
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

ALiAS - Analog Logic-in-Memory
Arrays Synthesizer

Relatori:
Prof. Mariagrazia Graziano
Prof. Marco Vacca
Prof. Maurizio Zamboni

Candidato:
Fabrizio Ottati

Aprile 2020

Table of contents

1 Abstract 1

2 State Of The Art 4

2.1 Static Random Access Memories . 4

2.1.1 SRAM metrics . 5

2.1.2 Read Operation . 6

2.1.3 Write Operation . 8

2.1.4 Data Retention . 11

2.1.5 Cell current distribution . 11

2.1.6 Cell stability . 12

2.1.7 Read and write assist techniques and circuits 13

2.1.8 Alternative cell topologies . 14

2.2 Content Addressable Memories . 20

2.2.1 The CAM cell . 21

2.2.2 Ternary cells . 24

2.2.3 Match-line schemes . 25

2.2.4 Searchline schemes . 32

3 SRAM design 34

3.1 The SRAM cell . 34

3.2 Driver circuits . 35

3.2.1 Bitlines driver . 35

3.2.2 Precharge circuit . 36

3.2.3 Wordline driver . 37

3.3 Sense amplifier . 37

3.4 Interconnections parasitics . 40

3.5 Testbench . 41

3.5.1 The simulation flow . 41

3.5.2 Python script for input signals generation 44

3.5.3 Cadence Virtuoso schematic . 47

3.5.4 Larger arrays design . 51

3.5.5 Simulation environment . 52

3.6 Simulation waveforms . 55

4 CAM design 57

4.1 The CAM cell . 57

4.2 Driver circuits . 57

4.3 Match-line sense amplifier . 58

4.4 Dummy match-line scheme . 61

4.5 Cell sizing . 63

4.6 Testbench . 66

4.6.1 The testbench circuit . 66

4.6.2 Python code . 67

4.6.3 Cadence Virtuoso schematic . 68

I

4.7 Simulation waveforms . 68

5 LiM array design 70

5.1 The algorithm . 70

5.2 The memory cell . 71

5.2.1 The proposed cell . 73

5.2.2 Adjustments to the original design 75

5.3 The sensing scheme . 76

5.4 The implemented cell: dynamic AND version 76

5.5 The static cell . 78

5.6 The special purpose cell . 80

5.7 Comparison between the cells . 83

5.8 Testbench . 88

5.8.1 Testbench circuit . 88

5.8.2 The sensing scheme . 88

5.8.3 Python code . 91

5.8.4 Cadence Virtuoso schematic . 93

5.8.5 Waveforms . 93

6 ALiAS 96

6.1 Design flow . 96

6.2 The tool structure . 100

6.2.1 Netlist generator . 100

6.2.2 Simulation script generator . 120

6.2.3 Input stimuli generator . 129

6.3 Results provided by ALiAS . 129

6.4 User guide . 133

7 Results and conclusions 136

7.1 Simulations performed varying the array width 137

7.1.1 Read operation: ideal drivers . 137

7.1.2 Read operation: non-ideal drivers 141

7.1.3 Write operation: ideal drivers . 144

7.1.4 Write operation: non-ideal drivers 147

7.1.5 Search operation: ideal drivers 150

7.1.6 Search operation: non-ideal drivers 154

7.1.7 AND operation: ideal drivers . 156

7.1.8 AND operation: non-ideal drivers 161

7.2 Simulations performed varying the array height 165

7.2.1 Read operation: ideal drivers . 165

7.2.2 Read operation: non-ideal drivers 168

7.2.3 Write operation: ideal drivers . 171

7.2.4 Write operation: non-ideal drivers 174

7.2.5 Search operation: ideal drivers 177

7.2.6 Search operation: non-ideal drivers 179

7.2.7 AND operation: ideal drivers . 181

7.2.8 AND operation: non-ideal drivers 184

7.3 Conclusions and future works . 188

II

Bibliography 189

III

Chapter 1

Abstract

The Von-Neumann paradigm is based on the data exchange between CPU and memory:

the processor reads the data from the memory, elaborates them and, then, writes the

results back. However, CPU and memory do not work at the same speed: while in

computing units the CMOS technology has kept progressing year after year, memory

CMOS circuits have not, being fundamentally limited by the request of higher storage

density (memory cells per unit area) that almost nullifies the speed enhancement brought

by technology scaling.

For this reason, research and industry have searched for other solutions that allow

to overcome the Von-Neumann bottleneck. One approach that is being explored is the

Logic-in-Memory (LiM) one: the data are processed inside the memory array itself,

without trasnferring them to the CPU registers.

In this work, a standard Content Addressable Memory has been redesigned in order

to perform the maximum/ minimum value search in the array using the LiM approach.

In particular, three variants of a memory cell design, which has been proposed in [1],

are presented, whose general logic scheme is shown in Figure 1.1b. The algorithm

execution is based on the bitwise-AND logic operation between the memory content

and an external data word, called “mask vector”. The logic scheme of the architecture

is shown in Figure 1.3

LiM

array

M
ask

v
ector

M
ax

/
m

in
lo

cation(a) The architecture principle.

Cell

BL

Previous cell

Next cell

(b) The LiM cell.

Figure 1.1: Architecture and cell.

First, the memory cell circuit has been designed by hand in Cadence Virtuoso and

tested inside an array; after this, the design characteristics have been tuned through

several simulations and, then, the fundamental components (memory cell and sense

amplifier) netlists have been extracted; subsequently, these have been embedded in a

software tool called ALiAS (Analog Logic-in-Memory Arrays Synthesizer), designed by

me.

1

1 – Abstract

The tool generates in a dynamic way (i.e. following the user specifications) the

architecture netlist; the obtained testbench is simulated and characterized, extracting

the performance and energy consumption measurements; the user chooses arbitrarily the

array dimensions, the memory signals drivers characteristics (if they have to be ideal or

real-world ones), the simulation speed (hardware resources assigned to the simulation)

and clock period duration. Furthermore, standard memory arrays (SRAM and CAM)

can be generated by the tool, in order to be used as reference in the results evaluation,

and some results are presented in Figure 1.4.

In these graphs, the delays related to memory operations, such as write and read

ones (indicated by Write1Delay, Write0Delay, Read1Delay and Read0Delay), the

CAM search operation (indicated by MatchDelay) and the AND operation (indicated

by ANDDelay), are presented. These have been estimated for many values (from 8 to

256 bits) of the memory width, with memory height set to 256 bits.

As expected, the LiM cells, denoted with the ANDModel, ANDSTModel and ANDDYNModel

labels in the graphs of Figure 1.4, have worse performance in standard memory oper-

ations with respect to classical implementations, because of their higher circuital com-

plexity; this can be noticed by the fact that, in Write1Delay, Write0Delay, Read1Delay

and Read0Delay, the LiM cells have a larger delay associated with respect to CAM and

SRAM.

However, the AND operation (ANDDelay) performs way better than the CAM search

one (MatchDelay), and its implementation has no influence on the search performance

thanks to the sensing scheme adopted, as it can be noticed in the MatchDelay graph

where all the architectures are characterized by the same delay value.

In conclusion, adding complexity to the memory cell leads to decreased performance

in standard operations; however, the possibility to perform the maximum/minimum

value search completely in memory allows to avoid the whole memory content transfer-

ring to the CPU, which is a highly time and energy consuming task.

2

1 – Abstract

By-hand
schematic design

Testbench inputs
generation

Simulation
and characterization

Components netlists
extraction

Parametric
netlist synthesis

Simulation
and results extraction

Figure 1.2: Design flow.

Mask vector

A
rou

n
d

M
em

ory
logic

D0 D2D1 D3

O

M0 M1 M3M2

Figure 1.3: Array implementation.

246

248

250

252

254

De
la

y
[p

s]

Read1Delay
ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

50

60

70

80

90

100

110

Write1Delay

ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

244

245

246

247

De
la

y
[p

s]

Read0Delay

ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

40

45

50

55

60

65

70

Write0Delay

ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

50 100 150 200 250
Bits

200

400

600

800

De
la

y
[p

s]

MatchDelay
ANDModel
ANDSTModel
ANDDYNModel
CAMModel

50 100 150 200 250
Bits

100

200

300

400

500

600

700

ANDDelay
ANDModel
ANDSTModel
ANDDYNModel

Figure 1.4: Delay of memory operations as function of word width

3

Chapter 2

State Of The Art

2.1 Static Random Access Memories

The Static Random Access Memory (SRAM) still plays a crucial role in VLSI circuits as

embedded memory [2]. One of the most used cell topologies remains the 6T one, which

is shown in Figure 2.1.

BL

VDD

WL
BL

MPD

MPU

MPT

Figure 2.1: 6T SRAM cell

There are many motivations for the success of the SRAM as embedded memory:

• it provides the highest random access speed; hence, it is widely used for buffer and

register memories in ASICs.

• it allows an high integration with logic circuits, because of its high compatibility

of process and supply voltage.

As more processing elements are being integrated on the same chip, the request for

embedded memory has increased through the years, in order to satisfy the increasing

4

2.1. STATIC RANDOM ACCESS MEMORIES

demand for larger memory bandwidth and capacity. For this reason, the 6T topology is

still preferred, since it minimizes the area occupied by the memory cell.

It is well known that the memory core of the cell is made by two CMOS cross-coupled

inverters, also referred to as “bistable ring”, as reported in Figure 2.1. The cross-coupled

inverters allow to retain the stored information as long as the cell is supplied, differently

from the case of the Dynamic RAM, in which a “refresh” cycle is needed to allow the

data retention.

W
or

d
li
n

es

Bitlines

Memory cell

Figure 2.2: Typical memory array

In Figure 2.2 the typical memory array is shown.

The cells are arranged in an array of rows and columns: in the vertical direction,

the cells are connected by the bitlines while, in the horizontal direction, they all share

a single line, called wordline.

2.1.1 SRAM metrics

The Static Noise Margin (SNM) [3, 4] of a cell is defined as the maximum amount of

noise that the memory cell can tolerate while retaining its data. The SNM is defined in

three conditions:

• when the cell is not accessed (data retention SNM).

• when the cell is accessed during a read operation (read SNM).

• when the cell is accesses during a write operation (write SNM).

5

2.1. STATIC RANDOM ACCESS MEMORIES

The way the noise margin is related to the different memory operations is presented

in the following.

2.1.2 Read Operation

A read operation is performed through two subsequent cycles:

• the bitlines (BL) are precharged to the logic ‘1’, which voltage level (usually) is

the supply voltage VDD.

• the cell to be read is selected by asserting the wordline (WL), enabling, in this

way, the pass-transistors (PT) of the cell. One of the two bitlines is discharged

by the cell: to be precise, the bitline on the side of the cross-coupled inverter on

which the logic ‘0’ is stored.

VBL = VDD

Q

‘1’

‘1’

CBL

MPT

MPD

Figure 2.3: 6T SRAM cell, read section

The read section of the cell is shown in Figure 2.3.

A MOSFET can be modeled with a resistor when it is turned on and it operates in

the linear region; the resistance value can be roughly estimated in the following way:

RMOS =
1

µn · COX · (W/L) · (VDD − VTH)

where:

• µn is the electron mobility in the channel of the transistor.

• COX is the gate-oxide capacitance.

• (W/L) is the aspect ratio of the transistor.

6

2.1. STATIC RANDOM ACCESS MEMORIES

• VDD is the voltage applied to the gate of the transistor; in this case, this is equal

to the supply voltage of the circuit.

• VTH is the threshold voltage of the transistor.

When the pull-down transistor (PD) has a logic ‘1’ on its gate, it connects the

bitlines to ground through the pass transistor; since the bitline presents a large para-

sitic capacitance CBL, given by the sum of the parasitic access capacitance of the cells

connected to the line (in particular, the drain capacitance of the pass transistor) and

the parasitic capacitance of the metal line, a charge-sharing phenomenon occurs: some

charge is transferred from the bitline to the storage node Q; hence, the potential of Q

is raised from the ground voltage.

The voltage value reached by the node Q (VQ) depends on the voltage divider that

occurs between the pass and pull-down transistors:

VQ =
RPD

RPD +RPT
· VBL

Since the output of the inverter on the right (Figure 2.1) is connected to the input of

the one on the left, it may happen that VQ rises above the trip-point of the inverter and,

so, the cell content is overwritten, as shown in Figure 2.4; hence, the read operation can

lead to the corruption of the data stored in the cell.

Referring to Figure 2.4, VWL represents the voltage applied to the WL and, so, to the

gate of the pass transistors; VQ0 represents the voltage on the node which is placed on

the other side of the bistable ring; VBL represents the voltage on the bitline connected

to the node Q through the pass transistor.

The correct behaviour of the cell during a read operation is shown in Figure 2.5.

The voltage VQ does not reach the inverter trip-point and, so, the data is read correctly

from the cell (the bitline is discharged to the logic ‘0’), without corrupting it.

To avoid this phenomenon, it has to be ensured that:

RPD < RPT

This can be obtained by sizing the pull down transistor with an aspect ratio (W/L)

larger than the one of the pass transistor:

(W/L)PD > (W/L)PT

This, of course, leads to an increase in the cell area.

The ratio between the electrical strengths of the pull-down and pass transistors is

referred to as β-ratio [5], and it can be informally defined in the following way:

βSRAM =
RPT

RPD

7

2.1. STATIC RANDOM ACCESS MEMORIES

Inverter trip point

t

t

VQ

VQ

VWL

VBL

v(t)

Data-flip

v(t)

Figure 2.4: Read operation, data-flip

It has to be remarked that the rate with which the bitline is discharged is determined

by the current absorbed by the cell during the read operation (Icell); the latter depends

on the aspect ratio of the pass and pull-down transistors; since these are in series to

the bitline during the discharging phase, the transistor with the smaller aspect ratio

determines the value of Icell; hence, the pass transistor aspect ratio cannot be minimally

sized, in order to guarantee a minimum value for the current absorbed by the cell (and

also for other reasons, as discussed in subsection 2.1.3).

2.1.3 Write Operation

The write operation is performed by selecting the cell using the wordline and by putting

the data to be written on the bitlines. For example, if a logic ‘1’ has to be written to

the cell, a logic ‘1’ (i.e. a voltage equal to VDD) is put on BL, while a logic ‘0’ (i.e. a

voltage equal to 0 V) is applied on BL.

It has been stated that the pull-down and pass transistors are sized so that VQ does

8

2.1. STATIC RANDOM ACCESS MEMORIES

Inverter trip point

t

t

Read margin

VQ

VQ

VWL

VBL

v(t)

v(t)

Figure 2.5: Read operation, correct behaviour

not rise above the trip-point of the bistable ring (Figure 2.3) when a logic ‘1’ is applied

to the bitline; hence, a logic ‘1’ cannot be forced on the side on which a logic ‘0’ is

stored.

For this reason, only by forcing a logic ‘0’ on the cell side on which a logic ‘1’ is stored,

the cell content can be overwritten. This is automatically achieved in the differential

structure shown in Figure 2.1, where two bitlines are connected to the cell sides.

The write section is shown in Figure 2.6.

Also here, a voltage divider arises between the pull-up (PU) and pass transistors;

since the pull-up is connected to VDD while the pass transistor is connected to ground,

the voltage at the node Q is given by:

VQ =
RPT

RPT +RPU
· VDD

Hence, VQ results to be larger than 0 V. This implies that if VQ does not lower below

the bistable ring trip-point, the data is not written to the cell, as shown in Figure 2.7.

To avoid this phenomenon, it has to be ensured that:

9

2.1. STATIC RANDOM ACCESS MEMORIES

VBL = 0 V
‘1’

Q

‘0’

CBL

MPU

MPT

Figure 2.6: SRAM 6T, write section

Inverter trip point

t

VQ

VQ

VWL

v(t)

Figure 2.7: SRAM 6T, unsuccessful write operation

RPT < RPU

This can be achieved by choosing:

(W/L)PT > (W/L)PU

Since the mobility of the holes in the channel (µp) is lower than the one of the

electrons (µn), the difference in the aspect ratio of the two transistors needed in order

to achieve a certain write stability is lower than in the case of the pull-down and pass

transistors for the read operation.

By properly sizing the pull-up and pass transistors [5], a successful write operation

can be performed, as it is shown in Figure 2.9.

10

2.1. STATIC RANDOM ACCESS MEMORIES

Inverter trip point

t

VQ

VQ

VWL

v(t)

Figure 2.8: SRAM 6T, successful write operation

The ratio between the driving-strengths of the PT and PU transistors is referred to

as γ-ratio [5]. It can be informally defined in the following way:

γSRAM =
RPU

RPT

In conclusion: the pass transistor has to be sized with an aspect ratio larger than the

pull-up; the pull-down has to sized with an aspect ratio larger than the pass transistor;

the aspect ratio of the latter has to be large enough to provide a minimum value of the

cell current Icell.

2.1.4 Data Retention

When the memory cell is not selected, its pass transistors are disabled and the cell is

said to be in “data retention mode”.

One could think of lowering the supply voltage of the cell (VDDcell
), in order to reduce

the static power consumption of the memory; however, below a certain value of VDDcell
,

the bistable ring is not able to retain the stored data and the information is lost [5].

This lower bound of the cell supply voltage is called “data retention voltage” (Vhold).

2.1.5 Cell current distribution

As stated before, the current absorbed by the cell, Icell, determines the time needed by

the cell to discharge the bitline, together with the latter parasitic capacitance and the

discharge level needed, which is the bitline voltage level to be reached in order to allow

the sense amplifier to correctly sense the bitline voltage variation.

The value of this current depends on the electrical strength of the pull-down and

pass transistors, which are in series to the bitline; the electrical strength, in turn, is

determined by the aspect ratio of those transistors. This represents an issue in terms

11

2.1. STATIC RANDOM ACCESS MEMORIES

Inverter trip point

t

VQ

VQ
VHOLD

VDD

v(t)

Figure 2.9: SRAM 6T, failed data retention with VDD lowering

of area constraints of the cell, because the pull-down has to be designed with a aspect

ratio larger than the access transistor, as discussed in subsection 2.1.2; hence, since to

obtain a large cell current a large aspect ratio is needed for the pass transistor, an even

larger one is required for the pull-down. This results in an increase in the cell area.

The technology scaling has led to a reduction in the bitline parasitic capacitance

value, even if this has not been so large because, as the cell size is reduced, more cells

are integrated in the same array, resulting in a limited reduction (or even in an increase,

since interconnections do not scale as transistor dimensions) of the parasitic capacitance.

With the scaling, at the same time, the supply voltage of the cells VDD has to be

scaled: this results in a reduction of the transistors overdrive voltage, VGS − VTH , and,

so, of Icell; since with the the transistors size scaling the technological parameters (and,

so, VTH) are subjected to larger relative variations, also Icell is characterized by larger

variation, and so the cell access delay [6].

2.1.6 Cell stability

The variations of VTH have an influence also on the γ and β factors (subsection 2.1.2

and subsection 2.1.3) [6], since the electrical strength of the transistors strongly depends

on the overdrive voltage: in this way, the VTH variations affect also the read and write

margins of the cell.

For example, if the pull-down is designed with an aspect ratio larger than the pass-

transistor one but the latter has a lower VTH because of the process variations, the read

margin obtained is lower than the desired one; it may even happen that the cell is unable

of performing a correct read operation.

The same example can be carried out for the write operation. For this reason,

circuital and design techniques are needed to overcome, at least in part, the technological

limitations, in order to allow for a decent yield of the fabrication process.

12

2.1. STATIC RANDOM ACCESS MEMORIES

It is well known that most of the die area in modern microprocessors is dedicated to

the memory part of the circuit (for example, cache memories); this means that most of

the transistors in a digital integrated circuit are associated to the memory part and, so,

the latter plays a key-role in determining the power consumption of the chip; for this

reason, one would like to use the lowest VDD possible for the memory.

What limits the VDD scaling is the read margin: because of the process variations,

to achieve a certain value of the read margin the overdrive voltage of the transistors

cannot be reduced too much: some slack has to be left in order to take into account the

VTH variations among the transistors of the cell.

2.1.7 Read and write assist techniques and circuits

BL

VDD

WL
BL

MPD

MPU

MPT

Figure 2.10: 6T SRAM cell

In order to increase the read margin, one could think of increasing the electrical

strength of the pull-down with respect to the pass-transitor by boosting up the cell

supply voltage VDDcell
[7] and, so, enlarging the pull-down overdrive voltage with respect

to the pass-transistor one; in this way, the eventual VTH difference between the two

transistors is compensated and, so, the read margin is not reduced. This is accomplished

by choosing:

VDDcell
> VDDWL

Thanks to the difference between the cell supply voltage and the wordline potential, a

partial (at least) compensation for the loss in the read margin due to the VTH mismatch

13

2.1. STATIC RANDOM ACCESS MEMORIES

can be obtained.

However, there are some limitations to the value of VDDcell
that can be used in order

to implement this technique:

• VDDcell
cannot be chosen too large, because the cell leakage current would increase

too much (and so the static power consumption) and, also, the cell reliability would

decrease (higher probability of failure)[6].

• one could think of lowering VDDWL
[8, 9, 10] instead of increasing VDDcell

, but

this would cause a reduction in the current absorbed by the cell during a read

operation: in fact, since the pull-down and pass-transitor are in series to the

bitline, the access-transistor would limit the cell current because of the reduced

overdrive voltage.

To improve the write margin, one could think of applying a negative voltage to

the bitline during the write operation [11], so that the potential of the node between

the pass-transistor and the pull-up is brought to a lower value: in this way, the write

operation becomes more reliable.

Another technique that could be implemented is the body biasing one: driving the

well of the transistors with proper voltages, an improvement in both read and write

margins can be obtained [12, 13, 14]:

• driving the wells of the pass-transistors so that their threshold voltage is increased

during a read operation: in this way, their electrical strength with respect the

pull-downs is reduced and, so, the read margin is improved.

• the wells of the pass-transistors could be driven so that their threshold voltage is

reduced during a write operation: in this way, their electrical strength with respect

the pull-ups is increased and, so, the write margin is improved.

2.1.8 Alternative cell topologies

With the topology proposed in Figure 2.11, called 8T cell [8, 6, 15], an ideal read

margin can be obtained, since the read stage is decoupled from the memory stage [3].

This is achieved by adding two transistors and dedicated bitlines and wordlines, called

respectively read-bitline (RBL) and read-wordline (RWL), which are dedicated to the

read operation.

During a read operation, a transistor is used to sense the data stored inside the

memory cell, by connecting its gate to the cell content; another transistor is connected

to the RBL and it is enabled through the RWL. Connecting the gate of the sensing

MOSFET to D, which is the side of the complemented stored data (a differential SRAM

cell is implemented as core of the memory cell), the following behaviour is shown:

14

2.1. STATIC RANDOM ACCESS MEMORIES

WBL WBL
WWL

D D

RBL
RWL

Figure 2.11: 8T SRAM cell

• when D = ‘1’, the sensing transistor is disabled and the RBL is not discharged: a

logic ‘1’ is provided in output.

• when D = ‘0’, the sensing transistor is enabled and the RBL is discharged: a logic

‘0’ is provided in output.

Since the read stage is decoupled from the memory stage, it is not possible to over-

write the cell content during a read operation: the read margin is ideal. Also, the

overhead in the cell area is not so large (30% increase) [15], because one does not need

to use an aspect ratio for the pull-down larger than for the pass-transistor; hence, given

the same current absorbed during the read operation (which is determined by the sizing

of the sensing stage), smaller pull-downs are required with respect to the standard 6T

cell.

Since there is no limitation to the pass-transistors sizing due to the read margin

constraint, one could think of designing them to maximize the write margin: for instance,

one could use a larger aspect ratio for them or choose a larger VDDWL
to increase their

electrical strength.

It has to be precised that, thanks to the ideal read margin, the supply voltage of

the cell can be reduced much more with respect to the 6T case: in fact, what limits the

VDD scaling in the 8T case is the static noise margin (SNM) of the cell, not the read

one [3, 8].

The 8T cell, as the 6T one, is affected by the half-select problem [3]. Consider the

circuit in Figure 2.12, which shows two 8T cells memory cells implemented in a memory

row.

In general, all the cells of a row share the same wordline: this means that, when a

15

2.1. STATIC RANDOM ACCESS MEMORIES

CellCell

WWL=‘1’

VQ > 0 V

‘1’

‘1’

VDD

Half selected

WBL=‘1’ WBL=‘1’WBL=‘0’WBL=‘1’

Selected

Figure 2.12: Half-select problem

data word (which is the portion of the memory row that has to be written or read) is

selected, all the cells of the row have their access-transistors enabled; hence, the bitlines

of the half-selected cells are kept at the logic ‘1’ potential, so that their content is not

overwritten.

However, the eventual noise on the bitlines can reach the memory core of the half-

selected cells through the enabled pass-transistors, leading to the overwriting of their

content, since the pull-downs and access-transistors of a 8T cell are not sized so that

the stored data is not overwritten when the memory core is accessed.

To solve this problem, a new topology can be adopted, which is shown in Figure 2.13:

the 10T cell [2, 16, 17].

In this circuit two more access transistors are added, which are the ones connected

to COLUMN. To access the cell two decoding steps are needed: one to select the row

of the cell and the other to select the column of the cell: in this way, the half-select

problem is eliminated, since the half selected cells have one of the two access transistors

on each side disabled and, so, their memory core remains separated from the bitlines.

The overhead in the cell area is large: four additional transistors are needed with

respect the 6T cell. However, with this circuit ideal read margin and differential sensing

are obtained.

It has to be noticed that there is an overhead also in the control circuit, since now

16

2.1. STATIC RANDOM ACCESS MEMORIES

BL BL

ROW

C
O

L
U

M
N

Figure 2.13: 10T SRAM cell

two decoding steps are needed (for row selection and column selection).

Leakage represents a problem from both power and functional points of view: the

unselected cells in the column of the cell which is being accessed for a read operation

absorb (inject) a current from (in) the bitline. This represents a problem because:

• if the selected cell is discharging the bitline and the unselected cells inject a current

in it, the discharging time (and so the read delay) enlarges.

• if the selected cell is not discharging the bitline and the unselected cells absorb a

current from it, the bitline voltage level can lower until it reaches the trip point

of the sense amplifier, which results in a wrong read result.

It cannot be known a priori if an unselected cell will absorb a current from the

bitline or inject a current in it, because it depends on the data stored in the cell; for this

reason, many circuital solutions have been exploited to make the leakage contribution

of an unselected cell independent on the stored data.

17

2.1. STATIC RANDOM ACCESS MEMORIES

WWL
WBL WBL

Q

X

RBL

M3

M2

M1

RWL

Figure 2.14: 10T single ended: data-independent leakage

In Figure 2.14 a possible solution is shown: it is a modified version of the 8T cell, in

which the leakage on the RBL is independent on the stored data [18].

When Q = ‘0’ (Figure 2.15), M3 is enabled and the node X is brought to VDD.

When Q = ‘1’ (Figure 2.16), M1 is enabled and, if the transistor are opportunely

sized, the node X is brought to a voltage level close to VDD, because M2 is disabled (the

cell is not selected).

It has to be noticed that the overhead in the cell area is not negligible, because of

the two additional transistors required for this cell topology.

WWL
WBL WBL

Q=‘0’

X

RBL=‘1’

M2

M1

M3

RWL=‘0’

Figure 2.15: 10T single ended: data-independent leakage, Q=‘0’

18

2.1. STATIC RANDOM ACCESS MEMORIES

WWL
WBL WBL

Q=‘1’

X

RBL=‘1’

M2

M1

M3

RWL=‘0’

Figure 2.16: 10T single ended: data-independent leakage, Q=‘1’

19

2.2. CONTENT ADDRESSABLE MEMORIES

2.2 Content Addressable Memories

The Content Addressable Memory (CAM) is a memory architecture which takes in input

a datum and provides in output its address if this is stored inside the memory array

[19, 20, 21, 22, 23, 24]. The datum, which is called search word, is compared against all

the words stored inside the CAM, which are called stored words. If at least one of these

comparisons gives a successful result, a match is declared.

Stored word 0

Stored word 1

Stored word 2

Stored word N

Matchline 0

Matchline 1

Matchline 2

Matchline N

E
n

co
d

er

M
a
tc

h
ad

d
re

ss

Search word register

Search word

Searchlines

Figure 2.17: CAM block scheme

The search word is loaded on the searchlines, which connect the search word bits to

the CAM cells for the bit-to-bit comparison. The search word is compared with all the

stored words at the same time.

To each stored word a match-line is associated, and the value assumed by the latter

at the end of the search process, which depends on the type of CAM cell implemented

inside the memory, determines if there is a match between the search word and the

associated stored word.

The values assumed by the match-lines are taken in input by an encoder, which

provides in output the address (location) of the stored word that has given a match. If

more than one memory word matches with the search one (like it happens in routers

[25, 26]), a priority mechanism is implemented in the encoder.

Since the search operation is carried out on the whole memory array at once, the

obtained search speed is very large. However, this speed comes at the cost of large

20

2.2. CONTENT ADDRESSABLE MEMORIES

chip area and power consumption; in particular, the latter is the critical parameter of

a CAM: for this reason, reducing the power consumption without sacrificing area or

search latency is the main thread of recent research in CAMs.

2.2.1 The CAM cell

There are two types of CAM cell: NOR and NAND cells. The most common is the

NOR one.

ML

BL
DD

BL

Figure 2.18: NOR cell

The NOR cell circuit is shown in Figure 2.18. The memory core of the cell is the

bistable ring, like in SRAM cells; to this a comparison circuit, made of two pull-down

paths, is added; the pass-transistors that allow the access (read and write operations)

to the cell are not shown for the sake of clarity.

In the classical match-line scheme, the match-line (ML) is precharged to the logic ‘1’;

then, the search operation begins by loading the search word on the searchlines, which

are represented by BL and BL in Figure 2.18. From now on, searchlines and bitlines are

considered to be the same thing, since the same lines are used handle the memory cells

content and to perform the search operation.

If the cell content matches with the datum on the searchlines, both pull-down paths

are disabled (one of the two series transistors is turned off) and the match-line remains

charged at the logic ‘1’: a match is provided as result.

If the cell content does not match with the datum on the searchlines, one of the two

pull-down paths is enabled and the match-line is discharged to the logic ‘0’: a mismatch

is provided as result.

The NOR cells are arranged in a wired-OR configuration on the match-line, as it is

shown in Figure 2.19: in this way, if at least one cell does not match with the search

word, the match-line is discharged and a mismatch is provided as result.

In the NAND cell, shown in Figure 2.20, the comparison circuit is made of three

pass-transistors: M1, M2 and M3.

21

2.2. CONTENT ADDRESSABLE MEMORIES

NOR cell NOR cellNOR cell

PRE

MLSA

MATCH

Figure 2.19: NOR match-line

BL

DD

BL

ML(n+1)ML(n)
M2 M3

M1

Figure 2.20: NAND cell

If the datum on the searchlines and the cell content match, one between M2 and M3

is enabled and connects the gate of M1 to VDD: the latter is turned on and it connects

the match-line segments ML(n) and ML(n+ 1): a match is provided as result.

If there is a mismatch between the searched and the stored datum, the gate of M1 is

connected to the logic ‘0’ and, so, the transistor is disabled: the two match-line segments

are not connected and a mismatch is provided as result.

NAND cell NAND cell NAND cell

EVAL

MLSA

MATCH

PRE

Figure 2.21: NAND match-line

22

2.2. CONTENT ADDRESSABLE MEMORIES

The NAND cells are arranged in a series configuration on the match-line, as shown

in Figure 2.21. In this way, if all the cells provide a match as result, the match-line is

discharged. Otherwise, at least one cell interrupts the discharge path to ground and the

match-line remains charged at the logic ‘1’.

In the scientific literature variants of the proposed cells can be found; however, the

predominant cells are the ones presented previously and, so, only those will be furtherly

analyzed in the following.

When a search operation is carried out on a CAM, only one stored word (or few

stored words, in routers) provides a match as result, while all the others a mismatch;

hence, the power consumption in a search operation is determined by the power involved

in the one that gives a mismatch as result.

In the NOR match-line, using the classical sensing scheme, in the mismatch case

the match-line is discharged: hence, the mismatch result implies a much larger power

consumption with respect to the match case; since the mismatch result is the most

common one in the memory, using a NOR cell and a classical sensing scheme implies a

large power consumption.

In the NAND match-line, instead, the match-line is discharged in the match case:

hence, the power consumption of the search operation is strongly reduced with respect

the NOR implementation.

It has to be highlighted the fact that the NAND match-line is much slower than the

NOR one: when the match-line has to be discharged, in the NOR match-line there are

two transistors in series, in the worst case (only one among the N cells connected to the

match-line provides a mismatch), that discharge the line; in the NAND case, instead,

there are N transistors in series, where N is the width of the CAM word, that discharge

the match-line. It has also to be noticed that, referring to Figure 2.20, the gate of M1

is never brought to VDD but to VDD − VTH , since it is connected to the supply voltage

by a nMOS transistor; hence, its conductivity is reduced with respect to a fully-driven

nMOS transistor, leading to a slower discharging of the match-line. Furthermore, the

discharging delay of a NAND match-line increases quadratically with the number of cells

present on the line [27].

For this reason, the NOR match-line is preferred to the NAND one, allowing a much

faster search operation, while other sensing techniques are employed to reduce the power

consumption, as it is explained in the following chapters.

Another disadvantage of the NAND match-line is given by the charge sharing prob-

lem that occurs in this kind of circuits (multiple transistors in series).

Referring to Figure 2.21, consider the case in which all the cells give a match as result

except the last one (the one closest to the ground voltage). As soon as the searchlines

are enabled in order to begin the search phase, the charge that has been injected in the

input capacitance of the sense amplifier during the precharge phase is divided among the

23

2.2. CONTENT ADDRESSABLE MEMORIES

parasitic capacitances of the line, which are placed between the NAND cells (drain and

source capacitances of the transistors), that have not been charged; hence, the voltage

on the match-line may be lowered below the MLSA threshold voltage that, consequently,

switches its output, leading to a wrong result in the search operation.

To avoid the charge sharing phenomenon, also the parasitic capacitances between the

cells should be charged during the precharge phase; however, this leads to an increase in

the power consumption, even if this is compensated by the fact that a NAND match-line

power consumption is much lower that the NOR match-line one.

2.2.2 Ternary cells

In literature other kind of content addressable memories can be found: the Ternary

Content Addressable Memories (TCAMs).

In this kind of memory, two bits are stored in each cell. The introduction of a second

bit allows the definition of a third state for the memory cell content: the X state, which

can be called don’t-care state [19].

In fact, when a cell contains a X, it provides a match with the datum put on the

searchlines independently of the value of the latter. This can be useful when one wants

to search for all the stored words that match at least in part with a certain search word.

Also, in TCAMs there are two types of cells can be found: the NOR cell and the

NAND cell.

ML

DD

BL BL

Figure 2.22: TCAM NOR cell

The NOR cell is shown in Figure 2.22. One can notice how there are two SRAM

cells: one stores the data D and the other stores its complemented version, D. As said

before, three possible states can be stored in a TCAM cell: a logic ‘1’, a logic ‘0’ and a

logic ‘X’. The corresponding combinations of D and D are show in Table 2.1.

One can notice that, when a ‘X’ is stored inside the cell, both the match-line pull-

down paths are disabled: hence, a match is provided by the cell as result, independently

24

2.2. CONTENT ADDRESSABLE MEMORIES

Data stored D D

1 1 0

0 0 1

X 0 0

Table 2.1: D and D allowed combinations

of the value of the data put on the searchlines.

M

ML(n+1)

DD

BLBL

ML(n)

Mmask

M1

M2 M3

Figure 2.23: TCAM NAND cell

In Figure 2.23 the NAND TCAM cell is shown [28]: here the second bit is called

mask bit, M . The presence of this bit, of course, modifies the behavior of the cell:

• when M = ‘0’, the data stored inside the cell (D) determines if the result is a

match or not.

• when M = ‘1’, Mmask is enabled and, so, the cell provides always a match as

result, since ML(n) and ML(n + 1) are always connected independently of the

value of D.

2.2.3 Match-line schemes

Many sensing schemes for the CAM have been proposed and they all focus on the NOR

match-line, since it allows the fastest operation; for this reason, only this kind of match-

line scheme is analyzed in detail in the following.

25

2.2. CONTENT ADDRESSABLE MEMORIES

In order to compare the different match-line sensing schemes, a model [19] for the

match-line has been derived, which is shown in Figure 2.24.

CML

Rcell / mCML

Match

Mismatch

Figure 2.24: Match-line model

When the result of the search operation is a match, every CAM cell has both pull-

down paths disabled; if one neglects the subthreshold current of the transistors, the

match-line can be modeled with a capacitance CML, which is made by the drain capac-

itances of all the pull-down paths connected to the line.

When, instead, the result is a mismatch, there are m pull-down paths that are

enabled, where m is the number of bits of the stored word that do not match with the

search word. Each of these pull-down paths can be modeled with a resistance Rcell;

since the cells are all in parallel (wired NOR configuration shown in Figure 2.19), the

equivalent resistance of all the pull-down paths is given by Rcell/m.

During the evaluation phase, the match-line capacitance CML gets discharged by

the pull-down resistances cited before. The larger is the number of mismatch bits, the

faster will be the discharging of the match-line, since the equivalent resistance of the

mismatch cells is reduced.

Precharge-high scheme

The precharge-high scheme, which circuit is shown in Figure 2.19, is the simplest sensing

scheme that can be implemented in a CAM. The search operation consists of two phases:

• a precharge phase, in which the match-line is charged to VDD (PRE = ‘0’). During

this phase, the pull-down paths of the CAM cells have to be disabled by forcing

BL = BL = ‘0’, so that the line can be charged independently of the cells content.

• a search phase, in which the match-line is left floating (PRE = ‘1’) and the search

word is loaded on the searchlines. If search and stored word match, the line is

not discharged (Figure 2.25); otherwise, the match-line is brought to the ground

voltage by the pull-down paths of the cells (Figure 2.26).

26

2.2. CONTENT ADDRESSABLE MEMORIES

t

tML

PRE

Figure 2.25: Precharge high scheme: match case

The precharge-high scheme implies the largest power consumption for the search

operation, because the match-line of a stored word gets discharged in the mismatch

case; hence, since almost all the stored words do not match with the search word,

pratically all the match-lines get discharged in each search operation, which results

in large power consumption. For this reason, this kind of sensing scheme has been

practically abandoned in modern CAM implementations.

Using the model derived for the matchine in Figure 2.24, the energy consumption of

a search operation which results in a mismatch is given by:

Emismatch = CML · V 2
DD (2.1)

where VDD is the voltage to which the match-line has been previously charged (usu-

ally it is the supply voltage), and fsearch is the frequency of the search operations

performed on the memory.

One can notice how the classical 1
2 factor is missing from Equation 2.1 shown above:

this is because the match-line gets charged during the precharge phase and it gets

discharged during the evaluation phase; hence, there are two commutations for search

operation in the mismatch case.

27

2.2. CONTENT ADDRESSABLE MEMORIES

t

tML

PRE

Figure 2.26: Precharge high scheme: mismatch case

Low swing scheme

In the low-swing scheme [29], the principle is to reduce the voltage swing on the match-

line: this allows to reduce the power consumption of the mismatch result and to speed

up the sensing phase [30], since this is now given by:

Emismatch = CML · VDD · Vswing

The energy consumption reduces linearly with the voltage swing on the match-line.

The difficulty in implementing this sensing scheme is to reduce the voltage swing on

the match-line without introducing a second voltage reference inside the memory array,

apart from the voltage supply.

Current-race scheme

The current-race scheme [31] works in the opposite way with respect to the precharge-

high one. Also in this scheme, there are two phases: pre-discharge and evaluation.

In the pre-discharge phase (PRE = ‘0’, EN = ‘1’) the match-line is discharged

through a pull-down transistor, while the input of the inverter, shown in Figure 2.27, is

charged to VDD; hence, the inverter output is brought to 0 (MLSAO=‘0).

In the evaluation phase (PRE = ‘1’, EN = ‘0’), the current source IML is connected

28

2.2. CONTENT ADDRESSABLE MEMORIES

ML

EN

PRE

PRE

MLSAO

Msense

IML

Figure 2.27: Current-race scheme

to the match-line; then, there are two possible outcomes:

• if search and stored words match, all the pull-down paths of the match-line are

disabled and the line gets charged, since it behaves like a capacitance (Figure 2.24);

hence, Msense is turned on and it discharges the inverter input, forcing it to switch

its output (MLSAO=‘1’): a match is provided as result.

• if search and stored words do not match, the match-line does not get charged

because there is at least one pull-down path enabled in the line (Figure 2.24);

hence, Msense is not turned on and, so, the inverter input is kept charged to VDD,

and its output remains constant (MLSAO=‘0’): a mismatch is provided as result.

Using the current-race scheme, the energy involved in the mismatch case is:

Emismatch =
1

2
· CML · V 2

DD

The energy consumption is halved with respect to the precharge-high scheme case,

since the match-line does not get charged in the mismatch case; it gets charged only in

the match one.

However, in the equation above the energy associated to the current injected by the

current source in the pull-down paths has been neglected; in fact, in actual applications

of this sensing scheme the EN signal is disabled after a short time interval, in order to

save energy.

The value of IML is crucial in order for the sensing circuit to work correctly; in fact,

IML has to be low enough for a mismatch to not turn into a match: this means that,

in the mismatch case, the voltage of the match-line has to be always lower than the

threshold voltage of Msense or, at least, low enough to prevent the threshold voltage of

the inverter to be crossed. In fact, when Msense is turned on, it has to bring the inverter

input to the logic ‘0’ while this is fixed to the logic ‘1’ by the pMOS keeper transistor

shown in Figure 2.27.

29

2.2. CONTENT ADDRESSABLE MEMORIES

The voltage to which the match-line is charged in the mismatch case is:

Vmismatch = IML ·
Rcell

m

where, as usual, Rcell is the resistance of each cell pull-down path and m is the

number of mismatch bits. Of course, the worst case is associated to m = 1.

If one implements a clock circuit inside the memory that disables the current source

as soon as a match is detected, the energy consumption associated to the match case is

given by:

Ematch = CML · VDD · VTH

where VTH is the threshold voltage of the sense amplifier (actually, it is a little bit

lower, in order for the sense amplifier to not switch its ouput). One can notice how the

formula displayed above is very similar to the one obtained with the low swing sensing

scheme (section 2.2.3).

Another advantage of the current-race scheme is that, since the precharge of the

match-line has been substituted with a pre-discharge cycle, the CAM cells do not need

to be disabled before the search cycle, because there is no need to precharge the match-

line with this sensing scheme; hence, the match-lines do not need to be brought to the

logic zero during the predischarge cycle and, then, to the search datum value during the

evaluation cycle: the datum can be loaded on the searchlines at the beginning of the

predischarge cycle reducing, in this way, their switching activity and, so, the associated

power consumption.

Another thing that can be noticed is that, since the datum is loaded on the searchlines

one cycle before the actual search operation, the search speed is independent on the

searchline drivers delay, because the searchline transistors (Figure 2.18) are already

enabled/disabled at the beginning of the evalutation cycle.

Selective precharge scheme

With this scheme, the energy allocated to the search operation depends on the datum

stored inside the selected stored word [32].

Consider the circuit presented in Figure 2.28. The first bit of the word is implemented

with a NAND cell, while all the other bits are implemented using NOR cells. During

the precharge phase, the first bit of the search word is loaded on the first cell, while all

the others are disabled: in this way, if the content of the first cell matches with the first

bit of the search word, the line gets charged; otherwise, the pass transistor of the NAND

cell is disabled and the line does not get charged. In this way, if there is a mismatch

on the first bit, the line does not change its state, since it does non get charged at all;

otherwise, the result of the search operation is determined by the remaining bits.

30

2.2. CONTENT ADDRESSABLE MEMORIES

NOR NOR

ML

BLBL

PRE

Figure 2.28: Selective-precharge scheme

This sensing scheme is very convenient in architectures where the data starts to

differ from the first bits, since the mismatch are detected already in the precharge phase

of the search operation. In fact, it is widely used to reduce the power consumption in

low-power CAM architectures [33, 34, 35, 36, 37, 38].

Pipeline scheme

ML ML

Figure 2.29: Pipeline scheme

The pipeline sensing scheme [39, 40, 41] is a generalization of the selective-precharge

one (section 2.2.3): the match-line is divided in sections, and the search operation is

carried out sequentially one section at time.

The first section of the stored word is compared with the first section of the search

one: if there is a match, the comparison moves on the next section; otherwise, the search

operation is ended and a mismatch is provided as result. The result is a match only if

all the sections of the stored word match.

In this way, if the first section of the match-line gives a mismatch, the energy required

for the comparison of the remaining sections is saved.

Current-saving scheme

This is an enhanced version of the current-race scheme (section 2.2.3): the difference is

in the fact that a different amount of energy is allocated to the match-line depending

on the result of the search operation [42, 43].

31

2.2. CONTENT ADDRESSABLE MEMORIES

ML

CONTROL

PRE

PRE

EN

MLSAO

IML

Msense

Figure 2.30: Current-saving scheme

When there is a match, the match-line gets charged by IML; as the line voltage arises,

the current delivered to it is increased using the feedback circuit shown in Figure 2.30.

As a consequence, a large current is delivered in the match case, while IML is kept to a

minimum value in the mismatch one, since the line does not get charged.

In this way, an energy larger than in the mismatch case is allocated to the match

result, which is the (far) less frequent one.

2.2.4 Searchline schemes

The switching activity of the searchlines has a considerable impact on the energy con-

sumption of a CAM; hence, several techniques [40, 44, 39, 45] have been proposed to

reduce the activity of these lines during a search operation.

In the standard precharge-high scheme (section 2.2.3), the searchlines are brought

to the logic ‘0’ during the precharge phase, in order to disable the CAM cells; then, at

the beginning of the search phase, the search datum is loaded on the searchlines. This

means that, during the precharge cycle, one of the two searchlines is brought to the

logic ‘0’; during the evaluation one, one of the two searchlines is brought to the logic ‘1’;

hence, two searchlines per search operation change their logic state, and the total energy

per search cycle associated to a couple of searchlines (since there are two searchlines for

each CAM column) is given by:

ESL = CSL · V 2
DD

where CSL is the parasitic capacitance associated to each searchline. This is given

by the gate capacitance of the nMOS transistor of the CAM cell which is connected to

the searchline (Figure 2.18).

In order to reduce the energy consumption of the searchlines, one has to work on

their parasitic capacitance (for example, by minimizing the aspect ratio of the transistors

connected to them) and their switching activity.

One way to reduce the switching activity could be to not disable the searchlines

32

2.2. CONTENT ADDRESSABLE MEMORIES

during the precharge phase of the search cycle. This is accomplished in the current-

race (section 2.2.3) and current-saving (section 2.2.3) schemes, in which during the

predischarge phase the CAM cells do not need to be disabled; hence, there is no need

to bring the searchlines to the logic ‘0’ during this phase.

33

Chapter 3

SRAM design

In this chapter the design and verification of the SRAM memory array is discussed;

three arrays have been designed and analyzed, which dimensions are 8x8, 16x16 and

32x32 bits, using the ST FD-SOI 28nm technological library in Cadence Virtuoso.

3.1 The SRAM cell

BL

VDD

WL
BL

1 1

2 2

44

Figure 3.1: 6T SRAM cell

The cell adopted in the design is the classical 6T one, which is shown in Figure 3.1.

The simplest possible cell is implemented, since the goal of this work is to design a

memory capable of performing logic operations; hence, the memory portion of the cell

has to be minimized in order to save area.

In the circuit, the aspect ratio of each transistor is shown as a multiple of the

minimum aspect ratio, which is given by:

(W/L)min =
80 nm

30 nm

34

3.2. DRIVER CIRCUITS

Hence, a transistor to which a number equal to n is associated in the schematic has

an aspect ratio given by:

(W/L)n = (W/L)min · n

The cell transistors have been sized following the guidelines presented in section 2.1.

The ratio between pull-down and pass transistor is chosen equal to 2, in order to

avoid the overwriting of the cell content during a read operation. In this way, the ratio

between the driving capabilities of the two transistors can be approximately computed

as:
(W/L)PD

(W/L)PT
= 2→ RPD

RPT
≈ 2

The ratio between pass transistor and pull-up is chosen equal to 2, in order to allow

the write operation to be correctly performed; hence, the ratio between the driving

capabilities of the two transistors can be approximately computed as:

(W/L)PT

(W/L)PU
= 2→ RPT

RPU
≈ 4

One could notice that the difference in the driving capabilities between the pull-

up and the pass transistor is larger than the one between the pull-down and the pass

transistor; hence, the write margin of the cell is larger than the read one. In fact, the

difference in the electrons and holes mobility (µn/µp ≈ 3) alone determines an enough

large difference in the driving capabilities of pull-up and pass transistor; however, the

aspect ratio of the latter is doubled in order to obtain an acceptable value for the current

absorbed by the cell during a read operation.

Also, in the equation above it is evident that, even if µn/µp ≈ 3, the ratio between

the driving capabilities is only doubled with respect the aspect ratios proportion, instead

of being tripled. This is due to the fact that, in a planar MOSFET, at the interface

between the gate oxide and the silicon substrate (where the channel actually forms)

defects are present: hence, the difference in the mobilities values is reduced.

3.2 Driver circuits

In order to get realistic results from the simulations, driver circuits are included in the

design. These are used to drive the wordlines, bitlines and sense amplifier outputs.

For simplicity, all the additional inverter stages, needed to properly drive the memory

lines, have been omitted from the circuits shown in the following.

3.2.1 Bitlines driver

The bitlines driver circuit is shown in Figure 3.2.

35

3.2. DRIVER CIRCUITS

IN BL

EN

EN

IN BL

EN

EN

Figure 3.2: Bitlines driver

This component is used to drive the bitlines of the memory. For each couple of

bitlines (i.e. for each memory column), a driver is instantiated. All the drivers are

driven by ideal voltage sources in the Cadence Virtuoso testbench.

It can be noticed how the output section of the driver is a tristate inverter: in fact,

the bitlines have to be electrically separated from the drivers during the precharge and

read cycles, so that they can be charged to VDD and, then, one of them can be discharged

by the cell which is being accessed during the read operation.

When EN=‘1’, the output section of the driver is enabled and, so, connected to

the bitlines; when EN=‘0’, the output section is disabled and the driver is electrically

separated from the bitlines.

3.2.2 Precharge circuit

The precharge circuit is shown in Figure 3.3. This component is used to precharge the

bitlines before the read operation.

When PRE = ‘0’, the bitlines are connected to VDD through the two side pMOS

36

3.3. SENSE AMPLIFIER

transistors and equalized by the central pMOS; when PRE = ‘1’, all the transistors are

disabled and the circuit is electrically isolated from the bitlines.

PRE

BLBL

VDD

4 4

1

Figure 3.3: Precharge circuit

3.2.3 Wordline driver

The wordline driver is made by simple inverter stages, since there is no need to isolate

the driver from the wordline: in fact, the wordline voltage has to be always well defined,

so that the cells can be isolated from the bitlines when not selected.

IN WL

Figure 3.4: Wordline driver circuit

3.3 Sense amplifier

A classical voltage sense amplifier topology has been chosen [46], which circuit is shown

in Figure 3.5.

37

3.3. SENSE AMPLIFIER

EN EN

SAO
SAO

BLBL

EN

1 2 2

3

33

3

3

1

Figure 3.5: Sense amplifier circuit

The input section of the sense amplifier is a differential couple, biased by the nMOS

shown on the bottom of the figure; the latter is enabled by activating the EN signal

(EN=‘1’). The load of the differential couple is a standard latch, made by two cross-

coupled inverters.

During the precharge phase of the read operation, the bitlines and the sense amplifier

outputs are charged to VDD; during the evaluation phase, the bitlines are left floating

and the cell to be read is connected to the lines; hence, the cell discharges one of the

bitlines, depending on the stored value.

This results in the developing of a differential voltage at the sense amplifier input,

which is amplified by the nMOS differential couple; this drives the upper latch, which is

consequently brought in a stable “digital” configuration, that reflects the bitlines voltage

values (and, so, the cell content).

It takes some time for the cell to discharge the bitline and, so, for a differential

voltage between the bitlines to develop; this means that the sense amplifier cannot be

enabled together with (i.e. at the same time instant) the cell because, in that case, the

differential voltage at the input of the amplifier could be not well defined and, so, the

SA could provide an incorrect result in output, as it is shown in Figure 3.6. In fact,

an actual differential amplifier is affected by an input offset voltage: so, even if the

differential voltage applied at the input of the amplifier is null, the circuit provides a

non null differential output (which, in the memory case, leads to an incorrect output

result for the read operation).

38

3.3. SENSE AMPLIFIER

t

t

EN

SAO

VBL

SAO

Figure 3.6: Incorrect sensing during read operation

For this reason, the enable signal of the sense amplifier has to be delayed with respect

to the one that selects the cell, so that the amplifier starts to sense its input only when a

certain minimum differential voltage has developed between the bitlines, as it is shown in

Figure 3.7; this is achieved by delaying the EN signal using a cascade of logic inverters,

whose number depends on the delay that one wants to obtain which depends, in turn,

on the discharging speed of the bitlines (and, so, on the array size).

t

t

EN

SAO

VBL

SAO

Figure 3.7: Correct sensing during read operation

Of course, this has an influence on the read delay: the larger is the SA delay, the

larger will be the sensing delay; hence, the enabling delay has to be kept to a minimum

value. The value of the delay, however, depends on the array size: as this increases, the

parasitic capacitance of the bitlines enlarges and, so, it takes more time for the cell to

discharge the line and, hence, for a certain differential voltage to be developed at the

SA input.

39

3.4. INTERCONNECTIONS PARASITICS

SA

SAI SAI

SAOSAO

CloadCload

Figure 3.8: Capacitive loads of the sense amplifier

As said before, capacitive loads have been placed at the sense amplifier outputs, in

order to emulate the presence of potential busses that the SA needs to drive; however, the

value of these capacitances has been limited since, otherwise, it would have influenced

too much the power and performance measurements: if Cload is very large, the power

consumption and the delay of the read operation are completely determined by the sense

amplifier, and the influence of the array size on these results would be null.

3.4 Interconnections parasitics

In order to take into account (at least in part) the parasitic capacitance and resistance

of the interconnections, RC circuits have been placed between each cell, in both vertical

and horizontal directions, as it is shown in Figure 3.9.

In this way, the position of the accessed cell inside the array has an influence on

the performance of the operation. For example: if the sense amplifiers are placed at

the bottom of the memory array, the cells placed on the first row will be slower than

the ones placed on the last row, because they are separated from the sense amplifiers

inputs by a larger number of RC circuits; for the same reason, if the wordline drivers

are placed on the left of the memory array, the cells placed on the right of the array will

be slower than the ones placed on the left during an access operation, being separated

by a larger distance from the wordline drivers.

40

3.5. TESTBENCH

Ccell to cell

Rcell to cell

Figure 3.9: Interconnections parasitics model

3.5 Testbench

The testbench circuit is presented in Figure 3.10: the wordline drivers are placed on the

left of the array; the bitline driver and precharge circuits are placed on top of the array;

the sense amplifiers are placed on the bottom of the array.

3.5.1 The simulation flow

The design has been conducted at schematic level in Cadence Virtuoso, using the ST

FDSOI 28nm technological library. The first element to be designed has been the SRAM

cell; then, this has been arranged in an array, like it is partially shown in Figure 3.9.

After the creation of the array, the drivers for the input signals have been designed,

such as the wordline drivers, bitline drivers and precharge circuits; then, the sense

amplifier topology has been chosen and implemented.

All these hardware elements have been connected and organized in a testbench,

discussed in subsection 3.5.3, which has been simulated using the SPECTRE simulator

embedded in Cadence Virtuoso.

In order to generate the input signals for the testbench, a Python script has been

created. This allows to easily set up the simulation, allowing the definition of every

41

3.5. TESTBENCH

Memory array

Wordline

drivers

Bitline drivers

&

precharge circuits

Sense amplifiers

Figure 3.10: Testbench circuit

kind of memory operation through few simple steps. The Python code is discussed in

subsection 3.5.2.

From the testbench, the array output and input signals have been extracted, together

with the whole testbench instantaneous power consumption. This information has been

elaborated in Cadence Virtuoso to estimate:

• the average power consumption per operation.

• the energy consumption per operation.

• the delay associated to write and read operation.

The same design and simulation flow has been followed for each memory architecture

implemented. For this reason, in Figure 3.11 also the delay of the logic implemented

inside the memory are listed in the results.

42

3.5. TESTBENCH

Input waveforms

Output waveformsTotal instantaneous power

Energy and power consumption per operation

Total energy and power consumption

Write, read and logic delay

Cadence Virtuoso schematic

Cadence Virtuoso

SPECTRE

Figure 3.11: Simulation flow

43

3.5. TESTBENCH

3.5.2 Python script for input signals generation

#! /usr/bin/env python

2 import sys

4 # Simulation parameters

T_ck = 1e-9*float(sys.argv[1])

6 t_rise = T_ck / 1000 #Rise and fall time of the signals.

Vdd = float(sys.argv[2])

First of all, the simulation parameters are defined:

• Vdd represents the supply voltage of the circuit. The value VDD = 0.92 V has been

chosen since it is the same supply voltage used by the Synopsys Design Compiler

for the synthesis of digital circuits to which the performance of the LiM array

would be compared.

• T ck represents the cycle duration. The default value of this is 1 ns, but it can be

increased via command line.

• t rise is the rise and fall time of the signals generated by this script. In this case,

it is chosen to be 1000 times smaller than the cycle duration.

10

def write_cycle_to_file(file_pointer , value , cycle):

12 if cycle == 0:

file_pointer.write('0' + " " + str(value) + "\n") #Beginning of

the simulation.

14 else:

file_pointer.write(str(cycle*T_ck + t_rise) + " " + str(value) +

"\n") #After a time

interval equal to t_rise ,

we assign the new value to

the waveform.

16 file_pointer.write(str((cycle+1)*T_ck) + " " + str(value) + "\n")

#We keep the same signal value

until the end of the cycle.

Here, a function called write cycle to file() is defined: this writes the signals

values in the current simulation cycle to the proper files.

First, if the first cycle is being analyzed (cycle=0), then the value of the signal at

the beginning of the simulation is defined; otherwise, the actual value of the signal is

assigned to the waveform after a time equal to t rise with respect to the beginning of

the cycle. Then, the same value is assigned to the waveform at the end of the cycle.

20 # Signals of the testbench.

signals = { 'WLFirstRow ': {'file_pointer ': None , 'value': 0,

'default_value ': 0},

44

3.5. TESTBENCH

22 'BL': {'file_pointer ': None , 'value': Vdd , 'default_value ': Vdd},

'BLn': {'file_pointer ': None , 'value ': Vdd , 'default_value ': Vdd},

24 'Precharge_n ': {'file_pointer ': None , 'value ': Vdd , 'default_value ':
Vdd},

'EnableSA ': {'file_pointer ': None , 'value ': 0, 'default_value ': 0},

26 'EnableBLDriver ': {'file_pointer ': None , 'value ': Vdd , 'default_value ':
Vdd},

}

+

Here, the signals of the testbench are defined in a Python dictionary. To each signal,

three quantities are assigned:

• the pointer to the file to be written, file pointer.

• the value assumed by the signal, value.

• the default (non-active) value of the signal, default value.

The files associated to the signals are opened for writing.

30 for key in signals.keys():

signals[key]['file_pointer '] = open((key + ".csv"), 'w+')

Here, the signals file pointers are assigned to the files to be written, that are opened

in write mode.

Operations to simulate.

34 operations = ("TestWriteSpeed0", #0

"Idle", #1

36 "TestWriteSpeed1", #2

"Precharge_cycle", #3

38 "Read", #4

"Idle", #5

40 "TestWriteSpeed0", #6

"Precharge_cycle", #7

42 "Read") #8

These lines of code define the operations to be simulated, that are saved in a Python

tuple. First, a dummy Write1 operation is performed in order to initialize the cell

content; then, two write-read cycles are performed.

It has to be noticed that an Idle operation precedes every write operation apart

from the initialization one: this is because the bitlines have to be at the same value

before every write operation in order to get a valid energy measurement for the write

operation.

After the Read operation at #4, since a logic ‘1’ has been read, the bitlines have the

following values (refer to Figure 3.1): BL=‘1’, BL=‘0’. Hence, to subsequently write a

logic ‘0’, both bitlines would be subjected to a commutation: BL=‘1’→‘0’, BL=‘0’→‘1’.

45

3.5. TESTBENCH

One the contrary, before the TestWriteSpeed1 operation, in which a logic ‘1’ is

written, the bitlines configuration is BL=BL=‘1’, since in an Idle operation the bitlines

are brought to the logic ‘1’ by the drivers; hence, only one bitline changes its state in

the subsequent write operation: BL=‘1’→‘0’.

From this it can be deduced that larger energy and delay would be involved in the

TestWriteSpeed0 operation with respect to TestWriteSpeed1 if there was not the Idle

operation in between the read and write operation.

44 cycle=0 # First cycle

46 for operation in operations :

48 # All signals are assigned their non -active values a priori , and

they are activated only when

needed in memory operations.

for key in signals.keys():

50 signals[key]['value '] = signals[key]['default_value ']

52 # Depending on the kind of operation , the signals values are

properly assigned.

if operation == "TestWriteSpeed1":

54 signals['WLFirstRow ']['value '] = Vdd

signals['BL']['value '] = Vdd

56 signals['BLn']['value '] = 0

58 elif operation == "TestWriteSpeed0":

signals['WLFirstRow ']['value '] = Vdd

60 signals['BL']['value '] = 0

signals['BLn']['value '] = Vdd

62

elif operation == "Read":

64 signals['WLFirstRow ']['value '] = Vdd

signals['EnableSA ']['value '] = Vdd

66 signals['EnableBLDriver ']['value'] = 0

68 elif operation == "Precharge_cycle":

signals['Precharge_n ']['value '] = 0

70 signals['EnableBLDriver ']['value'] = 0

72 elif operation == "Idle":

pass

74

else:

76 print("Error! " + i + " is not an allowed operation .\n")

exit(1)

Here, the signals behavior in each cycle is defined. First, all the signals are assigned

their default values, and they are activated only in the cycles where they need to; second,

46

3.5. TESTBENCH

for each operation the corresponding signals combination is defined.

The signals configuration is written to the files.

80 for key in signals.keys():

write_cycle_to_file(signals[key]['file_pointer '],
signals[key]['value '],
cycle)

82

cycle = cycle + 1 #We go to the next cycle.

84

The files are closed.

86 for key in signals.keys():

signals[key]['file_pointer '].close()

At the end, all the signals values of the current simulation cycle are written to their

files that will be used by the simulator; after this, all the files are closed and the program

ends.

If one wants to add a new operation to the simulation, a new case has to be added

to the if statement with the corresponding signal combination, together with a new

operation in the operations vector.

If one wants to add a new signal to the memory, a new corresponding entry has to

be added to the signals dictionary, and the signal value in each memory operation has

to be configured.

3.5.3 Cadence Virtuoso schematic

In Cadence Virtuoso a voltage source is associated to each .txt file that is generated

through the Python script, as it is shown in Figure 3.12.

The first array designed is the 8x8 one. In order to obtain it, a 8 bits memory column

is created, which schematic is shown in Figure 3.13. It can be noticed how a parasitic

RC circuit is present between each cell in both vertical and horizontal directions. For

testing purposes, also the data stored in the first row and last row cells are extracted,

in order to verify that the cell content is successfully written after a write operation, or

that it is not overwritten during a read one.

On top and bottom of the column, pins for the bitlines are added (BL top, BLn top,

BL bottom and BLn bottom), so that the column can be connected to other columns in

the vertical direction. At the left and right sides of the column, pins for the wordlines

are added (WL in<0:7> and WL out<0:7>), in order for the column to be connected also

in the horizontal direction.

Then, the 8x8 array is created using eight 8 bit columns, arranged as it is shown in

Figure 3.14.

In this way, a 8x8 array component is obtained and it can be used in the testbench

as Device Under Test (DUT). The component is shown in Figure 3.15.

47

3.5. TESTBENCH

WL.txt

WL

BL.txt

BL

BLn.txt

BLn

WL driver

BL driver

BL driver

Figure 3.12: Voltage sources for the input signals

ARRAY 8x8

WL in<0:7> WL out<0:7>

Data 0<0:7>

Data 7<0:7>

BL top<0:7> BLn top<0:7>

BL bottom<0:7> BLn bottom<0:7>

Figure 3.15: 8x8 array component

Then, the array component is inserted in the testbench schematic, which is shown

in Figure 3.16. It can be noticed how only one wordline (WL<0>) of the array is driven

to the logic ‘1’, while all the others are forced to the logic ‘0’, in order to isolate those

memory rows from the bitlines; in fact, only one row of the memory is written and read

in the simulation, in order to estimate the delay and power consumption of a single

48

3.5. TESTBENCH

WL in<0>

BL top BLn top

WL out<0>

Data 0

WL in<7> WL out<7>

Data 7

BL bottom BLn bottom

Figure 3.13: 8 bit memory column

memory row, even if conditioned by the presence of the other memory lines. Usually, in

fact, only one row is processed in a memory array at time.

49

3.5. TESTBENCH

WL in<0>

WL in<7>

WL out<0>

WL out<7>

BL top BLn top

BL bottom BLn bottom

Data 0

Data 7

BL top<0> BLn top<0>

BLn bottom<0>BL bottom<0>

WL in<0>

WL in<7>

WL out<0>

WL out<7>

BL top BLn top

BL bottom BLn bottom

Data 0

Data 7

BL top<7> BLn top<7>

BLn bottom<7>BL bottom<7>

WL out<0>

WL out<7>

Data 0<7>

Data 7<7>

Data 0<0>

Data 7<0>

WL in<0>

WL in<7>

Figure 3.14: 8x8 array

WL in<0:7>

BL top<0:7> BLn top<0:7>

BL bottom<0:7> BLn bottom<0:7>

WL out<0:7>

Data 0<0:7>

Data 7<0:7>

WL DRIVER

WL.txt

WL

BLn.txt

BLn
BL.txt

BL
BL DRIVER

BL<0:7>

BLn<0:7>

SAI<0:7> SAIn<0:7>

SAOn<0:7>SAO<0:7>

WL<0>

WL<1:7>

Data 0<7>

Data 7<7>

SAO<7> SAOn<7>

SA

ARRAY 8x8

EnableSA.txt

EnableSA

PRECHARGE

CIRCUIT
Precharge n.txt

Precharge n
EnableBL driver.txt

EnableBL driver

Figure 3.16: Testbench schematic

All the driver circuits are driven by the voltage generators presented in Figure 3.12.

The signals that are extracted from the testbench are:

• the control signals Precharge n, EnableBL driver, BL, BLn, EnableSA.

• the output of the drivers WL<0>, BL<0:7>, BLn<0:7>.

• the outputs of the array SAI<7>, SAIn<7>, Data 0<7>, Data 7<7>.

50

3.5. TESTBENCH

• the outputs of the sense amplifiers SAO<7> and SAOn<7>.

3.5.4 Larger arrays design

Starting from a 8x8 array, larger arrays can be easily obtained. For example, if one

wants to obtain a 16x16 array, four 8x8 arrays have to be combined, as it is shown in

Figure 3.17.

8x8 8x8

8x8 8x8

BL top<0:15> BLn top<0:15>

BLn bottom<0:15>BL bottom<0:15>

WL in<0:15> WL out<0:15>

Data 0<0:15>

Data 15<0:15>

Figure 3.17: 16x16 array obtained from 8x8 arrays

In turn, the 16x16 array can be used to obtain a 32x32 one, and so on. Of course,

the design has to be conducted by hand at schematic level in Cadence Virtuoso, and the

surrounding circuitry has to be adapted to the new array dimensions.

In fact, as the array size increases, the resistive-capacitive load that the surrounding

circuits have to drive enlarges; hence, the driving capability of those has to be improved.

Also, the sense amplifier has to be modified, since the resistive-capacitive load that

a cell has to drive during a read operation enlarges as the array size increases. In

particular, the delay of the enabling signal has to be enlarged, in order to guarantee a

correct sensing during the read operation.

51

3.5. TESTBENCH

3.5.5 Simulation environment

The choice of the signals to be analyzed in the testbench is important; in fact, the signals

that are considered are the following:

• the wordline of the first memory row, WL<0>.

• the content of the last cell (from left to right) of the first row, Data 0<7>.

• the content of the last cell of the last row, Data 7<7>.

• the input of the last sense amplifier (from left to right), SAI<7> and SAIn<7>.

• the output of the last sense amplifier, SAO<7> and SAOn<7>.

The reason of this is presented in Figure 3.18.

ARRAY

BL

WL

SA

Slowest ro read

Slowest to write

Figure 3.18: Worst cases for write and read operations.

When reading a cell, the worst case, which means the one to which the largest read

delay is associated, is related to the cell placed on the first row and on the last column

of the array:

• being placed on the first row, the distance from the sense amplifier input and, so,

the resistive-capacitive load that the cell has to drive with respect the SA input

node, are maximized; hence, this represents the worst case for the data sensing

delay.

• being placed on the last column, the distance from the wordline driver and, so,

the resistive-capacitive load that this has to drive with respect to the cell position,

are maximized; hence, this represents the worst case for the cell access delay.

52

3.5. TESTBENCH

When writing to a cell, the worst case is related to the one placed on the last row

and on the last column of the array:

• being placed on the last row, the distance from the bitline driver outputs and, so,

the resistive-capacitive loads that this has to drive with respect to the cell position,

are maximized; hence, this represents the worst case for the write delay.

• being placed on the last column, this represents the worst case for the cell access

delay.

Hence, the delay of the read operation is computed considering the first row of the

array and the output of the corresponding sense amplifier (SAO<7>); the delay of the

write operation is computed considering the last row of the array and the last cell content

(Data 7<7>).

The read delay is calculated between the output of the sense amplifier SAO<7> and

the WL signal, which is the output of the wordline signal voltage generator; hence, it is

computed using an ideal signal as reference, and not the output of the wordline driver.

The graphical definition of this delay is reported in Figure 3.19. It can be noticed how

the delay has been calculated as the 50% delay between the signals WL and SAO<7>.

t

WL

t

Data 0<7>

t

SAO<7>

Read delay

Figure 3.19: Read delay definition.

The write delay is defined in an analogous way, using the WL signal and the content

of the last cell of the last row Data 7<7>, as shown in Figure 3.20.

53

3.5. TESTBENCH

t

WL

t

Data 7<7>

Write delay

Figure 3.20: Write delay definition.

For what concerns the power consumption calculation, the instantaneous total power

consumption, reported as Power in Figure 3.21, is evaluated in SPECTRE and, then,

elaborated to obtain the average power consumption and the energy consumption of

each operation.

t

WL

t

Data 7<7>

t

Power

Cycle duration

Figure 3.21: Power consumption evaluation in a cycle

In order to obtain the average power consumption of an operation, which is defined

as Poperation, the instantaneous power, p(t), is integrated along the cycle in which the

considered operation is performed. In this way, the energy consumption of the operation

Eoperation is obtained:

54

3.6. SIMULATION WAVEFORMS

Eoperation =

Z
cycle

p(t)dt

Then, this quantity is divided by the simulation duration, Tsim; in this way, Poperation

is obtained:

Poperation =
Eoperation

Tsim

The average value is not computed with respect the cycle duration but with respect

the simulation duration because, in this way, the weight of the operation with respect

to the total average power consumption is obtained.

3.6 Simulation waveforms

In Figure 3.22, the output waveforms of a Virtuoso simulation are presented: in partic-

ular, the write and read operations are executed one after the other.

0.0

0.5

1.0

Vo
lta

ge
 [V

]

WLFirstRow
Data

0.0

0.5

1.0

Vo
lta

ge
 [V

]

BL
BLn

2 3 4 5 6 7 8 9
Time [ns]

0.0

0.5

1.0

Vo
lta

ge
 [V

]

SAO
SAOn

Figure 3.22: Write and read cycle

In the first cycle, a logic ‘0’ is written to the cell:

WL = 1,BL = 0,BLn = 1→ Data = 0

In the second cycle, the bitlines are precharged:

55

3.6. SIMULATION WAVEFORMS

Prechage n = 0→ BL = 1,BLn = 1

In the third cycle, the cell content is read:

WL = 1→ SAI = 0→ SAO = 0

In Figure 3.22 some signals have been omitted for the sake of clarity.

56

Chapter 4

CAM design

In this chapter, the design and verification of a CAM memory is discussed; three arrays

have been designed and analyzed, which dimensions are 8x8, 16x16 and 32x32 bits, using

the ST FD-SOI 28 nm technological library in Cadence Virtuoso.

4.1 The CAM cell

ML

BL

DD

BL

2

2

2

2

Figure 4.1: CAM cell implemented.

The SRAM memory core is sized as discussed in section 3.1. For what concerns the

CAM section, the transistors have been sized choosing an aspect ratio doubled with

respect to the minimum one, as it is shown in Figure 4.1; the reason behind this choice

is explained in section 4.5.

4.2 Driver circuits

The drivers implemented in the CAM architecture are the same used for the SRAM

one(section 3.2), since the original SRAM bitlines are used as searchlines for the CAM

operation: there is no need to use dedicated column lines for the search operation, since

the latter is never carried out together with a write or read operation.

57

4.3. MATCH-LINE SENSE AMPLIFIER

4.3 Match-line sense amplifier

The sensing scheme implemented is the current-saving one (Figure 2.30), and the sense

amplifier architecture proposed in [43] has been chosen, which circuit is shown in Fig-

ure 4.2.

MLSAO

EN

EN

EN

EN

ML

IML

Vsink

VCS

MCS

VBIAS

Msense

Mbias

Mshift

Msink

Figure 4.2: Match-line sense amplifier

As explained in section 2.2.3, the search operation consists of two phases: a pre-

discharge phase and an evaluation phase.

From Figure 4.2, it can be noticed how only one enable signal, EN, is used for the

sense amplifier; this is, then, internally inverted obtaining EN, in order to be used as

pre-discharge signal when EN=‘1’. This implies that when the sense amplifier is not

enabled, it is in the pre-discharge configuration.

The pre-discharge phase begins by deactivating the enable signal (EN = ‘1’) of the

MLSA (Match-Line Sense Amplifier): the match-line (ML in Figure 4.2) is discharged

to the ground voltage through a pull-down transistor; at the same time, the input of

the inverter is charged to VDD through a pull-up pMOS.

Then, the evaluation phase starts by activating the enable signal (EN =‘0’). At the

beginning of the cycle, the voltage on the match-line is close to 0 V; hence, the gate

voltage of Msink, Vsink, is close to VTH , since Mshift is in common-drain configuration,

which practically means that:

Vsink ≈ VML + VTH

For this reason, the gate voltage of MCS , VCS , is close to VDD, because Msink is in

common-source configuration, which is practically an inverting configuration; however,

VCS is large enough to turn it on and, so, a current IML is injected in the match-line.

What happens from now on, depends on the result of the comparison between the

search word and the stored word:

• if the two words match, the line behaves like a capacitance (Figure 2.24) and it

58

4.3. MATCH-LINE SENSE AMPLIFIER

starts to get charged; hence, the voltage on the match-line arises and, so, Vsink

increases: this results in the decrease of VCS and, so, MCS conducts a larger

current. Since IML enlarges, the voltage on the match-line arises in a faster way,

speeding up the match sensing; as soon as the threshold voltage of Msense is

crossed, it is turned on and discharges to ground the inverter input which, at this

point, switches its output (MLSAO = ‘0’ → ‘1’): a match is provided as result.

• if the words do not match, the match-line does not get charged and the inverter

input voltage does not vary: a mismatch is provided in output.

The MLSA working principle is shown also in Figure 4.4, for the match case, and in

Figure 4.3, for the mismatch case.

t

t

t

t

t

t

Vsink

MLSAO

ML

VCS

IML

EN

Figure 4.3: Mismatch case

In Figure 4.3 it is shown how, as soon as the MLSA is enabled by EN=‘0’, a current

is injected in the match-line, causing a slight increase in the line voltage due to the fact

that the discharging paths have a certain resistance Rcell, which is not null; however,

the match-line potential is not high enough to activate the MLSA and, so, its output

remains at the logic ‘0’.

59

4.3. MATCH-LINE SENSE AMPLIFIER

t

t

t

t

t

t

Vsink

MLSAO

ML

VCS

IML

EN

Figure 4.4: Match case

In Figure 4.4 it is shown how the match-line is charged to the logic ‘1’ by the current

generator and a match result is provided in output. In this graph, it is highlighted the

positive feedback between the current injected in the line and the voltage on this: as a

current is injected in the match-line, the voltage on this starts to increase; this leads,

thanks to the positive feedback, to an increase in IML, that in turn makes the line voltage

rise in a faster way, until the MLSA output switches from ‘0’ to ‘1’.

Another advantage of this sensing scheme is that the search delay does not depend

on the bitlines drivers strength.

In the standard sensing scheme, where the match-line is precharged and, then, dis-

charged, all the cells are disabled by setting the bitlines to the logic ‘0’ during the

precharge phase, so that the line can be charged. In fact, referring to Figure 4.1, if both

the bitlines are set to the logic ‘1’, at least one of the pull-down paths is enabled, since

one between D and D is at the logic ‘1’; if only one between BL and BL is at the logic

‘1’, it may happen that one of the pull-down paths is enabled if the cell content matches

with the datum present on the bitlines; hence, the only way to ensure that all the cells

are disabled is to set all the bitlines to the logic ‘0’.

This means that one has to load the datum on the bitlines at the beginning of the

search cycle and, since the cells can start to discharge the line only when the transistors

connected to the bitlines (Figure 4.1) are enabled, this results in a contribution to the

60

4.4. DUMMY MATCH-LINE SCHEME

search delay. In particular, the delay value is dependent on the row position inside the

array: the farer this is from the bitlines drivers, the larger is the delay contribution

associated to the search datum loading.

In the current-race scheme, this is not an issue: since the line is pre-discharged

before the search operation, there is no need to disable the cells; hence, one can load

the search datum on the bitlines during the pre-discharge operation: this means that

the gate voltage of the transistors connected to the bitlines will be already stable at the

beginning of the search cycle and, so, the drivers strength and the row position have no

influence on the delay value.

4.4 Dummy match-line scheme

In section 4.3 it has been explained that in the mismatch case the match-line does not get

charged, and the current injected by the MLSA in the line flows through the pull down

paths of the cells to ground; hence, energy is wasted, since this current keeps flowing

until the end of the search cycle. To limit the energy waste, a dummy match-line sensing

scheme (also called “replica” scheme) is employed.

In this scheme, a dummy memory row is added, whose content always matches

the search word independently of the value encoded in the latter. The output of the

associated sense amplifier is then used to disable all the other MLSAs as soon as the

dummy line provides a match; in this way, the current generator is disabled and no

energy is wasted, since the current flow to ground (mismatch case) is stopped as soon

as possible.

The line is created using dummy memory cells: these are cells in which only the

transistors connected to the match-line are present, while all the others are removed;

furthermore, the gate potentials of these transistors are chosen so that the cell gives a

match as result (i.e. both cell pull down paths are disabled). An example of dummy

memory cell is shown in Figure 4.5.

ML

Figure 4.5: Dummy match-line cell.

In Figure 4.5, it can be noticed how each pull-down path is made of an enabled and

61

4.4. DUMMY MATCH-LINE SCHEME

a disabled transistors in series, as it happens in a real CAM cell whose content matches

the search bit.

These dummy cells are arranged in a line (Figure 4.6) which is connected to the

input of a sense amplifier; the output of this is used as enable signal of the MLSAs

connected to the real memory rows, as it is shown in Figure 4.7.

Dummy ML

Dummy MLSA

Dummy MLSAO

Figure 4.6: Dummy match-line

Dummy MLSAO

EN

IN OUT

Figure 4.7: Dummy match-line sensing scheme.

In Figure 4.7 it is shown that the output of the dummy MLSA is OR-ed with the

external EN signal: in this way, as soon as one of the two signals is equal to ‘1’, the

enable signal of the sense amplifier is brought to ‘1’, disabling its current generator and,

consequently, cutting the current flow in the match-line; in other words, as soon a match

occurs on the dummy match-line, all the sense amplifiers of the array are disabled.

The complete memory scheme is shown in Figure 4.8.

62

4.5. CELL SIZING

Dummy ML

CAM array

Figure 4.8: Dummy match-line memory scheme

In Figure 4.8 the OR gates embedded inside the MLSAs are not shown for the sake

of clarity.

It can be noticed how all the sense amplifiers of the array are connected in parallel to

the dummy MLSA: hence, the output stage of this has to be sized in order to properly

drive all the other amplifiers.

To summarize, all the sense amplifiers are enabled using an external EN signal; then,

as soon as the dummy match-line gets charged, the dummy MLSA switches its output

from ‘0’ to ‘1’, and all the sense amplifiers are consequently disabled. Hence, it is evident

that the time that it takes for the dummy match-line to get charged determines the time

available to the other amplifiers for correctly sensing their inputs: for this reason, the

array architecture has to be conceived so that the worst case search delay is associated

to the dummy match-line position, in order for each amplifier in the array to be able to

correctly evaluate the search operation result on its line.

4.5 Cell sizing

Consider the CAM NOR cell shown presented in Figure 4.1, which is reported in the

following.

In a classical sensing scheme where the line is precharged to VDD, the pull-down

paths of the cells discharge the match-line in the mismatch case; hence, the sizing of the

CAM transistors determines the sensing speed, since it controls the current absorbed by

the cell and, so, the discharging speed of the match-line.

For the current-race scheme implemented this is not true: the line gets charged only

in the match case, so what controls the sensing speed is the value of the current injected

in the match-line, since it determines the slew-rate of the line voltage; hence, it seems

63

4.5. CELL SIZING

ML

BL

DD

BL

2

2

2

2

Figure 4.9: CAM cell implemented.

that the sensing speed does not depend on the cell transistor dimensions, which would

suggest that the CAM transistors may be minimally sized in order to reduce the cell

area. However, this is not true (or, at least, it is true only in part).

MLSA thresholdMLSAO

ML

Figure 4.10

In Figure 4.10 it is shown what happens on the match-line during a mismatch. Since

the pull-down paths of the cells behave as resistors, when a current is injected the line

voltage arises: if the cells resistance is not too large, this voltage is limited and, if it

does not cross the amplifier threshold, a correct mismatch result is registered, as shown

in Figure 4.10; if, instead, the cells resistance is too large, the voltage on the line may

cross the MLSA threshold and, so, lead to the incorrect evalutaion of a match result, as

it is shown in Figure 4.11.

64

4.5. CELL SIZING

MLSAO

ML

Figure 4.11

This phenomenon is particularly critical in the case in which all the cells provide a

match result except one: in this condition, the cells resistance is maximized, since only

one pull-down path in the whole line is enabled.

What determines the cell resistance are the dimensions of the pull-down transistors:

hence, these cannot be minimally sized; however, they cannot be made as large as one

wants, and the consequent cell area increase is not the only reason.

When a pull-down path is disabled, it does not behave as an ideal open circuit: it

still conducts a current, even if this is very small. However, when the memory width

is large (for example, in a range from 64 to 144 bits), there are many pull-down paths

(two per cell) attached to the match-line; since these are in parallel, all the transistors

subthreshold currents sum up.

Referring to the match-line model presented in Figure 2.24 and reported in the

following, these cells can be viewed as an equivalent resistor, obtained from all the cell

resistors in parallel. It has to be noted that the Rcell value in the match case in much

larger than in the mismatch one, since it is referred to transistors that are turned off,

while during a mismatch these are turned on.

CML

Rcell / mCML

Match

Mismatch

Figure 4.12: Matchline model

TheRcell of each cell, when this provides a match, is very large; however, the resulting

equivalent resistance cannot be neglected: this leads to a non negligible current absorbed

by the cells during a match that slows down the line charging, leading to a reduced

sensing speed.

It can be noticed how the dummy match-line scheme allows also to limit the “voltage

65

4.6. TESTBENCH

bump” shown in Figure 4.10: since the sensing interval is limited to a portion of the

search operation cycle, the match-line voltage does not have enough time to “completely

rise”; thus, the error probability in the search result evaluation is furtherly reduced

thanks to this technique.

In conclusion:

• the cell transistors cannot be minimally sized, since this may lead to incorrect

sensing during a search operation.

• their dimensions cannot be chosen too large for two reasons: cell area increase and

match sensing speed reduction.

4.6 Testbench

The testbench has been organized in a way similar to the SRAM one described in

section 3.5. For example, the simulation flow adopted is the same.

4.6.1 The testbench circuit

The testbench circuit is presented in Figure 4.13.

BL drivers

SA

WL driver

Array

MLSA

Slowest for search

Slowest for read and write

Figure 4.13: Testbench schematic

A different approach has been taken with respect to the SRAM case in order to

perform all the operations on only one row: the bitline drivers have been moved to the

bottom of the array, so that the worst cases for read and write operations could coincide.

In fact, as discussed in subsection 3.5.5, in this way the cell placed on the last column

and the first row, is the most distant one from both wordline and bitlines drivers and the

sense amplifier, and so the largest write and read delays are associated to its position.

66

4.6. TESTBENCH

For what concern the search delay, the cell placed on the first column and first row

has been chosen, since it is the most distant one from the match-line sense amplifier

input. Since the delay of the search operation does not depend on the row position in

the array, the first row has been used for the search testing, in order to perform all the

memory operations on the same row.

4.6.2 Python code

The code adopted for the CAM simulation is very similar to the SRAM one presented in

subsection 3.5.2. Of course, additional signals and operations are needed for the CAM

testing.

20 # Signals of the testbench.

signals = { 'WLFirstRow ': {'file_pointer ': None , 'value': 0,

'default_value ': 0},

22 'BLFirstCol ': {'file_pointer ': None , 'value ': Vdd , 'default_value ': Vdd},

'BLnFirstCol ': {'file_pointer ': None , 'value ': Vdd , 'default_value ':
Vdd},

24 'BLLastCol ': {'file_pointer ': None , 'value ': Vdd , 'default_value ': Vdd},

'BLnLastCol ': {'file_pointer ': None , 'value ': Vdd , 'default_value ': Vdd},

26 'Precharge_n ': {'file_pointer ': None , 'value ': Vdd , 'default_value ':
Vdd},

'EnableSA ': {'file_pointer ': None , 'value ': 0, 'default_value ': 0},

28 'EnableBLDriver ': {'file_pointer ': None , 'value ': 0, 'default_value ':
Vdd},

'EnableMLSAn ': {'file_pointer ': None , 'value ': Vdd , 'default_value ':
Vdd},

30 'DisableFirstCol ': {'file_pointer ': None , 'value ': 0, 'default_value ': 0}

}

With respect to the code presented in subsection 3.5.2, it can be noticed how two

different bitline signals are used: one for the first column (used to test the search delay

and operation) and the other for the last column (read and write delays and operation).

Also, the MLSA signals have been added to the testbench with respect to the SRAM

implementation. It has to be noticed that no precharge (actually, “pre-discharge” with

this sensing scheme) signal is present: this is because the matchline is automatically

discharged when the MLSA is not enabled and, so, there is no need for a dedicated

precharge signal.

Operations to simulate.

38 operations = ("Write_1", #0

"MLSAPredischarge_1", #1

40 "Search_1", #2

"MLSAPredischarge_0", #3

42 "Search_0", #4

"Idle", #5

44 "Write_0", #6

"Idle", #7

67

4.7. SIMULATION WAVEFORMS

46 "MLSAPredischarge_1", #8

"Search_1", #9

48 "MLSAPredischarge_0", #10

"Search_0", #11

50 "Idle", #12

"TestWriteSpeed1", #13

52 "Precharge_cycle", #14

"Read", #15

54 "Idle", #16

"TestWriteSpeed0", #17

56 "Precharge_cycle", #18

"Read") #19

Here, the operations to be simulated are presented. First, in #0, a logic ‘1’ is written

to all the cells; then, all the cells except the one placed on the first column are disabled

and a logic ‘1’ is loaded on the first column bitlines, in order to test the match results

(#1 and #2); after this, a logic ‘0’ is loaded to test the mismatch case. This sequence is

repeated after writing a logic ‘0’ to all the cells (#6 to #11).

It has to be noticed that there are two kinds of pre-discharge operation: one for the

logic ‘1’ (#1), in which a logic ‘1’ is put on the bitlines during the pre-discharge operation,

and one for the logic ‘0’. This allows to take advantage of the sensing scheme indepen-

dence from the bitlines configuration during the pre-discharge phase, as explained in

section 4.3.

Starting from #13, the standard memory operations (read and write) and tested.

First, a logic ‘1’ is written to the cell on the last column and, then, the content of the

latter is read; second, the a logic ‘0’ is written and, then, read.

4.6.3 Cadence Virtuoso schematic

A schematic very similar to the one presented in Figure 3.16 has been derived for the

CAM testing, using the same design flow; first, the cell and sense amplifier topologies

have been produced in Virtuoso; second, a 8 bits column has been derived and used to

obtain a 8x8 array; this, after being tested to tune the design characteristics, has been

used to derive larger arrays (16x16 and 32x32).

4.7 Simulation waveforms

In Figure 4.14, a simulation run is shown. As described in subsection 4.6.2, first a

logic ’1’ is written on the whole row (in the graph, the data of the first column cell,

DataFirstCol, is considered); then, a logic ‘1’ and a logic ‘0’ are searched, leading to a

match in the first case (MLSAO goes to ‘1’) and to a mismatch in the second case (MLSAO

stays at ‘0’). In the second part of the simulation, a logic ‘0’ is written (DataFirstCol

goes to ‘0’) and the previous search pattern is performed: when a logic ‘1’ is searched,

68

4.7. SIMULATION WAVEFORMS

0

1
Vo

lta
ge

 [V
]

DataFirstCol

0

1

Vo
lta

ge
 [V

]

BLFirstCol
BLnFirstCol

0

1

Vo
lta

ge
 [V

]

EnableMLSAn

0 2 4 6 8 10 12
Time [ns]

0

1

Vo
lta

ge
 [V

]

MLSAO
MLOut

Figure 4.14: Simulation run.

a mismatch is provided; when a logic ‘0’ is searched, a match is provided.

It can be noticed how the match-line does not get fully charged. This is due to the

dummy-line sensing scheme: as soon as the output of the dummy MLSA switches, all

the other MLSAs are disabled and, so, the lines stop charging. This allows to furtherly

reduce the energy involved in the sensing operation.

The simulation run has been carried out on a 32x32 array.

69

Chapter 5

LiM array design

In this chapter, a LiM cell design, based on the one proposed in [1], is presented. Three

arrays have been produced, as in SRAM and CAM cases, whose sizes are 8x8, 16x16

and 32x32 bits.

The design has been carried out using the same procedure adopted in the precedent

ones, and the result extracted are the same: energy consumption and delays for each

memory operation.

5.1 The algorithm

In [1] a LiM architecture for the maximum/minimum value search in a memory array is

proposed. The algorithm is based on the bitwise AND operation between the memory

content (i.e. every word stored in memory) and an external datum called “mask vector”,

which is performed in parallel on all memory rows at the same time.

In a classical architecture, made by a processor that reads data from the memory

and elaborates it, to find the maximum/minimum stored value one would need to read

all the memory data and elaborate it inside the processing unit. This is, of course, an

expensive operation from both time and energy points of view, since many clock cycles

are needed to read each word and a large amount of energy is wasted on the busses

between the memory and the CPU for the data transfer. For this reason, it would be

more convenient to perform this operation completely in memory, as it is proposed in

[1], so that no time and energy have to be spent to access the memory content.

In Figure 5.1, the steps needed to find the maximum value among unsigned binary

data are shown. With number the memory datum is denoted, while with mask the mask

vector is indicated.

At each step, the bitwise AND operation is performed between each memory datum

and the mask vector, and the results of these operations are recorder by the logic that

surrounds the array. The algorithm starts with the mask vector value “1000”, that is

used to check which rows have the MSB (Most Significant Bit) equal to ‘1’: in fact,

considering unsigned binary values, the largest data have the MSB equal to ‘1’, while

the others have a smaller encoded value.

At the beginning of the algorithm execution, all the words are listed in a search

list (in particular, all the rows addresses are considered valid), since each datum is a

maximum value candidate. The words in which the AND outputs are different from ‘1’

70

5.2. THE MEMORY CELL

Figure 5.1: The algorithm [1].

are removed from the search list since they are no more maximum candidates, while

the others are kept. In the first step shown in Figure 5.1 no word is removed from the

search list since all the AND results are equal to ‘1’ (only the column correspondent to

the mask bit equal to ‘1’ is considered).

In the second step, the same operation is performed changing the mask value: the

“0100” value is used to check which words have the MSB-1 (the bit after the MSB)

equal to ‘1’. As in the previous case, the words that “match” with the mask are kept in

the search list, while the other ones are removed.

These steps are repeated until the LSB (Least Significant Bit) of the words is reached:

at the end of this step, only one word will remain in the search list (unless there are two

or more identical data stored in memory, as it happens in Figure 5.1), and the address

of this is provided in output as the maximum value location.

It has to be highlighted that the number of steps needed to find the maximum stored

value is equal to the array width, since one bit of every stored word is processed at time;

hence, the search latency is independent of the number of stored data. In a processor

architecture, instead, the number of data to be read has a strong influence of the search

latency, since at least one clock cycle is needed to read each word and to store it in the

processor registers.

5.2 The memory cell

The memory cell is a NOR CAM cell which has been modified to perform the bitwise

AND operation. The cell logic scheme is shown in Figure 5.2.

In Figure 5.2, the Cell block denotes the memory core, which implements the CAM

and SRAM functions and whose schematic has been presented in Figure 4.1. A logic

AND gate is added to the cell and it is used to perform the AND operation between the

71

5.2. THE MEMORY CELL

Cell

BL

Previous cell

Next cell

Figure 5.2: The memory cell (logic scheme).

cell content and the datum put on the bitline; the output of this is sent to an OR gate,

which receives the other input from the OR of the previous cell on the row and sends

its output to the next memory cell on the same row.

The array logic scheme is shown in Figure 5.3. In this, the cells disposition inside

the architecture is shown: as explained before, each cell is arranged in a chain of OR

gates, whose result is recorded by the logic that surrounds the memory array and used

by this to update the search list during the maximum/minimum value search.

Mask vector

A
rou

n
d

M
em

ory
logic

D0 D2D1 D3

O

M0 M1 M3M2

Figure 5.3: The array (logic scheme).

In the algorithm presented in section 5.1, a cell is selected by setting the correspond-

ing mask bit to ‘1’, while the other cells are disabled (i.e. the corresponding AND gate

output is forced to ‘0’) by setting the associated mask bits to ‘0’. This implies that the

result of the OR chain depends only on the result of the AND between the selected cell

content and the corresponding mask bit, which is set to ‘1’.

It may be better explained with an example. Consider the following: referring to a

4 bits word, the result at the end of the OR chain shown in Figure 5.3, denoted with O,

72

5.2. THE MEMORY CELL

is given by:

O = D0 ·M0 + D1 ·M1 + D2 ·M2 + D3 ·M3

where with Di and Mi the i-th cell content and i-th mask bit value, respectively, are

denoted.

If the cell D0 only is selected (i.e. M0=‘1’, M1,2,3=‘0’), the equation can be rewritten

in the following way:

O = D0 · 1 + D1 · 0 + D2 · 0 + D3 · 0

→ O = D0

Hence, the result depends exclusively on the selected cell content.

5.2.1 The proposed cell

The cell schematic proposed in [1] is shown in Figure 5.4.

PRE
PRE

BL D

PRE

NOR

MNOR

Figure 5.4: The proposed cell

For the sake of clarity, the CAM and SRAM parts of the cell are omitted from the

schematics, since the circuit shown in Figure 4.1 has not been modified.

This cell includes an AND gate implemented in dynamic CMOS logic. It has to be

noticed that a non-inverting function is realized without using an output inverting stage

for the gate, while in CMOS logic only inverting gates can be realized (NAND, NOR

and so on). In this case, thanks to the fact that the negated cell content D and the

negated bitline BL are available in the architecture, only one CMOS stage is needed to

obtain a logic AND function.

Consider the AND part of the cell, shown in Figure 5.5.

73

5.2. THE MEMORY CELL

PRE

BL D

O

Figure 5.5: AND gate of the proposed cell.

The logic function implemented by the gate in Figure 5.5 is:

O = BL + D

Using the Bool identities, the equation can be rewritten as:

O = BL ·D

Hence, a logic AND function between the cell content D and the bitline datum BL is

obtained. The output of this is sent through a pass-transistor, enabled by deactivating

the PRE signal, to the gate of the MNOR transistor, which is connected to a line that

links all the cells on the row, called “NOR line” (Figure 5.4).

The AND operation is separated in two phases:

• a precharge phase, in which the output of the AND gate and the NOR node are

charged to ‘1’.

• an evaluation phase, in which the AND inputs are evaluated: if they are both

equal to ‘1’ (BL = D = ‘1’ → BL = D =‘0’), the AND output remains at ‘1’

and MNOR is enabled, thus discharging the NOR node; if note, the AND output

is discharged to ‘0’, turning off MNOR and, so, preventing the discharging of the

NOR node, which remains at the logic ‘1’.

The pass transistor shown in Figure 5.4 is needed to separate the output of the AND

from the gate of MNOR during the precharge phase, so that this is not enabled, thus

allowing the NOR line to be charged.

The NOR line connects all the MNOR transistors of the cells in a wired-OR config-

uration. Before the AND evaluation, the line is precharged to the logic ‘1’; then, if at

least one cell in the row provides a ‘1’ as result of the AND, the correspondent MNOR

is enabled and it discharges the line. In this way, adding an inverting stage at the end

of the NOR line, a cascade of OR gates that connects all the cells is obtained, as it is

shown in Figure 5.6.

It has to be noted that the PMOS transistor connected to the NOR node shown in

Figure 5.4 is shared among the line and, so, it is not present inside the cell. It has been

74

5.2. THE MEMORY CELL

ORNOR

Figure 5.6: The NOR line.

included in the schematic only for the cell behavior explanation.

5.2.2 Adjustments to the original design

The scheme presented in Figure 5.4 has been used only to present the cell working

principle; some modifications to the schematic are needed in order to make it working

from a circuital point of view.

First of all, footer transistors (i.e. a transistor that is put between the ground pin

of the logic gate/transistor and the actual ground to disable it when needed) have to

be added to the cell, so that both the AND and NOR output can be charged to VDD

during the precharge phase. In fact:

• for the AND gate it would not be possible to precharge the AND node to the logic

‘1’ since, if one between D and BL is equal to ‘1’, one of the transistors would

connect the AND node to ground and, so, it would not allow its potential to arise,

consuming also energy because of the current flowing to ground.

• for the NOR gate, the pass-transistor connected to PRE does not ensure the

disabling of MNOR since it only connects the gate of the pull-down transistor to

an undefined potential, which can be large enough to enable MNOR and, so, to

not allow the NOR node to be charged.

The schematic with the foot transistor is shown in Figure 5.7

When PRE=‘0’, the footer is disabled and the cell is in precharge phase; when

PRE=‘1’, the footer is enabled and the cell is in evaluation phase.

Another problem relative to the pass-transistor in Figure 5.7 is the fact that it does

not allow the gate voltage of MNOR to be charged to VDD, since it is a NMOS: this results

in the reduced conductivity of MNOR and, so, in its slower operation. Since a footer

transistor has been introduced in the cell, the pass transistor is not needed anymore,

since MNOR is disabled thanks to the footer; hence, it can be removed, obtaining the

design presented in Figure 5.8.

75

5.3. THE SENSING SCHEME

PRE
PRE

BL D

PRE

NOR

PRE

MNOR

Figure 5.7: The modified cell.

PRE

BL D

PRE

NOR

PRE

MNOR

Figure 5.8: The final cell.

5.3 The sensing scheme

The sensing scheme adopted for the LiM array is the same of the CAM one, since it

allows to reduce the cell area, as it will be described in the following, and to compare

the CAM and LiM performance referring to the same sense amplifier.

Hence, a current race scheme is employed, together with a dummy-line sensing

scheme to reduce the energy consumption associated to the LiM operations.

5.4 The implemented cell: dynamic AND version

The cell implemented is shown in Figure 5.9.

It can be noticed how the NOR transistor (i.e. the one connected to the NOR

node) has no footer to disable it. This can represent an issue in a standard sensing

scheme, since it would prevent the NOR line to be charged during the precharge phase.

However, implementing a current-race scheme, the problem is solved: in fact, the line

is pre-discharged instead of being pre-charged and, so, there is no need for the NOR

transistor to be disabled during this phase. Hence, a transistor can be removed from

the cell, leading to a reduction in the area occupation and, also, to an improvement in

76

5.4. THE IMPLEMENTED CELL: DYNAMIC AND VERSION

PRE

BL D

NOR

PRE

1
11

1

1

Figure 5.9: The implemented cell

the sensing performance.

To summarize: during the precharge phase (PRE = ‘0’), the PMOS transistor is

enabled and charges to VDD the AND node, while the footer transistor is disabled and

prevents the AND node to be connected to ground; during the evaluation phase (PRE =

‘1’), the PMOS is disabled while the footer is enabled, so that the the AND node can be

potentially discharged according to the inputs evaluation and, so, the NOR transistor

is potentially disabled.

t

t

t

AND

PRE

NOR

Figure 5.10: Dynamic cell behavior: AND=‘1’ case.

In Figure 5.10 an AND operation in which the result is ‘1’ is presented.

During the precharge phase (PRE=‘0’), the AND output is precharged to ‘1’, while

the NOR output is predischarged to ‘0’ (current-race scheme); during the evaluation

phase (PRE=‘1’), the AND output remains charged to ‘1’ and, so, the NOR transistor

is enabled: the NOR output remains at the logic ‘0’.

In Figure 5.11, instead, an AND operation in which the result is ‘0’ is presented.

77

5.5. THE STATIC CELL

t

t

t

AND

NOR

PRE

Figure 5.11: Dynamic cell behavior: AND=‘0’ case.

Here, during the evaluation phase (PRE=‘1’), the AND output is discharged to ‘0’

and, so, the NOR transistor is disabled: hence, the NOR output is charged to the logic

‘1’.

Cell behavior

D BL D BL AND NOR

0 0 1 1 1 → 0 0 → 1

0 1 1 0 1 → 0 0 → 1

1 0 0 1 1 → 0 0 → 1

1 1 0 0 1 0

Table 5.1: Dynamic cell behavior.

In Table 5.1 the cell behavior as function of the inputs is reported.

5.5 The static cell

A CMOS static AND version of the cell presented in Figure 5.9 has been realized, in

order to compare it with the dynamic one. The schematic is shown in Figure 5.12.

78

5.5. THE STATIC CELL

DBL

D
NOR

BL
4

4

11

1

Figure 5.12: The static AND implementation.

In Figure 5.12 the transistors have been sized using the standard CMOS design rules

for static logic gates: since the two PMOS transistors are in series, an aspect ratio equal

to 4 (i.e. 4 times larger than the minimum aspect ratio) has been chosen instead of 2;

for what concerns the NMOS transistors, since only one MOSFET for pull-down path

is present, a minimum aspect ratio has been chosen.

t

t

t

AND

NOR

EN

Figure 5.13: Static cell behavior: AND=‘1’ case.

In Figure 5.13 an AND operation in which the result is ‘1’ is presented.

Here the enable signal of the sense amplifier EN is reported, since no precharge phase

is needed for the cell. When the enable signal is not active (EN=‘1’), the NOR line is

predischarged; subsequently, the sense amplifier is enabled (EN=‘0’), the AND output

is evaluated. Since AND=‘1’, the NOR transistor is enabled and the NOR line does not

get charged.

It has to be noticed that during the predischarge phase (i.e. while EN=‘1’) the

AND inputs are evaluated and, in this case, the output changes from ‘0’ to ‘1’. In

79

5.6. THE SPECIAL PURPOSE CELL

fact, as discussed in section 4.3, the inputs of the operation are provided already in

the predischarge phase, so that the bitlines drivers speed does not influence the sensing

performance.

t

t

t

AND

NOR

EN

Figure 5.14: Static cell behavior: AND=‘0’ case.

In Figure 5.14, instead, an AND operation in which the result is ‘0’ is presented.

Here AND=‘0’ and, so, the NOR transistor is disabled, allowing the line to be charged

to ‘1’.

Cell behavior

D BL D BL AND NOR

0 0 1 1 0 0 → 1

0 1 1 0 0 0 → 1

1 0 0 1 0 0 → 1

1 1 0 0 1 0

Table 5.2: Static cell behavior.

In Table 5.2 the cell behavior as function of the inputs is reported. With respect to

Table 5.1, it can be notice how the AND output is static, differently from what happens

in the dynamic cell. This is because, in this case, a static CMOS gate is implemented

instead of a dynamic one.

5.6 The special purpose cell

In section 5.2 it has been explained how the AND operation is used to select the cell

whose content has to be checked: the AND output of the unselected cells is forced to ‘0’

by providing a mask bit equal to ‘0’, while the selected cell is given in input a mask bit

80

5.6. THE SPECIAL PURPOSE CELL

equal to ‘1’; hence, to implement a full AND gate inside the cell seems to be needless

for this particular algorithm (presented in section 5.1). For this reason, one can think of

using a logic gate that allows only to select the cell on the row and to check its content,

without performing a full AND logic operation with a dedicated gate. This has been

done in the cell shown in Figure 5.15.

D

BL

NOR

2

2

Figure 5.15: The special-purpose cell.

In this implementation, the cell is selected by setting BL=‘1’, while it is unselected

by setting BL=‘0’. In this way, the unselected cells on the row are unable to discharge

the NOR line, since their footer transistor is disabled, and the result of the operation is

completely determined by the selected cell content.

Referring to the current-race sensing scheme, the content-check operation (called

AND operation in analogy with the previous cells) is performed in the following way:

• the cell stores a logic ‘1’ (D=‘0’): the pull-down path of the cell is disabled and

the NOR line is charged to VDD: a logic ‘1’ is registered as result.

• the cell stores a logic ‘0’ (D=‘1’): the pull-down path is enabled and the NOR line

is not charged: a logic ‘0’ is registered as result.

From the previous observations it may be deduced that the NOR line actually be-

haves like an OR line: when the cell content is equal to ‘0’, the line remains at ‘0’; when

the cell content is equal to ‘1’, the line is charged to ‘1’. Hence, there is no need for

the inverting stage at the end of the row shown in Figure 5.6. However, the inverting

stage is not needed in any case: registering a NOR or an OR result makes no difference

as long as the logic around the array, that gets the results and handles the maximum

search list, knows which kind of result is provided (i.e. if the result is a NOR, it will be

potentially inverted inside the logic block).

In Figure 5.16 the waveforms of an AND operation in which the result is ‘1’, are

shown.

Differently from the static and dynamic cells cases, no intermediate AND output is

reported, since the cell is made by a single stage; instead, the cell inputs, the negated

cell content D and the bitline value BL, are shown. Hence, the result of the AND to be

considered is the one of the logic operation D · BL.

81

5.6. THE SPECIAL PURPOSE CELL

t

t

t

BL

NOR

EN

D

Figure 5.16: Special-purpose cell behavior: AND=‘1’ case.

The cell is selected at the beginning of the predischarge phase by setting BL=‘1’. In

the case reported in Figure 5.16, the cell content D is equal to ‘1’ (hence D=‘0’) and,

so, the NOR line is charged to ‘1’. As stated before, on the NOR line the actual AND

result (i.e. D · BL) is reported and, so, this behaves as an OR line, in practice.

t

t

t

BL

NOR

EN

D

Figure 5.17: Special-purpose cell behavior: AND=‘0’ case.

In Figure 5.17, instead, the cell content is equal to ‘0’ (hence D=‘1’). Hence, the

pull-down path is enabled and the NOR line is not charged.

In Table 5.3 the cell behavior as function of the inputs is reported. It can be noticed

how the cell content is evaluated only when BL=‘1’, otherwise the pull-down path of

82

5.7. COMPARISON BETWEEN THE CELLS

Cell behavior

D BL D D · BL NOR

0 1 1 0 0

1 1 1 1 0 → 1

- 0 - - 0 → 1

Table 5.3: Special-purpose cell behavior.

the cell is always disabled and, so, the NOR line is always charged.

When BL=‘1’, the result of the AND operation (in practice, the cell content since

BL=‘1’) is reported in output

5.7 Comparison between the cells

In the following, the complete cell designs are reported.

D D

ML

BL BL

PRE

NOR

2 2

22

1

1

1

1

(a) Dynamic cell.

D D

ML

BL BL

NOR

4

2

2

4

2

1 1

2

1

(b) Static cell.

D D

ML

BL BL

NOR

2

2

2 2

2

2

(c) Special-purpose cell.

Figure 5.18: The complete cells.

Transistors area

Adynamic Astatic ASP

5 ·Amin 11 ·Amin 4 ·Amin

(a) Transistors area for each cell.

Number of transistors per cell

Dynamic Static Special-purpose

4 5 2

(b) Number of transistors in each cell.

Table 5.4: Comparison of the cells.

To determine the area of each cell, the area occupied by each transistor has been

considered. The area of a minimum transistor (i.e. with aspect ratio equal to 1) is

referred to as Amin:

Amin = W · L

where W and L are the minimum transistor width and length.

83

5.7. COMPARISON BETWEEN THE CELLS

Since the channel length L is fixed for every transistor, the increase in the area with

respect to Amin is equal to the increase in the width W : for example, a transistor with

aspect ratio equal to 2 (i.e. with a width twice as larger than the minimum one) is

characterized by an area equal to 2 ·Amin.

For each transistor, the area is computed in this way and the areas are summed up

to estimate the cell one. The results are reported in Table 5.4a. For example, the static

cell area is obtained in the following way:

Astatic = (4 + 4 + 1 + 1 + 1) ·Amin

Astatic = 11 ·Amin

In Table 5.4a the transistor areas of the three proposed cells are compared; only

the transistors associated to the LiM functionality of the cells are considered, since the

SRAM and CAM core is the same for the three cells.

It can be noticed how the cell area is larger in the static implementation than in the

dynamic one, as it happens in standard logic gates. However, the dynamic implementa-

tion leads to increased dynamic power consumption, since dynamic logic is characterized

by a switching activity larger than the static one, and it requires an additional signal

PRE to be distributed on each row of the array to the cells.

As expected, the special-purpose cell is the one with the lower area, even if with a

small margin with respect the dynamic one; however, one has to take into account that

the number of transistors in the dynamic cell is doubled with respect the special-purpose

one (Table 5.4b) and, so, the interconnections overhead probably leads to a larger area

occupation for the dynamic cell.

Another characteristic that differentiates these cells from each other is their ca-

pacitive load on the bitlines: the more complex the cell is, the larger the number of

transistors connected to the bitlines is and, so, the slower the bitlines operation will be.

In fact, the larger the bitlines capacitance is, the larger will be the delay associated to

write and read operations.

Cd/s

Cd/s

Cgate

Figure 5.19: Parasitic capacitances of a MOSFET

The parasitic load associated to the cell can be taken into account in a numerical

way considering the parasitic capacitances of the transistors connected to each bitline.

84

5.7. COMPARISON BETWEEN THE CELLS

Defining with Cd/s the drain/source capacitance and with Cgate the gate capacitance of

a minimally sized transistor, these parameters can be easily estimated for an arbitrary

sized MOSFET.

For simplicity, no difference is made for PMOSFETs and NMOSFETs in the parasitic

approximation, since this is a very approximated model. These parasitics are shown in

Figure 5.19.

In non-minimum transistors, the parasitic capacitances values have to be multiplied

by the aspect ratio, since the capacitance is directly proportional to the transistor width

(in particular, to its area that, since all the transistors are characterized by the same

length, coincides with the width). For example, the parasitic capacitances of a transistor

with aspect ratio equal to 2 are given by 2 ·Cs/d and 2 ·Cgate. Following this principle,

a the parasitic capacitances on the bitlines for each cell can be derived.

Referring to the cells schematics shown in Figure 5.21, the parasitic capacitance asso-

ciated to each bitline have been derived and they are shown in Table 5.5. A comparison

is made between the values in Figure 5.20, in which the capacitance has been normalized

with respect to Cgate, assuming Cd/s =
Cgate

3 , which is an usual approximation.

Parasitic capacitances

Cell BL BL

SRAM 2 · Cs/d 2 · Cs/d

CAM 2 · Cs/d + 2 · Cgate 2 · Cs/d + 2 · Cgate

Dynamic 2 · Cs/d + 2 · Cgate 2 · Cs/d + 3 · Cgate

Static 2 · Cs/d + 2 · Cgate 2 · Cs/d + 7 · Cgate

SP 2 · Cs/d + 4 · Cgate 2 · Cs/d + 2 · Cgate

Table 5.5: Parasitic capacitance comparison among the cells.

In Figure 5.20 it can be noticed how the dynamic (DYN) and static (STAT) cells have

the same influence on the bitline BL as the CAM one: this is due to the fact that all the

AND transistors are connected to BL, as it can be observed in the dedicated column.

As expected, the most complex cell, the static one, is also the one with the larger

parasitic capacitance associated. The most simple cell, the special-purpose (SP), is

characterized by a bitline capacitance larger than the dynamic one: this is due to the

fact that the special-purpose cell has a MOSFET with aspect ratio equal to 2 connected

to BL (Figure 5.18), while the dynamic cell has a transistor with aspect ratio 1 connected

to BL.

It can be noticed how the static implementation has a larger capacitive load with

respect the dynamic one, since it has more and larger transistors connected to BL: while

in the static cell two transistors are connected to BL, one of which is sized with an aspect

ratio equal to 4, in the dynamic cell only one minimum transistor is present.

85

5.7. COMPARISON BETWEEN THE CELLS

SRAM CAM DYN STAT SP
0

1

2

3

4

5

6

7

8

No
rm

al
ize

d
ca

pa
cit

an
ce

Capacitance associated to bitlines for each cell
BL
BLn

Figure 5.20: Parasitic capacitance comparison among the cells.

86

5.7. COMPARISON BETWEEN THE CELLS

SRAM

CAM

LiM-DYN

LiM-STAT

BL BL

LiM-DYN

2

1

2

2

2

2

1

2

2

2

2

2

4

2

2

2

2

2

22

2

2

Figure 5.21: Capacitive load on bitlines of the cells.

87

5.8. TESTBENCH

5.8 Testbench

The testbench has been derived in a way similar to the CAM architecture, as it will be

described in the following.

5.8.1 Testbench circuit

BL drivers

SA

WL driver

Array

MLSA

LiMSASlowest for search

Slowest for read and write

and logic

Figure 5.22: The testbench circuit.

In Figure 5.22 the testbench circuit is shown. As in the CAM architecture, the first

cell on the first row and column is used to test the logic operations performance, since

it is the most distant one from the sense amplifier input, which is put on the right of

the array.

The rest of the driver and sensing circuits are arranged as in the CAM architecture.

5.8.2 The sensing scheme

As explained in section 5.3, the same sensing scheme of the CAM architecture has been

adopted, using dummy lines to limit the energy consumption of the memory operations.

For each cell, the correspondent dummy cell has been derived and arranged in a

dummy line. The resulting cell schematics are shown in Figure 5.23.

Since the sense amplifier topology implemented for each cell is the same, the same

dummy-line scheme as been adopted, following the one presented in section 4.4.

An unique dummy row is used for both CAM and LiM sensing. Considering the case

of the dynamic cell, the dummy cell of this line is shown in Figure 5.24.

In each cell of the dummy line, there is a part dedicated to the LiM sensing and a

part dedicated to the CAM sensing, as it happen in the array cells. In this way, only

one additional row in the array is needed, resulting in a reduced area overhead.

88

5.8. TESTBENCH

NOR

1

(a) Dynamic and static dummy cell.

NOR

2

2

(b) Special-purpose dummy cell.

Figure 5.23: The dummy cells.

AND

ML

Figure 5.24: Cell of the dummy line.

For what concerns the sense amplifier, the same topology adopted in Figure 4.2 is

used. Since this is a non inverting topology, the signal sensed on the line is simply

amplified, without being inverted.

The adoption of the same sense amplifier topology for all the LiM cells leads to a

different behavior between the dynamic and static cells, and the special-purpose one, as

it is explained in the following.

For simplicity, the line to which the cells on a row are connected will be called “AND

line” from now on.

AND

D0 D1 D2

BL0 BL1 BL2

Figure 5.25: The AND line with the special-purpose cell.

In Figure 5.25 an AND line with special-purpose cell logic models is shown. The

NAND gate reported is a dynamic gate: when its output is equal to ‘1’, it behaves like a

89

5.8. TESTBENCH

tristate driver and, so, its output is floating, allowing the line to remain charged; when

its output is equal to ‘0’, it discharges the line.

The equivalent line equation is the following

AND = (D0 · BL1) · (D1 · BL1) · (D2 · BL2)

From the equation it can be deduced that as soon as one of the NAND outputs is

equal to ‘0’, the line is brought to ‘0’, and only in the case in which all three of the

outputs are equal to ‘1’, the line remains charged.

To select a cell, one has to set BL=‘1’, while to disable it one forces BL=‘0’. In fact,

the output of a NAND is equal to ‘1’ if at least one of its inputs is equal to ‘0’; hence,

to disable a dynamic NAND gate it is enough to set one of its inputs (in this case BL)

to ‘0’.

Consider the case in which only the cell D0 is selected (hence BL0=‘1’ and BL1,2=‘0’).

A two-inputs NAND gate with one of the inputs fixed to ‘1’ behaves as a logic inverter:

hence, on its output and, so, on the AND line the cell content D0 is reported; hence,

the result on the AND line coincides with the result of the cell internal AND operation.

From a logic point of view, it happens the following thing:

AND = (D0 · 1) · (D1 · 0) · (D2 · 0)

→ AND = D0 · 0 · 0

→ AND = D0 · 1 · 1

→ AND = D0

AND

D0 D1 D2BL0 BL1 BL2

‘0’

Figure 5.26: The AND line with the dynamic and static cells.

In Figure 5.26 the same line but with the dynamic and static cells models is reported.

In this case, all the gates behaves like standard static ones.

As in the previous case, a cell in unselected by setting BL=‘0’: in this way, the

corresponding AND output is set to ‘0’ and, so, the associated NOR result depends only

on the other input. In fact, a NOR gate with an input equal to ‘0’ behaves like a logic

inverter.

90

5.8. TESTBENCH

The first cell NOR has a ‘0’ on the other input because there is no other cell before

it. This situation can be represented by setting the correspondent input to ‘0’, so that

the output of the NOR is not determined by it.

The line equivalent equation is the following:

AND = 0 + D0 · BL0 + D1 · BL1 + D2 · BL2

Considering the same case as before (BL0=‘1’ and BL1,2=‘0’), the AND value de-

pends only on the value of D0, since all the other cells are disabled. In particular, the

inverted D0 is reported on the line, as it can be deduced by analyzing the line equation:

AND = 0 + D0 · 1 + D1 · 0 + D2 · 0

→ AND = 0 + D0 + 0 + 0

→ AND = D0

In conclusion: in the special-purpose cell case, the cell content is reported on the

AND line; in the static and dynamic cells cases, the inverted cell content is reported.

5.8.3 Python code

For each of the cell types, a specific Python code has been developed for the simulations,

which are presented in the following.

Dynamic cell

'EnableANDSAn ': {'file_pointer ': None , 'value': Vdd , 'default_value ':
Vdd},

'PrechargeAND_n ': {'file_pointer ': None , 'value ': Vdd , 'default_value ':
Vdd}

Here the signals of the testbench are presented. For the sake of clarity, only the new

ones are shown.

With respect to the CAM architecture, two input signals have been introduced:

EnableANDSAn, used to enable the NOR line sense amplifier; PrechargeAND n, used to

precharge the dynamic AND gates outputs before the AND evaluation.

38 # Operations to simulate.

operations = ("Write_1", #0

40 "MLSAPredischarge_1", #1

"Search_1", #2

42 "MLSAPredischarge_0", #3

"Search_0", #4

44 "ANDPredischarge", #5

91

5.8. TESTBENCH

"AND", #6

46 "ANDPredischarge_disable", #7

"AND_disable", #8

48 "Idle", #9

"Write_0", #10

50 "Idle", #11

"MLSAPredischarge_1", #12

52 "Search_1", #13

"MLSAPredischarge_0", #14

54 "Search_0", #15

"ANDPredischarge", #16

56 "AND", #17

"ANDPredischarge_disable", #18

58 "AND_disable", #19

"Idle", #20

60 "TestWriteSpeed1", #21

"Precharge_cycle", #22

62 "Read", #23

"Idle", #24

64 "TestWriteSpeed0", #25

"Precharge_cycle", #26

66 "Read") #27

Here the operations simulated are shown. First, the cells are written to logic ‘1’

(#0); second, the CAM functionality is tested (#1 to #4); third, the LiM functionality

is tested (#5 to #8). In the LiM operations testing, two operations are used: AND and

AND disabled.

elif operation == "AND":

144 signals['BLnFirstCol ']['value '] = 0

signals['EnableANDSAn ']['value '] = 0

In AND, the proper AND operation is tested: the mask bit of the selected cell is set

to ‘1’ while all the other bits are set to ‘0’. In the code presented above, the BL is set to

‘0’, while all the other bitlines (BL in first column and both bitlines in the last column)

are set to ‘1’ (default value for the bitlines). In fact, only the bitline BL controls the

AND operation in the dynamic and static cells and, so, there is no need to change the

value of both bitlines.

elif operation == "AND_disable":

148 signals['BLnFirstCol ']['value '] = Vdd

signals['EnableANDSAn ']['value '] = 0

In AND disabled, instead, all the mask bits are set to ‘0’ in order to check the proper

behavior of the LiM logic and sensing scheme. In the code above the BL is set to ‘1’ in

order to disable the cell. This is made explicitly in the code even if not needed only for

the sake of clarity: in fact, the bitlines default value is ‘1’.

This set operation is tested again after having written a ‘0’ to the cells (#10 to #19);

92

5.8. TESTBENCH

after this, the read and write operations performance are tested (#21 to #27).

Static cell

With respect to the dynamic cell test code, only the PrechargeAND n signal is omitted,

since no cell internal precharge is needed in the static implementation. The rest of the

code, however, is identical.

Special-purpose cell

With respect the dynamic cell code, also here the PrechargeAND n signal is omitted

for the same reason explained before, and some changes are made to the AND and

AND disable operations.

146 elif operation == "AND":

signals['BLFirstCol ']['value '] = Vdd

148 signals['BLLastCol ']['value'] = 0

signals['EnableANDSAn ']['value '] = 0

In the AND operation, since in the special-purpose cell the AND is connected to the

bitline BL (Figure 5.15), the value of this has to be modified; in particular, its active

value for the AND operation is equal to ‘1’ and, so, this has to be set on the first column.

The other cells, instead, are deselected by forcing their BL to ‘0’.

elif operation == "AND_disable":

152 signals['BLFirstCol ']['value '] = 0

signals['BLLastCol ']['value'] = 0

154 signals['EnableANDSAn ']['value '] = 0

In the AND disable operation, all the cells are deselected by setting their BL to ‘0’.

5.8.4 Cadence Virtuoso schematic

A schematic very similar to the one presented in Figure 3.16 has been derived for the LiM

array testing, using the same design flow; first, the cell and sense amplifier topologies

have been produced in Virtuoso; second, a 8 bits column has been derived and used to

obtain a 8x8 array; this, after being tested to tune the design characteristics, has been

used to derive larger arrays (16x16 and 32x32).

5.8.5 Waveforms

In the following, the simulation waveforms for the three array types are reported.

It can be noticed how in Figure 5.29 an opposite behavior with respect to Figure 5.28

and Figure 5.27 is obtained for ANDOut, which represents the AND line voltage, and,

consequently, ANDSAO, which is the LiM sense amplifier output. The reason of this has

been explained in section 5.3.

93

5.8. TESTBENCH

0

1
Vo

lta
ge

 [V
]

DataFirstCol

0

1

Vo
lta

ge
 [V

]

BLFirstCol
BLnFirstCol

0

1

Vo
lta

ge
 [V

]

PrechargeAND_n
EnableANDSAn

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [ns]

0

1

Vo
lta

ge
 [V

]

ANDSAO
ANDOut

Figure 5.27: Dynamic cell waveforms.

0

1

Vo
lta

ge
 [V

]

DataFirstCol

0

1

Vo
lta

ge
 [V

]

BLFirstCol
BLnFirstCol

0

1

Vo
lta

ge
 [V

]

EnableANDSAn

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [ns]

0

1

Vo
lta

ge
 [V

]

ANDSAO
ANDOut

Figure 5.28: Static cell waveforms.

94

5.8. TESTBENCH

0

1

Vo
lta

ge
 [V

]

DataFirstCol

0

1

Vo
lta

ge
 [V

]

BLFirstCol
BLnFirstCol

0

1

Vo
lta

ge
 [V

]

EnableANDSAn

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [ns]

0

1

Vo
lta

ge
 [V

]

ANDSAO
ANDOut

Figure 5.29: Special-purpose cell waveforms.

95

Chapter 6

ALiAS

Awesome LiM Arrays Synthesizer

In this chapter, the ALiAS tool (Analog Logic-in-Memory Arrays Synthesizer) is

presented. This program synthesizes the SPECTRE (SPICE proprietary language of

Cadence) netlist of a memory array, simulates the netlist in Cadence Virtuoso (SPEC-

TRE simulator) and extracts from the simulation performance and energy consumption

of the array, saving the results in proper files formats.

As of today, the accepted array types are:

• the model of a SRAM array.

• the model of a CAM array.

• the model of the LiM array presented in chapter 5, implementing the three cell

types.

The tool code has been realized using the Bash and Python languages.

6.1 Design flow

96

6.1. DESIGN FLOW

C
om

po
ne

nt
s

ne
tli

st
s

A
rr

ay
 c

ho
ic

e

D
at

a

A
rr

ay
 s

iz
e

C
lo

ck
 p

er
io

d

Id
ea

l d
riv

er
s

T
hr

ea
ds

 n
um

be
r

N
et

lis
t g

en
er

at
or

(B

as
h)

S
im

ul
at

io
n

sc
rip

t
ge

ne
ra

to
r

(B
as

h)

In
pu

ts
 g

en
er

at
or

(P

yt
ho

n)

S
P

E
C

T
R

E
R

es
ul

ts
 e

xt
ra

ct
io

n
(O

C
E

A
N

 +
 P

yt
ho

n)
E

ne
rg

y
an

d
pe

rf
or

m
an

ce

(C
S

V,
 b

ar
 d

ia
gr

am
as

, t
xt

)

F
ig

u
re

6.
1:

D
es

ig
n

fl
ow

.

97

6.1. DESIGN FLOW

In Figure 6.1, the tool design flow is shown. On the left of the scheme, inside the

grey box, the inputs of the tool are presented:

• Array size: provided by the user in form of height and width of the array to be

generated.

• Ideal drivers: the user gets to choose if real drivers have to be instantiated

inside the testbench, in order to take into account their non idealities. The drivers

instantiated are the ones presented in section 3.2 and they are automatically de-

signed by the tool.

• Components netlists: these are the netlists of the fundamental components that

characterize the array architecture, such as sense amplifier and memory cell topolo-

gies. These have to be generated by the designer and included in the tool. In fact,

being custom components, they cannot be automatically generated, since their

circuits are highly dependent on the architecture type (i.e. logic operations im-

plemented in the array). Of course, the code has to be rearranged for new array

types to be generated.

• Threads number: Cadence Virtuoso allows to choose the number of CPU threads

to be assigned to the simulation. The number of threads to be used is set to a

default value of 4, which can be modified by the user when the program is launched.

• Array choice: the kind of array to be generated.

• Clock period: the clock period of the simulation, which default value is 1 ns.

This value can be increased so that particularly large (hence slow) arrays can be

correctly simulated.

The user choices are then provided to three code blocks:

• Netlist generator: this is a block that, given the array type, its size and the

user options, generates the netlist of the array and the corresponding testbench.

• Simulation script generator: this block generates the OCEAN (scripting lan-

guage for Cadence Virtuoso) script that handles the simulation of the testbench

and the results extraction, starting from the array type, the number of threads to

be assigned to the simulation and the clock period of the latter.

• Input waveforms generator: this is a block written in Python that generates

the input stimuli for the testbench according to the chosen array type and clock

period.

Then, the resulting testbench is simulated using the Cadence SPECTRE simula-

tor and the performance and energy consumption of the array are extracted using an

OCEAN script generated by the tool.

98

6.1. DESIGN FLOW

At the end, the results are organized using proper file formats inside the results

directory provided by the user:

• a plain text file for the energy and delay measurements.

• CSV files for the waveforms generated in the simulation.

• bar diagrams that can be used to compare the performance and energy consump-

tion of the memory operations.

resultsDirectory

waveformsCSV generatedNetlists results.txt

delay.png

power-consumption.png

netlist psf

netlist.scs

Figure 6.2: The results directory structure.

In Figure 6.2 the results directory structure generated after during a simulation is

reported with all the files and directories generated by ALiAS:

• waveformsCSV: this directory contains the CSV files of the testbench waveforms

generated during the simulation.

• generatedNetlists: here the netlist files generated by the tool are saved.

• netlist: this is the working directory of the SPECTRE simulator. Here the

testbench netlist, called netlist.scs, is stored, together with the files used by

SPECTRE to perform the simulation.

• psf: here the results files generated by SPECTRE are stored.

• results.txt: in this file the delay and energy consumption values of each memory

operation are saved.

• delay.png: this is a bar diagram generated in Python starting from the results.txt

file, where the operations performance are compared.

• power-consumption.png; this is another bar diagram generated in Python in

which the power consumptions of the memory operations are compared. Also this

file is generated from results.txt.

99

6.2. THE TOOL STRUCTURE

6.2 The tool structure

mainscript generator

simulation settings

measurements

design variables

input stimuli
generator

netlist generator

sensing

testbench

array

drivers

Figure 6.3: Program structure

The program structure is presented in Figure 6.3.

As stated before, the program is made by three main blocks: the netlist generator,

the script generator and the input stimuli generator. Each of these blocks will

be analyzed in detail in the following, using as as guiding example the LiM array that

implements the special-purpose cell (section 5.6).

6.2.1 Netlist generator

The netlist generator produces the netlists of the drivers, array, testbench and sens-

ing circuitry (dummy rows, delay circuits etc.).

The testbench architecture

In order to properly analyze the code structure, it is better to have in mind the testbench

circuit organization, which is shown in Figure 6.4.

The complete array is substituted with a simplified model which is equivalent from

a performance point of view.

Since all the memory operations are tested on only one row, as discussed in the

previous chapters, only this is instantiated inside the testbench, together with a memory

column.

The row is not a standard one: this is made by real cells , which circuit is shown in

Figure 6.5, that are put at the ends of the row, and by dummy ones that are placed in

between these.

A real cell is instantiated on the first column (beginning of the row) and it is used

to test the performance of the logic operations, such as the CAM search operation and

the LiM AND operation. This position is used since it is the farthest one from the

match-line and AND-line sense amplifiers inputs, as discussed in section 4.6, that are

put next to the last column, as shown in Figure 6.4.

100

6.2. THE TOOL STRUCTURE

Cell CellDummy

Dummy

Dummy

W
L

d
ri

ve
r

BL driver and SA

MLSA

ANDSA

BL precharge

BL driver

Write & read

Logic

Figure 6.4: The array model.

Another real cell is placed at the end of the row (last column) and it is used to

evaluate the performance of the write and read operations. This position is chosen since

it is the farthest one from the wordline and bitline drivers and the read sense amplifier,

as discussed in section 4.6.

In Figure 6.5, the complete schematic of the cell is shown. It can be noticed how,

for each pin of the cell, a RC circuit has been employed to mimic the interconnections

parasitic parameters. Hence, each pin of the cell has been divided in an input and an

output ones, with the RC circuit in between.

From this schematic, the dummy cells topologies are derived.

The dummy-row cells are not proper memory cells: they are used only to take into

account the row size in the performance measurements, which means that inside these

cells only the transistors connected to the row signals, such as the wordline, the match-

line and the AND-line, are present, while the others are removed. Simplifying the cell

circuit, the simulation complexity is reduced and the resulting performance results are

really similar to the ones that one would obtain using a complete array.

The circuit of a dummy row cell is shown in Figure 6.6.

In Figure 6.6, for each row signal the corresponding transistors are instantiated,

together with a RC circuit that takes into account the parasitics of the metal line and,

hence, separates the input of each cell from the output:

101

6.2. THE TOOL STRUCTURE

BLTop

WLIn

BLnTop

BLBottom BLnBottom

WLOut

MLOut

ANDOut

MLIn

ANDIn

Figure 6.5: Special-purpose LiM cell.

• for the wordline, the pass-transistors of the cell are left in order to take into account

the influence of their gate capacitance on the line operation.

• for the match-line, the CAM pull-down paths are instantiated, since these slow

down the line operation with their drain capacitance and represent a contribution

to the leakage of the line with their subthreshold current. Of course, the pull-down

paths are disabled by properly choosing the transistors gate potentials, since the

dummy cells must have no influence on the logic operation executed on the ML

apart from their parasitic contribution.

• for the AND line, the transistors of the logic part of the cell are employed in order

to take into account their drain capacitance and their leakage. As in the match-

line case, the pull-down path is disabled by properly choosing the gate voltages of

the transistors.

102

6.2. THE TOOL STRUCTURE

WLIn WLOut

MLOutMLIn

ANDOutANDIn

Figure 6.6: The dummy-row cell.

Since the cell on the last column is used to test the write and read operations, its

distance from the bitline drivers and sense amplifier has to be taken into account: this

is accomplished by including a memory column in the testbench, made by dummy cells

designed in a way similar to the dummy-row ones, as shown in Figure 6.4.

The schematic of a dummy-column cell is shown in Figure 6.7:

• for the SRAM part, the pass-transistors are instantiated since they slow down the

bitlines operation with their drain capacitance. Also, a partial replica of the cell

SRAM core is reported in order to take into account the leakage current absorbed

from/injected in the bitlines by the unselected rows. This replica emulates a cell

that stores a logic ‘1’, since a pull-up transistor is added on the BL side and a

pull-down one is put on the BL side.

• for the CAM part, the pull-down transistors connected to the bitlines are instan-

tiated in order to take into account their gate capacitance.

• for the LiM part, the pull-down transistor connected to BL is employed to take

into account its gate capacitance.

In Figure 6.4 other memory blocks are shown:

• the last column bitline drivers, that are used to test the write operation, which

circuit is shown in Figure 3.2.

103

6.2. THE TOOL STRUCTURE

SRAM

CAM

LiM

BLnBottomBLBottom

BLnTopBLTop

Figure 6.7: The dummy-column cell.

• the last column sense amplifier, used to test the read operation, which circuit is

shown in Figure 3.5.

• the last column precharge circuit, which circuit is shown in Figure 3.3, used for

the read operation.

• the wordline driver, used to test both write and read operations, which circuit is

shown in Figure 3.4.

• the MLSA and ANDSA, which are the sense amplifiers used for the search and

AND operations, which circuit is shown in Figure 4.2.

In Figure 6.4 only one MLSA and one ANDSA are shown; however, in a real memory

array one sense amplifier per line (AND line and match-line) and row is needed. The

number of rows and, so, of sense amplifiers has an influence on the performance and

power consumption of the array: in fact, in the dummy-line sensing scheme, the dummy

sense amplifier has to drive all the other SAs enable signal in order to disable them.

This results in an increase in the delay associated to the dummy sense amplifier output

and, so, in a larger energy consumption, since the real SAs are disabled after a larger

time interval. In fact, all the sense amplifiers current generators are disabled as soon

104

6.2. THE TOOL STRUCTURE

as their enable signal changes value: hence, the longer the time interval needed for this

to happen, the larger will be the conduction time of the sense amplifiers and, so, the

associated energy consumption.

This has to be taken into account in the array model presented. In order to do it,

dummy loads have to be instantiated for the dummy SAs, which take the place of the

missing sense amplifiers.

Dummy line

Dummy MLSA

Dummy ANDSA

MLSA

ANDSA

Dummy load

Dummy load

Figure 6.8: The dummy load scheme.

As previously explained, in the instantiated testbench each dummy sense amplifier

has to drive only one sense amplifier of the same kind: the dummy MLSA drives the

real MLSA and the dummy ANDSA drives the real ANDSA. However, in a real array

the dummy sense amplifier should drive a number of amplifiers equal to the number of

rows of the array, since one SA is instantiated for each row. To take into account this,

a dummy load is attached to the output of each dummy SA, as shown in Figure 6.8.

As it has been shown in section 4.4, each real sense amplifier contains an OR gate

that is driven by the system enable signal and the dummy SA. Hence, the load seen by

the dummy sense amplifier for each SA that it drives, is made by an OR gate. For this

reason, the dummy load used to emulate the presence of the remaining sense amplifiers is

made by input sections of OR gates all connected in parallel, as it is shown in Figure 6.9.

The number of OR gates is equal to the number of rows in the array (i.e. the array

gate).

The OR gates used for the dummy load are not full CMOS logic circuits: only

the transistors connected to one of the inputs are used, in order to minimize the area

occupied by the load and to prevent unnecessary switching activity in these gates. The

OR gate internals are shown in Figure 6.9.

105

6.2. THE TOOL STRUCTURE

Dummy load

1

4

Figure 6.9: The dummy load.

The code structure

In Figure 6.10 the netlist generator code structure is shown, using different colors

to indicate different file types: cyan for the directories, blue for Bash files, red for

SPECTRE netlists.

For each array type, a dedicated directory is created, which contains the Bash files

that generate the corresponding netlists. As stated before, only the LiM array is con-

sidered in this analysis for simplicity.

Hence, the netslist generator structure is the following:

• arrayGenerator.sh creates the array netlist.

• dummyLineGenerator.sh creates the dummy row used to implement the dummy-

line sensing scheme.

• TBGenerator.sh produces the testbench netlist, instantiating all the blocks gen-

erated by the tool and the signal generators that provide the input stimuli to the

circuit.

• main.sh generates the final netlist that is provided to the simulator by organizing

in an unique file the netlists produced by the scripts.

A directory called Common is used to store the Bash files that generate the mem-

ory blocks common to all the array types, such as the bitline and wordline drivers

(BLDriverGenerator.sh and WLDriverGenerator.sh), the block that generates the

delay for the enable signal of the sense amplifier used to read the memory content dis-

cussed in section 3.3 (SADelayGenerator.sh) and the Bash functions used to instantiate

each of the memory blocks in the testbench netlists (componentsFunctions.sh).

106

6.2. THE TOOL STRUCTURE

netlistGenerators

LiMModel Common netlistFiles

main.sh

arrayGenerator.sh

TBGenerator.sh

dummyLineGenerator.sh

BLDriverGenerator.sh

dummySALoadGenerator.sh

SADelayGenerator.sh

WLDriverGenerator.sh

componentsFunctions.sh

LiM Common

Cell.scs

DummyRowCell.scs

DummyColCell.scs

ANDSA.scs

DummyANDSA.scs

MLSA.scs

DummyMLSA.scs

DummySALoad.scs

BLPrechCircuit.scs

SA.scs

Inverter_xN.scs

Tristate_xN.scs

MOSFET.scs

Figure 6.10: Netlist generator block.

In the directory netlistFiles, the SPECTRE netlists of the by-hand designed

components are contained. For every array type, specific netlists are dedicated, which

are stored in apposite directories. For the LiM case:

• Cell.scs: the memory cell, shown in Figure 6.5.

• DummyColCell.scs, DummyRowCell.scs: the dummy column and row cells, shown

107

6.2. THE TOOL STRUCTURE

in Figure 6.7 and Figure 6.6 respectively.

• ANDSA.scs: the AND line sense amplifier (LiM).

• DummyANDSA.scs: the dummy AND line sense amplifier, used to implement the

dummy line sensing scheme.

• MSLA.scs: the ML sense amplifier (CAM).

• DummyMLSA.scs: the dummy MLSA.

• DummySALoad.scs: the load of the dummy MLSA and ANDSA. This is the netlist

of a single OR gate, like the one presented in Figure 6.9.

In the directory Common the netlists of the blocks common to all the array types are

stored:

• BLPrechCircuit.scs: the circuit used to precharge and equalize the bitlines be-

fore a read operation.

• SA.scs: the sense amplifier used to read the memory content.

• Inverter xN: a standard CMOS inverter which driving strength (i.e. aspect ratio)

can be choosen arbitrarily when instantiated. It is a parametric block used to

realize the drivers.

• Tristate xN: a standard CMOS tristate inverter. As in Inverter xN.scs, also

for this component the driving strength can be chosen arbitrarily. This circuit is

used for the output section of the bitline drivers.

• MOSFET.scs: the netlist of the MOSFET model.

WL driver generator algorithm

The WLDriverGenerator.sh script generates the netlist of the wordline driver using as

input parameter the array width. The larger is the row width, the stronger (from a

driving point of view) the wordline driver has to be, which means that many inverter

stages have to be instantiated in the driver chain.

The algorithm, whose flowchart is shown in Figure 6.11, starts from the base case of

an array whose width is equal to 8 bits. At the beginning of the execution, the aspect

ratio for the inverters to be placed in the driving chain, W/L, is chosen equal to 1 and

an input inverter is placed:

W/L=1

place input inverter

108

6.2. THE TOOL STRUCTURE

start WLDriver

Yes

No

arrayWidth==8
W/L=2

place output inverter
end WLDriver

W/L=W/L*2
width=16

place inverter

Yes

No

width >=
arrayWidth

W/L=1
place input inverter

place inverter place output inverter

Yes

No

width >=
arrayWidth place inverter

W/L=W/L*2
place output inverter

place inverter

W/L=W/L*2
place inverter

W/L=W/L*2
width=width*2

width=width*2

Figure 6.11: Wordline driver synthesis algorithm.

109

6.2. THE TOOL STRUCTURE

Then, the array width is checked: if this is equal to 8 (arrayWidth == 8, base case),

the inverter aspect ratio is doubled and the output inverter is instantiated:

W/L=2

place output inverter

After this, the synthesis is ended (end WLDriver).

If the array width is not equal to 8, the synthesis loop is started: a parameter width,

that represented the array hypothesized array width, is defined and initialized to 16 bits,

W/L is doubled and an inverter is instantiated:

W/L=W/L*2

width=16

place inverter

Then, it is checked if the array width is lower than or equal to the hypothesized one

(width >= arrayWidth): if it is, an output inverter chain is placed and the synthesis is

ended:

place inverter

place output inverter

If it is not, the width is doubled and the previous check is repeated: if now the the

array width is lower than or equal to width, an output inverter chain (i.e. two inverters

in series) is placed, but with the last inverter characterized by and aspect ratio doubled

with respect to the previous one:

place inverter

W/L=W/L*2

place output inverter

and the synthesis is ended.

If the check gives a false result (i.e. the array width is still larger than width), an

inverter sequence is placed, in which the last inverter has an aspect ratio doubled with

respect the previous one:

110

6.2. THE TOOL STRUCTURE

place inverter

W/L=W/L*2

place inverter

Then, the design aspect ratio is doubled (W/L=W/L*2) in order to increase the driver

chain strength, together with the hypothesized array width (width=width*2), and the

loop starts again. The synthesis process ends as soon as width is larger than or equal

to the array actual width.

The SPECTRE syntax

Before analyzing the code, it is better to take a look at the SPECTRE syntax.

In SPECTRE, a component is called “subcircuit” and it is identified by the subckt

keyword. The syntax to define a subcircuit is the following:

subckt componentName pins

// Component body

ends componentName

The subckt is followed by the component name, decided by the user, and the pins

list of the component. Then, in the component body the circuit is defined.

For example, suppose that a driver made by a chain of four equally sized inverters

has to be instantiated. This driver has a In pin and a Out pin. A possible component

netlist could be the following:

subckt Driver In Out

Inverter_1 In net1 Inverter

Inverter_2 net1 net2 Inverter

Inverter_3 net2 net3 Inverter

Inverter_4 net3 Out Inverter

ends Driver

In the component, four inverters are instantiated. These inverters are subcircuits

previously defined somewhere in the netlist. Each line corresponds to an inverter in-

stance, written using the following syntax:

instanceName pins instanceCircuit

First, the instance name is defined; then, the pins of this are assigned to net names

that are used to interconnect the instances; then, the instance circuit (which is the kind

of circuit being instantiated, like an inverter, an AND gate etc.).

111

6.2. THE TOOL STRUCTURE

Two instances are connected if they have the same label associated to one of their

pins (also called “nets”). If the inverter subcircuit definition is the following:

subckt Inverter In Out

To connect the output of one inverter to the input of another one, one should write:

Inverter_1 In net1 Inverter

Inverter_2 net1 Out Inverter

Hence, the netlist reported for the Driver subcircuit is equivalent to the circuit

shown in Figure 6.12.

In Outnet1 net2 net3

Driver

Figure 6.12: Circuit synthesized by the netlist.

WL driver generator code

In the following, the wordline generator code is presented.

1 #! /bin/bash

2

3 #### FUNCTIONS ####

4 source $pathToThisProgram/netlistGenerators/Common/componentsFunctions.sh

5

6 #### MAIN ####

7 netlistFile="$pathToResultsDir/generatedNetlists/WLDriver.scs"

8

9 echo "subckt WLDriver In Out" > $netlistFile

Here, the functions used to instantiate the components are called (#4), the netlist

name is defined (#7) and the WLDriver subcircuit is defined (#9).

1 # The input inverter is instantiated

2 createInverter "InputInverter" In net1 1 >> $netlistFile

3

4 invNum=2 # Inverter instance number

112

6.2. THE TOOL STRUCTURE

5 currentSize=16 # It represents the hypotized size of the the array. As soon as

this is equal to the actual size, no more inverters are added to the driver

chain.

,→

,→

6 inverterSize=4 # The hypotized size of the output inverter. It is updated

during the following while cycle.,→

7 finished=0 # Variable used to stop the while cycle execution.

Here, the input inverter is instantiated (#2) using a previously defined bash function,

shown in the following:

1 # Function that creates the Spectre netlist of an inverter of arbitrary aspect

ratio.,→

2 createInverter(){

3 local name="$1"

4 local inNet="$2"

5 local outNet="$3"

6 local aspectRatio="$4"

7

8 echo $name ($inNet $outNet) Inverter_xN aspectRatio=$aspectRatio //In

Out,→

9

10 return 0

11 }

The function takes in input the instance name, the input and output net names and

the aspect ratio of the inverter.

Then, the hypothesized size is defined (#5), the inverter aspect ratio is updated (#6)

and a variable used to end the synthesis loop is defined (#7).

1 if [$arrayHorSize -eq 8]

2 then

3 # If the array size is equal to 8, we fall in the base case

(recursion...). Hence, we can instantiate the output tristate

driver.

,→

,→

4 createInverter "OutputInverter" net1 Out 2 >> $netlistFile

5 else

6 # If not, the size of the array is at least equal to 16. Hence, at

least two buffers (four inverters) are needed in the driver chain.

Hence another inverter instantiated.

,→

,→

7 createInverter "Inv1" net1 net2 2 >> $netlistFile

8 while [$finished -eq 0]

9 do

10 if [$currentSize -ge $arrayHorSize]

113

6.2. THE TOOL STRUCTURE

11 then

12 # If the hypotized size coincides with the real one, we

instantiate the last two inverters, which are

characterised by the same driving strength.

,→

,→

13 createInverter "Inv$invNum" net$invNum net$(($invNum +

1)) $inverterSize >> $netlistFile,→

14 createInverter "OutputInverter" net$(($invNum + 1)) Out

$inverterSize >> $netlistFile,→

15 finished=1

16 elif [$(($currentSize * 2)) -ge $arrayHorSize]

17 then

18 # If, instead, the real size is twice the hypotized

one, we instantiate the final inverter couple, in

which the output inverter is twice as much larger

than the previous one.

,→

,→

,→

19 createInverter "Inv$invNum" net$invNum net$(($invNum +

1)) $inverterSize >> $netlistFile,→

20 createInverter "OutputInverter" net$(($invNum + 1)) Out

$(($inverterSize * 2)) >> $netlistFile,→

21 finished=1

22 else

23 # If both the previous conditions are false, we

instantiate a couple of inverters which driving

strength is doubled from one to another, and we

increase the hypotized size (x4) and the inverters

strength (x4), and we proceed with the while loop.

,→

,→

,→

,→

24 createInverter "Inv$invNum" net$invNum net$(($invNum +

1)) $inverterSize >> $netlistFile,→

25 createInverter "Inv$(($invNum + 1))" net$(($invNum +

1)) net$(($invNum + 2)) $(($inverterSize * 2)) >>

$netlistFile

,→

,→

26 invNum=$(($invNum + 2))

27 currentSize=$(($currentSize * 4))

28 inverterSize=$(($inverterSize * 4))

29 fi

30 done

31 fi

32

33 echo "ends WLDriver" >> $netlistFile

Here, the code correspondent to synthesis loop shown in the flow chart of Figure 6.11

is presented.

114

6.2. THE TOOL STRUCTURE

The BL driver

The synthesis algorithm used for the BL driver circuit is the same presented in sec-

tion 6.2.1, apart from only two differences:

• the output inverter stage of each bitline driver is a tristate one, in order for these to

be disabled during the read operation, as it has been discussed in subsection 3.2.1.

• the height of the array is used as input parameter for the synthesis instead of the

width, since the bitlines extension is equal to the array height.

The SA enable delay generator

In section 3.3 it has been explained how the enable signal of the sense amplifier used

to read the memory content needs to be delayed, in order for the read operation to

be carried out correctly. The value of this delay has to be proportional to the array

dimensions, since these determine the bitlines discharge rate during a read operation.

This delay is obtained by passing the enable signal of the SA through a cascade of

inverters, which number is proportional to the delay obtained.

In Figure 6.13 the algorithm used to synthesize the delay circuit is shown.

First, an equivalent size of the array is defined:

size = arrayWidth*0.3 + arrayHeight*0.7

One can notice that, in the assignment above, both width and height of the array

are considered: this is because both parameters concur in the delay estimation:

• the wider is the array, the farer will be the accessed cell from the wordline driver

and, so, the access delay (i.e. the time needed by the cell to be connected to the

bitlines) is increased.

• the larger is the array height, the farer will be the accessed cell from the sense

amplifier inputs and, so, the larger will be the capacitance that the cell has to

discharge.

One can also notice that the array height has a larger influence with respect to the

width in the SA delay circuit design: this is because the bitlines length determines in

larger part the time needed by the cell to discharge enough the bitline for the SA to

correctly sense its inputs; at the same time, the array width has to be considered since an

array much larger in width than in height could be synthesized (which is not a common

case, since memory arrays usually store thousands of words whose width is limited to

hundreds of bits at most).

After the size parameter definition, an input inverter is instantiated. Then, another

size variable (hyp size) is initialized to 8 bits; after this, four inverters are placed in

the delay chain and the synthesis loop begins.

115

6.2. THE TOOL STRUCTURE

start SADelayBlock

size
=

arrayWidth*0.3 + arrayHeight*0.7

W/L=1
place input inverter

place 4 inverters
hyp_size=8

Yes

No

size == 8 W/L=2
place output inverter

end SADelayBlock

place 4 inverters
hyp_size=hyp_size*2

Yes

No

hyp_size
>=

size

Figure 6.13: The SA delay block algorithm.

First, the base case (array size equal to 8 bits) is checked: if size == 8, the output

inverter is placed and the synthesis is ended; if the array size is larger than 8, hyp size is

doubled and other 4 inverters are placed in the chain. The loop continues until hyp size

results to be larger than or equal to size.

From the synthesis loop, it may be noticed how 4 inverters are added to the delay

chain every time the array size doubles. This is an heuristic approach tuned via various

simulations.

MLSA and ANDSA dummy-load generator

In Figure 6.14 the synthesis algorithm used to generate the dummy load for the MLSA

and the ANDSA is presented.

116

6.2. THE TOOL STRUCTURE

start dummyLoad

height = 1

Yes

No

height
<=

arrayHeight
end dummyLoad

place dummy gate
height = height + 1

Figure 6.14: Dummy load generator algorithm.

As discussed in section 6.2.1, each sense amplifier is represented by a dummy OR

gate, shown in Figure 6.9. Since in a real array a MLSA and an ANDSA is needed for

each row, an OR gate is placed in the dummy load circuit for each row of the array

model. Hence, the number of OR gates is equal to the array height specified by the

user.

This is what is accomplished in the synthesis algorithm: a number of OR gates equal

to the array height (arrayHeight) is instantiated in the dummy load circuit.

The array generator

In Figure 6.15, the synthesis algorithm used to generate the memory array is shown.

As discussed in section 6.2.1, one row and one column are placed in the testbench.

First, a real cell is placed at the beginning of the row (first column); then, given the array

width, stored in arrayWidth, arrayWidth - 2 dummy cells are placed on the row; after

this, a real cell is placed at the end of the row (last column), resulting in arrayWidth

cells placed in total on the row; as last step, given the array height arrayHeight,

arrayHeight - 1 dummy cells are instantiated on the last column and the synthesis is

ended (arrayHeight - 1 are placed because the real cell on the top of the column also

has to be counted in the array height).

The dummy-line generator

In Figure 6.16, the synthesis algorithm used to generate the dummy line, needed for the

dummy-line scheme, is shown.

117

6.2. THE TOOL STRUCTURE

start array

place real cell on
first column

width = 1
place dummy cell on row

Yes

No

width
<=

arrayWidth - 2

width = width + 1
place dummy cell on row

place real cell on
last column

height = 1
place dummy cell on column

No

No

height
<=

arrayHeight - 1

height = height + 1
place dummy cell on column

end array

Figure 6.15: The array generator algorithm.

The synthesis loop is analogous to the one presented in Figure 6.14: a number of

dummy cells equal to the array width is placed in the dummy-line.

The testbench generator

The code that generates the testbench is trivial: it simply instantiates all the components

previously generated. It is more useful to analyze the testbench architecture that is

118

6.2. THE TOOL STRUCTURE

start dummyLine

width = 1

Yes

No

width
<=

arrayWidth
end dummyLine

place dummy cell
width = width + 1

Figure 6.16: The dummy-line synthesis algorithm.

synthesized, shown in Figure 6.17.

In Figure 6.17 all the components are instantiated:

• Array: the array generated by arrayGenerator.sh. This takes in input the word-

line signal, WLFirstRow, the bitline signals associated to the first (BLFirstCol

and BLnFirstCol) and last (BLLastCol and BLnLastCol) columns. It provides in

output the match-line (MLOut) and AND-line (ANDOut) signals.

• WLDriver: the wordline driver generated by WLDriverGenerator.sh. This is

driven by a voltage generator, called WLFirstRow, that reads its input from a CSV

file appositely generated.

• BLDriver: the bitline driver of the last column (the one used to test write and read

operations), generated by BLDriverGenerator.sh. This is driven by three voltage

generators: BLLastCol and BLnLastCol for the bitlines signals, and Enable for

enabling the driver.

• PrechargheCircuit: the bitline precharge circuit, syntehsized from PrechCircuit.scs.

This is used to precharge the bitlines of the last column before a read operation

and it is driven by a voltage source Precharge n that enables it.

• SA: the sense amplifier used to read the memory content, synthesized from SA.scs.

This is enabled by the output of the delay circuit, called “Delay SA” in Figure 6.17.

• Delay SA: the delay block output used to delay the SA enable signal. This circuit

119

6.2. THE TOOL STRUCTURE

Array

MLOut

ANDOut

BLLastCol BLnLastColBLFirstCol BLnFirstCol

WLFirstRow

ANDSAIn Out

Enable

MLSAIn Out

Enable

MLSA Out

Enable

WLDriverIn Out

MLOut

ANDOut
Dummy-line

ANDSAIn Out

Enable

In

BLnOutBLOut

BLnInBLIn

BLDriver Enable

WLFirstRow

BLnLastColBLLastCol

BLFirstCol BLnFirstCol

PrechargeCircuit BLnBL

Precharge n

Precharge n

SAI SAIn

SA

SAOnSAO

BLDriverEnable

DisableFirstCol

Delay SA EnableOutIn

SAEnable

ANDSAEnable n

MLSAEnable n

Figure 6.17: The generated testbench.

is synthesized by SADelayGenerator.sh, and it is driven by the voltage source

SAEnable.

• two voltage sources, BLFirstCol and BLnFirstCol, used to drive the bitlines of

the first column. These are disabled during the testing of the read operation using

two switches, that are driven by the DisableFirstCol voltage source.

• Dummy-line: the dummy-line used to implement the dummy sensing scheme for

the match-line and the AND line. This is generated by DummyLineGenerator.sh.

The outputs of this line are sent to two dummy sense amplifiers, that in turn drive

the sense amplifiers connected to the array. Both SAs, dummy and real ones,

are connected to the system enable signals, ANDSAEnable n and MLSAEnable n,

respectively.

6.2.2 Simulation script generator

In Figure 6.18, the simulation script generator organization is shown.

The simulation script is written using the OCEAN language, which is the Cadence

120

6.2. THE TOOL STRUCTURE

OCEANGenerators

LiMModel

computeAndSaveMeaurements.sh

plotAndSaveWaveforms.sh

main.sh

measFunctions.sh

setEnvOCEAN.sh

Figure 6.18: The simulation script generator organization.

proprietary scripting language that allows to automatize analog simulations in the Ca-

dence Virtuoso environment.

For each array type, a directory is created (in this case, the LiMModel directory).

This contains the scripts that are peculiar to a certain architecture:

• computeAndSaveMeasurements.sh: this script handles the OCEAN code for the

measurements to be performed during the simulations, which are the delay and

energy consumption associated to each memory operation.

• plotAndSaveWaveforms.sh: this script handles the visualization of the waveforms

in the Cadence Virtuoso environment during a simulation and their conversion in

CSV files to be used outside Cadence.

Then, there are the scripts that are shared by all the architecture types:

• main.sh: this script generates the final OCEAN script to be given to the simulator,

by taking the outputs of the other scripts and combining them together.

• measFunctions.sh: this script contains the Bash functions that generate the cor-

responding OCEAN statements used to perform the measurements during a sim-

ulation.

• setEnvOCEAN.sh: this script sets the simulation environment in OCEAN by defin-

ing the results directory, the netlist location and the simulation parameters.

OCEAN environment setting

In the following, the code of the setEnvOCEAN.sh script is presented.

121

6.2. THE TOOL STRUCTURE

1 #! /bin/bash

2

3 # As first, the incipit of the OCEAN script (which is standard) is written.

4 echo "simulator('spectre)" > $fileOCEAN

5 echo "design(\"$pathToNetlist/netlist\")

6 setup(?numberNotation 'scientific)

7 modelFile('(\"$VirtuosoPath/corners.scs\" \"\"))

8 definitionFile(\"models.scs\")

9 analysis('tran ?stop $simulationTime)

10 desVar(\"R_cell_to_cell\" $parasiticRes)

11 desVar(\"C_cell_to_cell\" $parasiticCap)

12 desVar(\"C_load\" $loadCap)" >> $fileOCEAN

First, the simulator to be used is selected (#4); then, the simulation environment is

configured (#5 to #9). After this, the design variables are assigned:

• in #10 and #11 the values of the parasitic resistance and capacitance are assigned.

• in #12, the value of the load capacitors of the sense amplifiers are assigned.

1 if [$arrayType != "SRAMModel"]

2 then

3 biasVoltageSA="650m" #Expressed in volts.

4 echo "desVar(\"Vbias\" $biasVoltageSA)" >>$fileOCEAN

5 fi

In the code above, another design parameter is assigned for the logic arrays (CAM

and LiM): the bias voltage of the sense amplifier (section 4.3). This is needed for the

MLSA and ANDSA operation, which are blocks instantiated in the LiM and CAM

architectures.

1 echo "envOption('analysisOrder list(\"tran\"))

2 saveOption('pwr \"all\")

3 temp($simulationTemp)

4 option(?categ 'turboOpts 'preserveOption \"All\" 'numThreads

5 \"$simulatorThreads\" 'mtOption \"Manual\"

6 'apsplus t 'uniMode \"APS\")

7 run()

8 openResults(\"$pathToResultsDir/psf\")

9 selectResult('tran)" >> $fileOCEAN

At the end, other simulation options are set, such as the CPU threads assigned to

the simulation.

122

6.2. THE TOOL STRUCTURE

The measurements script

In the following, the code of the computeAndSaveMeasurements.sh script is presented.

1 #! /bin/bash

2

3 #### FUNCTIONS ####

4 source $pathToThisProgram/OCEANGenerators/measFunctions.sh

In the code above, the functions used to perform the measurements are called in the

script environment.

1 #### MAIN ####

2

3 delayList=("Write1Delay"

4 "Write0Delay"

5 "Read1Delay"

6 "Read0Delay"

7 "MatchDelay"

8 "ANDDelay")

9

10 energyList=("Write1Energy"

11 "Write0Energy"

12 "SRAMPrechargeEnergy"

13 "Read1Energy"

14 "Read0Energy"

15 "CAMPrechargeEnergy"

16 "MatchEnergy"

17 "MismatchEnergy"

18 "ANDPrechargeEnergy"

19 "AND1Energy"

20 "AND0Energy"

21 "ANDDisableEnergy"

22 "TotalEnergy")

Here, the measurements to be performed are defined: for each operation, a delay

and an energy consumption variable are created.

1 # Then, the delay expressions are written to the OCEAN script.

2 delayExpressions=("$(delay 21 DataLastCol 0.46 rising)" #Write1Delay

3 "$(delay 25 DataLastCol "0.46" falling)" #Write0Delay

4 "$(delay 23 SAOn "0.46" falling)" #Read1Delay

5 "$(delay 27 SAO "0.46" falling)" #Read0Delay

123

6.2. THE TOOL STRUCTURE

6 "$(delay 2 MLSAO "0.46" rising)" #MatchDelay

7 "$(delay 6 ANDSAO "0.46" rising)") #ANDDelay

8

9 numDelays=${#delayList[*]}

10

11 for ((i=0; i<$numDelays; ++i))

12 do

13 echo ${delayList[$i]}=${delayExpressions[$i]} >> $fileOCEAN

14 done

15 echo "" >> $fileOCEAN

Here, the delay functions are called (#2 to #7) and written to the OCEAN script

(#11 to #15). The delay function definition is the following:

1 # Function that computes the delay of a signal with respect to a reference

time.,→

2 delay(){

3 local referenceTime=$1

4 local signal="$2"

5 local threshold="$3"

6 local edgeType="$4"

7

8 echo delay(?td1 $(($referenceTime*$ckPeriod))n ?wf2 v(\"$signal\") ?value2

$threshold ?nth2 1 ?edge2 \'$edgeType),→

9

10 return

11 }

The delay is computed with respect the beginning the of the operation cycle (referenceTime).

For the signal, one has to provide the name, the type of edge to be sensed (falling or

rising) and the threshold to which the delay computation is referred (in this case, a

threshold equal to VDD/2 = 0.46 V is used to compute the 50% delay).

1 # The energy expressions are written to the OCEAN script.

2 energyExpressions=("$(energy 21 22)" #Write1Energy

3 "$(energy 25 26)" #Write0Energy

4 "$(energy 22 23)" #SRAMPrechargeEnergy

5 "$(energy 23 24)" #Read1Energy

6 "$(energy 27 28)" #Read0Energy

7 "$(energy 3 4)" #CAMPrechargeEnergy

8 "$(energy 2 3)" #MatchEnergy

9 "$(energy 4 5)" #MismatchEnergy

10 "$(energy 7 8)" #ANDPrechargeEnergy

124

6.2. THE TOOL STRUCTURE

11 "$(energy 6 7)" #AND1Energy

12 "$(energy 17 18)" #AND0Energy

13 "$(energy 8 9)" #ANDDisableEnergy

14 "$(energy 0 28)") #TotalEnergy

15

16 numEnergies=${#energyList[*]}

17

18 for ((i=0; i<$numEnergies; ++i))

19 do

20 echo "${energyList[$i]}=${energyExpressions[i]}" >> $fileOCEAN

21 done

22 echo "" >> $fileOCEAN

Here, the energy functions are called and their outputs are assigned to the corre-

sponding outputs (#2 to #14). Then, the expressions are written to the OCEAN script

(#18 to #21).

The energy function definition is the following:

1 # Function that integrates the instantaneous power along a simulation cycle,

obtaining the corresponding energy.,→

2 energy(){

3 local startCycle=$1

4 local endCycle=$2

5

6 echo integ(getData(\":pwr\" ?result \"tran\") $(($startCycle*$ckPeriod))n

$(($endCycle*$ckPeriod))n),→

7 }

The function performs in OCEAN a numerical integration of the array instantaneous

power along the operation cycle obtaining, in this way, the array energy consumption

in the considered cycle.

1 # A file is opened in OCEAN to save the results of the simulations.

2 echo "fileToWrite=outfile(\"$pathToResultsDir/results$scriptName.txt\")" >>

$fileOCEAN,→

3 echo "" >> $fileOCEAN

4

5 #The delay results are saved.

6 for ((i=0; i<$numDelays; ++i))

7 do

8 echo fprintf(fileToWrite \"%s = %e\n\" \"${delayList[$i]}\"

${delayList[$i]}) >> $fileOCEAN,→

9 done

125

6.2. THE TOOL STRUCTURE

10 echo "" >> $fileOCEAN

11

12 # The energy results are saved.

13 for ((i=0; i<$numEnergies; ++i))

14 do

15 echo fprintf(fileToWrite \"%s = %e\n\" \"${energyList[$i]}\"

${energyList[$i]}) >> $fileOCEAN,→

16 done

17 echo "" >> $fileOCEAN

18 echo "close(fileToWrite)" >> $fileOCEAN

At the end, the code needed to save the measurements in an external file (results.txt

in Figure 6.2) is written to the OCEAN script.

The waveforms script

In the following, the code of the plotAndSaveWaveforms.sh script is presented.

1 #! /bin/bash

2

3 signalList=("WLFirstRow"

4 "BLFirstCol"

5 "BLnFirstCol"

6 "DataFirstCol"

7 "DataLastCol"

8 "BLLastCol"

9 "BLnLastCol"

10 "EnableBLDriver"

11 "Precharge_n"

12 "SAO"

13 "SAOn"

14 "EnableSA"

15 "ANDOut"

16 "MLOut"

17 "MLSAO"

18 "ANDSAO"

19 "EnableMLSAn"

20 "EnableANDSAn"

21 "dummyANDSAO"

22 "dummyMLSAO"

23 "dummyMLOut"

24 "dummyANDLineOut"

25 "DisableFirstCol"

26 "WLDriverIn"

27 "BLDriverIn"

126

6.2. THE TOOL STRUCTURE

28 "BLnDriverIn"

29 "SADelayCircuitIn")

Here, the testbench signals names are defined in order to select the signals in the

simulation for the waveforms plot.

1 # The waveforms are exported in CSV format.

2 numSignals=${#signalList[*]}

3 for ((i=0; i<$numSignals; ++i))

4 do

5 echo ocnPrint(?output

\"$pathToResultsDir/waveformCSV/${signalList[$i]}.csv\" ?numberNotation

\'engineering v(\"${signalList[$i]}\") ?from 0 ?to $simulationTime

?step $simulationStep) >> $fileOCEAN

,→

,→

,→

6 done

In the code above, each waveform of the testbench in exported in a CSV file in the

results directory.

1 if [$plotWf -eq 1]

2 then

3

4 echo "newWindow()

5 addTitle(\"Other signals\")" >> $fileOCEAN

6 #We plot the signals.

7 for ((i=0; i<$numSignals; ++i))

8 do

9 echo "plot(v(\"${signalList[$i]}\") ?expr \"${signalList[$i]}\")"

>> $fileOCEAN,→

10 done

11 echo "" >> $fileOCEAN

12

13 echo "newWindow()

14 currentWindow(2)

15 addTitle(\"CAM behaviour\")" >> $fileOCEAN

16 CAMSignals=("MLSAO" "dummyMLOut" "dummyMLSAO" "MLOut" "EnableMLSAn"

"DataFirstCol" "BLFirstCol" "BLnFirstCol"),→

17 for i in ${CAMSignals[@]}

18 do

19 echo "plot(v(\"$i\") ?expr \"$i\")" >> $fileOCEAN

20 done

21 echo "" >> $fileOCEAN

22

23 echo "newWindow()

127

6.2. THE TOOL STRUCTURE

24 currentWindow(3)

25 addTitle(\"AND behaviour\")" >> $fileOCEAN

26 ANDSignals=("ANDSAO" "dummyANDLineOut" "dummyANDSAO" "ANDOut"

"EnableANDSAn" "DataFirstCol" "BLFirstCol" "BLnFirstCol"),→

27 for i in ${ANDSignals[@]}

28 do

29 echo "plot(v(\"$i\") ?expr \"$i\")" >> $fileOCEAN

30 done

31 echo "" >> $fileOCEAN

32

33 echo "newWindow()

34 currentWindow(4)

35 addTitle(\"SRAM behaviour\")" >> $fileOCEAN

36 ANDSignals=("SAO" "SAOn" "DataLastCol" "BLLastCol" "BLnLastCol"

"EnableBLDriver" "EnableSA" "BLDriverIn" "BLDriverIn" "WLFirstRow"),→

37 for i in ${ANDSignals[@]}

38 do

39 echo "plot(v(\"$i\") ?expr \"$i\")" >> $fileOCEAN

40 done

41

42 fi

Here, different windows are defined in the Virtuoso environment. Each window

contains the signals peculiar to a functionality of the array.

1 echo "newWindow()

2 currentWindow(2)

3 addTitle(\"CAM behaviour\")" >> $fileOCEAN

4 CAMSignals=("MLSAO" "dummyMLOut" "dummyMLSAO" "MLOut" "EnableMLSAn"

"DataFirstCol" "BLFirstCol" "BLnFirstCol"),→

5 for i in ${CAMSignals[@]}

6 do

7 echo "plot(v(\"$i\") ?expr \"$i\")" >> $fileOCEAN

8 done

For example, here the signals corresponding to the CAM functionality, such as the

match-line voltage MLOut and the MLSA output MLSAO, are plotted in a dedicated win-

dow.

It has to be noticed that the waveforms are plotted only if the variable plotWf is

equal to 1, as shown in the following code line:

1 if [$plotWf -eq 1]

2 then

128

6.3. RESULTS PROVIDED BY ALIAS

This variable is used to allow the user to decide if the waveforms have to be plotted

during the simulation or if only the final results have to be provided in the previously

defined file formats (Figure 6.2).

6.2.3 Input stimuli generator

inputStimuliGenerators

WaveformsSRAMModel.py

WaveformsCAMModel.py

WaveformsLiMModel.py

WaveformsLiMDYNModel.py

WaveformsLiMSTModel.py

Figure 6.19: The input stimuli generator structure.

The input stimuli generator consists in a series of Python scripts, each of which is

dedicated to a specific array type: SRAM, CAM, LiM with dynamic cell, LiM with

static cell and LiM with special-purpose cell. These scripts generate the waveform files

needed by the SPECTRE simulator to perform the simulation.

The code inside each script is identical to the ones described in the previous chapters

(subsection 3.5.2, subsection 4.6.2, subsection 5.8.3).

6.3 Results provided by ALiAS

As explained in section 6.1, ALiAS provides the results of the simulation in three file

formats: CSV file for the simulation waveforms, text file and bar diagrams for the array

performance.

129

6.3. RESULTS PROVIDED BY ALIAS

Figure 6.20: Example of ALiAS run.

In Figure 6.20, an example of ALiAS run is shown. In this case, the LiM model with

the special-purpose cell, SingModel, is simulated. The array width is 64 bits, while the

height is 256 rows.

The text file generated follows the following naming rule:

resultsarrayTypeheightxwidth.txt

In this case, the results file name is resultsSingModel256x64.txt. The file content

is shown in the following:

1 Write1Delay = 1.784846e-10

2 Write0Delay = 1.392253e-10

3 Read1Delay = 2.582827e-10

4 Read0Delay = 2.507826e-10

5 MatchDelay = 3.005608e-10

6 ANDDelay = 2.605585e-10

7 Write1Energy = 1.081835e-13

8 Write0Energy = 9.124491e-14

9 SRAMPrechargeEnergy = 1.213535e-13

10 Read1Energy = 7.103484e-14

11 Read0Energy = 6.455612e-14

12 CAMPrechargeEnergy = 5.932526e-14

13 MatchEnergy = 6.704943e-14

14 MismatchEnergy = 6.944946e-14

15 SingPrechargeEnergy = 5.897603e-14

16 AND1Energy = 6.355464e-14

17 AND0Energy = 7.157836e-14

18 ANDDisableEnergy = 6.363723e-14

19 TotalEnergy = 2.333884e-12

In the lines from #1 to #6, the delays correspondent to each memory operation

130

6.3. RESULTS PROVIDED BY ALIAS

are listed; in the rest of the file, the energy consumption associated to each operation,

together with the total energy, are presented.

From this file, two bar diagrams are derived.

Figure 6.21: Performance bar diagram.

In Figure 6.21, the bar diagram related to the array performance is shown. For each

operation, the correspondent delay is shown, in order for these to be compared.

In Figure 6.22, the diagram related to the array power consumption is presented.

For each operation, the correspondent power consumption, obtained starting from the

energy results stored in the results file and the clock period specified by the user for the

simulation, is shown.

The CSV files generated by ALiAS can be used to plot outside Virtuoso the simu-

lation waveforms. An example is provided in Figure 6.23 for the simulation considered

above. In this, the waveforms relative to the AND operations have been extracted.

131

6.3. RESULTS PROVIDED BY ALIAS

Figure 6.22: Power consumptions bar diagram.

0

1

Vo
lta

ge
 [V

]

DataFirstCol

0

1

Vo
lta

ge
 [V

]

BLFirstCol
BLnFirstCol

0

1

Vo
lta

ge
 [V

]

EnableANDSAn

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [ns]

0

1

Vo
lta

ge
 [V

]

ANDSAO
ANDOut

Figure 6.23: Waveforms extracted from the ALiAS run.

132

6.4. USER GUIDE

6.4 User guide

In this section, an user guide for ALiAS is provided.

The syntax to run a simulation in ALiAS is shown in Figure 6.24

ALiAS/main.sh -a arrayType -x arrayWidth -y arrayHeight -d resultsDirectory options

SRAMModel

CAMModel

SingModel

SingDYNModel

SingSTModel

-t numThreads

-w | --plot-waveforms

-c clockPeriod

-i | --ideal-drivers

-h | --help

Figure 6.24: ALiAS execution syntax.

First, one has to provide the array type to be simulated, choosing between 5 arrays:

SRAMModel, CAMModel and the three LiM flavors, which are SingModel, SingDYNModel

and SingSTModel; the array name has to be preceded by the -a (or --array) flag.

Second, one has to provide the array size in terms of height (number of stored words),

preceded by -y or --ver-size, and width (parallelism of each word), preceded by -x

or --hor-size. Third, one has to provide the path to the directory in which the results

will be saved, preceded by -d or --results-directory.

Then, the user can specify some options:

• -h, --help: an help menu is displayed.

• -i, --ideal-drivers: the CMOS drivers are substituted with ideal voltage sources,

so that the drivers parameters have no influence on the array performance.

• -c, --ck-period: the user can specify an integer number as clock period in

nanoseconds to be used in the simulations. The minimum and default value is

1 ns. For example, if one wants to use a clock period of 3 ns:

1 ALiAS/main.sh -a SingModel -y 256 -x 64 -d . -c 3

• -w, --plot-waveforms: specifying this option, the simulation waveforms are plot-

ted in the Cadence Virtuoso environment. An example of simulation is shown

in Figure 6.26. To exit the Virtuoso environment, one has to type exit at the

terminal prompt. In this way, Virtuoso is exited and the simulation is ended.

133

6.4. USER GUIDE

Figure 6.25: The help menu.

• -t, --num-threads: using this option, one can choose the number of CPU threads

to be assigned to simulation. The default number of threads is 4. The SPECTRE

simulation engine usually occupies no more than 3 threads per simulation.

134

6.4. USER GUIDE

Figure 6.26: Example of simulation with the -w option.

135

Chapter 7

Results and conclusions

In this chapter, the results relative to the simulations performed in ALiAS are discussed.

The performance of each memory operation are compared among the arrays. In

particular, each memory architecture has been simulated varying the array width and

height, using both ideal and non-ideal drivers in the simulations, to characterize delay

and energy consumption of each operation.

A first set of simulations has been performed fixing the memory height to 256 bits

and varying the width from 8 to 144 bits. First, ideal drivers have been used; second,

the drivers synthesized by ALiAS are included in the simulations, in order to evaluate

their influence on the array performance.

Then, a second set of simulations has been performed fixing the array width to 32

bits and varying the array height from 128 to 512 bits. Also in this case, both ideal and

non-ideal drivers have been used for the simulations.

For what concerns the simulation setups, the following ones have been used.

Width simulations parameters

VDD 0.92 V

Cparasitic 100 aF

Rparasitic 5Ω

Tck 1 ns

Table 7.1: Simulation parameters adopted for the array width simulations.

Height simulations parameters

VDD 0.92 V

Cparasitic 100 aF

Rparasitic 5Ω

Tck 2 ns

Table 7.2: Simulation parameters adopted for the array height simulations.

In Table 7.1 and Table 7.2, the simulation parameters adopted for the two set of

simulations are presented.

A supply voltage VDD = 0.92 V has been chosen in order to compare the results of

the simulations with the ones provided by a commercial tool for VLSI synthesis that

uses the same technology library (ST FD-SOI 28 nm).

For what concerns the parasitic values, used for the RC circuits instantiated in the

136

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

arrays, small values have been chosen in order for their presence to be taken into account

in the simulations, but also to allow the simulations results to be mainly determined by

the arrays characteristics.

For the simulation clock cycle, Tck = 1 ns has been chosen for the simulations in

which the width is varying, while Tck = 2 ns has been chosen for the height ones, in

which very large arrays are instantiated. Of course, the critical path is lower than these

clock cycles but, however, some room has been left in the simulations in which very

large arrays are instantiated, like the height ones.

7.1 Simulations performed varying the array width

In this section, the simulations performed varying the array width from 8 to 144 bits

are considered. The array height, instead, is fixed to 256 rows. In the following, each

operation is analyzed in detail.

7.1.1 Read operation: ideal drivers

In this section, the reaad operation is considered, analyzing the results of the simulations

performed using ideal drivers.

20 40 60 80 100 120 140
Width in bits

243.5

244.0

244.5

245.0

245.5

246.0

246.5

De
la

y
[p

s]

Read0Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.1: Read operation delay: cell content equal to ‘0’, ideal drivers.

In Figure 7.1, each curve represents an array type. On the vertical axis, the delay

associated to the read operation of a logic ‘0’ as function of the array width, is reported.

It can be noticed how the read delay is practically constant with respect the memory

width. This is due to the fact that the array height is much larger than the width, as

137

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

it happens in standard memory arrays; hence, it has a stronger influence on the read

delay, since the sense amplifier design is heavily influenced by the array height value, as

discussed in section 6.2.1. This results in a practically constant delay associated to the

read operation.

One can notice that the read delay of the SRAM array (SRAMModel) is lower than

the one associated to the CAM (CAMModel) and LiM (ANDModel, the LiM array with

the special-purpose cell discussed in section 5.6; ANDSTModel, the LiM array with the

static cell presented in Figure 5.12; ANDDYNModel, the LiM array with the dynamic cell

discussed in section 5.4) arrays. This is due to the fact the logic memory cells (CAM

and LiM) have a larger capacitive load on the bitlines with respect the SRAM cell, as

it can be verified in Figure 7.3.

However, the difference in the delay is not so large, since the sense amplifier design

mostly determines the read delay value with the delay associated to its enable signal

(section 6.2.1), which determines the time required by the SA to read its inputs.

20 40 60 80 100 120 140
Width in bits

246

247

248

249

250

251

252

De
la

y
[p

s]

Read1Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.2: Read operation delay: cell content equal to ‘1’, ideal drivers.

In Figure 7.2, the delay associated to the read operation of a logic ‘1’ is shown.

In this case, a distinction between the arrays values is observed. The reason of

this can be found referring to the graph shown in Figure 7.3, which is proposed in the

following.

In Figure 7.3, it can be noticed how the capacitance associated to the bitlines is

larger for all the LiM implementations (STAT, DYN and SP) than for the others. Hence,

the resulting read delay is larger. As in the previous case, the difference is not so large,

since the read delay is practically determined by the sense amplifier design.

In Figure 7.4, the energy associated to the read operation of a logic ‘0’ is reported.

138

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

SRAM CAM DYN STAT SP
0

1

2

3

4

5

6

7

8

No
rm

al
ize

d
ca

pa
cit

an
ce

Capacitance associated to bitlines for each cell
BL
BLn

Figure 7.3: Parasitic capacitance comparison among the cells.

20 40 60 80 100 120 140
Width in bits

30

35

40

45

50

En
er

gy
 [f

J]

Read0Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.4: Read operation energy: cell content equal to ‘0’, ideal drivers.

It can be noticed how the energy consumption increases linearly with the memory

width, as one would expect since only one dimension of the array is varying.

One can also notice how the energy associated to the more complex arrays, CAM

and LiM, is larger with respect to the SRAM implementation. Being more complex

the cell and the architecture, larger parasitic capacitances are involved and, so, a larger

energy consumption results from the simulations.

139

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

Also, one can notice that the energy consumption of the CAM and LiM arrays

are very similar. This is due to the fact that, during the reading of a logic ‘0’, the

BL is discharged, while the BL is kept at VDD. Since the LiM cells have most of

their capacitive load concentrated on BL (Figure 7.3 and Figure 5.21), the difference in

complexity between CAM and LiM arrays is not exploited.

20 40 60 80 100 120 140
Width in bits

30

35

40

45

50

55

60

65

En
er

gy
 [f

J]

Read1Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.5: Read operation energy: cell content equal to ‘1’, ideal drivers.

In Figure 7.5, the energy associated to the read operation of a logic ‘1’ is reported. As

in the read operation case (Figure 7.2), a distinction can be observed between the logic

arrays (CAM and LiM). In fact, the most complex cell (the static LiM one, ANDSTModel)

is the one with the largest energy consumption associated. This is due to the fact that

during the reading of a logic ‘1’, BL is discharged and, so, the difference in the cells

complexity (i.e. capacitive load on bitlines) is exploited in the results.

140

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

7.1.2 Read operation: non-ideal drivers

In this section, the same quantities examined in subsection 7.1.1 are considered, but

using non-ideal drivers in the simulations.

20 40 60 80 100 120 140
Width in bits

246

247

248

249

250

251

252

De
la

y
[p

s]
Read0Delay ANDModel

ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.6: Read operation delay: cell content equal to ‘0’, non-ideal drivers.

In Figure 7.6, the read operation delay with respect to the memory width variation

is considered for each array type.

It can be noticed how a step-like behavior is obtained in the simulations, differently

from what is shown in Figure 7.1. This is due to the non-ideality of the wordline driver,

that is synthesized by ALiAS according to the memory width value (section 6.2.1). To

each step in the curve, the addition of inverter stages is associated, that leads to an

increase in the delay value. The addition of driving stage allows to keep almost constant

the value of the read delay, that would otherwise increase much more if the wordline

driver strength was not adjusted accordingly to the row width value.

As in Figure 7.4, the delay associated to the SRAM architecture is lower than for

the logic arrays, because of its higher simplicity. It can also be noticed how the row

width has not a large influence on the read delay value, thanks to the fact that this is

practically determined by the sense amplifier design.

In Figure 7.7, the read operation of a logic ‘1’ is analyzed.

It can be noticed how all the delays are very similar while, on the contrary, there is

a clear distinction between them in Figure 7.2. This is due to the fact that real drivers

have been instantiated in the testbench and that the synthesis algorithm is rough. A

better tuning of the driver synthesis algorithm would allow to obtains results similar to

the ones in Figure 7.5.

141

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

252

254

256

258

260

De
la

y
[p

s]

Read1Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.7: Read operation delay: cell content equal to ‘1’, non-ideal drivers.

20 40 60 80 100 120 140
Width in bits

40

50

60

70

80

90

En
er

gy
 [f

J]

Read0Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.8: Read operation energy: cell content equal to ‘0’, non-ideal drivers.

In Figure 7.8, the energy consumption associated to the read operation of a logic ‘0’

is shown.

Also in this case, a step-behavior for the energy consumption can be observed. These

steps are due to the addition of inverter stages in the driver chain, that leads to a sharp

increase in the energy consumption of the array as the drivers strength is adjusted.

In Figure 7.9, a distinction in the energy values among the logic arrays can be

142

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

40

50

60

70

80

90

100

En
er

gy
 [f

J]

Read1Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.9: Read operation energy: cell content equal to ‘1’, non-ideal drivers.

observed, differently from what happens in Figure 7.8. As discussed for Figure 7.5, in

this case the difference in the cells complexities is exploited because the negated bitline,

BL, is discharged during the read operation and, so, the difference in the capacitive load

on this bitline can be observed in the simulation results.

143

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

7.1.3 Write operation: ideal drivers

In this section the write operation is considered, analyzing the results of the simulations

performed using ideal drivers.

20 40 60 80 100 120 140
Width in bits

40

45

50

55

60

De
la

y
[p

s]
Write0Delay ANDModel

ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.10: Write operation delay: cell content written to ‘0’, ideal drivers.

In Figure 7.10, the write operation delay of a logic ‘0’ is considered.

It can be noticed how the delay associated to the logic arrays (CAM and LiM) is

larger than the SRAM one. This is due to the higher cell and array complexities of the

logic arrays, that result in a slower operation: in fact, while in the read operation the

performance are determined by the sense amplifier design, in the write operation the

cell complexity (i.e. its capacitive load on the bitlines) has a large influence on the the

write performance.

It can also be noticed how all the logic arrays have similar performance. This is due

to the fact that a ‘0’ is being written to the cell: since most of the capacitive load of

the LiM cell is on BL, as shown in Figure 7.3, and this bitline remains charged at VDD

during the writing of a logic ‘0’, no difference can be observed between CAM and LiM

arrays.

In Figure 7.10, the write operation delay of a logic ‘1’ is considered.

In this case, a clear distinction between CAM and LiM arrays can be observed. In

fact, writing a logic ‘1’, the negated bitline BL is discharged to ‘0’; hence, since this is

the most capacitively loaded line in the LiM arrays (Figure 7.3), these memory types

perform worse than the CAM memory.

It can also be noticed how the delay associated to the writing of a logic ‘1’ is larger

than the one of a logic ‘0’: in fact, a larger capacitive load on one of the bitlines leads

144

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

50

60

70

80

90

100

110

De
la

y
[p

s]

Write1Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.11: Write operation delay: cell content written to ‘1’, ideal drivers.

to an unbalance in the performance, which means that, depending on the data to the

be written, delay and energy consumption change.

Between the LiM arrays, the one with the poorest performance (i.e. larger delay

associated) is the static cell array ANDSTModel, which is also the most complex one.

One can notice that the dynamic cell ANDDYNModel performs better than the special-

purpose one ANDModel, even if the latter is simpler from a circuital point of view. This

is due to the fact that the special-purpose cell has a transistor connected to BL that is

larger than the one of dynamic cell one (Figure 5.21), which results in a larger capacitive

load for the special-purpose array than the dynamic one (Figure 7.3).

In Figure 7.12, the write operation energy of a logic ‘0’ is considered.

As in Figure 7.10, one can notice that the logic arrays perform in a similar way.

The same considerations discussed for the delay can be made: since during the writing

of a logic ‘0’ the negated bitline BL is not discharged, no difference is observed in the

measurements.

Of course, the SRAM array, which is the most simple one, is characterized by the

lowest energy consumption.

In Figure 7.13, the write operation energy of a logic ‘1’ is considered.

As in Figure 7.11, it can be noticed how the energy consumptions of the CAM

and LiM arrays differ. Also, the largest energy consumption is associated to the most

complex array (ANDSTModel), and ANDModel performs worse than ANDDYNModel, having a

larger energy consumption associated, because of its higher capacitive load (Figure 7.3).

145

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

20

25

30

35

40

45
En

er
gy

 [f
J]

Write0Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.12: Write operation energy: cell content written to ‘0’, ideal drivers.

20 40 60 80 100 120 140
Width in bits

20

30

40

50

60

70

En
er

gy
 [f

J]

Write1Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.13: Write operation energy: cell content written to ‘1’, ideal drivers.

146

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

7.1.4 Write operation: non-ideal drivers

In this section, the write operation is considered, analyzing the results of the simulations

performed the drivers synthesized by ALiAS.

20 40 60 80 100 120 140
Width in bits

115

120

125

130

135

140

De
la

y
[p

s]

Write0Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.14: Write operation delay: cell content written to ‘0’, non ideal drivers.

In Figure 7.14, the write delay of a logic ‘0’ is considered.

As in the ideal drivers case, shown in Figure 7.10, the logic arrays present a much

larger write delay with respect to the SRAM memory, because of their higher complexity.

It can also be noticed how using non-ideal drivers the value of the write delay is much

larger than in the ideal case: while in Figure 7.14 the value of the delay is around 140 ps

for the logic arrays, in Figure 7.10 the delay value results to be around 65 ps.

One can also observe that the delay is kept constant thanks to the adaptive synthesis

performed by ALiAS: in fact, the drivers strength is adjusted accordingly the memory

width; furthermore, no variations are observed in the delay value since the array height

(256 rows) is still much larger than the width, that ranges between 8 and 144 bits.

In Figure 7.15, the write delay of a logic ‘1’ is considered.

It can be noticed how the logic arrays values are now well distinguishable, thanks to

their different capacitive load on the bitlines, as discussed for Figure 7.11. Also in this

case, the delay values are much larger than in the ideal case, because of the non-idealities

of the bitline and wordline drivers.

In Figure 7.16, the write energy of a logic ‘0’ is considered.

It can be noticed a step-like behavior in the energy function, due to the fact that

more and larger inverter stages are added to the bitline and wordline drivers as the

147

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

120

130

140

150

160

170

180

190

De
la

y
[p

s]

Write1Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.15: Write operation delay: cell content written to ‘1’, non ideal drivers.

20 40 60 80 100 120 140
Width in bits

70

80

90

100

110

En
er

gy
 [f

J]

Write0Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.16: Write operation energy: cell content written to ‘0’, non ideal drivers.

memory width increases. The addition of each inverter stage leads to a sharp increase

in the energy consumption.

As in Figure 7.14, also here it can be noticed how the LiM and CAM arrays have

similar values of energy consumption, since a ‘0’ is written to the cell and, hence, the

difference in the cell complexities (that results in a difference in the bitline capacitive

load) is not exploited in the simulations.

148

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

70

80

90

100

110

120

130

140

En
er

gy
 [f

J]

Write1Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.17: Write operation energy: cell content written to ‘1’, non ideal drivers.

In Figure 7.16, the write energy of a logic ‘1’ is considered.

It can be observed how, as in Figure 7.15, the energy values for the logic arrays

are well separated. The most complex array, ANDSTModel, is the one with the largest

energy consumption associated. ANDModel is characterized by an energy lower than

ANDDYNModel, even if its cell circuit is simpler. This is due to its higher bitline capacitive

load (Figure 7.3).

It can also be noticed how the simplest array, SRAMModel, is also the one with the

lowest energy consumption associated.

149

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

7.1.5 Search operation: ideal drivers

In this section the search operations is considered, analyzing the results provided by the

simulation performed using ideal drivers.

20 40 60 80 100 120 140
Width in bits

100

200

300

400

500

De
la

y
[p

s]
MatchDelay ANDModel

ANDSTModel
ANDDYNModel
CAMModel

Figure 7.18: Search operation delay: ideal drivers.

In Figure 7.18, the search delay value with respect to the array width is analyzed.

A linear dependence on the row width can be observed, which is due to the fact that

not all the cell parasitics are considered (as they would by realizing a proper memory

layout) and that the search operation is performed on a row, which width is varied in

the simulations.

It can be noticed how there is no difference in the search delay values for LiM and

CAM arrays, since the CAM cell and match-line are completely separated from the LiM

part of the cell; hence, since the simulations have been conducted at schematic level and

not all the parasitics between AND and match lines are taken into account, a complete

independence between the two operations performance is found. For this reason, the

CAM and LiM arrays perform in the same way for the search operation, from both delay

and energy points of view.

Of course, the SRAM array is excluded from the simulations, since no search oper-

ation can be performed in this architecture.

Since the line is discharged only if it has been previously charged, that happens only

in the match case, one has to take into account this energy to estimate the total one

associated to the match result. In the latter case, the line is charged during the search

operation and then discharged; in the mismatch case, instead, the line is not charged

and, so, no energy is wasted for a mismatch.

150

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

60

80

100

120

140

160
En

er
gy

 [f
J]

CAMModel: match and mismatch energies Match
Mismatch

Figure 7.19: CAM architecture, search operation energy: ideal drivers.

For this reason, in estimating the energy associated to the match result, the energies

of the pre-discharge cycle and search cycle have been summed up, obtaining the results

shown in Figure 7.19.

In this graph, the match and mismatch energies are compared for the CAM archi-

tecture. It can be noticed how the energy associated to the match result is always larger

than the one associated to the mismatch, as it has been described in Figure 2.27.

In the following, the same results are presented for the LiM architectures: the special-

purpose in Figure 7.20, the dynamic in Figure 7.21 and the static in Figure 7.22. One

can notice how the energy values obtained are equal to the ones reported for the CAM

architecture, as previously explained.

151

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

60

80

100

120

140

160
En

er
gy

 [f
J]

ANDModel: match and mismatch energies Match
Mismatch

Figure 7.20: LiM architecture with special-purpose cell, search operation energy: ideal
drivers.

20 40 60 80 100 120 140
Width in bits

60

80

100

120

140

160

En
er

gy
 [f

J]

ANDDYNModel: match and mismatch energies Match
Mismatch

Figure 7.21: LiM architecture with dynamic cell, search operation energy: ideal drivers.

152

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

60

80

100

120

140

160

En
er

gy
 [f

J]

ANDSTModel: match and mismatch energies Match
Mismatch

Figure 7.22: LiM architecture with static cell, search operation energy: ideal drivers.

153

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

7.1.6 Search operation: non-ideal drivers

In this section the search operations is considered, analyzing the results provided by the

simulations performed using non-ideal drivers.

20 40 60 80 100 120 140
Width in bits

100

200

300

400

500

De
la

y
[p

s]
MatchDelay ANDModel

ANDSTModel
ANDDYNModel
CAMModel

Figure 7.23: Search operation delay: non-ideal drivers.

In Figure 7.23, the search delay value with respect to the array width is analyzed.

A linear dependence on the row width can be observed, as in Figure 7.18. In fact,

the drivers have no influence on the search performance thanks to the sensing scheme

implemented, as discussed in section 4.3. For this reason, the same delay values as in

Figure 7.18 are obtained.

In Figure 7.24, the match and mismatch energies are compared. Slightly larger

values are obtained for the match energy with respect to Figure 7.19, since during the

pre-discharge phase the bitline drivers are used to load the search data on the bitlines.

As in the ideal drivers case, the same results are obtained also for the LiM arrays,

thank to the independence between the AND and search operations, as previously ex-

plained.

154

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

60

80

100

120

140

160

En
er

gy
 [f

J]

CAMModel: match and mismatch energies Match
Mismatch

Figure 7.24: CAM architecture, search operation energy: non-ideal drivers.

155

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

7.1.7 AND operation: ideal drivers

In this section the AND operations is considered, analyzing the results provided by the

simulations performed using non-ideal drivers.

20 40 60 80 100 120 140
Width in bits

100

150

200

250

300

350

400

450

De
la

y
[p

s]
ANDDelay ANDModel

ANDSTModel
ANDDYNModel

Figure 7.25: AND operation delay: ideal drivers.

In Figure 7.25, the AND operation delay is considered as function of the row width.

One can notice how the cell that performs worst is the special-purpose one, denoted

by ANDModel. This is due to the fact that this cell has to transistors connected in series

to the AND line, while in the other cells only one transistor is present (Figure 5.18).

Since the AND operation is performed on the line, ANDModel results to perform worse

than the other cells.

It can be noticed how the dynamic and static cells, ANDDYNModel and ANDSTModel

respectively, have the same performance. This is due to the fact that they are char-

acterized by the same output circuit (i.e. the transistors connected to the AND line).

The difference in the cells complexities can be exploited considering the cells energy

consumptions.

In Figure 7.26, the energy consumption associated to an AND operation whose result

is ‘1’, is shown.

The first thing that can be noticed is that ANDModel is characterized by the highest

energy consumption. This can be explained considering the sensing scheme that is

implemented in the architecture.

In section 4.4, it has been explained that the sense amplifiers are turned off as soon as

the dummy SA switches its output. While the amplifiers are enabled, they inject current

in the line and, so, they consume energy. For this reason, since ANDModel is characterized

156

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

50

60

70

80

90

En
er

gy
 [f

J]

AND1Energy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.26: AND operation energy: AND=‘1’ case, ideal drivers.

by the largest delay, to it is associated also the largest energy consumption: in fact, the

larger is the delay, the larger will be the conduction time of the sense amplifiers and,

so, the energy involved in the AND operation. In this way, it can be explained how

the special-purpose cell has the largest energy consumption even if it is the simplest

architecture among the LiM arrays.

In Figure 7.26, it can be noticed how the static cell, ANDSTModel, is characterized by

a lower energy consumption than ANDDYNModel. This is due to the internal implemen-

tation of the cells: while ANDSTModel is implemented in standard static CMOS logic,

ANDDYNModel utilizes dynamic CMOS logic, which is characterized by a larger energy

consumption.

In Figure 7.27, the dynamic cell behavior is shown.

One can observe how the dynamic AND inputs are evaluated as soon as PRE is

deactivated, which happens at the end of the pre-discharge cycle. Hence, it takes some

time for the AND output to be discharged and, so, for the transistor connected to the

AND-line to be disabled. During this small time interval additional energy is wasted,

since the pull-down transistor connected to the line conducts the current provided by

the sense amplifier to ground, not allowing the line to be charged.

This does not happen in the static cell where, since static logic is implemented,

the pull-down transistor is disabled during the pre-discharge cycle and, so, energy is

preserved.

In Figure 7.28, the energy associated to the pre-discharge operation is shown.

It can be noticed how the largest energy consumption is associated to ANDModel.

This is due to its complex output circuit, as previously explained. Also in this case, the

157

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

BL D

t

t

t

ANDLine

ANDLine

AND

AND

PRE

PRE

PRE

Figure 7.27: The dynamic cell behavior.

20 40 60 80 100 120 140
Width in bits

45

50

55

60

65

70

En
er

gy
 [f

J]

SingPrechargeEnergy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.28: AND operation energy: pre-discharge cycle, ideal drivers.

158

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

dynamic cell is characterized by an energy consumption larger than the static one. This

is due to the fact that during the pre-discharge phase, the internal AND nodes of the

cells have to be precharged in the dynamic implementation, while this does not happen

in the static one.

20 40 60 80 100 120 140
Width in bits

50

60

70

80

90

100

En
er

gy
 [f

J]

AND0Energy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.29: AND operation energy: AND=‘0’ case, ideal drivers.

In Figure 7.29, the energy consumption associated to an AND operation whose result

is ‘0’, is shown.

The same observations made before for the energy values hold true.

In Figure 7.30, the energies associated to the two results of an AND operation for

the ANDModel architecture are shown.

If the result of the operation is ‘1’, the line has to be discharged afterwards. This

implies that, when considering the energy consumption associated to a result equal to

‘1’, one has to take into account also the pre-discharge energy. This is what is done in

Figure 7.30. In fact, it can be observed how the largest energy consumption is associated

to the result equal to ‘1’.

This can lead to reduced energy consumption in the memory operation if the mem-

ory words contain a lot of zeros: in fact, in this case, the most frequent result of the

AND operation would be ‘0’, which is also the one with the lowest energy consumption

associated.

This is true only for the ANDModel architecture: for the other two arrays, the opposite

happens, since the result of the AND operation is inverted on the AND-line, as it has

been discussed in section 5.3. For the ANDDYNModel and ANDSTModel arrays, hence, the

result of the AND operation with the lowest energy consumption associated is ‘1’.

159

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

60

80

100

120

140

160

En
er

gy
 [f

J]

ANDModel: AND=1 and AND=0 energies AND=1
AND=0

Figure 7.30: Comparison between AND=1 and AND=0 energies for ANDModel.

160

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

7.1.8 AND operation: non-ideal drivers

In this section, the AND operation is studied, analyzing the results of the simulations

performed using non-ideal drivers.

20 40 60 80 100 120 140
Width in bits

100

150

200

250

300

350

400

450

De
la

y
[p

s]
ANDDelay ANDModel

ANDSTModel
ANDDYNModel

Figure 7.31: AND operation delay: non-ideal drivers.

In Figure 7.31, the delay of the AND operation is analyzed.

It can be noticed that the delay associated to ANDDYNModel is larger than the one

of ANDSTModel, differently from what is shown in Figure 7.25, where ideal drivers are

instantiated in the simulations. This is due to the fact that the precharge signal of the

cells (PRE in Figure 7.27) has to be distributed on the row: since the tested cell is put

in the farthest position with respect the driver of PRE, this has an influence on the

performance of the array.

In the static architecture, instead, no precharge signal is distributed on the the row.

Hence, the performance are maximized.

In Figure 7.32, the energy consumption of an AND operation whose result is ‘1’, is

considered.

One can observe that the array type to which the largest energy consumption is

associated, is the one with the dynamic cell: ANDDYNModel. The reasons of this are the

same examined before: since in these simulation a real driver is used to distribute the

precharge signal in the row, the energy consumption of the array is increased during

an AND operation. Referring to Figure 7.33, the conduction time of the pull-down

transistor is increased, since the precharge signal is not ideal anymore, being generated

by a real driver. For this reason, the AND-line transistor is enabled for a larger time

interval and, so, more energy is wasted in the operation.

161

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

50

60

70

80

90

100

110

En
er

gy
 [f

J]

AND1Energy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.32: AND operation energy: AND=‘1’ case, non-ideal drivers.

BL D

t

t

t

ANDLine

ANDLine

AND

AND

PRE

PRE

PRE

Figure 7.33: The dynamic cell behavior with non-ideal drivers.

162

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

In this energy increase also the non-ideality of the driver has to be taken into account,

that results in an additional energy consumption during the AND operation.

20 40 60 80 100 120 140
Width in bits

50

60

70

80

90

100

En
er

gy
 [f

J]
SingPrechargeEnergy ANDModel

ANDSTModel
ANDDYNModel

Figure 7.34: AND operation energy: pre-discharge cycle, non-ideal drivers.

In Figure 7.34, the energy associated to the pre-discharge cycle is shown.

Also in this case, the largest energy consumption is associated to ANDDYNModel, for

the reasons discussed before: since the precharge signal is not ideal in these simulations,

a larger energy consumption is obtained. In fact, a step-like behavior can be observed

for ANDDYNModel, since the precharge signal driver is redesigned as the row width is

increased.

In Figure 7.35, the energy consumption associated to an AND operation whose result

is ‘0’, is shown.

When the result of the AND operation is ‘0’, it means that the AND-line transis-

tor is always enabled. Hence, the delay in the precharge signal has no effect on the

performance, since the internal AND node of the gate is not discharged. However, the

resulting energy consumption is increased with respect the ideal case of Figure 7.29, since

a non-ideal driver is generating PRE and, so, a larger energy consumption is obtained.

In Figure 7.36, the two results of the AND operation are compared in terms of energy

consumption for the ANDModel architecture. As in Figure 7.30, the pre-discharge energy

is added to the one associated to the result ‘1’ for the reasons previously discussed,

resulting in a larger energy consumption associated to the AND operation whose result

is a logic ‘1’.

163

7.1. SIMULATIONS PERFORMED VARYING THE ARRAY WIDTH

20 40 60 80 100 120 140
Width in bits

50

60

70

80

90

100

En
er

gy
 [f

J]

AND0Energy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.35: AND operation energy: AND=‘0’ case, non-ideal drivers.

20 40 60 80 100 120 140
Width in bits

60

80

100

120

140

160

En
er

gy
 [f

J]

ANDModel: AND=1 and AND=0 energies AND=1
AND=0

Figure 7.36: Comparison between AND=1 and AND=0 energies for ANDModel.

164

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

7.2 Simulations performed varying the array height

In this section, the simulations performed varying the array height from 128 to 512 rows,

while the width is fixed to 32 bits, are considered. In the following, each operation is

analyzed in detail.

7.2.1 Read operation: ideal drivers

In this section, the read operation as function of the array height is analyzed, using the

results provided by simulations in which ideal drivers have been instantiated.

150 200 250 300 350 400 450 500
Height in bits

210

220

230

240

250

260

270

280

De
la

y
[p

s]

Read0Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.37: Read operation delay: cell content equal to ‘0’, ideal drivers.

In Figure 7.37, the read delay of a logic ‘0’ is shown.

It can be noticed a step-like behavior of the delay value, which is due to the re-design

of the delay circuit of the sense amplifiers to the array height: as the number of rows

enlarges, the delay associated to the enable signal of the SA is increased (section 6.2.1)

in order for the read operation to be properly carried out.

One can observe that SRAMModel performs always better than the logic arrays, be-

cause of its higher simplicity: being lower the capacitive load on the bitlines (Figure 7.3),

the discharge rate of the bitlines results to be higher and, so, a lower delay is registered

for the read operation.

In Figure 7.38, the read delay of a logic ‘1’ is shown.

It can be noticed how the logic arrays values are now well separated. This is due to

the fact that when reading a logic ‘1’, the negated bitline BL is discharged; since this

line is the most capacitively loaded line among the LiM memory cells, the difference in

their complexities is registered in the arrays performance.

165

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Height in bits

220

230

240

250

260

270

280

290
De

la
y

[p
s]

Read1Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.38: Read operation delay: cell content equal to ‘1’, ideal drivers.

150 200 250 300 350 400 450 500
Width in bits

20

30

40

50

60

70

80

En
er

gy
 [f

J]

Read0Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.39: Read operation energy: cell content equal to ‘0’, ideal drivers.

In Figure 7.39, the energy consumption associated to the reading of a logic ‘0’ is

shown.

One can notice that the SRAM array is the less energy consuming one; this is due

to its higher simplicity, that results in lower energy consumption. No difference in the

performance can be observed for the logic arrays (CAM and LiM) since during the

reading of a logic ‘0’, the bitline BL is not discharged and, so, the difference in the

166

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

capacitive loads (Figure 7.3) is not exploited in the measurements.

150 200 250 300 350 400 450 500
Width in bits

20

40

60

80

100
En

er
gy

 [f
J]

Read1Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.40: Read operation energy: cell content equal to ‘1’, ideal drivers.

In Figure 7.40, the energy consumption associated to the reading of a logic ‘1’ is

shown.

In this case, a clear distinction between the logic arrays can be observed: the most

complex arrays (referring to their bitline capacitive load) are the ones to which the

largest energy consumptions are associated. This is particularly true for this operation,

since during the reading of a logic ‘1’ the capacitive load difference between the cells

(Figure 7.3) is exploited, as explained before.

167

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

7.2.2 Read operation: non-ideal drivers

In this section, the read operation as function of the array height is analyzed, using the

results provided by simulations in which non-ideal drivers have been instantiated.

150 200 250 300 350 400 450 500
Height in bits

210

220

230

240

250

260

270

280

290

De
la

y
[p

s]
Read0Delay ANDModel

ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.41: Read operation delay: cell content equal to ‘0’, non-ideal drivers.

In Figure 7.41, the read delay associated to a logic ‘0’ is shown.

Also in this case, a step-like behavior can be observed, which is due to the re-design

of the sense amplifier delay circuit as the array height is increased.

It can be noticed how the SRAM delay is not so much lower than the logic arrays

one. This is due to the fact that the read delay is largely determined by the delay circuit

of the sense amplifier, and that the same algorithm for the SA delay generation is used

for all the architectures.

In Figure 7.42, the read delay associated to a logic ‘1’ is shown.

In this graph, the difference in the cells complexities is exploited since a logic ‘1’ is

being read, as explained for the ideal drivers case.

In Figure 7.43, the read energy associated to a logic ‘0’ is shown.

One can observe that, as expected, the most simple array, SRAMModel, is the one

with the lowest energy consumption associated. Also, it can be noticed how the energy

values are larger than in the ideal case: this is due to the non-idealities of the drivers

that generate an additional contribution to the operation energy consumption.

In Figure 7.44, the read energy associated to a logic ‘1’ is shown.

A clear distinction can be observed between the logic arrays in this case, since a logic

‘1’ is being read and, so, the different cells complexities are registered in the results.

168

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Height in bits

220

240

260

280

300
De

la
y

[p
s]

Read1Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.42: Read operation delay: cell content equal to ‘1’, non-ideal drivers.

150 200 250 300 350 400 450 500
Width in bits

30

40

50

60

70

80

90

100

En
er

gy
 [f

J]

Read0Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.43: Read operation energy: cell content equal to ‘0’, non-ideal drivers.

169

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Width in bits

40

60

80

100

120

En
er

gy
 [f

J]

Read1Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.44: Read operation energy: cell content equal to ‘1’, non-ideal drivers.

170

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

7.2.3 Write operation: ideal drivers

In this section, the write operation as function of the array height is analyzed, using the

results provided by simulations in which ideal drivers have been instantiated.

150 200 250 300 350 400 450 500
Height in bits

25

50

75

100

125

150

175

200

De
la

y
[p

s]
Write0Delay ANDModel

ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.45: Write operation delay: cell content written to ‘0’, ideal drivers.

In Figure 7.45 the write delay associated to a logic ‘0’ is shown.

It can be noticed a super-linear dependence of the write delay on the array height.

Also, as the array size is increased, the difference in the delay value between logic and

SRAM arrays enlarges. This is due to the fact that the SRAM is characterized by a low

capacitive load associated to the bitlines (Figure 7.3) and, so, its write delay increases

in a way slower than the one of the logic arrays that, on the contrary, have a large

capacitive load associated.

In Figure 7.46, the write delay associated to a logic ‘1’ is shown.

One can observe that, in this case, the delay values associated to the logic arrays

are well separated. The most complex cells (i.e. the LiM ones) have the largest delays

associated. This is due to their large capacitive load and to the fact that a logic ‘1’ is

being written to the cell and, so, the negated bitline BL has to be discharged (in fact,

BL is the most loaded bitline in the LiM arrays).

In Figure 7.47, the write energy associated to a logic ‘0’ is shown.

In this case, a linear dependence on the array height can be noticed. This was

expected since, as previously explained, not all the non idealities of the array are taken

into account in the simulations and, as the array height is increased, the number of cells

per row increases proportionally, leading to a linear growth in the energy consumption

associated to the write operation.

171

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Height in bits

50

100

150

200

250

300

350

De
la

y
[p

s]

Write1Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.46: Write operation delay: cell content written to ‘1’, ideal drivers.

150 200 250 300 350 400 450 500
Width in bits

10

20

30

40

50

60

70

80

En
er

gy
 [f

J]

Write0Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.47: Write operation energy: cell content written to ‘0’, ideal drivers.

As in Figure 7.45, no difference can be observed among the logic arrays, since a logic

‘0’ is being read and the LiM cells capacitive load is associated to BL.

In Figure 7.48, the write energy associated to a logic ‘1’ is shown.

Since a logic ‘1’ is being written and, so, the BL has to be brought from VDD to 0 V,

different energy values can be observed among the logic arrays, with the most complex

one, ANDSTModel, being the array with the largest energy consumption associated.

172

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

20 40 60 80 100 120 140
Width in bits

20

40

60

80

100

120

En
er

gy
 [f

J]

Write1Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.48: Write operation energy: cell content written to ‘1’, ideal drivers.

173

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

7.2.4 Write operation: non-ideal drivers

In this section, the write operation as function of the array height is analyzed, using the

results provided by simulations in which non-ideal drivers have been instantiated.

150 200 250 300 350 400 450 500
Height in bits

100

150

200

250

De
la

y
[p

s]
Write0Delay ANDModel

ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.49: Write operation delay: cell content written to ‘0’, non ideal drivers.

In Figure 7.49, the write delay associated to a logic ‘0’ is shown.

A behavior similar to the one shown in the ideal case (Figure 7.45) can be observed.

This is due to the fact that the bitline drivers strength is adjusted by ALiAS as the

array height is increased.

As in the ideal case, the SRAM array presents the best performance, being the less

complex architecture among all the arrays.

In Figure 7.50, the write delay associated to a logic ‘1’ is shown.

As in the ideal case, the delay values are now well separated among the arrays, thanks

to the fact that a logic ‘1’ is being written to the cell. Also, a super-linear behavior can

be observed, as in the ideal case (Figure 7.46).

In Figure 7.51, the write energy associated to a logic ‘0’ is shown.

A step-like behavior can be observed. This is due to the fact that inverter stages are

added to the bitline drivers as the array height is increased, in order for their driving

strength to be adapted to the array size.

As in the delay case (Figure 7.49), the less complex array, SRAMModel, is also the

one with the lowest energy consumption associated.

In Figure 7.52, the write energy associated to a logic ‘1’ is shown.

Also in this case, a step-like behavior can be noticed, which is due to the bitline

drivers re-design as the array size is increased. Furthermore, since a logic ‘1’ is being

174

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Height in bits

100

150

200

250

300

350

400

450

De
la

y
[p

s]

Write1Delay ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.50: Write operation delay: cell content written to ‘1’, non ideal drivers.

150 200 250 300 350 400 450 500
Width in bits

40

60

80

100

120

140

En
er

gy
 [f

J]

Write0Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.51: Write operation energy: cell content written to ‘0’, non ideal drivers.

written to the cell, different energy values can be observed among the arrays, with the

most complex one, ANDSTModel, having the largest energy consumption associated.

175

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Width in bits

25

50

75

100

125

150

175

200

En
er

gy
 [f

J]

Write1Energy ANDModel
ANDSTModel
ANDDYNModel
SRAMModel
CAMModel

Figure 7.52: Write operation energy: cell content written to ‘1’, non ideal drivers.

176

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

7.2.5 Search operation: ideal drivers

In this section, the search operation as function of the array height is analyzed, using

the results provided by simulations in which ideal drivers have been instantiated.

150 200 250 300 350 400 450 500
Height in bits

192.69

192.70

192.71

192.72

192.73

192.74

De
la

y
[p

s]

MatchDelay ANDModel
ANDSTModel
ANDDYNModel
CAMModel

Figure 7.53: Search operation delay: ideal drivers.

In Figure 7.53, the delay associated to the search operation is shown.

It can be noticed that the search delay is practically constant as the array height

is varied. This was expected since the search operation is carried out on a row: being

constant the row width, no variation is registered in the performance.

In Figure 7.54, the match and mismatch energies are compared.

Also in this case, the energy associated to the match result is larger than the mis-

match one. This is due to the fact that to a match-result corresponds a variation in the

match-line potential (i.e. the match-line is charged to VDD).

As in subsection 7.1.5, the same energy results are obtained for the LiM arrays, since

in these the match-line circuitry is completely separated from the LiM one.

177

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Width in bits

40

60

80

100

120

140

En
er

gy
 [f

J]

CAMModel: match and mismatch energies Match
Mismatch

Figure 7.54: CAM architecture, search operation energy: ideal drivers.

178

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

7.2.6 Search operation: non-ideal drivers

In this section, the search operation as function of the array height is analyzed, using

the results provided by simulations in which non-ideal drivers have been instantiated.

150 200 250 300 350 400 450 500
Height in bits

192.70

192.71

192.72

192.73

192.74

De
la

y
[p

s]

MatchDelay ANDModel
ANDSTModel
ANDDYNModel
CAMModel

Figure 7.55: Search operation delay: non-ideal drivers.

In Figure 7.55, the search delay as function of the memory height is shown.

As in the ideal case, a practically constant value for the match delay is found, thanks

to the fact that the search operation is performed on the memory row and, so, its delay

is practically independent from the array height.

In Figure 7.56, the match and mismatch energies are compared.

As in the ideal case, an energy larger for the match result than for the mismatch one

can be observed. Differently from Figure 7.54, a larger energy consumption is associated

to the match case, because of the non-ideal drivers used to drive the bitlines during the

pre-discharge phase.

One can notice that the energy increases as the array height is varied, while the delay

remains constant. This is due to the fact that the energy consumed during a search

operation is related to the time needed by the dummy MLSA to switch its output.

In section 6.2.1 it has been explained that a dummy load is placed on the output of

the dummy MLSA to emulate the presence of the MLSAs associated to the remaining

rows of the array. Hence, as the array height is increased, more loads are attached to

the dummy MLSA output. This results in a larger delay associated to it, that leads to

an increased conduction time for the actual MLSA; this increase in the conduction time,

hence, results in an enlargement in the energy consumption associated to the search

operation.

179

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Width in bits

40

60

80

100

120

140

En
er

gy
 [f

J]

CAMModel: match and mismatch energies Match
Mismatch

Figure 7.56: CAM architecture, search operation energy: non-ideal drivers.

Hence, as result, as the array height is increased, the energy consumption associated

to the search operation enlarges.

180

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

7.2.7 AND operation: ideal drivers

In this section, the AND operation as function of the array height is analyzed, using the

results provided by simulations in which ideal drivers have been instantiated.

150 200 250 300 350 400 450 500
Height in bits

120

130

140

150

160

170

De
la

y
[p

s]
ANDDelay ANDModel

ANDSTModel
ANDDYNModel

Figure 7.57: AND operation delay: ideal drivers.

In Figure 7.57, the AND delay as function of the array height is shown.

One can observe that the delay remains constant as the array height is varied. This

is due to the fact that the AND operation, as the search one, is performed on the row

and, so, is independent from the array height.

It can be noticed that the largest delay is associated to ANDModel, since in the cell

has the most complex AND output circuit (i.e. the cell transistors connected to the

AND-line). The dynamic and static arrays, instead, are characterized by the same

performance.

In Figure 7.58, the energy consumption associated to an AND operation whose result

is ‘1’, is shown.

As in Figure 7.26, the most consuming architecture results to be ANDModel, because

of its complex AND-line circuit. An increase in the energy with the array height can

be observed too. This is due to the same reasons explained in subsection 7.2.5: as the

array height increases, the conduction time of the AND-line sense amplifier and, so, the

associated energy consumption are increased.

In Figure 7.59, the energy consumption associated to the pre-discharge cycle is

shown.

As in Figure 7.58, the largest energy consumption is associated to ANDModel, because

of its complex AND-line circuit.

181

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Width in bits

30

40

50

60

70

En
er

gy
 [f

J]

AND1Energy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.58: AND operation energy: AND=‘1’ case, ideal drivers.

150 200 250 300 350 400 450 500
Width in bits

30

40

50

60

70

En
er

gy
 [f

J]

SingPrechargeEnergy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.59: AND operation energy: pre-discharge cycle, ideal drivers.

In Figure 7.60, the energy consumption associated to an AND operation whose result

is ‘0’, is shown.

As in Figure 7.58, the largest energy consumption is associated to ANDModel, for the

same reasons discussed before.

In Figure 7.61, a comparison between the energies associated to the possible results

of an AND operation, is shown.

182

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Width in bits

30

40

50

60

70
En

er
gy

 [f
J]

AND0Energy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.60: AND operation energy: AND=‘0’ case, ideal drivers.

150 200 250 300 350 400 450 500
Width in bits

40

60

80

100

120

140

En
er

gy
 [f

J]

ANDModel: AND=1 and AND=0 energies AND=1
AND=0

Figure 7.61: Comparison between AND=1 and AND=0 energies for ANDModel.

As in subsection 7.1.7, for ANDModel a larger energy consumption for the ‘1’ than

the ‘0’ is registered. The same considerations made in subsection 7.1.7 hold true.

183

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

7.2.8 AND operation: non-ideal drivers

In this section, the AND operation as function of the array height is analyzed, using the

results provided by simulations in which non-ideal drivers have been instantiated.

150 200 250 300 350 400 450 500
Height in bits

120

130

140

150

160

170

De
la

y
[p

s]

ANDDelay ANDModel
ANDSTModel
ANDDYNModel

Figure 7.62: AND operation delay: non-ideal drivers.

In Figure 7.62, the AND operation delay as function of the array height is shown.

One can notice that, differently from Figure 7.57, the ANDDYNModel array presents

a delay larger than ANDSTModel. This is due to the fact that a real driver is used to

distribute the precharge signal of the dynamic cells on the row and, so, worse perfor-

mance are obtained for the dynamic LiM array. This has already been discussed in

subsection 7.1.8.

In Figure 7.63 the energy consumption associated to an AND result equal to ‘1’, is

shown.

Differently from the ideal case (Figure 7.58), the largest energy consumption is now

associated to the dynamic array, ANDDYNModel. This is due to the presence of the

precharge signal driver, that causes an enlargement in the conduction time of the sense

amplifier and, so, to an increase in the energy consumption associated to the AND

operation, as discussed in subsection 7.1.8.

Since the array height is being increased, the enlargement in the energy consumption

is even higher, since the the dummy ANDSA requires a larger time to switch its output

and, so, to disable the real sense amplifier.

In Figure 7.64, the energy consumption associated to the pre-discharge cycle is

shown.

184

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Width in bits

30

40

50

60

70

En
er

gy
 [f

J]

AND1Energy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.63: AND operation energy: AND=‘1’ case, non-ideal drivers.

150 200 250 300 350 400 450 500
Width in bits

30

40

50

60

70

En
er

gy
 [f

J]

SingPrechargeEnergy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.64: AND operation energy: pre-discharge cycle, non-ideal drivers.

Also in this case, the most consuming architecture results to be ANDDYNModel, for

the same reasons discussed before: the non-ideality of the driver that distributes the

precharge signal to the dynamic cells on the row leads to an increase in the energy

consumption and to a decrease in the performance.

In Figure 7.65, the energy associated to an AND operation whose result is ‘0’, is

shown.

185

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

150 200 250 300 350 400 450 500
Width in bits

30

40

50

60

70
En

er
gy

 [f
J]

AND0Energy ANDModel
ANDSTModel
ANDDYNModel

Figure 7.65: AND operation energy: AND=‘0’ case, non-ideal drivers.

In this case, the ANDDYNModel is the second most consuming architecture. As in

Figure 7.35, this is due to the fact that, since the internal AND node is not discharged

(Figure 7.33), the AND-line transistor does not need to be disabled and, so, no increase

in the energy consumption is registered. However, since the precharge signal is still

being distributed by a non-ideal driver, the dynamic architecture results to be more

energy consuming than the static one.

150 200 250 300 350 400 450 500
Width in bits

40

60

80

100

120

140

En
er

gy
 [f

J]

ANDModel: AND=1 and AND=0 energies AND=1
AND=0

Figure 7.66: Comparison between AND=1 and AND=0 energies for ANDModel.

186

7.2. SIMULATIONS PERFORMED VARYING THE ARRAY HEIGHT

In Figure 7.66, a comparison between the energies associated to the possible results

of an AND operation, is shown.

As in subsection 7.1.8, for ANDModel a larger energy consumption for the ‘1’ than

the ‘0’ is registered. The same considerations made in subsection 7.1.8 hold true.

187

7.3. CONCLUSIONS AND FUTURE WORKS

7.3 Conclusions and future works

A Logic-In-Memory array for maximum/minimum value has been realized in this thesis.

First, standard memory architectures, such as CAM and SRAM, have been studied

and realized, in order to obtain reference architecture to which the LiM one could be

compared.

Then, the LiM array has been realized, adding analog and digital circuits to the

memory array in order to perform a bitwise AND operation, which is the basis of the

proposed maximum/minimum algorithm [1]. This array has been designed starting from

the cell topology, of which three variants have been proposed, and the sensing scheme,

that has been inspired by the CAM architecture.

The design, then, has been generalized realizing a software tool named ALiAS, that

allows to synthesize and simulate an array of arbitrary dimensions, allowing to charac-

terize its performance and consumptions as functions of the array size.

From the results presented in section 7.1 and section 7.2, it can be noticed how

the AND operation performs way better than the search one. This suggests that is

more convenient to perform a maximum/minimum search in memory using a LiM array

instead of a CAM one (or another standard memory architecture). The possibility

to perform the research in memory surely involves a lower power consumption than

a standard system made by a CPU and a memory that exchange data continuously;

however, in this thesis it has been demonstrated that it is even more convenient from a

performance point of view.

Many characteristics of ALiAS can be improved:

• the synthesis algorithm for the wordline and bitline drivers is very rough. By

refining this algorithm, one would be able to obtain more realistic results.

• the cell and some other array parts layout could be realized, in order to get realistic

results from the simulation and to choose proper values for the parasitic circuits

that have been included in the architecture.

• part of the around-memory logic proposed in [1] could be realized to take into

account its presence in the performance estimations.

• different sensing schemes can be implemented to obtain better performance. In

fact, the sensing scheme adopted in this work is particularly tuned for the CAM

architecture, and not for the LiM operation; however, it has been used to better

compare the CAM and LiM performance.

That0s all Folks!

188

Bibliography

[1] A. Chattopadhyay M. Vacca, Y. Tavva and A. Calimera. Logic-In-Memory Ar-

chitecture For Min/Max Search. 2018 25th IEEE International Conference on

Electronics, Circuits and Systems (ICECS).

[2] Kevin Zhang and Yamauchi Hiroyuki. Embedded memories for nano-scale VLSIs,

Embedded SRAM design in nanometer-scale technologies. pages 39–69, 2009.

[3] Kevin Zhang, Naveen Verma, and Anantha P. Chandrakasan. Embedded memories

for nano-scale VLSIs, Ultra Low Voltage SRAM Design. pages 89–124, 2009.

[4] E. Seevinck, F.j. List, and J. Lohstroh. Static-noise margin analysis of MOS SRAM

cells. IEEE Journal of Solid-State Circuits, 22(5):748–754, 1987.

[5] Hiroyuki Yamauchi. Embedded SRAM circuit design technologies for a 45nm and

beyond. 2007 7th International Conference on ASIC, 2007.

[6] Hiroyuki Yamauchi. Embedded SRAM trend in nano-scale CMOS. 2007 IEEE

International Workshop on Memory Technology, Design and Testing, 2007.

[7] Yeonbae Chung and Sang-Won Shim. An Experimental 0.8 V 256-kbit SRAM

Macro with Boosted Cell Array Scheme. ETRI Journal, 29(4):457–462, Mar 2007.

[8] Yasuhiro Morita, Hidehiro Fujiwara, Hiroki Noguchi, Yusuke Iguchi, Koji Nii,

Hiroshi Kawaguchi, and Masahiko Yoshimoto. An Area-Conscious Low-Voltage-

Oriented 8T-SRAM Design under DVS Environment. 2007 IEEE Symposium on

VLSI Circuits, 2007.

[9] Y. Tsukamoto, K. Nii, S. Imaoka, Y. Oda, S. Ohbayashi, T. Yoshizawa, H. Makino,

K. Ishibashi, and H. Shinohara. Worst-case analysis to obtain stable read/write DC

margin of high density 6T-SRAM-array with local Vth variability. ICCAD-2005.

IEEE/ACM International Conference on Computer-Aided Design, 2005.

[10] Makoto Yabuuchi, Koji Nii, Yasumasa Tsukamoto, Shigeki Ohbayashi, Susumu

Imaoka, Hiroshi Makino, Yoshinobu Yamagami, Satoshi Ishikura, Toshio Terano,

Toshiyuki Oashi, and et al. A 45nm Low-Standby-Power Embedded SRAM with

Improved Immunity Against Process and Temperature Variations. 2007 IEEE In-

ternational Solid-State Circuits Conference. Digest of Technical Papers, 2007.

[11] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli,

Y. Wang, B. Zheng, and M. Bohr. A 3-GHz 70-Mb SRAM in 65-nm CMOS Tech-

nology With Integrated Column-Based Dynamic Power Supply. IEEE Journal of

Solid-State Circuits, 41(1):146–151, 2006.

[12] Fatih Hamzaoglu, Kevin Zhang, Yih Wang, Hong Jo Ahn, Uddalak Bhattacharya,

Zhanping Chen, Yong-Gee Ng, Andrei Pavlov, Ken Smits, Mark Bohr, and et al. A

153Mb-SRAM Design with Dynamic Stability Enhancement and Leakage Reduc-

tion in 45nm High-Â¿ Metal-Gate CMOS Technology. 2008 IEEE International

189

Bibliography

Solid-State Circuits Conference - Digest of Technical Papers, 2008.

[13] K. Osada, Y. Saitoh, E. Ibe, and K. Ishibashi. 16.7 fA/cell tunnel-leakage-

suppressed 16 Mb SRAM for handling cosmic-ray-induced multi-errors. 2003 IEEE

International Solid-State Circuits Conference, 2003. Digest of Technical Papers.

ISSCC.

[14] Masanao Yamaoka, Noriaki Maeda, Yasuhisa Shimazaki, and Kenichi Osada. 65nm

Low-Power High-Density SRAM Operable at 1.0V under 3σ Systematic Variation

Using Separate Vth Monitoring and Body Bias for NMOS and PMOS. 2008 IEEE

International Solid-State Circuits Conference - Digest of Technical Papers, 2008.

[15] L. Chang, D.m. Fried, J. Hergenrother, J.w. Sleight, R.h. Dennard, R.k. Montoye,

L. Sekaric, S.j. Mcnab, A.w. Topol, C.d. Adams, and et al. Stable SRAM cell design

for the 32 nm node and beyond. Digest of Technical Papers. 2005 Symposium on

VLSI Technology, 2005.

[16] Benton Highsmith Calhoun and Anantha P. Chandrakasan. A 256-kb 65-nm Sub-

threshold SRAM Design for Ultra-Low-Voltage Operation. IEEE Journal of Solid-

State Circuits, 42(3):680–688, 2007.

[17] Ik Joon Chang, Jae-Joon Kim, Sang Phill Park, and Kaushik Roy. A 32kb 10T

Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in

90nm CMOS. 2008 IEEE International Solid-State Circuits Conference - Digest of

Technical Papers, 2008.

[18] Tae-Hyoung Kim, Jason Liu, John Keane, and Chris H. Kim. A High-Density

Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual Ground

Replica Scheme. 2007 IEEE International Solid-State Circuits Conference. Digest

of Technical Papers, 2007.

[19] K. Pagiamtzis and A. Sheikholeslami. Content-Addressable Memory (CAM) Cir-

cuits and Architectures: A Tutorial and Survey. IEEE Journal of Solid-State Cir-

cuits, 41(3):712–727, 2006.

[20] Teuvo Kohonen. Logic Principles of Content-Addressable Memories. Content-

Addressable Memories Springer Series in Information Sciences, pages 125–189,

1987.

[21] L. Chisvin and R.j. Duckworth. Content-addressable and associative memory: al-

ternatives to the ubiquitous RAM. Computer, 22(7):51–64, 1989.

[22] K.e. Grosspietsch. Associative processors and memories: a survey. IEEE Micro,

12(3):12–19, 1992.

[23] S. Stas. Associative processing with CAMs. Proceedings of NORTHCON93 Elec-

trical and Electronics Convention.

[24] I.n. Robinson. Pattern-addressable memory. IEEE Micro, 12(3):20–30, 1992.

[25] T.-B. Pei and C. Zukowski. VLSI implementation of routing tables: tries and

CAMs. IEEE INFCOM 91. The conference on Computer Communications. Tenth

Annual Joint Comference of the IEEE Computer and Communications Societies

190

Bibliography

Proceedings, 1991.

[26] A.j. Mcauley and P. Francis. Fast routing table lookup using CAMs. IEEE INFO-

COM 93 The Conference on Computer Communications, Proceedings.

[27] Jinn-Shyan Wang, Hung-Yu Li, Chia-Cheng Chen, and Chingwei Yeh. An AND-

type match-line scheme for energy-efficient content addressable memories. ISSCC.

2005 IEEE International Digest of Technical Papers. Solid-State Circuits Confer-

ence, 2005.

[28] Sungdae Choi, K. Sohn, and Hoi-Jun Yoo. A 0.7-fJ/bit/search 2.2-ns search time

hybrid-type TCAM architecture. IEEE Journal of Solid-State Circuits, 40(1):254–

260, 2005.

[29] G. Kasai, Y. Takarabe, K. Furumi, and M. Yoneda. 200MHz/200MSPS 3.2W at

1.5V Vdd, 9.4Mbits ternary CAM with new charge injection match detect circuits

and bank selection scheme. Proceedings of the IEEE 2003 Custom Integrated Cir-

cuits Conference, 2003.

[30] M.m. Khellah and M.i. Elmasry. Use of charge sharing to reduce energy consump-

tion in wide fan-in gates. ISCAS 98. Proceedings of the 1998 IEEE International

Symposium on Circuits and Systems (Cat. No.98CH36187).

[31] A. Igor, C. Trevis, and A. Sheikholeslami. A ternary content-addressable memory

(TCAM) based on 4T static storage and including a current-race sensing scheme.

IEEE Journal of Solid-State Circuits, 38(1):155–158, 2003.

[32] C.a. Zukowski and Shao-Yi Wang. Use of selective precharge for low-power content-

addressable memories. Proceedings of 1997 IEEE International Symposium on Cir-

cuits and Systems. Circuits and Systems in the Information Age ISCAS 97.

[33] A. Roth, D. Foss, R. Mckenzie, and D. Perry. Advanced ternary CAM circuits on

0.13 Î¼m logic process technology. Proceedings of the IEEE 2004 Custom Integrated

Circuits Conference (IEEE Cat. No.04CH37571).

[34] Ilion Yi-Liang Hsiao, Ding-Hao Wang, and Chein-Wei Jen. Power modeling and

low-power design of content addressable memories. ISCAS 2001. The 2001 IEEE

International Symposium on Circuits and Systems (Cat. No.01CH37196).

[35] A. Efthymiou and J.d. Garside. An adaptive serial-parallel CAM architecture for

low-power cache blocks. Proceedings of the International Symposium on Low Power

Electronics and Design, 2002.

[36] A. Efthymiou and J.d. Garside. A CAM with mixed serial-parallel comparison

for use in low energy caches. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 12(3):325–329, 2004.

[37] N. Mohan and M. Sachdev. Low power dual matchline ternary content addressable

memory.

[38] Kuo-Hsing Cheng, Chia-Hung Wei, and Shu-Yu Jiang. Static divided word match-

ing line for low-power Content Addressable Memory design. 2004 IEEE Interna-

tional Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

191

Bibliography

[39] K. Pagiamtzis and A. Sheikholeslami. A low-power content-addressable memory

(CAM) using pipelined hierarchical search scheme. IEEE Journal of Solid-State

Circuits, 39(9):1512–1519, 2004.

[40] K. Pagiamtzis and A. Sheikholeslami. Pipelined match-lines and hierarchical

search-lines for low-power content-addressable memories. Proceedings of the IEEE

2003 Custom Integrated Circuits Conference, 2003.

[41] I.m. Hyjazie and Chunyan Wang. An approach for improving the speed of con-

tent addressable memories. Proceedings of the 2003 International Symposium on

Circuits and Systems, 2003. ISCAS 03.

[42] I. Arsovski and A. Sheikholeslami. A current-saving match-line sensing scheme

for content-addressable memories. 2003 IEEE International Solid-State Circuits

Conference, 2003. Digest of Technical Papers. ISSCC.

[43] I. Arsovski and A. Sheikholeslami. A mismatch-dependent power allocation tech-

nique for match-line sensing in content-addressable memories. IEEE Journal of

Solid-State Circuits, 38(11):1958–1966, 2003.

[44] H. Noda, K. Inoue, M. Kuroiwa, F. Igaue, K. Yamamoto, H.j. Mattausch, T. Koide,

A. Amo, A. Hachisuka, S. Soeda, and et al. A cost-efficient high-performance dy-

namic TCAM with pipelined hierarchical searching and shift redundancy architec-

ture. IEEE Journal of Solid-State Circuits, 40(1):245–253, 2005.

[45] H. Noda, K. Inoue, M. Kuroiwa, A. Amo, A. Hachisuka, H.j. Mattausch, T. Koide,

S. Soeda, K. Dosaka, K. Arinnoto, and et al. A 143MHz 1.1W 4.5Mb dynamic

TCAM with hierarchical searching and shift redundancy architecture. 2004 IEEE

International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[46] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel. Yield and speed optimization

of a latch-type voltage sense amplifier. IEEE Journal of Solid-State Circuits,

39(7):1148–1158, 2004.

192

	Abstract
	State Of The Art
	Static Random Access Memories
	SRAM metrics
	Read Operation
	Write Operation
	Data Retention
	Cell current distribution
	Cell stability
	Read and write assist techniques and circuits
	Alternative cell topologies

	Content Addressable Memories
	The CAM cell
	Ternary cells
	Match-line schemes
	Searchline schemes

	SRAM design
	The SRAM cell
	Driver circuits
	Bitlines driver
	Precharge circuit
	Wordline driver

	Sense amplifier
	Interconnections parasitics
	Testbench
	The simulation flow
	Python script for input signals generation
	Cadence Virtuoso schematic
	Larger arrays design
	Simulation environment

	Simulation waveforms

	CAM design
	The CAM cell
	Driver circuits
	Match-line sense amplifier
	Dummy match-line scheme
	Cell sizing
	Testbench
	The testbench circuit
	Python code
	Cadence Virtuoso schematic

	Simulation waveforms

	LiM array design
	The algorithm
	The memory cell
	The proposed cell
	Adjustments to the original design

	The sensing scheme
	The implemented cell: dynamic AND version
	The static cell
	The special purpose cell
	Comparison between the cells
	Testbench
	Testbench circuit
	The sensing scheme
	Python code
	Cadence Virtuoso schematic
	Waveforms

	ALiAS
	Design flow
	The tool structure
	Netlist generator
	Simulation script generator
	Input stimuli generator

	Results provided by ALiAS
	User guide

	Results and conclusions
	Simulations performed varying the array width
	Read operation: ideal drivers
	Read operation: non-ideal drivers
	Write operation: ideal drivers
	Write operation: non-ideal drivers
	Search operation: ideal drivers
	Search operation: non-ideal drivers
	AND operation: ideal drivers
	AND operation: non-ideal drivers

	Simulations performed varying the array height
	Read operation: ideal drivers
	Read operation: non-ideal drivers
	Write operation: ideal drivers
	Write operation: non-ideal drivers
	Search operation: ideal drivers
	Search operation: non-ideal drivers
	AND operation: ideal drivers
	AND operation: non-ideal drivers

	Conclusions and future works

	Bibliography

