0〉. Conversely, if qubit 2 is

in the |1〉 eigenstate, then the energy required for the transition

|01〉 ←→ |11〉 (6.2.15)
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is increased by the J-coupling. Similarly, if qubit 1 is in the |1〉 eigenstate, then

the energy required for the transition

|10〉 ←→ |11〉 (6.2.16)

is increased by the J-coupling. Hence

• The precession frequency of spin a is shifted by −Ja,b
2

if spin b is in |0〉.
This means that in a frame rotating at frequency ω0,a, the spin a precesses

anticlockwise with a frequency
Ja,b

2
.

• The precession frequency of spin a is shifted by +
Ja,b

2
if spin b is in |1〉.

This means that in a frame rotating at frequency ω0,a, the spin a precesses

clockwise with a frequency
Ja,b

2
.

Thus, it is possible to exploit the J-coupling to make one spin rotate according to

the state of the other spin. In other words, the J-coupling enables the implemen-

tation of controlled rotations.

The CNOT gate flips the second qubit (the target qubit) if and only if the first

qubit (the control qubit) is in state |1〉. Otherwise, the target qubit is unaffected.

Suppose, for the time being, that one wants to realize an NMR CNOT gate when

both the control and the target qubits are in an eigenstate of the Hamiltonian,

referring to Figure 6.2 and Figure 6.3.

The control qubit is in state |0〉 Assume that both qubits are in state |0〉
at the beginning (Figure 6.2a). Then, a selective Ry(π/2) rotation is applied

to the target qubit, which ends up along the +x̂ axis (Figure 6.2b). Next, the

system is left free to evolve without any RF field applied for a time τ = 1
2J

. The

corresponding time evolution operator is

UJ

(
1

2J

)
= exp

(
−iπ

4
σz ⊗ σz

)
=


e−i

π
4 0 0 0

0 e+iπ
4 0 0

0 0 e+iπ
4 0

0 0 0 e−i
π
4

 (6.2.17)

Accordingly, the target qubit is rotated of an angle π/2 about the ẑ axis (Fig-

ure 6.2c) and arrives to the +ŷ axis. Finally, a selective Rx(π/2) rotation is

applied to the target qubit, which comes back to the |0〉 state (Figure 6.2d). If

the target qubit initial state is |1〉, the corresponding evolution can be derived by

analogy.
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The control qubit is in state |1〉 Assume that initially the target qubit is in

state |0〉, while the control qubit is in state |1〉 (Figure 6.3a). Then, a selective

Ry(π/2) rotation is applied to the target qubit, which ends up along the +x̂ axis

(Figure 6.3b). Next, the system is left free to evolve without any RF field applied

for a time τ = 1
2J

. Accordingly, the target qubit is rotated of an angle −π/2 about

the ẑ axis (Figure 6.3c) and arrives to the −ŷ axis. Finally, a selective Rx(π/2)

rotation is applied to the target qubit, which ends up in the |1〉 state (Figure 6.3d).

If the target qubit initial state is |1〉, the corresponding evolution can be derived

by analogy.

Therefore, if the control qubit is qubit-1 and the target qubit is qubit-2, the

core of the CNOT gate must be

[
I⊗Rx

(π
2

)]
UJ

(
1

2J

)[
I⊗Ry

(π
2

)]
=

1√
(2)


1− i 0 0 0

0 1 + i 0 0

0 0 0 −1− i
0 0 1− i 0


(6.2.18)

However, this cannot be an actual CNOT gate since the matrix elements have

different reciprocal phases. On the other hand, it is mandatory that all elements

have the same phase for the sequence to work also on a superposition of eigenstates

(the reader is reminded of the concept of clean computation, discussed in section

§2.2.2.3). It turns out [33, 5, 45, 17] that a proper CNOT gate is obtained adding

a couple of rotations about the ẑ axis:

CX ∼ e−iπ/4CX =
[
Rz

(π
2

)
⊗ I
] [

I⊗Rz

(
−π

2

)]
[
I⊗Rx

(π
2

)]
UJ

(
1

2J

)[
I⊗Ry

(π
2

)]
(6.2.19)
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(a) At the beginning the target qubit is in state |0〉, and also the control qubit is in
state |0〉.

(b) A π/2 pulse about ŷ is applied to the target qubit, after which it lies on the +x̂
axis.

(c) The system evolves for a time t = 1
2J , after which the target qubit lies on the +ŷ

axis.

(d) A π/2 pulse about x̂ is applied to the target qubit, which comes back to the |0〉
state.

Figure 6.2: The CNOT gate when the control qubit (blue) is in state |0〉 and the
target qubit (red) is in state |0〉.
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(a) At the beginning the target qubit is in state |0〉, while the control qubit is in state
|1〉.

(b) A π/2 pulse about ŷ is applied to the target qubit, after which it lies on the +x̂
axis.

(c) The system evolves for a time t = 1
2J , after which the target qubit lies on the −ŷ

axis.

(d) A π/2 pulse about x̂ is applied to the target qubit, which ends up in the |1〉 state.

Figure 6.3: The CNOT gate when the control qubit (blue) is in state |1〉 and the
target qubit (red) is in state |0〉.
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Negative J-coupling What does it happen if the J-coupling is negative? It

does not have any physical meaning to say that the system is subjected to a free

evolution for a time t = 1
2J
< 0. There are several possible workarounds to face this

issue, but the simplest one is probably to slightly change the receipt for the CNOT

gate. If J < 0 and the system evolves for a time t = 1
|2J | , then the target qubit

rotates in the opposite direction with respect to the previous case: clockwise if the

control qubit is in |0〉 and anticlockwise is the control qubit is in |1〉. However, the

same overall behaviour is obtained if the target qubit is subjected to a selective

Rx(−π/2) rotation, instead of a Rx(+π/2) rotation. Hence

CX ∼ e− sgn(J)iπ/4CX =
[
Rz

(
sgn(J)

π

2

)
⊗ I
] [

I⊗Rz

(
− sgn(J)

π

2

)]
[
I⊗Rx

(
sgn(J)

π

2

)]
UJ

(∣∣∣∣ 1

2J

∣∣∣∣) [I⊗Ry

(
+
π

2

)]
(6.2.20)

On the time duration It is worth highlighting that the time required to per-

form a CNOT gate is significantly longer than that required to perform a one-qubit

quantum gate. As a matter of fact, if the latter is in the order of ∼ 10 µs, at least

for a heteronuclear system, for the former one has to consider that typical J-

coupling values are in the order of dozens or hundreds of hertz. It follows that

τJ = 5 ms to 50 ms (6.2.21)
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6.2.2.2 The controlled Z gate

Even if a controlled-Z gate can be decomposed in terms of CNOT and Hadamard

gates (cf. section §2.1.6.3), it is also true that a controlled-Z rotation can be nat-

urally executed by an NMR quantum computer thanks to the J-coupling. Indeed,

it is known from the discussion on the CNOT gate that, if the control qubit is a

Zeeman eigenstate, the target qubit, in a time τ , executes a rotation about ẑ of

an angle

• θ = πJτ if the control qubit is in state |0〉.

• θ = −πJτ if the control qubit is in state |1〉.

If J > 0, then the rotation about the ẑ axis must be nullified when the control

qubit is in state |0〉. Intuitively, this can be done if a rotation Rz(−π/2) is first

applied to the target qubit. Next, the system evolves freely for a time t = 1
2J

, so

that the target qubit comes back to the initial position. On the other hand, when

the control qubit is in state |1〉, the overall rotation executed by the target qubit

is Rz(−π) = Rz(+π) as expected.

If J < 0, the same behaviour is obtained if the upstream rotation Rz(−π/2) is

replaced by Rz(+π/2). It follows that the core of the controlled-Z gate must be

UJ

(∣∣∣∣ 1

2J

∣∣∣∣) [I⊗Rz

(
− sgn(J)

π

2

)]
(6.2.22)

The actual controlled-Z gate turns out [66, 44] to be

CZ ∼ esgn(J)iπ/4CX = UJ

(∣∣∣∣ 1

2J

∣∣∣∣) [I⊗Rz

(
− sgn(J)

π

2

)]
][

Rz

(
− sgn(J)

π

2

)
⊗ I
]

(6.2.23)
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6.2.3 Two-qubit gates in many-qubit molecules: the refo-

cusing

Consider, now, a molecule with several coupled qubits. Obviously, it is not possible

to turn off inter-qubit couplings when they are not needed. As far as one-qubit

quantum gates are concerned, the operations are usually faster than ∼ 1/J and

so the effect of J-coupling can be safely neglected1. On the other hand, two-qubit

operations involve the J-coupling. In order to execute the expected algorithm, it

is mandatory to remove the other unwanted J-couplings. This interaction on

demand is achieved thanks to a technique known as refocusing.

In order to understand the procedure, suppose that there are three spins such

that spin-1 is coupled to spin-2 and spin-2 is coupled to spin-3. The rotating frame

Hamiltonian when no RF field is applied is

H =
2πJ1,2

~
Iz ⊗ Iz ⊗ I +

2πJ2,3

~
I⊗ Iz ⊗ Iz (6.2.24)

Assume that the desired gate is

UG = exp
(
−iα

4
σz ⊗ σz ⊗ I

)
(6.2.25)

Fixing τ = α
2πJ1,2

, the NMR time evolution operator is

UJ(
α

2πJ1,2

) = exp
(
−iα

4
σz ⊗ σz ⊗ I

)
exp

(
−iα

4

J2,3

J1,2

I⊗ σz ⊗ σz
)

(6.2.26)

since σz ⊗ σz ⊗ I and I ⊗ σz ⊗ σz commute. How is it possible to get rid of

the second unwanted exponential? The aim, in practice, is to nullify the coupling

between the second and the third qubit. Consider Figure 6.4, where, for simplicity,

only qubit-2 (in red) and qubit-3 (in blue) are represented, focusing exclusively

on their reciprocal interaction. Suppose that at time t = 0, qubit-2 lies along +x̂

axis and qubit-3 is in |0〉 state. (Figure 6.4a). The system evolves freely for a

time t = τ/2, after which qubit-2 lies along +ŷ (Figure 6.4b). Then, a rotation

Rx(π) is applied to qubit-3, which ends up in |1〉 state (Figure 6.4c). During

the following time interval t = τ/2, qubit-2 precesses in the opposite direction and

comes back to its initial position. It shall be clear that this happens independently

of the precession angle: during the first rime interval spin-2 precesses of an angle

1This is almost always the case for heteronuclear molecules. For homonuclear molecules
controlled via soft pulses, it may happen that the effect of J-coupling is not negligible in one-
qubit operations.
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θ = πJτ/2, then during the second interval it precesses of an angle θ = −πJτ/2,

so that the total precession angle is θ = 0 (Figure 6.4d). Finally, rotation Rx(π)

is applied to qubit-3, which comes back to |0〉 state (Figure 6.4e). Therefore, this

procedure removes the coupling between qubit-2 and qubit-3. In the following

proof, a formal justification is provided to show that this approach is successful

irrespectively of the initial state of both qubits.

Proof. The mathematical foundation of the refocusing technique is the following

equivalence

Rx(−π)IzRz(+π) = −Iz

from which it follows that in general

[Rx(π)⊗ I]UJ

(τ
2

)
[Rx(π)⊗ I] = UJ

(
−τ

2

)
= [I⊗Rx(π)] + UJ

(τ
2

)
[I⊗Rx(π)]

which means the application of the π-pulses it is equivalent with reversing the

direction of time. Hence

[Rx(π)⊗ I]UJ

(τ
2

)
[Rx(π)⊗ I]UJ

(τ
2

)
= I

Considering in more details the three-qubit case previously presented, the complete

time evolution operator is

U = [I⊗ I⊗Rx(π)]UJ

(τ
2

)
[I⊗ I⊗Rx(π)]UJ

(τ
2

)
Applying the well known properties of tensor products and the previously reported

equivalence, it is possible to rewrite

[I⊗ I⊗Rx(π)] exp
[
−iπτ

4
(J1,2σz ⊗ σz ⊗ I + J2,3I⊗ σz ⊗ σz)

]
[I⊗ I⊗Rx(π)]

= exp
[
−iπτ

4
(J1,2σz ⊗ σz ⊗ I− J2,3I⊗ σz ⊗ σz)

]
And so

U = exp
[
−iπτ

4
(J1,2σz ⊗ σz ⊗ I− J2,3I⊗ σz ⊗ σz)

]
exp

[
−iπτ

4
(J1,2σz ⊗ σz ⊗ I + J2,3I⊗ σz ⊗ σz)

]
= exp

[
−iπτJ1,2

2
σz ⊗ σz ⊗ I

]
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(a) Initial configuration: qubit-2 lies aong the +x̂ while qubit-3 is in |0〉 state.

(b) The system evolves freely for a time t = τ/2 and qubit-2 precesses of an angle
θ = πJτ/2.

(c) A rotation Rx(π) is applied to qubit-3 which ends up in the |1〉 state.

(d) The system evolves freely for a time t = τ/2 and qubit-2 precesses of an angle
θ = −πJτ/2.

(e) A rotation Rx(−π) is applied to qubit-3 which ends up in the |0〉 state.

Figure 6.4: The refocusing technique.
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The underlying idea is that a coupling between qubits i and k acts forward

when time flows in the normal direction and in reverse when time flows in the

reverse direction. Let associate +1 to an interval in which time flows in the normal

direction and −1 to an interval in which time flows in the reversed direction.

Then, the refocusing scheme for the previous case is the one reported in Table 6.2.

Whenever a coupling acts forward and in reverse for the same amount of time,

Qubit τ/2 τ/2
1 +1 +1
2 +1 +1
3 +1 −1

Table 6.2: Refocusing scheme eliminating the coupling between qubit-2 and qubit-
3.

it has no net effect. Hence, the rows corresponding to qubits among which the

J-coupling must be nullified are orthogonal. There are several systematic

methods to design a refocusing scheme. One of the most widely adopted is based

on Hadamard matrices. A Hadamard matrix of order n is a n×n matrix with

±1 entries such that

H(n)H(n)† = nI (6.2.27)

For instance

H(4) =


+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

 (6.2.28)

represents a possible refocusing scheme to remove all couplings between four

qubits. If one wants to preserve a coupling between spin i and spin k, it is suffi-

cient to replace the k-th row by the i-th row in H(n). For instance, to preserve

the coupling between qubit-2 and qubit-4 in a four-qubit system, the following

refocusing scheme can be adopted

H(4) =


+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 +1 −1

 (6.2.29)

The Hadamard matrix approach to refocusing provides a refocusing scheme for

n qubits in only n time intervals if H(n) exists. If H(n) does not exist, it is
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sufficient to take the first n rows of H(m), where m is the smallest integer that

satisfies m > n with known H(m).

In conclusion, it has to be highlighted that the proposed scheme may require

simultaneous rotations of multiple qubits. If the available NMR instrumentation

is not able to perform simultaneous rotations, other refocusing schemes can be

adopted, even if they are significantly less compact, causing a significant increase

of the number of required time intervals.
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6.3 Hints on experimental issues

6.3.1 Pseudopure states

Conventional NMR experiments deal with a large ensemble of spins, as explained in

section §4.2. Therefore, the state of the system is described by a density operator.

At thermal equilibrium, the density operator is a statistical mixture (cf. section

§4.2.1) obviously inadequate for quantum information processing, which requires

a fiducial initial state. For a two-qubit molecule, the thermal density matrix

can be shown to be

ρ0 =
e−

H
kbT

tr
(
e−

H
kbT

) ∼ ( I
2

)⊗2

+

~
8kBT


ω0,1 + ω0,2 0 0 0

0 ω0,1 − ω0,2 0 0

0 0 −ω0,1 + ω0,2 0

0 0 0 −ω0,1 − ω0,2

 =

(
I
2

)⊗2

+ ∆ρ0

(6.3.1)

following the same procedure of the proof of Equation 4.2.9. The first term rep-

resents a uniformly mixed ensemble of all possible states, while the second term

is a very tiny deviation from the uniformly mixed ensemble. The density matrix

expression is trivially generalised to n qubits. The aim is to prepare a so-called

pseudopure state out of the thermal equilibrium state. Suppose that it is pos-

sible to transform the density matrix such that

(
I
2

)⊗n
+ ∆ρ0 −→

(
I
2

)⊗n
+ α


1 0 . . . 0

0 0 . . . 0
...

. . . . . . 0

0 0 . . . 0

 (6.3.2)

Since it can be shown that the signal used to measure NMR spectra arises only

from the traceless deviation matrix [5, 17], it follows that the obtained matrix, that

is, the pseudopure state, effectively yields a signal from the pure state ρ = |00〉〈00|,
but the amplitude is multiplied by α which turns out [5] to be of the order of

α ∼ ~ω0

2nkBT
(6.3.3)
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where n is the number of qubits. It follows that the signal from a particular initial

state reduces exponentially as a function of the number of qubits. This is one of

the main issues against the scalability of liquid-state NMR quantum computers.

There are several techniques to produce pseudopure states, as temporal aver-

aging, spatial averaging and state labelling [17], which have in common the fact

that non-unitary operations must be exploited.

6.3.2 Quantum state tomography

In conclusion, once a fiducial pseudopure state has been obtained and the de-

signed pulses have been applied to the system to implement the required quantum

algorithm, it is necessary to characterize the output state. Since NMR always

deals with ensembles and not with single spins, the measurement procedure is

not a projective measurement, as it is for other candidates of quantum comput-

ers, but an ensemble measurement [5]. Moreover, in many cases, one wants a

full characterization of the system state, rather than a simple readout. The full

reconstruction of the density matrix, known as quantum state tomography,

requires to perform a series of measurements and to combine the results to obtain

the density matrix elements. First of all, it has to be pointed out that that the

rotating frame density operator ρ̃ evolves in time during the measurement (t > 0)

because of the J-coupling

ρ(t) = UJ(t) ρ̃ U †J(t) (6.3.4)

The first step is to transform ρ̃ back to the laboratory frame, where the measure-

ment is actually carried out:

ρ = U †R ρ̃ UR (6.3.5)

where UR is the unitary operator which describes the transformation from the

laboratory frame to the multiple rotating frame. The aim is to measure the terms

of ρ and compute those of ρ̃. The corresponding magnetization vector, while

precessing, decays as explained in section §4.3. The signal corresponding to the

x-component of the magnetization vector is recorded and Fourier transformed.

Tilting the density matrix with appropriate rotations and repeating several mea-

surements of the x-component of the magnetization vector, it is possible to deter-

mine experimentally all terms of the density operator [5].
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Chapter 7

Quantum MOLE: an NMR

quantum computer model

The relations ruling nuclear magnetic resonance phenomena, derived from first

physical principles in the previous chapters, are exploited to design a flexible,

fully parametric, NMR quantum computer model, able to run quantum algorithms

and to measure the performances achievable with different kinds of molecules.

The output data, supported by highly intuitive charts, can be useful to find an

optimal operating point as a compromise between molecule physical properties

and the quantities which can be controlled by nowadays NMR instrumentation.

The input technological parameters, as chemical shielding and J-coupling, can be

determined resorting on computational chemistry software, as ORCA, or obtained

from experimental data.

As known from the previous discussion, an actual real-world NMR quantum

computing experiment consists of three main steps: preparation of pseudopure

states, execution of the quantum algorithm and measurement of the outcome.

The proposed model focuses on the second step, for a molecule with a theoretically

arbitrary number of nuclear spins.

preparation
of
pseudopure
states

quantum
algorithm
execution

measurement

Figure 7.1: NMR quantum computing experiment.

This chapter describes the structure of the model, the main approximations

and their justification and explains how to get the most out of it.
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7 – Quantum MOLE: an NMR quantum computer model

7.1 The structure of the model

An NMR quantum computer model shall be able to simulate the execution of

one-qubit quantum gates and two-qubit CNOT and CZ quantum gates on the

nuclear spins of a chosen diamagnetic molecule and evaluate the corresponding

performances. A reasonable set of performance figures of merit consists in

• Execution time.

• Fidelity.

• Measurement probabilities.

Moreover, it has to take into account some non-idealities, when they are relevant.

For instance

• Off-resonance unwanted evolution.

• J-coupling unwanted evolution during one-qubit gate execution.

• Relaxation and decoherence phenomena.

As usual, the accuracy with which the computation is carried out has to be traded

off with the CPU time, which can easily reach inconvenient values. This is the

realm of several approximations which can be introduced to speed up the com-

putation. Quantum computing MOLecular Emulator (Quantum MOLE) can be run

at several levels of approximation and it is extremely flexible. In particular there

three main possibilities offered by the simulator

• Approximate computation when the conditions enumerated at the beginning

of section §6.2.1 hold true and Equation 6.1.10 is a satisfactory approxima-

tion of the actual Hamiltonian.

• An exact computation which proceeds with a direct integration of Equa-

tion 6.1.6 (CPU intensive).

• An exact computation supported by an automatic refocusing routine, par-

ticularly suitable for some homonuclear molecules.

A high-level flow chart of the proposed software model is reported in Figure 7.2.

7.1.1 The input parameters

The designed emulator needs physical and logical input parameters to carry out

the required simulation.
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read
molecular
and
control
parameters

Quantum_MOLE

initialize
computation

read
the
QASM

which
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ideal
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free
J
evolution
with
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some
X
Y
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some
X
Y 
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noexact?
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approximate
computation
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exact
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density
matrix
evolution
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Figure 7.2: Flow chart of the model.
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7.1.1.1 The input physical parameters

An NMR molecule can be characterized in terms of several physical parameters,

which have been thoroughly discussed in the previous chapters. These have to be

provided in input to the model:

• Number of magnetic nuclei in the molecule.

• Gyromagnetic ratio γn per each magnetic nucleus.

• Isotropic chemical shift constant δ per each magnetic nucleus.

• Relaxation constants T1 and T2 per each magnetic nucleus.

• Indirect spin-spin coupling constant J for each couple of magnetic nuclei.

Once the molecule is well defined, one has to select proper values for the control

parameters:

• The magnitude of the static field B0 which is applied along the ẑ axis.

• The amplitude Br of the radio-frequency field.

• The time duration τ of each pulse.

In particular, as clear from Equation 6.2.2, the amplitude of the RF field and the

time duration are strictly interdependent, since the product of τ and ω∗ must be

equal to the desired rotation angle. The model accepts in input either Br or τ

and computes the other according to θ. In particular, a specific value of Br or τ

can be declared for each magnetic nucleus.

The software runs several checks on the reciprocal consistency of the provided

input data.

7.1.1.2 The QASM description of the algorithm

The model can read the quantum algorithm description from a .qasm file, written

according to IBM QASM syntax, which is presented in section §2.3. For instance,

one can use IBM Q experience [1] graphical editor, download the corresponding

.qasm file and then run Quantum MOLE to simulate the execution on an NMR

quantum processor. The complete set of single-qubit quantum gates and the

CNOT and the CZ gates are fully supported. A dedicated routine reads the input

file and prompts different scripts according to the identified gate, computing, when

needed, the required rotation angle and phase, according to section §6.2. At the
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same time, a corresponding “ideal gate”, based on the Pauli matrices and the

ideal rotations presented in section §2.1.6 is built up so that, at the end of the

execution, the software can compare the ideal and the actual outcomes, computing

the corresponding fidelity.

7.1.2 The approximate computation

The approximate execution can be selected when the system is described by the ro-

tating frame Hamiltonian of Equation 6.1.10, that is for all heteronuclear molecules

and for some homonuclear ones. Even if already explained, it is worth repeating

the limits of validity of this expression:

• Weak coupling regime |∆ω0| � |2πJ |, so that for a time scale |∆ω0τ | �
2π � |2πJτ | the Ix ⊗ Ix and Iy ⊗ Iy contributions are averaged to vanish

(Equation 6.1.7).

• Difference in the Larmor frequencies such that selective addressing is achiev-

able, that is |∆ω0τ | � 2π or |∆ω0| � ω∗,i (Equation 6.1.8). This means that

soft pulses must be adopted for homonuclear molecules.

• Pulse width short enough to ignore at first order the indirect spin-spin cou-

pling during the pulses τ � |1/J | or ω∗,i � |2πJ |, so that the unwanted

J-evolution does not affect the execution of the desired quantum gate.

• Time duration τ such that

∣∣∣∣ 2π
∆ω0

∣∣∣∣� τ �
∣∣∣∣ 1
J

∣∣∣∣ [67].

In the following, the procedure adopted to efficiently implement the supported

gates is detailed.

7.1.2.1 The qubit representation and the initial state

As argued in section §4.2, liquid-state NMR is most suitably described by density

operators, rather than state vectors. Quantum MOLE adopts a full density matrix

formalism to represent the quantum state of the system. The initial pseudopure

state is approximated with an ideal state

ρ =


1 0 · · · 0

0 0 · · · 0
...

. . .

0 0 · · · 0

 (7.1.1)
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7.1.2.2 Rotation about x or y

As known from section §6.2, all quantum gates can, in the end, be reduced to

rotations about x̂ and ŷ axes. Hence, the implementation of these rotations

is the computational core of the simulator. In particular, the rotating frame

contributions due to J-coupling and the difference between the alternating field

frequency (i.e. the frequency of the rotating frame) and the corresponding Larmor

frequency of the spin (Equation 6.1.7), which are respectively denoted by H_0 and

H_J for the sake of simplicity, can be precomputed at the beginning and used every

time a x̂ or ŷ-rotation is required.

1 H_J = zeros(2^Nspin); % initialization

2 H_0 = H_J; % initialization

3

4 for a = 1 : Nspin

5 for b = 1 : a-1

6 if J_coupling(a,b) ~= 0

7 P_za = kron(eye(2^(a-1)), kron(Z/2, eye(2^(Nspin-a))));

8 P_zb = kron(eye(2^(b-1)), kron(Z/2, eye(2^(Nspin-b))));

9 H_J = H_J + 2*pi*J_coupling(a,b)*P_za*P_zb;

10 end

11 end

12 H_0 = H_0 + (omega_rf(a) - omega_0(a)) * kron(eye(2^(a-1)), kron(Z/2,

eye(2^(Nspin-a))));↪→

13 end

14 % P_za and P_zb are temporary variables used to build up the required

operators I_za and I_zb for each spin couple a-b.↪→

15 % J_coupling is a matrix which stores the J-coupling constants for all couples

of spins.↪→

Then either the pulse duration τ (tau)

1 tau(length(tau) +1) = rotation_angle/omega_ast(target_qubit);

or the radio frequency field amplitude Br (Br)

1 omega_ast = rotation_angle/tau(target_qubit);

2 Br(length(Br) + 1) = omega_ast/gamma(target_qubit);

is computed, according to the user choice. The variable target_qubit denotes

the qubit on which the quantum gate is expected to be applied. The final step is
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the computation of the RF contribution to the rotating frame Hamiltonian H_rf

and the overall time evolution operator U

1 P_x = kron(eye(2^(target_qubit-1)), kron(X/2, eye(2^(Nspin-target_qubit))));

2 P_y = kron(eye(2^(target_qubit-1)), kron(Y/2, eye(2^(Nspin-target_qubit))));

3

4 H_rf = omega_ast(target_qubit)*( cos(phase)*P_x + sin(phase)*P_y );

5

6 H_tot = H_rf+ H_J + H_0; % total rotating frame Hamiltonian

7 U = expm(-1i*H_tot*tau(end)); % time evolution operator

This piece of code reports the case in which Br is an input parameter and tau

is computed consequently. The opposite case is easily derived by analogy. The

reader should note that the unwanted J-coupling evolution during single-qubit

pulses is taken into consideration by the time evolution operator U, thus making

the model more realistic with respect to Equation 6.2.1.

7.1.2.3 Rotation about z

An arbitrary rotation about the ẑ axis can be implemented by means of some

x-y-rotations (Equation 6.2.3) or resorting to the Virtual-Z method. As far as

the first approach is concerned, the routine which implements the z-rotation shall

simply call the x-y-rotation routine three times with an appropriate choice of the

corresponding rotation angle and phase.

1 rotation_angle_z = rotation_angle; % angle by which the qubit shall be rotated

about the z-axis.↪→

2

3 % Rx(-pi/2)

4 rotation_angle = pi/2;

5 phase = pi;

6 nmr_x_y_rotation

7

8 % Ry(rotation_angle)

9 rotation_angle = rotation_angle_z;

10 phase = pi/2;

11 nmr_x_y_rotation

12

13 % Rx(pi/2)

14 rotation_angle = pi/2;

15 phase = 0;

16 nmr_x_y_rotation
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On the other hand, the Virtual-Z method allows to implement a perfect rotation

about ẑ, with a null time duration. This approach can be modelled using an ideal

z-rotation matrix Rz (as Equation 2.1.52), instead of the NMR Hamiltonian, to

build the time evolution operator up:

1 U = kron(eye(2^(target_qubit-1)), kron(Rz(rotation_angle),

eye(2^(Nspin-target_qubit))));↪→

7.1.2.4 The Hadamard gate

The simulator automatically selects the most efficient approach to implement the

Hadamard gate. In particular, if the Virtual-Z method is available, then the

Hadamard gate is implemented as a rotation Ry(−π/2) followed by a rotation

Rz(π):

1 % Ry(-pi/2)

2 rotation_angle = pi/2;

3 phase = -pi/2;

4 nmr_x_y_rotation

5

6 % Rz(pi)

7 rotation_angle = pi;

8 nmr_z_rotation

If the Virtual-Z method is not available, then the Hadamrd gate is implemented

as a rotation Ry(π/2) followed by a rotation Rx(π):

1 % Ry(pi/2)

2 rotation_angle = pi/2;

3 phase = pi/2;

4 nmr_x_y_rotation

5

6 % Rx(pi)

7 rotation_angle = pi;

8 phase = 0;

9 nmr_x_y_rotation
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7.1.2.5 Free J-evolution with refocusing

As well known from the previous discussion on NMR quantum computation,

the implementation of two-qubit quantum gates requires the evolution under J-

coupling between a couple of qubits, while the interactions with the other qubits

must be switched off applying the refocusing techniques (cf. section §6.2.3). In

order not to overly complicate the model and cause a useless increase of the CPU

time required to run the simulation, the refocusing technique is emulated by sim-

ply assuming that the unwanted interactions are turned off. In other words, when

a quantum gate requires the implementation of the operator UJ between a con c

trol_qubit and a target_qubit, Quantum MOLE assumes that proper refocusing

techniques are implemented during the actual experiment and simply drops the

operators for the other qubits:

1 P_za = kron(eye(2^(control_qubit-1)), kron(Z/2, eye(2^(Nspin-control_qubit))));

2 P_zb = kron(eye(2^(target_qubit-1)), kron(Z/2, eye(2^(Nspin-target_qubit))));

3 % note that only the operators corresponding to the target and control qubit

are taken into consideration.↪→

4

5 H_J_tmp = 2*pi*J_coupling(control_qubit,target_qubit)*P_za*P_zb;

6

7 U = expm(-1i*H_J_tmp*tau_J(end));

where tau_J is the time duration of the free J-evolution.

7.1.2.6 The CNOT gate

As explained in section §6.2.2.1, the CNOT gate is implemented as a cascade of

rotations about ẑ, ŷ and ẑ axes, the rotation angle of each depending on the sign

of the J-coupling, and a free J-coupling evolution for a time τ = |1/2J |. The

CNOT routine prompts the execution of the previously introduced routines with

a proper choice of the rotation angle and the phase.

1 sgn_J = sign(J_coupling(control_qubit, target_qubit));

2

3 % Ry(pi/2) target qubit

4 rotation_angle = pi/2;

5 phase = pi/2;

6 nmr_x_y_rotation

7
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8 % Free evolution for tau = 1/2J

9 tau_J(length(tau_J)+1) = abs(1/(2*J_coupling(control_qubit, target_qubit)));

10 nmr_free_j_evolution

11

12 % Rx(sgn(J)pi/2) target qubit

13 rotation_angle = pi/2*sgn_J;

14 phase = 0;

15 nmr_x_y_rotation

16

17

18 % Rz(-sgn(J)pi/2) target qubit

19 rotation_angle = -pi/2*sgn_J;

20 nmr_z_rotation

21

22 % Rz(sgn(J)pi/2) control qubit

23 target_qubit = control_qubit; %CNOT control qubit is the target of this

rotation↪→

24 rotation_angle = pi/2*sgn_J;

25 nmr_z_rotation

Note that the CNOT gate can be executed between an arbitrary couple of qubits,

granted that a non-zero J-coupling does exist between them.

7.1.2.7 The controlled-Z gate

As shown in section §6.2.2.2, the controlled-Z gate is implemented as a cascade

of rotations about ẑ axis, the rotation angle of each depending on the sign of the

J-coupling, and a free J-coupling evolution for a time τ = |1/2J |. The controlled-Z

routine prompts the execution of the previously introduced routines with a proper

choice of the rotation angle and the phase.

1 sgn_J = sign(J_coupling(control_qubit, target_qubit));

2 target_qubit_CZ = target_qubit; % target of CZ gate

3

4 % Rz(-sgn(J)pi/2) target qubit

5 target_qubit = target_qubit_CZ;

6 rotation_angle = -pi/2*sgn_J;

7 nmr_z_rotation

8

9 % Rz(-sgn(J)pi/2) control qubit

10 target_qubit = control_qubit; %CZ control qubit is the target of this rotation

11 rotation_angle = -pi/2*sgn_J;
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12 nmr_z_rotation

13

14 % Free evolution for tau = 1/2J

15 target_qubit = target_qubit_CZ;

16 tau_J(length(tau_J) +1) = abs(1/(2*J_coupling(control_qubit, target_qubit)));

17 nmr_free_j_evolution

Note that also the controlled-Z gate can be executed between an arbitrary couple

of qubits, granted that a non-zero J-coupling does exist between them.

7.1.2.8 The time evolution of the density operator

The time evolution of the density operator is known to be

ρ(t) = U ρU † (7.1.2)

However, during the update of the density operator, that is, during the execution

of the quantum gate, decoherence and relaxation phenomena take place, affecting

the resulting matrix. In section §4.3, a phenomenological model for one-qubit

density matrices is proposed, according to which both the coherences and the

populations are subjected to an exponential decay. In particular, in the rotating

frame after a time interval 0 −→ τ , the density matrix becomes

ρ(t)0→τ =

(
(ρα(0)− ρeq

α ) e
− τ
T1 + ρeq

α

[
ρ̃+(0)e−iξt

]
e
− τ
T2[

ρ̃−(0)eiξt
]
e
− τ
T2

(
ρβ(0)− ρeq

β

)
e
− τ
T1 + ρeq

β

)
(7.1.3)

Assuming the resonance condition, the previous expression becomes

ρ(t)0→τ =

(
(ρα(0)− ρeq

α ) e
− τ
T1 + ρeq

α ρ̃+(0)e
− τ
T2

ρ̃−(0)e
− τ
T2

(
ρβ(0)− ρeq

β

)
e
− τ
T1 + ρeq

β

)
(7.1.4)

The generalization of this phenomenological model to a density operator which

describes a multi-spin partially coupled system is by no means a trivial task [33]

since each coherence and each population is expected to decay with a particular

time constant. Moreover, if it is relatively simple to find in the currently available

scientific literature the experimental values of single-nucleus time constants T1

and T2 (which cannot be computed with ORCA), it is very hard to find data on the

decay time constants for coupled systems. At the time of writing, Quantum MOLE

handles the issue adopting a simplified worst-case approach. In particular, every

coherence is assumed to decay with a time constant equal to the minimum T2
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(T2_min) and every population is assumed to decay with a time constant equal to

the minimum T1 (T1_min).

1 for a = 1 : 2^Nspin

2 for b = 1 : 2^Nspin

3 if a == b

4 rho(a,b) = rho(a,b)*exp(-tau_relax/T1_min) +

rho_eq(a,b)*(1-exp(-tau_relax/T1_min)); % population↪→

5 else

6 rho(a,b) = rho(a,b)*exp(-tau_relax/T2_min); % coherence

7 end

8 end

9 end

10 % tau_relax is the time duration (expressed as input parameter or computed) of

the pulse or of the the free J-evolution↪→

The evaluation of decoherence and relaxation phenomena is arbitrarily carried out

per each quantum gate before the actual update of the density operator with the

time evolution operator.

1 decoherence %evaluation of the decoherence and relaxation

2 rho = U*rho*U'; % update of the density matrix

7.1.2.9 The handling of output data

In the end, the outcome of the actual execution is stored in a N × N density

matrix, where N is the number of qubits. Quantum MOLE provides several sup-

porting charts and data which help in understanding the obtained result. First,

the estimated time to run the algorithm on the chosen molecule is computed

as the sum of the time durations required by the single quantum gates. Second,

as known from section §4.2, the populations represent the probability of finding

a member of the ensemble in one of the basis states, when performing a mea-

surement. Consequently, the diagonal elements of the density matrix are used to

plot a histogram of the probability of each eigenstate. The latter is compared

with the corresponding histogram resulting from the ideal computation. Third,

the methodology introduced in section §1.2.4.3 is exploited to compute the den-

sity operators describing single qubits. In other words, each qubit is considered

ad subsystem which is derived from the composite system tracing out the other
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subsystems. From the obtained density matrices, meaningful exclusively for non-

entangled qubits, the generalized Bloch vector can be derived, according to section

§2.1.5.2. This allows to plot a Bloch vector in a Bloch ball for each qubit and

is a formidable tool to visually understand the outcome of a quantum algorithm.

Furthermore, the same procedure is carried out for the density matrix resulting

from the ideal computation, so that the user can compare the physical world and

the ideal world results with a glimpse. Finally, the fidelity of the actual result

against the ideal one, is computed for each qubit and for the complete system

density matrix, according to section §1.2.4.6. Thanks to an accurate design of

the software utilities, the output graphic interface is automatically adapted to the

number of qubits, preserving the readability and rational arranging.

7.1.3 The exact computation

The exact computation is designed to be adopted in two different scenarios:

• One or more conditions reported at the beginning of section §7.1.2 are not

satisfied. In this case, the approximate model is not expected to provide

reliable results and shall not be used.

• The conditions reported at the beginning of section §7.1.2 are satisfied and

the user wants to optimize the RF pulses to maximize the fidelity of some

specific gate sequences or minimize the execution time.

In both cases, the exact computation module provides reliable and useful results,

but the CPU time increases considerably. In the following, the differences with

respect to the approximate computation are detailed.

7.1.3.1 Rotation about x or y

The exact computation module proceeds with direct numerical integration of the

rotating frame Hamiltonian to compute the time evolution operator. The opera-

tion is CPU intensive, in particular if there are several qubits and the Hamiltonian

is a large complex matrix.

The first step is the evaluation of the complete laboratory frame1 J-coupling

Hamiltonian H_J. In this case, also the Ix and Iy operators are retained, differently

with respect to the approximate execution.

1Please, note that the symbol H_J is here used to denote the laboratory frame Hamiltonian
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1 for a = 1 : Nspin

2 for b = 1 : a-1

3 if J_coupling(a,b) ~= 0

4 P_xa = kron(eye(2^(a-1)), kron(X/2, eye(2^(Nspin-a))));

5 P_xb = kron(eye(2^(b-1)), kron(X/2, eye(2^(Nspin-b))));

6 P_ya = kron(eye(2^(a-1)), kron(Y/2, eye(2^(Nspin-a))));

7 P_yb = kron(eye(2^(b-1)), kron(Y/2, eye(2^(Nspin-b))));

8 P_za = kron(eye(2^(a-1)), kron(Z/2, eye(2^(Nspin-a))));

9 P_zb = kron(eye(2^(b-1)), kron(Z/2, eye(2^(Nspin-b))));

10

11

12 H_J = H_J + 2*pi*J_coupling(a,b)*(P_xa*P_xb + P_ya*P_yb + P_za*P_zb);

13 end

14 end

15 H_0 = H_0 + (omega_rf(a) - omega_0(a)) * kron(eye(2^(a-1)), kron(Z/2,

eye(2^(Nspin-a))));↪→

16 end

Note that the rotating frame H_0 contribution is also computed in parallel for

efficiency optimization. Once either the time duration or the RF field amplitude

has been computed, as in the approximate case, the complete laboratory frame

Hamiltonian, except for the aforementioned H_0 contribution, is

1 P_x = zeros(2^Nspin);

2 for k = 1 : Nspin

3 P_x = P_x + gamma(k)/gamma(target_qubit) * kron(eye(2^(k-1)), kron(X/2,

eye(2^(Nspin-k))));↪→

4 end

5

6 H_lab_frame = @(t) 2*omega_ast(target_qubit)*cos(omega_rf(target_qubit)*t -

phase)*P_x + H_J;↪→

The operator which introduces the transformation from the laboratory frame to

the multi-rotating frame is given by

1 U_rot = @(t) f_rotating_frame(Nspin, omega_rf, Z, t);

where

1 function a = f_rotating_frame(Nspin, omega_rf, Z, t)

2 a = 1;
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3 for k = 1 : Nspin

4 a = kron(a, expm(-1i*omega_rf(k)*Z/2*t));

5 end

6 end

according to a generalization of Equation 6.1.5. The complete rotating frame

Hamiltonian is simply

1 H_rot_frame = @(t) U_rot(t)*H_lab_frame(t)*U_rot(t)' + H_0;

as in Equation 6.1.6. Eventually, the time evolution operator is computed via

direct integration of the rotating frame Hamiltonian in the time interval 0 −→ τ :

1 U = expm(-1i*integral(H_rot_frame,1e-10,tau(end),'ArrayValued',true));

7.1.3.2 Free J-evolution with refocusing

The only difference with respect to section §7.1.2.5 is that Quantum MOLE takes

into account not only the Iz operators for control_qubit and target_qubit,

but also Ix and Iy operators. Hence, the laboratory frame Hamiltonian, except

for the H_0 contribution becomes

1 P_xa = kron(eye(2^(control_qubit-1)), kron(X/2, eye(2^(Nspin-control_qubit))));

2 P_xb = kron(eye(2^(target_qubit-1)), kron(X/2, eye(2^(Nspin-target_qubit))));

3 P_ya = kron(eye(2^(control_qubit-1)), kron(Y/2, eye(2^(Nspin-control_qubit))));

4 P_yb = kron(eye(2^(target_qubit-1)), kron(Y/2, eye(2^(Nspin-target_qubit))));

5 P_za = kron(eye(2^(control_qubit-1)), kron(Z/2, eye(2^(Nspin-control_qubit))));

6 P_zb = kron(eye(2^(target_qubit-1)), kron(Z/2, eye(2^(Nspin-target_qubit))));

7

8 H_lab_frame = 2*pi*J_coupling(control_qubit,target_qubit)*(P_xa*P_xb +

P_ya*P_yb + P_za*P_zb);↪→

The time evolution operator becomes

1 U_rot = @(t) f_rotating_frame(Nspin, omega_rf, Z, t);

2 H_J_tmp = @(t) U_rot(t)*H_lab_frame*U_rot(t)' + H_0;

3

4 U = expm(-1i*integral(H_J_tmp,1e-10,tau_J(end),'ArrayValued',true));
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7.1.4 The exact computation with automatic refocusing

Heteronuclear molecules are characterized by a large difference in Larmor frequen-

cies. Therefore, an approximate execution is expected to provide reliable results,

which can be optimized running some parametric exact computations to find, for

instance, the values of τ or Br which maximize the fidelity for some gates. How-

ever, the use of heteronuclear molecules for NMR quantum computation is limited

by the physical availability of magnetic nuclei, since each spin has to be encoded on

a different kind of nucleus. Therefore, homonuclear molecules are often adopted in

actual NMR quantum computing experiments. For some homonuclear molecules

with a difference in Larmor frequencies which is anyway significantly larger than

the J-coupling constants, as cytosine, rectangular soft pulses can be found which

guarantee satisfactory fidelities on simple quantum algorithms. On the other hand,

other homonuclear molecules with large couplings and small frequency shifts, as

crotonic acid, do not allow a simple determination of optimized soft rectangular

pulses. In these cases, there are two viable approaches. The first one is the adop-

tion of numerically optimised pulses (also non-rectangular pulses), as provided by

the gradient ascent pulse engineering optimizations (GRAPE). This approach is

not currently supported by Quantum MOLE. The second one is the exploitation of

hard pulses to implement a kind of auto-refocusing. According to [68], a generic

rotation about x̂ or ŷ can be implemented as

R(θ) = Rz(φ)Ry

(π
2

)
Rz(θ)Ry

(
−π

2

)
Rz(φ) (7.1.5)

where

φ =

{
0 −→ Rx(θ)

π
2
−→ Ry(θ)

(7.1.6)

The rotations about ŷ in blue are hard pulses, that is, pulses for which τ is short

enough to ensure that the Fourier spectrum has the components which resonate

with all homonuclear spins. Otherwise stated, a single hard pulse prompts all

homonuclear spins to perform the rotation about ŷ. The reader is referred to the

aforementioned reference for a detailed treatment of this equation. The rotations

about ẑ can be made J-coupling independent by adopting the refocusing tech-

niques presented in section §6.2.3 or by resorting to the Virtual-Z method, which,

as well known, allows the implementation of zero-lag ideal gates. Quantum MOLE

assumes that Virtual-Z method is implemented when the exact computation with
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the auto-refocusing module is run. At the code level, the implementation of this

procedure is obtained replacing the previously introduced routine for the rotations

about x̂ and ŷ with an ad hoc routine.

7.1.4.1 Rotation about x and y

The following piece of code implements Equation 7.1.5.

1 rotation_angle_autorefocusing = rotation_angle;

2 phase_autorefocusing = phase;

3

4 %% Rotation about Z of -gamma

5 rotation_angle = -phase_autorefocusing; % axis angle is 0 for a rotation about

X and pi/2 for a rotation about Y↪→

6 nmr_z_rotation

7

8 %% Strong pulse about -Y of pi/2

9 rotation_angle = pi/2;

10 phase = -pi/2;

11 nmr_x_y_rotation

12

13 %% Rotation of an angle rotation_angle about Z

14 rotation_angle = rotation_angle_autorefocusing;

15 nmr_z_rotation

16

17 %% Strong pulse about Y of pi/2

18 rotation_angle = pi/2;

19 phase = pi/2;

20 nmr_x_y_rotation

21

22 %% Rotation about Z of gamma

23 rotation_angle = phase_autorefocusing; % axis angle is 0 for a rotation about

X and pi/2 for a rotation about Y↪→

24 nmr_z_rotation

It is clear the the execution is meaningful only if proper values of τ or Br for hard

pulses are provided in input.
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7.2 User manual

This section is devolved to a short user manual for the optimal use of Quantum MOLE.

Input molecular parameters The user is expected to provide the following

physical parameters:

• The number of qubits Nspin.

• The gyromagnetic ratio per each qubit, ordered2 from qubit 1 to qubit Nspin

in the gamma vector.

• The longitudinal relaxation constant per each qubit, ordered from qubit 1

to qubit Nspin in the T1 vector.

• The transverse relaxation constant per each qubit, ordered from qubit 1 to

qubit Nspin in the T2 vector.

• The isotropic chemical shift constant per each qubit, ordered from qubit 1

to qubit Nspin in the delta vector.

• The J-coupling constant between each couple of qubits as J_coupling_tm c

p(a,b) = J.

Input control parameters The user is expected to provide the following con-

trol parameters:

• The value of the magnitude of the static field B_0.

• The value of the magnitude of the RF field per each qubit, ordered from

qubit 0 to qubit Nspin in the Br vector.

• The pulse time duration per each qubit, ordered from qubit 0 to qubit Nspin

in the tau vector.

Choose the kind of execution The user shall also specify:

• The name of the input .qasm file file_name.

• The flag virtual_z enables the Virtual-Z method, if set to 1.

2The spins are ordered from 1 to Nspin, according to Matlab convention. Conversely, qubits
are ordered from 0 to Nspin - 1, according to QASM convention.
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• The flag exact_computation enables the exact computation module, if set

to 1.

• The flag autorefocusing enables the auto-refocusing method, if set to 1.

It requires the Virtual-Z method to be enabled.

• The flag save_workspace enables the automatic saving of the workspace, if

set to 1.
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7.3 Hints on the use of ORCA

ORCA [3, 2] is a free computational chemistry software, able to compute molecular

and atomic properties. As far as NMR is concerned, it can evaluate chemical

shielding and J-coupling tensors. While the computation of the former is quite

reliable, to get accurate J-couplings is demanding, even with deep knowledge in

quantum computational chemistry. This is an issue well known to the NMR

scientific community. In the following, it is explained how to start ORCA and

compute NMR parameters.

The first step is to find an unoptimized geometry of the molecule, for instance

in [69]. Then, open the .mol file with Avogadro [63], go to Extensions -> ORCA

-> Generate Orca Input -> Geometry optimization and save. The obtained

.inp file has to be properly modified to run the required computation. Consider

the following input file for a chloroform molecule:

1 !B3LYP D3BJ def2-TZVPP def2/JK tightopt tightscf CPCM(water)

2

3 * xyz 0 1

4 Cl 0.93343 1.59184 0.61140

5 Cl -1.50886 0.29931 1.50276

6 Cl 0.94758 -1.23285 1.28287

7 C -0.00990 0.08528 0.57081

8 H -0.26062 -0.16585 -0.48031

9 *

10

11 %pal nprocs 10 end

12

13 %eprnmr

14 Nuclei = all C {ssall, shift, ist=13}

15 Nuclei = all H {ssall, shift, ist=1}

16 end

It asks ORCA to compute the chemical shielding tensor and the J-coupling tensor

for carbon and hydrogen atoms. The structure of the input file is explained in the

following, for any further doubt the reader is referred to ORCA user manual.

• B3LYP D3BJ is the functional adopted by ORCA for the computation. In

particular, B3LYP is a hybrid functional which selects a density functional

theory (DFT) method. In other words, it is the modelling method used

by ORCA to investigate the molecular properties. D3BJ is a correction term

added to include dispersion forces.
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• def2-TZVPP is a doubly polarized triple-zeta basis set. A basis set is the set

of orbitals used to build molecular orbitals.

• def2/JK is an auxiliary basis set.

• CPCM(water) is the solvent.

• * xyz 0 1 denotes the beginning of the molecular coordinates. 0 is the

charge and 1 is the spin multiplicity.

• pal nprocs 10 is used to specify the number of available parallel processors

on which the simulation can be run.

• eprnmr is used to start the computation of NMR parameters. all C means

all carbon atoms, ssall that all contributions to J-coupling tensors are eval-

uated and shift that the chemical shielding tensor is computed. Please, note

that to obtain the chemical shift constant which can be used in Quantum MOLE

it is mandatory to compute the chemical shielding tensor of the reference

compound, and use Equation 5.2.9.

Another possibility is to use the functional and the basis set suggested in [57].

Since the results obtained with ORCA are still not fully satisfactory, the Quantum MOLE

simulations are carried out resorting to experimental data.
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Chapter 8

Simulations and characterizations

This final chapter pulls the strings of the whole research. The knowledge acquired

in the previous chapters is put to the test in some simulations. The quantum

circuit design know-how is acquired in chapter 2 while chapters 3, 4 and 5 address

the natural phenomena ruling nuclear magnetic resonance. Finally, chapters 6

and 7 lay the foundation for the understanding of the techniques adopted for

the implementation and the simulation of nuclear magnetic resonance quantum

computers. After all, a rigorous physical and logical treatment is mandatory for

a deep understanding and for appropriate modelling.

This chapter presents some simulations on three different molecules: chloro-

form, cytosine and crotonic acid. The first is heteronuclear, while the other two

are homonuclear. Chloroform and cytosine are two-qubit molecules, while cro-

tonic acid is a four qubit molecule. For each molecule, the RF pulse width is

optimized maximizing the fidelity when a Rx

(
π
2

)
rotation is sequentially applied

to all qubits. The choice of this kind of benchmark is motivated by the fact the

rotation of π/2 about x̂ axis is a fundamental rotation and by the fact that once

a qubit is along the −ŷ axis, it is sensitive to the unwanted J-coupling evolution

which, as well known, mainly causes an unwanted rotation about ẑ. On the basis

of the obtained results, the most suitable execution module of Quantum MOLE is

selected to run the two-qubit Grover’s search algorithm as a benchmark. The

static field is always assumed to have magnitude B0 = 11.74 T, which is a typical

choice.
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8.1 Chloroform

The chloroform CHCl3 is a two-qubit molecule: the qubit-0 is encoded on the

nuclear spin of 1H and the qubit-1 is encoded on the nuclear spin of 13C. The

Figure 8.1: CHCl3 molecule.

nuclear gyromagnetic ratios are [70]

γn(1H) = 267.522× 106 rad s−1 T−1

γn(13C) = 67.283× 106 rad s−1 T−1
(8.1.1)

The isotropic chemical shift constants are [71, 72]

δ(1H) = 7.26× 10−6

δ(13C) = 77.22× 10−6
(8.1.2)

The relaxation constants are [73]

T1(1H) = 10.9 s

T1(13C) = 18.8 s

T2(1H) = 3.3 s

T2(13C) = 0.35 s

(8.1.3)

The J-coupling constant is [73]

J(0,1) = 215.09 Hz (8.1.4)

8.1.1 Fidelity optimization

As already highlighted, the chosen benchmark for the optimization of the fidelity

versus the pulse width τ is a series of Rx(π/2) pulses, one per each qubit. The be-

haviour of the fidelity when τ ranges from 0.1 µs to 250 µs is reported in Figure 8.2.

The chart is obtained resorting to the exact computation module of Quantum MOLE,
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executing fifty runs with different values of τ . The results are then interpolated

with Matlab fitting toolbox, selecting the 'smoothingspline' option. As ex-

Figure 8.2: Fidelity versus τ in CHCl3 molecule when a Rx

(
π
2

)
pulse is applied

to each qubit.

pected there is a large range of values for which the fidelity is almost unitary. The

reason is that chloroform is a heteronuclear molecule and so the condition

2π

∆ω0

� τ � 1

J
←→ 2.67 ns� τ � 4.65 ms (8.1.5)

is easily satisfied. In particular, the best results are obtained for τ < 10 µs, that

is with hard pulses. A reasonable compromise among fidelity, time duration and

amplitude of the RF pulses can be

τ = 5 µs (8.1.6)

Since the conditions reported at the beginning of section §7.1.2 are satisfied, the

approximate computation module can be safely adopted to run two-qubit quantum

algorithms on this molecule.

8.1.2 The Grover’s search benchmark

The Grover’s search quantum algorithm is used as a benchmark to test the molecule

performances. The pulse duration is set to τ = 5 µs for clarity. This means that

a π-pulse about x̂ requires a Br(πx) amplitude

Br(πx) =

{
1H −→ 2.3 mT

13C −→ 9.3 mT
(8.1.7)
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which are reasonable values for hard pulses. However, if the available hardware is

not able to generate all the required different Br amplitudes, one can fix Br and let

τ vary. For instance, setting Br ∼ 4 mT, similar results would be obtained. The

simulated quantum circuit is the two-qubit version derived from first principles in

section §2.2.2.3 and simulated also with IBM Quantum Experience (cf. section

§2.3.3). It has to be highlighted that, since NMR quantum computers offer a

natural support for control-Z gates, there is no need to replace the latter with

Hadamard and CNOT gates.

The main simulation results are summarized in Table 8.1. As expected, the

Quantity Without VZ method With VZ method
Execution time 4.82 ms 4.70 ms
Fidelity qubit 0 0.9930 0.9933
Fidelity qubit 1 0.9930 0.9933
Total fidelity 0.9896 0.9900

CPU time 286 ms 220 ms

Table 8.1: Approximate execution of Grover 10 quantum algorithm on chloroform.

(a) Actual execution of Grover 10 algorithm on chloroform.

(b) Ideal execution of Grover 10 algorithm on chloroform.

Figure 8.3: The Grover 10 quantum algorithm on chloroform.
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(a) Probability histogram for Grover 10 algorithm on chloroform without the Virtual-Z
method.

(b) Probability histogram for Grover 10 algorithm on chloroform with the Virtual-Z
method.

Figure 8.4: The Grover 10 quantum algorithm probability histogram.

approximate computation module is efficient, allowing for fast simulation of the

quantum algorithm. Moreover, the fidelity is extremely high, providing an almost

exact result. Obviously, the application of the Virtual-Z method improves both

the fidelity and the execution time. The simulation outcomes are also reported

in graphical format, for the convenience of the reader. In Figure 8.3, the individ-

ual qubit Bloch balls for ideal and actual computations are compared, assuming

that no Virtual-Z method is applied. Finally, Figure 8.4 presents the probability

histograms for actual and ideal computations.
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8.1.3 Exact computation

Even if definitely not necessary in actual simulations for chloroform, the exact com-

putation module of Quantum MOLE is adopted to run the same two-qubit Grover

algorithm, in order to prove the reliability of the approximate module for het-

eronuclear molecules. The main results1 are summarized in Table 8.2, and the

corresponding histogram is reported in Figure 8.5. The similarity with Table 8.2

Quantity Without VZ method
Execution time 4.82 ms
Fidelity qubit 0 0.9929
Fidelity qubit 1 0.9929
Total fidelity 0.9895

CPU time 1.13× 103 s

Table 8.2: Exact run of Grover 10 quantum algorithm on chloroform.

Figure 8.5: Probability histogram for Grover 10 algorithm on chloroform: exact
computation without Virtual-Z method.

and Figure 8.4 proves the reliability of the approximate routine.

1The CPU time is evaluated running the simulator on a nine-year-old i7-2630QM Intel pro-
cessor.
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8.2 Cytosine

Cytosine is a two-qubit homonuclear molecule: both qubits are encoded on 1H

nuclei, as reported in Figure 8.6. The nuclear gyromagnetic ratios are for both

Figure 8.6: Cytosine molecule.

qubits [70]

γn(1H) = 267.522× 106 rad s−1 T−1 (8.2.1)

The isotropic chemical shift constants are [71]

δ(q[0]) = 7.50× 10−6

δ(q[1]) = 5.97× 10−6
(8.2.2)

The relaxation constants are [67]

T1(q[0]) = 7.0 s

T1(q[1]) = 7.0 s

T2(q[0]) = 1.0 s

T2(q[1]) = 1.0 s

(8.2.3)

The J-coupling constant is [67]

J(0,1) = 7.10 Hz (8.2.4)

8.2.1 Fidelity optimization

The usual set of quantum gates is adopted as a benchmark for the fidelity opti-

mization. The behaviour of the latter when τ ranges from 1 ms to 10 ms is reported

in Figure 8.7. The chart is obtained resorting to the exact computation module of
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Quantum MOLE, executing forty runs with different values of τ . The results are then

interpolated with Matlab fitting toolbox, selecting the 'smoothingspline'

option. There are some striking differences with respect to the chloroform fidelity

Figure 8.7: Fidelity versus τ in cytosine molecule when a Rx

(
π
2

)
pulse is applied

to each qubit.

plot reported in Figure 8.2. The most evident is the range in which τ varies, which

is in the order of ms, instead of µs. This is a clear signature of soft pulses, which

must be employed for selective addressing of homonuclear molecules. Second, the

fidelity plot shows a remarkable ringing with local maxima when τ is an integer

multiple of 2π/∆ω0 ∼ 1.31 ms. The physical reason is readily understood consid-

ering the B matrix in the derivation of Equation 6.1.8, which is reported here for

the two-qubit case for convenience

B =
γ2

2γ1

I⊗

(
0 e−i(∆ωrt+φ1) + e−i(Ωt−φ)

e+i(∆ωrt+φ1) + e+i(Ωt−φ) 0

)
(8.2.5)

where ∆ωr = ωr,2−ωr,1 ∼ ω0,2−ω0,1 and Ωr = ωr,1 +ωr,2 ∼ ω0,1 +ω0,2. Clearly, this

matrix represents the unwanted effects that a field intended to act on qubit-1 has

on qubit-2. For every practical value of τ , it turns out that the terms oscillating

at Ωr can be safely neglected. Conversely, ∆ωr can be very small in homonuclear

molecules. Hence, the terms oscillating at ∆ωr may not be negligible. It follows

that if τ = 2π/∆ω0, the B matrix reduces to an identity matrix and the unwanted

effects are removed.

A reasonable choice for the RF pulse width can be

τ = 5.229 ms (8.2.6)

as suggested in [67]. Since the conditions reported at the beginning of section
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§7.1.2 are not satisfied, the exact computation module shall be used to obtain

reliable results, even if it is CPU intensive.

8.2.2 The Grover’s search benchmark

The Grover’s search quantum algorithm is again used as a benchmark to test the

molecule performances. The pulse duration is set to τ = 5.229 ms for clarity. This

means that a π-pulse about x̂ requires a Br(πx) amplitude

Br(πx) = 2.25 µT (8.2.7)

which is a reasonable value for soft pulses. As in the previous case, Quantum MOLE

takes advantage of the NMR native control-Z support.

The main simulation results are summarized in Table 8.3.

Quantity Without VZ method With VZ method
Execution time 318.63 ms 193.14 ms
Fidelity qubit 0 0.6875 0.8962
Fidelity qubit 1 0.6871 0.8948
Total fidelity 0.6175 0.8494

CPU time 1.265× 103 s 284 s

Table 8.3: Exact run of Grover 10 quantum algorithm on cytosine.

As expected, the exact computation module is CPU intensive and the time re-

quired to run a simulation is significantly larger. Although the accurate optimiza-

tion of the rectangular RF pulses, the fidelity is poorer, even with the Virtual-Z

method, with respect to chloroform, thus reflecting the difficulty in achieving an

almost unitary fidelity on homonuclear molecules, with simple rectangular pulses.

In order to obtain higher fidelities, properly numerically optimized pulses or refo-

cusing techniques shall be adopted. However, the desired outcome, when Virtual-Z

is enabled, is still characterized by a probability notably higher than those of the

other eigenstates. The simulation outcomes are also reported in graphical format,

for the convenience of the reader. In Figure 8.8, the individual qubit Bloch balls for

ideal and actual computations are compared, assuming that the Virtual-Z method

is applied. Finally, Figure 8.9 presents the probability histograms for actual and

ideal computations.
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(a) Actual execution of Grover 10 algorithm on cytosine.

(b) Ideal execution of Grover 10 algorithm on cytosine.

Figure 8.8: The Grover 10 quantum algorithm on cytosine.

8.2.2.1 Automatic refocusing

A possibility to further improve the fidelity is to adopt the auto-refocusing tech-

nique introduced in section §7.1.4. The pulse width is fixed to τ = 10 µs, which

is a typical value for hard pulses. The main simulation results are summarized in

Table 8.4 and in Figure 8.10. As expected, the fidelity is significantly higher.

Quantity With VZ method
Execution time 141.04 ms
Fidelity qubit 0 0.9342
Fidelity qubit 1 0.9342
Total fidelity 0.9013

CPU time 582 s

Table 8.4: Exact run of Grover 10 quantum algorithm on cytosine acid, with
automatic refocusing.

Anyway, it is not almost unitary and the reason is that the J-coupling is extremely

weak, thus the CNOT or CZ gates need a long time to be executed. The resulting

long execution time makes decoherence and relaxation effects not negligible.
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(a) Probability histogram for Grover 10 algorithm on cytosine without the Virtual-Z
method.

(b) Probability histogram for Grover 10 algorithm on cytosine with the Virtual-Z
method.

Figure 8.9: The Grover 10 quantum algorithm probability histogram for cytosine.

Figure 8.10: Probability histogram for Grover 10 algorithm on cytosine with the
Virtual-Z method and automatic refocusing.
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8.3 Crotonic acid

Crotonic acid is a four-qubit homonuclear molecule: the four qubits are encoded

on 13C nuclei, as reported in Figure 8.11. The nuclear gyromagnetic ratios are for

Figure 8.11: Crotonic acid molecule.

all qubits [70]

γn(13C) = 67.283× 106 rad s−1 T−1 (8.3.1)

The isotropic chemical shift constants are [71, 74]

δ(q[0]) = 18.08× 10−6

δ(q[1]) = 147.55× 10−6

δ(q[2]) = 122.38× 10−6

δ(q[3]) = 172.35× 10−6

(8.3.2)

The relaxation constants2 are [74, 75]

T1(q[0]) = 5.1 s

T1(q[1]) = 5.3 s

T1(q[2]) = 5.6 s

T1(q[3]) = 10.2 s

T2(q[0]) = 0.84 s

T2(q[1]) = 0.92 s

T2(q[2]) = 0.66 s

T2(q[3]) = 0.79 s

(8.3.3)

2After a long a detailed research in the currently available scientific literature, only [75] seems
to report T1 time constants for crotonic acid. The other papers only report T2 which is, obviously,
the one which sets an upper limit to the total duration of the quantum algorithm.
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The J-coupling constants are [74]

J(0,1) = 41.64 Hz

J(0,2) = 1.46 Hz

J(0,3) = 7.04 Hz

J(1,2) = 69.72 Hz

J(1,3) = 1.18 Hz

J(2,3) = 72.36 Hz

(8.3.4)

8.3.1 Fidelity optimization

The usual set of quantum gates is adopted as a benchmark for the fidelity opti-

mization. The behaviour of the latter when τ ranges from 1 ms to 2 ms is reported

in Figure 8.12. The chart is obtained resorting to the exact computation module of

Quantum MOLE, executing forty runs with different values of τ . The results are then

interpolated with Matlab fitting toolbox, selecting the 'smoothingspline'

option. There are some interesting characteristics of crotonic acid which can be

Figure 8.12: Fidelity versus τ in crotonic acid molecule when a Rx

(
π
2

)
pulse is

applied to each qubit.

understood from this plot. The range of pulse width values for which the fidelity

is not poor is limited and significantly smaller with respect to cytosine. Moreover,

even in this range, the fidelity does not reach high, almost unitary, values. In order

to see the physical motivation behind this behaviour, consider the magnitudes of

the molecular parameters. The largest J-coupling is

Jmax = 72.36 Hz (8.3.5)
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while the minimum difference in chemically shifted Larmor frequencies is

∆ω0,min

2π
= 3.16 kHz (8.3.6)

so that the pulse width has to be

2π

∆ω0,min

∼ 321 µs� τ � 1

J
∼ 14 ms (8.3.7)

However, even for τ = 1.2 ms, the fidelity is already greatly reduced. The reason

is that several J-couplings actually act on each qubit, causing unwanted evolu-

tions. Therefore, it is a reasonable choice to use the exact computation with

auto-refocusing module of Quantum MOLE. Finally, the fidelity plot ringing is less

evident than for cytosine, since there is a ∆ω0 for each couple of spins. Anyway, it

can be argued that local maxima occur in the neighbourhood of integer multiples

of 2π
∆ω0,min

.

8.3.2 The Grover’s search benchmark

The Grover’s search quantum algorithm is again used as a benchmark to test the

molecule performances. The quantum algorithm is run on qubit-0 and qubit-1.

The pulse duration is set to τ = 10 µs to implement hard pulses. This means that

a π-pulse about x̂ requires a Br(πx) amplitude

Br(πx) = 1.17 mT (8.3.8)

which is a reasonable value for hard pulses. As in the previous cases, Quantum MOLE

takes advantage of the NMR native control-Z support. The auto-refocusing mod-

ule is adopted, with Virtual-Z method enabled. As a matter of fact, the simulation

with exact computation without auto-refocusing results in a very poor fidelity, even

fixing τ = 700 µs.

The main simulation results are summarized in Table 8.5. As expected,

also the exact computation module with auto-refocusing is CPU intensive and

the time required to run a simulation is significantly longer than the approximate

computation. However, the resulting fidelity of the outcome is remarkable: the

probability to measure the expected eigenstate is higher than 97%, thanks to the

auto-refocusing routine which practically removes the unwanted evolutions due to

the J-coupling patterns. The key point to highlight is that an optimization of the
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Quantity With autorefocusing Without autorefocusing
Execution time 24.21 ms 31.01 ms
Fidelity qubit 0 0.9819 0.9017
Fidelity qubit 1 0.9820 0.9287
Fidelity qubit 2 0.9998 0.8470
Fidelity qubit 3 0.9999 0.8849
Total fidelity 0.9728 0.6415

CPU time 1.61× 103 s 9.34× 103 s

Table 8.5: Exact run of Grover 10 quantum algorithm on crotonic acid, with and
without auto-refocusing. In both cases, Virtual-Z method is enabled.

Figure 8.13: Probability histogram for Grover 10 algorithm on crotonic acid with
the Virtual-Z method and auto-refocusing.

control RF pulses, as the maximization of the fidelity with soft pulses when possi-

ble (cf. cytosine) or the auto-refocusing technique (as in this case), is mandatory to

obtain reliable results in homonuclear molecules. Finally, it has to be highlighted

that the fidelity achievable with crotonic acid is higher than those achievable with

cytosine. The motivation has to be looked for in the higher J-coupling constants,

which allows for faster execution of CNOT and CZ gates. As a consequence, the

time required to run a quantum algorithm is shorter and decoherence and re-

laxation effects are less effective. The simulation outcomes are also reported in

graphical format, for the convenience of the reader. Figure 8.13 presents the prob-

ability histograms for actual computation. Finally, in Figure 8.14, the individual

qubit Bloch balls for ideal and actual computations are compared.
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(a) Actual execution of Grover 10 algorithm on crotonic acid.

(b) Ideal execution of Grover 10 algorithm on crotonic acid.

Figure 8.14: The Grover 10 quantum algorithm on crotonic acid with automatic
refocusing.
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8.4 Future improvements

A research work, whatever field it addresses, is never actually completed and

one will always find something else to discover, understand or improve. There

are no real limits to the search for knowledge. Every new concept brings with

itself an endless series of why questions, the answers to which are just starting

points to begin further investigations. Were not for the finite time which poses an

insurmountable limit, one will probably never get some closure.

This research is not different. There is still plenty of things to improve and to

further understand, even if the proposed model is already a good starting point to

connect the physical and chemical backgrounds of molecules, thoroughly addressed

to in this paper, to the quantum computation science, a role which, for classical

computation science, has historically been prerogative of electronic engineering.

At a simulation level, it would be interesting to acquire a deeper understand-

ing of pseudopure state preparation and include it in Quantum MOLE, to better

simulate the real-world behaviour of thermal mixtures. Also, a deeper physical

knowledge of relaxation and decoherence phenomena is mandatory to improve

the corresponding simulation module which, at the time of writing, provides only

approximate results. As stated several times, many NMR experiments adopt non

rectangular pulses, the behaviour of which must be included in future releases

of Quantum MOLE. Moreover, approaches to speed up the execution of the exact

computation module for homonuclear molecules shall be investigated, for instance

finding more computationally efficient ways of writing the same equations or try-

ing to exploit parallel computation. Also, the final measurement of the outcome

shall be improved, including the quantum state tomography procedure.

As far as the theory is concerned, a deepening of chemical understanding, in

particular the molecular orbital theory, will help both the awareness of hardware

behaviour and the interface with computational chemistry software, as ORCA and

Spinach [76].

Finally, it would also be interesting to explore different technologies, as trapped

ions, solid-state NMR, molecular magnets, superconductors and others and, hope-

fully, include the simulation of their behaviour in Quantum MOLE.
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Conlusions

Quantum computation is a thoroughly new way of thinking to electronics. The

research is focusing on the design and the ideation of quantum algorithms able

to outperform the classical counterpart in some fields. For instance, quantum

computation is regarded to be naturally suitable to simulate complex quantum

systems, as large molecules. Indeed, quantum chemistry is expected to be one of

the most promising application areas. Chemistry means also medicine and quan-

tum computers will enable the modelling of complex molecules, paving the way

for the discovery of innovative drugs and more efficient treatments. Other appli-

cation fields where quantum computation may improve human lives are quantum

cryptography, thanks to an efficient integer factorization using Shor’s algorithm;

quantum search in large databases, which can be solved by Grover’s search algo-

rithm; quantum annealing for optimization problems and many others.

However, the future of quantum computing depends not only on the further

development of quantum computer science but also (and mainly) on the improve-

ment of hardware solutions capable of running quantum algorithms, which is the

focus of this thesis.

A rigorous physical and mathematical treatment is mandatory for a deep un-

derstanding and for appropriate modelling of quantum technologies. The leading

idea while writing has been to make things as simple as possible, assuming the

reader has no familiarity with fine mathematical and physical jargon. In this re-

spect, chapter 1, devolved to the essential preliminaries, lays the foundation for

the understanding of the thesis. Chapter 2 is a gentle introduction to quantum

computation which gradually gets to address the design of quantum algorithm,

highlighting the main differences with respect to the classical counterpart and

suggesting the requirements a physical quantum computer shall satisfy. Chapters

3, 4 and 5 deal with the physical background of a possible hardware implemen-

tation of quantum computers: the encoding of qubits on magnetic nuclear spins

in diamagnetic molecules. The techniques routinely adopted to manipulate nu-

clear spins, namely the application of radio-frequency magnetic fields, are detailed.

The analysis begins with a general introduction to magnetism, followed by a dis-

cussion of an idealized case: the behaviour of an isolated non-interacting spin.

These hypotheses are removed in the following and interacting spin ensembles are

treated with a full density matrix formalism, introducing several non-ideal effects,
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as relaxation and decoherence phenomena. A particular emphasis is given on the

chemical and physical origins of chemical shielding and J-coupling tensors.

The last two chapters, starting from the strong foundations built in the previ-

ous chapters, propose a model for the simulation of quantum algorithm execution

on a nuclear magnetic resonance quantum computer: Quantum MOLE. The latter

can be run at different levels of approximation, trading off CPU time and ac-

curacy. Quantum MOLE is able to predict the outcome of a quantum algorithm,

taking into consideration several non-idealities, as decoherence, relaxation, un-

wanted coupled evolution due to J-coupling during one-qubit operations and the

effect of off-resonance pulses on not-addressed qubits in homonuclear molecules.

Quantum MOLE is provided with embedded support for Virtual-Z method and re-

focusing techniques.

Chapter 8 presents the results obtained for the execution of Grover’s search

quantum algorithm and the characterization of fidelity on three representative

molecules. The first, chloroform, is a two-qubit heteronuclear molecule, for which

non-ideal effects as unwanted J-evolution and off-resonance effects are negligible,

thanks to a large difference in resonance frequencies. The second, cytosine, is a

two-qubit homonuclear molecule with a weak J-coupling. Hence, the run time for

two-qubit gates is long and the effects of decoherence and relaxation phenomena

become evident. The third, crotonic acid, is a four-qubit homonuclear molecule for

which the ratio between the difference in resonance frequencies and J-coupling is

small, making it hard to optimize the soft-pulses. A specific automatic refocusing

approach is introduced, to improve the control and increase the outcome fidelity.

The obtained results are encouraging. Liquid-state NMR qubits can implement

a universal set of elementary quantum gates. Moreover, they have long relaxation

times which enable the execution of simple quantum algorithms with negligible

errors. More complex algorithms, anyway, would require the introduction of Quan-

tum Error Correction (QEC) techniques. Another interesting advantage of NMR

is that the techniques to initialize the system, control the evolution and measure

the outcome are known and the required hardware is similar to the one which has

been routinely adopted for decades for magnetic resonance imaging and nuclear

magnetic resonance chemical spectroscopy. Moreover, the experiments are carried

out at room temperature, while other hardware solutions require extremely low

temperatures. On the other hand, scalability is a limiting issue in liquid-state

NMR, because of the exponential loss of sensitivity of the NMR signal upon in-

creasing the number of qubits. Some proposals have appeared in literature to try

to overcome this limitation, as the handling of solid-state NMR.
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Nowadays, several hardware solutions for the implementation of quantum com-

puters are currently under investigation. It is still not known which will be the

definitive technology or even if there will be a single established one or if the pecu-

liar characteristics of several different hardware solutions will be carefully exploited

to optimize different classes of algorithms. In any case, the way for empowering

the research of tomorrow in many fields is already paved and the consequent social

impact will be unprecedented.
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