

EURECOM

Colucci Alessandro

Promo 2020 – Communication System Security

Outpost24 France

Sophia Antipolis, France

2019, Aug 1st – 2020, Jan 31st

Federated Identity within Single Sign-On Systems

Authentication & Authorization for LEXIS Project

EURECOM Advisor: Marc Dacier – Professor – Track Responsible

Company Advisor: Frédéric Donnat – Cloud Technical Assistant

POLITO Advisor: Antonio Lioy - Professor

Rapport de stage confidentiel / Confidential thesis report

OUI / YES ☐ NON / NO ☒

DECLARATION POUR LE RAPPORT DE STAGE
DECLARATION FOR THE MASTER’S THESIS

Je garantis que le rapport est mon travail original et que je n'ai pas reçu d'aide extérieure.
Seules les sources citées ont été utilisées dans ce projet. Les parties qui sont des citations
directes ou des paraphrases sont identifiées comme telles.

I warrant, that the thesis is my original work and that I have not received outside assistance.
Only the sources cited have been used in this report. Parts that are direct quotes or
paraphrases are identified as such.

À : ……………………………………….
Date : ...

Nom Prénom : ...
Name First Name

Signature :

Antibes

Colucci Alessandro

31/01/2020

POLITECNICO DI TORINO & EURECOM - TÉLÉCOM PARIS

Master Degree course in Computer Engineering

Master Degree Thesis

Federated Identity within Single Sign-On
Systems

Authentication & Authorization for LEXIS Project

Supervisors

Prof. Marc Dacier

Prof. Antonio Lioy

Candidate

Alessandro Colucci

Company supervisor
Outpost24 France

Eng. Frédéric Donnat

Academic year 2019-2020

To my mother and my

family, who always

supported me to follow my

path.

❸ To my father and my

sister Giulia, who always

look down upon me.

❸ To my grandmother, who

taught me to wear a smile

every day.

To Marzia, for having been

an important part of my life

and supported me even when

I didn’t believe in myself.

To Antonio, Lisa and

Mateo, always staying by my

side and accompanying me

on this journey.

To my friends from

“Prater-Eurecom”, the best

Italian group Eurecom has

ever hosted.

To all the people I met on

this journey, making it even

more unique.

Summary

English version

The LEXIS Project aims at building an advanced, geographically-distributed, HPC
infrastructure for Big Data analytics that will support the execution of large-scale test-
beds in various industrial sectors. This work contains my contribution to the creation of
the AAI system securing the whole LEXIS infrastructure (chapter 2). After comparing
several Single Sign-On solutions (section 3.7) based on various analysis criteria (subsec-
tion 3.7.1), the Keycloak system was chosen representing the best fit for the project,
thanks to its security features (subsection 3.7.2). The server was deployed through the
implementation of an Ansible Playbook (section 4.2), in charge of installing all the sys-
tem requirements and configuring the basic setup over the server or cluster nodes spec-
ified. Further studies were done on the Authentication and Authorization mechanisms
supported by Keycloak (section 4.3), in particular on the configuration of the Keycloak
Clients and the usage of JWT tokens (subsection 4.3.3). An hybrid approach was adopted
to handle the Authorization in Keycloak (subsection 4.3.2) for LEXIS: an RBAC matrix
was designed to provide the right set of permissions for users and groups in the system,
merged with an ABAC approach for building up a finer-grained Access Control scheme.
Finally, some research was done towards the assessment of possible vulnerabilities in
the Identity and Access Tokens management through token forgery (subsection 4.3.4),
eventually not identifying any flaw.

Version française

Le Project LEXIS vise à construire une infrastructure HPC avancée et géographique-
ment distribuée pour l’analyse des Big Data qui soutiendra l’exécution de bancs d’essai
à grande échelle dans divers secteurs industriels. Ce travail contient ma contribution
à la création du système AAI sécurisant l’ensemble infrastructure LEXIS (chapter 2).
Après avoir comparé plusieurs Single Sign-On solutions (section 3.7) sur la base de divers
critères d’analyse (subsection 3.7.1), le système Keycloak a été choisi comme le mieux
adapté au projet, grâce à ses caractéristiques de sécurité (subsection 3.7.2). Le serveur
a été déployé via la implémentation d’un Ansible Playbook (section 4.2), en charge de
l’installation de toutes les exigences système et de la configuration de la configuration de
base sur le serveur ou les noeuds de cluster spécifiés. D’autres études ont été effectuées
sur les mécanismes d’authentification et d’autorisation (section 4.3) pris en charge par
Keycloak, en particulier sur la configuration de Keycloak Clients et l’utilisation de jetons
JWT (subsection 4.3.3). Une approche hybride a été adoptée pour gérer l-Autorisation
dans Keycloak (subsection 4.3.2) pour LEXIS: une RBAC Matrix a été conçue pour
fournir le bon ensemble d’autorisations pour les utilisateurs et les groupes du système,
fusionné avec un approche ABAC pour construire un schéma de contrôle d’accès plus fin.
Enfin, des recherches ont été effectuées en vue d’évaluer les vulnérabilités possibles dans
la gestion des jetons d’identité et d’accès via falsification des jetons (subsection 4.3.4),
sans finalement identifier aucune faille.

4

Acknowledgements

The work described in this Thesis was produced under the supervision of:

❼ Prof. Marc Dacier (academic supervisor from EURECOM - Télécom Paris)

❼ Eng. Frédéric Donnat (company supervisor from Outpost24 France)

❼ Prof. Antonio Lioy (academic supervisor from Politecnico di Torino)

A special thanks to all the Outpost24 colleagues for helping me in this activity and
creating a friendly environment to work in.

5

Contents

List of Figures 8

1 Introduction 9

2 The LEXIS AAI Infrastructure 11

2.1 LEXIS Infrastructure . 11

2.2 LEXIS Objectives and Requirements . 13

2.2.1 AAI System for the LEXIS Platform: Objectives 13

2.2.2 Requirements and Specifications 15

3 State of the Art 18

3.1 Identity Federation . 18

3.2 Single Sign-On . 18

3.2.1 Identity Provider . 19

3.2.2 Service Provider . 19

3.2.3 Identity Broker . 19

3.3 Authentication mechanisms and protocols 19

3.3.1 Multi-Factor Authentication . 20

3.3.2 Federation of web services and Social Login 20

3.3.3 Standard Protocols . 21

3.3.4 Consent . 24

3.4 Client APIs . 24

3.4.1 Account Console . 24

3.4.2 Admin Console . 25

3.5 Authorization Services . 25

3.6 Auditing . 25

3.7 Existing SSO Systems . 27

3.7.1 Analysis criteria . 27

3.7.2 Keycloak . 28

3.7.3 OpenStack Keystone . 29

3.7.4 Unity . 30

3.7.5 Other evaluated systems . 31

6

Contents

4 Solution Design 40

4.1 The chosen solution: Keycloak . 40

4.2 Deployment with Ansible . 41

4.3 Authentication and Authorization mechanisms 43

4.3.1 Authentication in Keycloak . 43

4.3.2 Authorization in Keycloak . 44

4.3.3 JWT Tokens . 48

4.3.4 Token Forgery . 49

5 Conclusion 52

A Ansible deployment guide 53

B Postman configuration and testing 55

Bibliography 57

7

List of Figures

2.1 Authentication, authorization and identity system architecture. 12

2.2 Cross-site AAI architectural configuration. 14

4.1 RBAC Matrix for LEXIS. 47

B.1 Token request via Postman (user). 55

B.2 Token request via Postman (client). 56

B.3 Request for displaying users in the realm. 56

8

Chapter 1

Introduction

The LEXIS Project [1] represents the answer to the H2020 project ICT 11 call: Large-
scale EXecution for Industry and Society.

LEXIS aims at building an advanced, geographically-distributed, HPC infrastructure
for Big Data analytics that will support the execution of large-scale test-beds in various
industrial sectors. To ease the design and implementation of the infrastructure, LEXIS
will be managed by three major components:

❼ cross-site infrastructure

❼ data management

❼ cloud provisioning services

The design and development of HPC/CLOUD/BD technologies in LEXIS is strongly
oriented to provide a significant support to the pilot test-beds. The overall architecture
of LEXIS has been designed as three integrated layers: Infrastructure Layer, Data Layer
and Cloud services.

15 partners take part in the LEXIS Project:

❼ HPC Center: LRZ, IT4, ECMWF;

❼ Pilots: Avio Aero, CEA, CIMA, GFZ, AWI;

❼ Dissemination: Eiffage Teseo;

❼ Security: Outpost24;

❼ R&D: IT4I, LRZ, Bull, Cyclops, ECMWF, BayncoreLabs.

The LEXIS project aim to have its own AAI module/system to manage the LEXIS
user and their access. The LEXIS infrastructure will be distributed among 2 different
datacenters hosted in LRZ (Germany) and IT4I (Czech Republic). The AAI system will
be used to store the user credentials (password, SSH keys, etc..) that are needed to
access the LEXIS infrastructure and to store the permissions to access all part of LEXIS
including:

❼ Distributed Data layer;

9

Introduction

❼ Compute Layer both in HPC center and on OpenStack platform.

The goal is that each module of LEXIS project can use the AAI system to ensure
the user have the proper permission to execute the request. For instance, the OpenStack
platform can control that the user is allowed to start a virtual machine or run specific
tasks. Another use case is that the Data Layer can ensure that the user has read access
to some specific datasets.

The AAI module also needs to include federation as users shouldn’t be able to au-
thenticate once on LEXIS portal and then be able to run any simulation on any datasets
that he has access.

The goal is to make a study on Open-source IAM system to identify the best choice
for LEXIS project. Several Open-source implementations have been identified and can
be found at [2].

The thesis will cover the State of the art of such SSO Open-source module that can
be used with pros and cons. According to the constraints dictated by LEXIS Project,
some recommendation will be required on how to use, deploy and setup such SSO system
over the 2 Datacenters available in LEXIS.

The goal will be to make a “paper” analysis of such SSO system to short-list the
3 best fitting solutions to LEXIS’ needs. Once the best solution (fitting the needs and
requirements of LEXIS project) has been found, it will be necessary to install it on the
distributed infrastructure spanning the 2 different Datacenters.

Some recommendations will be requested on how to properly use the SSO features to
properly handle the access management (role, permission, RBAC, UBAC, ABAC, etc.).
It will be required to identify different ways of using permissions and roles for users
and groups in order to provide recommendation for properly configuring the SSO system
according to LEXIS project needs and requirements.
The different scenarios will cover the following infrastructure part:

❼ Distributed Data Layer system among at least 2 different Datacenter

❼ HPC on 2 different Datacenter

❼ OpenStack on 2 different Datacenter

10

Chapter 2

The LEXIS AAI Infrastructure

2.1 LEXIS Infrastructure

This section will briefly describe the LEXIS Infrastructure and its components. All the
information provided has been reported in the Deliverable 4.1 of the LEXIS Project [3],
co-authored by myself.

From co-design activities started at the beginning of the LEXIS project, partner com-
panies have identified and described the “LEXIS AAI” not only from a design perspective
but also from a functional approach, taking into consideration the security aspects of the
overall LEXIS platform. Figure 2.1

The goal for the LEXIS AAI is to provide a federated authentication and authoriza-
tion system distributed among different data-centers (IT4I, LRZ), providing Federated
Identity, Access and Data management. Moreover, the LEXIS AAI system will need
to ensure that all the building blocks of the LEXIS infrastructure will be able to check
for authentication and authorization for any user or process accessing LEXIS infrastruc-
tural resources (i.e. network, compute or storage resources). To this end, the following
use-cases are covered:

❼ Restricting network access based on LEXIS AAI: A user can be allowed to get access
resources on one specific data-center only;

❼ Restricting computation access based on LEXIS AAI: A user can be granted to use
OpenStack resources in one data-center only or spanning several data-centers;

❼ Restricting data layer access based on LEXIS AAI: A user can be granted to get
access to some specific datasets (e.g. weather and climate dataset) among all data-
centers.

In terms of security, the design takes into account the fact that each building block of
the LEXIS infrastructure is able to verify authentication and authorization for a user or
process, avoiding service accounts that are security breaches for user isolation. If there is
any security hole in a service account running a process for a user or another process, then
it makes possible to elevate privileges and gain access to resources (network, compute,
storage) that should not be accessed by the original user or process.

Figure 2.1 depicts the integration of the AAI system within the overall LEXIS plat-
form. Interaction among different components of the LEXIS platform is also shown.

11

The LEXIS AAI Infrastructure

Figure 2.1. Authentication, authorization and identity system architecture.

12

The LEXIS AAI Infrastructure

As a matter of fact, usage of any LDAP server has been avoided in the design of the
system, as it wouldn’t properly provide:

❼ Real-time replication of data: LDAP systems are designed to work as master-slave
components and thus they aren’t designed to operate as a clustered system that
can be distributed among different data-centers (although there are several ways of
creating an LDAP cluster nowadays, it remains a non-optimal choice);

❼ Native Single Sign-On (SSO) support:

– OpenID Connect;

– SAML;

❼ Easy integration with web-services: the LEXIS portal will extensively use web
services as the LEXIS platform is designed to work with both Cloud (OpenStack)
and HPC technologies.

In case of creation of a pure and extensive platform based on HPC systems only, LDAP
servers would have been an easier and better choice; however, as a hybrid platform was
devised (composed of both HPC and Cloud resources which are based on REST API),
then LDAP servers are definitely not the way to go. Conversely, the highly scalable
system is built on top of a micro-services architecture which includes easy authentication
and authorization services made for web services, such as Keycloak, Unity, OpenIAM,
and others.

2.2 LEXIS Objectives and Requirements

This section describes the LEXIS objectives and requirements. All the information pro-
vided is reported in the Deliverable document [3].

2.2.1 AAI System for the LEXIS Platform: Objectives

The goal is to provide a federated Authentication & Authorization Infrastructure (AAI),
able to manage the access to the LEXIS platform by users which can use resources in 2
different data-centers (IT4I and LRZ).

As a key element in the co-designed LEXIS architecture, the AAI is linked to 3
different parts of the LEXIS infrastructure, which define objectives to achieve with the
designed AAI:

❼ LEXIS Portal : Front-End & Back-End portal will expose LEXIS functionalities
and features to the end-user;

❼ LEXIS Computational Resources: Computational layer of LEXIS project which is
hosted on 2 different supercomputing centers (IT4I and LRZ) and based on 2 dif-
ferent computational units in both infrastructures: HPC resources and OpenStack-
based Cloud resources. To simplify the design phase, the VMware deployment has
been considered as part of the OpenStack Cloud. In this layer, the AAI will sup-
port orchestration system, which is based on software modules, namely YSTIA &
Alien4Cloud (provided by partner Bull/Atos) and HEAppE middle-ware (provided
by partner IT4I);

13

The LEXIS AAI Infrastructure

Figure 2.2. Cross-site AAI architectural configuration.

❼ LEXIS Data Layer : the Data layer of LEXIS platform spans over 3 different sites
(i.e. IT4I, LRZ and ECMWF) and is based on several storage solutions, such as
Ceph and iRODS.

A further set-up will be added for LEXIS AAI, as a fully-operational module following
best recommendation and practice for production deployment. Figure 2.2 shows the
cross-site architectural configuration for the devised AAI system, which allows keeping
information synchronized across different infrastructures (i.e. data-centers).

As reported in the following sections, the AAI will achieve such main objectives by
integrating a set of key technologies which have been selected in a way that they can cover
all the requirements and specifications provided as input by the other components of the
LEXIS project. To this end, the analysis made in this section helps in understanding the
in-depth analysis of all relevant technologies reported in section 3.7.

14

The LEXIS AAI Infrastructure

2.2.2 Requirements and Specifications

This section contains the synthesis of the requirements that have been gathered for the 3
main building blocks of the LEXIS platform and that will interact with the LEXIS AAI:

❼ Compute Layer: This includes Cloud resources (with OpenStack) and HPC re-
sources with all the relevant software tools;

❼ Data Layer: This includes DDI (Distributed Data Infrastructure) and the selected
software tools;

❼ Portal Layer: It refers to the back-end portal connecting to LEXIS AAI.

Worth of noting that the first two layers (Compute and Data) will also contain the
constraints brought by the existing infrastructure at IT4I and LRZ data-centers.

Cloud Computational Resources (Openstack)

OpenStack is the main technology at the basis of building the Cloud part of the LEXIS
platform, and it is installed on both LEXIS federated infrastructures (IT4I and LRZ).
OpenStack provides its own service for authorization and authentication, namely Open-
Stack Keystone (subsection 3.7.3), but it can also rely on other existing authorization
and authentication services such as Keycloak (subsection 3.7.2).

OpenStack supports several Identity backends, such as LDAP, but it also supports 2
models for federation identity, especially the one called Keystone as a Service Provider
which uses external identity provider (such as Keycloak or Google) as identity source and
authentication method [4]. Also, OpenStack Keystone supports offloading authentication
using SAML2.0 and OpenID Connect protocols.

From this standpoint, the requirements concerning the Cloud computational resources
(i.e. OpenStack) can be summarized as follows:

❼ SAML2.0 or OpenID Connect protocol support, to be used in the LEXIS AAI
front-end authentication protocol.

HPC Computational Resources

The HPC resources represents one of the main components of the LEXIS platform, as
they are demanded to support a large portion of the pilot applications. The HPC unit of
the LEXIS platform requires access to the users stored in LDAP systems installed in IT4I
and LRZ infrastructures. Thus, the only requirement is to be able to configure an LDAP
server on both data-centers. Moreover, HEAppE middle-ware will be used for executing
tasks on behalf of the LEXIS user on the HPC computational part.
HEAppE will then use one of the protocols provided by LEXIS AAI to ensure authenti-
cation and access rights.

To summarize, the requirements for HPC part are the following:

❼ SAML2.0 or OpenID Connect protocol support for LEXIS AAI front-end authen-
tication protocol.

15

The LEXIS AAI Infrastructure

Orchestration Layer (Ystia)

YSTIA is the solution selected as the orchestration tool in LEXIS. It provides the or-
chestration service (Yorc) and a frontend interface, namely Alien4Cloud. Here, YSTIA is
referred to as the combination of orchestration service and the frontend. YSTIA supports
any SAML Identity Provider or LDAP server for authentication through its front-end in-
terface (Alien4Cloud).

However, YSTIA does not support any external provider for authorization. To have a
complete Federated Identity Management system providing both authentication and au-
thorization, a way has to be identified to map YSTIA roles with LEXIS AAI authorization
system.

To summarize, the requirements for the orchestration layer are the following:

❼ SAML2.0 protocol support for LEXIS AAI front-end authentication protocol;

❼ or LDAP support for LEXIS AAI front-end authentication.

Middle-ware Solution (HEAppE)

Due to security reasons, there is no (easy) way to get access to the HPC computational
resources from the outside of the HPC infrastructures. To solve this issue, an intermediary
system must be put in place, in order to map internal HPC cluster users with external
ones that want to access the resources. Furthermore, there is a need to keep track of
used resources within the cluster (for monitoring reasons). To this end, LEXIS platform
uses a middleware solution, namely HEAppE [5]. It provides all such capabilities, i.e. it
creates a (dynamic) mapping between internal HPC cluster users that are allowed to use
resources and external LEXIS users, and it is able to monitor resource usage (also for
billing purposes).

To summarize, the requirements concerning the LEXIS middle-ware solution are the
following:

❼ Support the mapping of internal HPC cluster users with LEXIS users.

Distributed Data Layer (iRODS)

The DDI (Distributed Data Infrastructure) layer will use iRODS [6] open source compo-
nent. This software uses passwords as the default method for users authentication, stored
in an iCAT database (i.e. a layer laying on top of a relational database used to store
meta-data). iRODS also supports other authentication methods via specific plugins [7]:

❼ GSI: Specific authentication plugin for Grid Security Infrastructure;

❼ Kerberos: Usage of a Key Distribution Center and a Kerberos admin server;

❼ PAM: Linux Pluggable Authentication Modules is supported by iRODS and it can
be configured to support LDAP server;

❼ OpenID: An experimental OpenID plugin exists for iRODS that allows support for
OpenID protocol.

16

The LEXIS AAI Infrastructure

To summarize, the requirements for DDI system are the following:

❼ Kerberos support for LEXIS AAI front-end authentication;

❼ or LDAP support for LEXIS AAI front-end authentication;

❼ or OpenID protocol support for LEXIS AAI front-end authentication protocol.

Although iRODS plugins can cover all the current needs of LEXIS project, potentially
other ones will be developed to facilitate and automate the integration of iRODS within
the LEXIS platform.

LEXIS Platform Portal

The LEXIS back-end portal will be flexible and adapt to LEXIS AAI. As a matter of fact,
commonly used software and protocols in IT (such as SAML2.0 or OpenID Connect) will
be adopted.

17

Chapter 3

State of the Art

This section will briefly describe the main actors and characteristics in the context of
Single Sign-On technology. Some sections have been already reported in the Deliverable
4.1 of the LEXIS Project [3] , co-authored by myself.

Visit RedHat’s documentation on Key Concepts and Terms in the SSO environment [8]
for further details.

3.1 Identity Federation

Identity federation is a way of linking a person’s multiple digital identities, collecting all
their attributes under the same entity, which can be shared among different domains to
access several applications and services.

Identity federation is essential to Single Sign-On (SSO, cf. also NIST FIPS-800-63),
where users’ access is allowed after verifying their identity and issuing a single authentica-
tion ‘ticket’ - called token - vouching for their identity and allowing access across multiple
systems and organizations. “SSO is a subset of federated identity management, as it re-
lates only to authentication, it is understood on the level of technical interoperability and
it would not be possible without some sort of federation” [9].

3.2 Single Sign-On

Single Sign-On (SSO) is a security mechanism for enhancing user’s experience and secu-
rity, as users’ authentication is requested only once for different applications federated
within the same Identity Provider and keeping user’s credentials safe in the SSO server,
preventing them from being cached by the actual service requiring them.
In general, this is achieved when the SSO Identity Provider (IDP) authenticates the user
and then issues a security token which is sent to the target applications (i.e. SSO Ser-
vice Provider) asserting the successful user’s authentication and the reliability of their
identity. This scenario can also involve an Identity Broker, consisting in an intermedi-
ary service with the purpose of creating a trust relationship between multiple Service
providers with different Identity providers.

18

State of the Art

3.2.1 Identity Provider

An Identity Provider is a system in charge of providing identity management and authen-
tication within a federated or distributed infrastructure. Upon successful user authenti-
cation, the Identity Provider returns an authentication token that can be used as proof
of the user identity.
The Identity Provider usually authenticates a user by validating a username/password
(with or without any MFA) but it can also rely on another method or even another
trusted Identity Provider for authenticating the user.
The Identity Provider is in charge of managing the users’ identities during its life-cycle
(from creation to deletion). This system usually offers an API to facilitate integration
with other applications such as web applications.

3.2.2 Service Provider

In this context a Service Provider is a system providing a “services” to an end user
such as storage or processing. In modern software architecture (micro-services and not
monolithic application), this system relies on another system called Identity Provider
to provide Identity Management (authentication, authorization and management of the
identity).
In most cases the Service Provider completely relies on the Identity Provider to pro-
vides any user’s attributes (not only authorization), but it may happen that the Service
Provider also manages some very specific user’s attributes that are only used locally.
It’s important to notice that such an architecture usually provides enhance usability from
user perspective (usually coupled with SSO, user only needs to authenticate once) and
better security (from Identity Management perspective, it avoids maintaining several
identities in several places for the same user, thus reducing the attack surface).

3.2.3 Identity Broker

The Identity Broker is an intermediary service in charge of creating a trusted connection
among different Service providers with external Identity providers. When the user tries
to access a resource, the Service Provider redirects them to the Identity Broker, which is
in charge of providing a list of available Identity providers to the user. Upon a successful
authentication, the chosen Identity Provider issues a security token that will be used by
the Service Provider to trust the authentication vouched by the Identity Provider and
retrieve information about the user.

3.3 Authentication mechanisms and protocols

This section will briefly describe the large variety of authentication mechanisms offered
by Single Sign-On systems, along with the standard protocols adopted.

Authentication is verifying the identity of a user, process or device which is often
a prerequisite to allowing access to resources in an information system. This (cf. e.g.
also NIST FIPS-200 [10]) is often a pre-requisite to giving access to a resource in an
information system.

Usually, it’s possible to differentiate between 3 authentication types:

19

State of the Art

❼ something you know: this includes passwords, PINs, secret passphrases, etc. In few
words, it refers to anything you can remember and (then) say, do or perform when
requested;

❼ something you have: this includes physical objects, such as keys, smartphones, USB
sticks, smart cards or token devices. In few words, it refers to anything you own
that can be provided when requested.

❼ something you are: this includes any part of the human body, such as the fingerprint,
face, iris, etc. In few words, it refers to any part of the human body that can support
the verification process when requested.

3.3.1 Multi-Factor Authentication

Nowadays, most of the information systems are using one of these authentication types
and the number of systems using Two-Factor Authentication (2FA) or Multi-Factor Au-
thentication (MFA) methods are growing. Two-Factor Authentication is the combination
of 2 of these authentication types (similarly, Multi-Factor Authentication systems com-
bine more than 2 of the above-mentioned mechanisms). For instance, in such a system,
most of the time you need to provide a password and then a secret number generated on
your physical device or smartphone.

According to Cryptography experts (cf. Handbook of Applied Cryptography [11]),
it’s better to be very careful in using fixed passwords and personal identification numbers
(PINs), since their working scheme makes them fall under the category of ‘symmetric key
techniques providing unilateral authentication’. One-time password-based techniques are
a step forward towards having a strong authentication mechanism in place.

On the other hand, strong authentication is provided using the Challenge-Response
scheme, where the idea is that the user, process or device (claimant entity) proves its
identity to the system (verifier entity) by demonstrating knowledge of a secret without
revealing or providing it. This is usually done by providing a response to a time-variant
challenge (usually random and secret) where the response depends on both the secret
and the challenge.

Strong authentication is often confused with 2FA or MFA; however, unless multiple
authentication factors are used, such as something you have and something you are, it
cannot be considered an MFA.

3.3.2 Federation of web services and Social Login

Federation of web services, be it, e.g., social career platforms (e.g. LinkedIn, Xing) or code
repository services (e.g. GitHub) is based on connection to trusted (usually federated)
Identity providers (e.g. A. Singhal et al., Guide to Secure Web Services [12]). Using
social network services or big online stores and Service providers (e.g. Facebook, Google,
Amazon, etc.) as an Identity Provider, it is nowadays possible for a user to log into web
services and portals with the credentials he uses to access the Identity Provider’s main
services (e.g. social network); this mechanism will be further referred as Social Login
below.

Social login negates the need for the end-user to remember login information for
multiple web sites and services, while providing site owners with uniform demographic

20

State of the Art

information as provided by the Identity Provider (e.g. basic data from the users’ Face-
book or Amazon profiles).
Social network-based login mechanisms are often deployed alongside the traditional reg-
istration and login mechanisms, representing a viable way for new users to register even
if they don’t have an account on a supported social network.

While Social login can be extended to some corporate websites, in the context of
strictly secure applications it is often impossible to trust a third-party Identity Provider
(e.g. banking or health system management). On the other hand, usage of Social login
for suitable applications (e.g. forum, e-commerce or career network websites) is strongly
increasing, as it can provide additional social features such as commenting, sharing, re-
actions and gamification. This is usually possible when Social login is implemented using
the OAuth framework, even if it’s always possible to implement it as a bare authentication
system following the OpenID or SAML standard.

3.3.3 Standard Protocols

All analysed SSO systems are based on standard protocols and provide support for SAML
(2.0), OpenID Connect and/or OAuth (2.0).

Usually, standard protocols provide an Access token, which is a token that can be
provided as part of an HTTP request that grants access to the service being invoked on.
This is part of the OpenID Connect and OAuth 2.0 specification.

SAML

Security Assertion Markup Language (SAML) is an XML-based open standard provided
by OASIS for exchanging authentication and authorization data between different parties
or entities. [13][14]

In its second version (SAML 2.0) this standard allows to even pass such data across
what they called security domains. A security domain is a set of servers or computers
that belong to the same domain and are using the same identity provider. In concrete
terms, it allows to deploy Single Sign-On across different web applications among different
domains.

The SAML 2.0 language allow to pass token from an Identity Provider to a Service
Provider that authenticates the user and also contains some sort of attribute that de-
scribes the authorizations for the user (also called assertions).
Identity providers and Service providers need to agree on the SAML configuration to use:
in order to work, both endpoints need to adopt the same configuration for the SAML
authentication.

OpenID Connect

OpenID Connect (OIDC) [15] is an identity layer on top of an authorization framework
that uses OAuth 2.0 protocol. It specifies a REST API using JWT (JSON Web token),
allowing a Service Provider to communicate with an Identity Provider in order to au-
thenticate and authorize a user.
The REST API enables all web-based applications, mobile applications, and similar
(which are using secure channel over HTTP (HTTPS) for communication) to verify the

21

State of the Art

identity of the user through an Identity Provider and also retrieve additional information
available in the IDP.

OpenID Connect uses more robust signing and encryption mechanism than OpenID
2.0 (integration of OAuth 1.0a with an extension) due to the integration of OAuth 2.0 in
the protocol itself.

Another important feature is that OpenID Connect provides mechanisms for auto-
matically discover Identity Provider (using some metadata) and allows to dynamically
trust an external Identity Provider based on the trust for a common trusted third party.

OAuth

OAuth is a secure authorization protocol for Access delegation, achieved by the autho-
rization server issuing an access token to a third-party client over HTTP services.
The protocol allows a user to grant access to their data (stored in a Service Provider) for
web, desktop and mobile applications, without sharing their identity and credentials.

Compared to SAML, OAuth is a slightly newer standard, providing similar flows and
functionalities with a much simpler client implementation, along with better support for
mobile (and Internet application in general), by using JSON formatted communication.
On the other hand, SAML is a more widely applicable protocol, covering identity federa-
tion and management and authentication, most deployed in Centralized identity sources
and Enterprise SSO scenarios. Apart from requiring an accurate configuration, SAML
allows better control over SSO systems.

The first version of the protocol (OAuth 1.0 [16]) was first released in December
2007 and it was rapidly adopted by most industrial web-based applications for access
delegation. However, a security flaw [17] required a minor revision (OAuth 1.0 Revision
A [18]), published in June 2008.

The new version OAuth 2.0 [19] was introduced in 2012 and it’s completely redesigned,
not backwards compatible with the previous versions, although maintaining the general
approach.
OAuth 2.0 introduces some important improvements to the protocol over the previous
versions [20]:

❼ it allows the application to request authentication by sending the access token over
HTTPS, without the need of signed requests using HMAC and token secrets;

❼ new methods (OAuth Flows) for obtaining an access token, to differentiate use cases
and allow better support for non-browser based applications;

❼ simplified signatures, removing the need for special parsing, encoding, and sorting
of parameters;

❼ new Refresh token, allowing the server to issue short-lived access tokens while clients
can retrieve a new access token without requiring the user to grant access again;

❼ separation of roles between the authorization server issuing credentials and the
resource server handling API calls, allowing better performances with an increase
in scalability.

22

State of the Art

Kerberos

Kerberos [21] is a cross-platform authentication protocol, especially representing the de-
fault authorization technology used to login in Windows systems as well as one of the
most adopted standards for web sites and Single Sign-On implementations.

Kerberos is based on a ticketing service, relying on a trusted entity called Key Dis-
tribution Center (KDC), whose main task is issuing a ticket-granting ticket (TGT) to
the client upon user’s authentication by the Authentication Server (AS). When trying to
access a certain service, identified by its Service Principal Name (SPN), the client gives
back the TGT to the corresponding ticket-granting service (TGS), which is time-stamped
and encrypted with the TGS’s secret key - and transparently renewed upon expiration
by the Local Session Manager (LSM).
Once verifying the ticket validity and checking access rights, the user is granted access to
the Service Server (SS).

Kerberos was first released in the 1980s, but it consisted of a huge improvement over
previous technologies and still represents one of the best and most deployed protocols for
authentication.
However, it has some drawbacks and limitations, mainly related to time constraints (time-
stamped TGT has a narrow validity period, thus host’s and server’s clocks need to be
synchronized) and the trust relationship between parties, especially relying on a central
server’s availability for ticket management and verification.

Lightweight Directory Access Protocol

Lightweight Directory Access Protocol (LDAP) [22] is an open standard protocol for
authentication based on X.500 Directory Services, which represent a way of storing and
organizing network resources mapped to their corresponding addresses, arranging them
in a naming structure and make them available within the network itself.

LDAP was created as a lightweight alternative to X.500 Directory Access Protocol
(DAP), relying on the simpler TCP/IP protocol stack in place of the full Open Systems
Interconnection (OSI) protocol stack.

LDAP is widely deployed to access usernames and passwords, stored in a central
storage (LDAP Server), from different applications and services in order to validate
users’ identities.

Active Directory

Active Directory (AD) [23] represents Microsoft’s directory server implemented using the
LDAP protocol (version 2 and 3), designed to work with Microsoft Exchange Server,
and Windows Domains in general. Like LDAP, AD is a directory service allowing third-
party applications and services to access a centralized directory for user’s authentication,
providing also group and policy management.

Active Directory requires a central Active Directory Domain Service (AD DS), usually
called Domain Controller, which is in charge of managing all resources in the Windows
Domain such as devices and users, authenticating and authorizing them and enforcing
security policies in the network.
It also includes several other services, such as:

23

State of the Art

❼ Lightweight Directory Services (AD LDS): similar AD DS functionalities, but with-
out requiring the definition of domains;

❼ Certificate Services (AD CS): acts as a PKI, in charge of issuing, validating and
revoking certificates for files, emails and network traffic encryption;

❼ Federation Services (AD FS): complements AD DS with identity federation, en-
abling for Single Sign-On functionalities;

❼ Rights Management Services (AD RMS): an information rights management, al-
lowing authorization control over corporate documents.

3.3.4 Consent

Commonly services’ clients require access to the user identity. Once a user is successfully
authenticated, the client might need to request their consent before being able to link to
the user’s account and retrieve their information.
This is usually done with a prompting screen, eventually specifying the information the
application wants to access (such as name, email, etc.) and allowing the user to grant
the request and decide which fields can be accessed by the client.

3.4 Client APIs

Client APIs (often called Client Adapters) represent exposed communication interfaces
that can be used by applications and services to interact with the Identity Provider and
request for user authentication.
Typically clients implement APIs to provide Single Sign-On functionalities to their ser-
vices, being able to retrieve identity information or an access token to securely commu-
nicate with other services in the same SSO system.

3.4.1 Account Console

The Account or User console is the means through which users can manage their accounts
(updating their profile information or changing their credentials), as well as handle linked
accounts (when using Social login or Identity brokering, allow them to authenticate using
different Identity providers), oversee sessions and set up advanced security mechanisms
(e.g. Multi-Factor Authentication).

Self registration and User validation

Certain Single Sign-On systems provide Self-registration capabilities, which allow users
to create their account without the need of an administrator’s validation (thus easing
and speeding up the workload for the account activation procedure). This functionality,
that can be enabled by the system administrators, is usually based on an email validation
mechanism, where a confirmation email is sent to the user, containing an activation code
or link to provide in order to validate the user’s identity and complete the registration
process.

24

State of the Art

3.4.2 Admin Console

Users with administration rights can have access to the system’s configuration, managing
all aspects of the Single Sign-On server such as setting up Identity Brokering and User
Federation; applications and services creation and management, and definition of fine-
grained authorization policies; users management, including permissions and sessions.

Usually, these functionalities are available either as additional features in a custom
User console or through a dedicated Admin console, which can be a graphical interface
(GUI) or a command-line interface (CLI).

3.5 Authorization Services

Authorization Services are in charge of protecting application resources, managing user
permissions and enforcing access policies.
Most of SSO systems support fine-grained authorization policies, usually offering different
Access Control Mechanisms (ACM), generally based on the following schemes:

User-based Access Control (UBAC): permissions are granted at the individual level.
Despite allowing more granular control of the system, this scheme leads easily to man-
agement overload, as access rights have to be defined for each user separately;

Role-based Access Control (RBAC): users are assigned a role (or a combination of
roles), based on their job functions and privileges, determining which permissions they
are granted. This scheme allows a more structured way of granting access, organizing
roles in a hierarchy where higher-level roles subsume permissions owned by sub-roles;

Attribute-based Access Control (ABAC): access rights are granted to users through
the combination of different types of attributes (such as user attributes, resource at-
tributes and environment conditions), determining permissions based on who the users
are instead of what they do (like in RBAC);

Context-based Access Control (CBAC): with the support of firewall software fea-
tures that intelligently filter TCP and UDP packets based on the application layer session
information, access rights are granted to the user according to a specific contextual at-
tributes (such as organization, application, network resources, etc.) that the user is
attempting to gain access to.

3.6 Auditing

Auditing is a key security functionality in a Single Sign-On system: it allows to keep track
of users’ activity (e.g. sign-on/sign-off, resource access sessions, privileges elevation, etc.)
in a set of chronological records, which can be used for reporting, monitoring, statistical
usage analysis or legal record keeping.

It’s generally possible to configure the system selecting types or classes of events
triggering the auditing mechanism, such as authentication-related events (e.g. login,
registration, logout, token management, etc.) or account-related events (e.g. account
linking, credentials or user information update, etc.). [24]

In addition to the Auditing system, SSO servers can provide their systems with Event
Listeners, special procedures enabling to perform specific actions when a certain event
occurs.

25

State of the Art

Systems offering this functionality usually come with predefined listeners, allowing to
configure additional listeners based on custom events (e.g. in [24]).

Event records contain various information related to the performed action, such as
the belonging category (e.g. appliance realm that generated the audit trail), the severity
(in terms of security-relevant operations), time and outcome of the action (whether it
was successful or a failure), along with the parties involved. [25]

26

State of the Art

3.7 Existing SSO Systems

This chapter will focus on the analysis of existing Single Sign-On systems, taking into
consideration their benefits and disadvantages according to the defined requirements (sec-
tion 2.2) and criteria (subsection 3.7.1).

3.7.1 Analysis criteria

This section describes the criteria used to analyse the considered solutions. This infor-
mation is available in the Deliverable document [3] too.

Aiming at both looking at the most relevant functionalities of the AAI systems and
establishing a frame of reference to compare them, the different solutions have been
analysed under the following criteria:

❼ License: all the considered solutions being open-source, this criteria is only used
to take trace of the license under which the corresponding solution is released;

❼ Requirements: it’s the set of hardware and software requirements for the given
solution, e.g. some solutions require the Java 8 JDK, for others just the installation
of a RDBMS is necessary to deploy the system;

❼ Clustering / Scalability: high availability is one of the key features for a dis-
tributed system. A clustering set-up increments flexibility and reliability over fail-
ures and allows failover mechanisms;

❼ Distributed / Multi site: load balancing and multi-nodes deployment allow for
a capillary coverage of the system network and generally better performances for
the whole system;

❼ Disaster Recovery / Backup: this criteria is used to identify error recovery and
backup functionalities, able to restore the state of the system after a fault occurs;

❼ Authentication protocols: relevant importance is taken from the authentication
and authorization protocols used in the implementation.
All the analysed solutions are based on most common standard protocols: SAML
(generally 2.0), OpenID, OpenID Connect, OAuth (versions 1.0a [18, 17] and 2.0).
Commonly used protocols are also Kerberos, WS-Federation (Passive), and others;

❼ Authentication Integration: this criteria defines all the functionalities offered by
the authentication implementation. Usually these include: default username&password
login (against local database), X.509/SSL certificate-based authentication, LDAP
authentication, OTP/TOTP, MFA (2FA), Social login.
In some cases it can make use of pre-defined implementations (eg. Shibboleth IDP
, Spring Security framework [26], FIDO, and others);

❼ Authorization Services: it generally refers to the authorization scheme adopted
by the system, which is commonly implemented either by RBAC, ABAC or UBAC
models.
Some solutions provide more advanced policy schemes, such as through XACML
or Advanced Hybrid RBAC [27], offering an hybrid approach between RBAC and
ABAC.
More rare are the implementation based on ACL (Access Control List) or HBAC
(Host and service-based Access Control model);

27

State of the Art

❼ Functionalities: relevant additional functionalities that may be offered by some
implementations, such as caching; users grouping and management; lifecycle man-
agement for users, groups, identities and roles;

❼ Auditing: log all the security-relevant events and actions performed on the system
by both users and administrators;

❼ Storage: storage type and features provided by the system;

❼ Admin API: API functions and UI available for administration purposes. It usu-
ally involves users management, roles assignment, system administration;

❼ User API: API functions and UI available for end-user, to manage their account
and system resources they have access to;

❼ Self registration / User validation: option that enables end-user to create and
activate autonomously their new account.
This functionality can lighten the administration overhead provided by hand-checking
every user, which however could be a stronger constraint for the system integrity;

❼ Comments: any other related functionality or comparison not involved in the
previous analysis.

Every analysis has been structured in the same way, in order to ease the comparison
among different solutions.

3.7.2 Keycloak

‘Developed by JBoss (a Red Hat division), Keycloak [28] is an open-source Single Sign-On
(SSO) solution with Identity and Access Management. It also provides Single Sign-On
functionalities, managing user’s logout in place of the applications belonging to the same
realm. Keycloak also has built-in support to connect to existing LDAP or Active
Directory servers or custom providers in other stores, such as a relational database (i.e.,
an RDBMS such as SQL Oracle or PostgreSQL). [29]

Besides the Standalone Mode, the program provides 3 different operating modes sup-
porting Clustering:

❼ Standalone Clustered Mode: It requires a copy of the Keycloak distribution on each
node in the cluster;

❼ Domain Clustered Mode: It provides a central place to store and publish configu-
rations, common to all the nodes in the cluster;

❼ Cross-Datacenter Replication Mode: It allows to run Keycloak in a cluster across
multiple data centers, typically located in different geographical regions. Each data
center has its cluster in this mode.

Keycloak provides a replication mechanism, achieved by the usage of distributed
caches among the nodes in the cluster.
A number of nodes (configurable as an attribute in the cluster’s settings) are chosen as
owner of the data, which are indeed not replicated to every single node in the cluster;
thus any node has to query the cluster to obtain a specific cache entry that it doesn’t
own. For this reason, the availability of a specific piece of data is related to the nodes

28

State of the Art

that are hosting it: if all those nodes go down, the data is lost permanently. In these
cases, the users will be logged out automatically and asked to login again.

Keycloak provides client adapters for several platforms and programming languages,
but it is built on standard protocols like OpenID Connect, OAuth 2.0 and SAML 2.0,
thus allowing integration with any application and service.
The authentication process is built upon different mechanisms: local user with pass-
word policy, OTP policy, Kerberos, X509 certificate + LDAP + Kerberos.
From the viewpoint of authorization policies, Keycloak supports the following ones:
Attribute-based Access Control (ABAC), Role-based Access Control (RBAC), User-based
Access Control (UBAC), Context-based Access Control (CBAC), Rule-based Access Con-
trol, Time-based Access Control + Support for custom Access Control Mechanisms
(ACMs) through a Policy Provider Service Provider Interface (SPI). [30]

Keycloak also provides Identity Brokering features, as it provides Social login and
authentication with existing OpenID Connect or SAML 2.0 Identity providers, config-
urable through the Admin Console, which provides functionalities for user management
too.
Also, Keycloak provides a rich set of auditing capabilities [24], recording every user
login action or even admin actions (e.g. configuration changes), which can be stored in
the database and reviewed in the Admin Console. Furthermore, plugins can listen for
these events through an additional listener SPI, allowing to interact with it and perform
the appropriate action. Built-in listeners offer some basic auditing features, including a
simple logger and the ability to send an email when specific events occur.
It is also possible to enable User self-registration.

Some further comments can be found in StackHPC’s article on Federation and identity
brokering using Keycloak [31].’

3.7.3 OpenStack Keystone

‘Among the OpenStack services, Keystone [32] is the identity service offering authentica-
tion and authorization mechanisms, such as “API client authentication, service discovery,
and distributed multi-tenant authorization through OpenStack’s Identity API” [33].

Keystone maintains a central directory which keeps a mapping of the users with
the services they can access, but it can also integrate existing backend directories (e.g.
LDAP).
It supports multiple forms of authentication including standard username&password
credentials, token-based systems, multi-factor authentication (MFA), time-based one-
time passwords (TOTP), HTTPD authentication for mod mellon and mod shibboleth,
X.509 Tokenless authorization. It supports all standard protocols such as LDAP,
OAuth, oidc, SAML and SQL.
Additionally, users and third-party applications can determine accessible resources through
a queryable list of all the services deployed in the corresponding OpenStack Cloud.

Like most of the OpenStack projects, Keystone defines Role-based Access Control
(RBAC) policy rules. However, group-based role assignments are needed in the autho-
rization scheme to facilitate federation of users by the Identity Service: groups objects
will be defined, mapping all the belonging users to their local role assignments.

Keystone provides enhanced auditing capabilities through the implementation of
the PyCADF library, capable of uttering notifications according to the DMTF CADF
specification [34]: this standard provides “compliance with security, operational, and

29

State of the Art

business processes and supports normalized and categorized event data for federation
and aggregation” [35].

There are two supported clients: python-keystoneclient project provides python bind-
ings and python-openstackclient provides a command-line interface.’

3.7.4 Unity

‘Unity [36] is an authentication service with Single Sign-On (SSO), providing identity
management capabilities and offering federation and inter-federation management fea-
tures.
It can be configured to integrate a storage backend, which can be:

❼ A typical relational database backend (RDBMS), such as SQL, MySQL, H2;

❼ Hazelcast distributed in-memory data grid (HZ) - overlay over RDBMS, offering
in-memory operations computing, optimal for clustering and managing large traffic
of data.

Unity does not provide Auditing functionalities yet. Nevertheless, it provides man-
agement of identities and entities, groups and attributes.
Authorization is indeed based on Role-based Access Control (RBAC), also supporting
authorization on the group level.

Unity provides an Authentication system based on OAuth 2.0, OpenID Connect,
SAML endpoints (Web and SOAP) and External LDAP, allowing users to login using a
password or X509 certificate.

The Web Admin UI facilitates the operations of server management. The most
important features of the Web Admin UI are:

❼ Management of attribute types, attribute classes, credential types and credential
requirements (Schema management tab);

❼ Possibility to manage groups, their attribute classes and attribute statements (Con-
tents management tab);

❼ Control over entities and identities and their group membership (Contents manage-
ment tab);

❼ Full attribute control (Contents management tab);

❼ Management of registration forms, along with the possibility to list them instantly
from the Web Admin UI and to manage the received requests (Registrations man-
agement tab);

❼ Possibility to create and load database dumps and to browse and trigger reconfig-
uration of endpoints, authenticators and translation profiles (Server management
tab).

On the other hand, ordinary users can manage their profiles through the Web User
Home UI, a simple interface to update their credentials and information about them.
User registration is allowed through customizable registration forms, that can be used
to collect enrollment information about the user (typical use case) or retrieve it from
a remote IDP (in case the user has been authenticated in such way), simply defining
automated actions to be performed on newly created accounts.’

30

State of the Art

3.7.5 Other evaluated systems

The following systems have been fully analysed according to their documentation, in
order to determine if they would satisfy the requirements for LEXIS project.
Even if the analysis of such solutions covered a large portion of time, a deep description
of their features would be out of the purpose of this thesis. The reader can find all those
features listed in the current subsection, as well as deepen the analysis with the cited
references.

Apache Syncope
Apache Syncope [37]
Criteria Description

License Apache Licenses [38]
Requirements HW requirements, Java JDK and JRE, Java EE Con-

tainer, RDBMS
Authentication protocols Extensions: SAML 2.0, OpenID Connect
Authentication Integration based on Spring Security framework [26]; based on ConnId

[39] for communication with Identity Stores
Authorization Services based on Spring Security framework [26]
Functionalities Users, Groups and Any Objects; Roles, Policies, Re-

sources; Realms
Auditing Audit [40] in the documentation
Storage Identity Stores: Flat files (XML,CSV, ..), LDAP, RDBMS

(MySQLm Oracle, ..), platform-specific (Microsoft Active
Directory, FreeIPA, PowerShell, ..), Web services (REST,
SOAP, ..), Cloud providers and more

Admin API Admin console [41] in the documentation
User API End-user application [42] in the documentation
Self registration / User valida-
tion

self-registration, self-service and password reset through
End-User UI

Features table for Apache Syncope.

WSO2
WSO2 [43]
Criteria Description

License WSO2 Licenses [44] in the documentation
Requirements Installation Prerequisites [45] in the documentation
Clustering / Scalability Deployment Patterns [46] in the documentation
Authentication protocols SAML2, OpenID Connect and Web Services Federation

(WS-Federation) Passive [47])
Authentication Integration X.509 certificate, IWA with Kerberos, Fast IDentity On-

line (FIDO), Time-based One-Time Password (TOTP);
LDAP (ApacheDS, an external LDAP, Microsoft Active
Directory, or any JDBC database), MFA, Adaptive Au-
thentication

Authorization Services Role-based access control (RBAC), eXtensible Access
Control Markup Language (XACML) 2.0/3.0

Functionalities User, Group management
Admin API Calling Admin Services [48] in the documentation
Self registration / User valida-
tion

Self-Service Registration [49] in the documentation

Features table for WSO2.

31

https://www.apache.org/licenses/
https://syncope.apache.org/docs/2.1/reference-guide.html#audit
https://syncope.apache.org/docs/2.1/reference-guide.html#admin-console
https://syncope.apache.org/docs/2.1/reference-guide.html#enduser-application
https://wso2.com/licenses
https://docs.wso2.com/display/IS580/Installation+Prerequisites
https://docs.wso2.com/display/IS580/Deployment+Patterns
https://docs.wso2.com/display/IS580/Calling+Admin+Services
https://wso2.com/whitepapers/customer-identity-and-access-management-a-wso2-reference-architecture/#2111

State of the Art

OpenIAM
OpenIAM [50][51]
Criteria Description

License OpenIAM Identity and Access Governance - Licenses [52]
Requirements 1.2 System requirements [53] in the documentation
Clustering / Scalability the OpenIAM deployment architecture allows you to se-

lect from either: - Application server-based clustering -
Hardware load balancer in front of the UI layer and/or
the Service layer. Both models will allow the load to be
balanced across nodes and to failover in case a node in a
cluster goes down.

Authentication protocols SAML, OAuth 2.0, OpenID Connect; Web Services Fed-
eration (WS-Federation) [47] specification, defined in the
Web Services Security (WS-Security) framework [54]

Authentication Integration (Enterprise version) password, Directory (AD/LDAP),
SSO protocols (SAML, OAuth 2.0, OpenID Connect),
OTP policy (SMS/email/mobile with push notification),
social authentication, Kerberos, Certificate-based authen-
tication, Custom login module, Adaptive (Contextual)
Authentication

Authorization Services based on Spring Security framework [26]; RBAC Access
control policies, Attribute-based Access Control- XACML
(add-on)

Functionalities User lifecycle management, Identity lifecycle management,
Role lifecycle management (cf. OpenIAM Features [55] in
the documentation)

Auditing NoSQL audit repository (optional). “The audit service
consists of the following components: - Event collectors
capture audit events across different parts of the solution;
- Queue, where audit events are published; - Audit Ser-
vice, which takes care of logging the events. Also, au-
dit events are signed so that any tampering of events can
be detected” (from Audit in the Technical Architecture
Overview [56], pp. 11-12).

Admin API Administration Guide [57] in the documentation
User API OpenIAM API [58] in the documentation
Self registration / User valida-
tion

Self-Service Guide [59] in the documentation

Features table for OpenIAM.

32

https://www.openhub.net/p/openiam-idm-ce
http://docs.openiam.com/installation/about.htm?tocpath=Installation%20Guide%7C1.%20About%20installing%20OpenIAM%7C_____0#1._About_installing_OpenIAM
https://www.openiam.com/products/identity-governance/features/
http://docs.openiam.com/administration/index.htm
https://www.openiam.com/products/identity-governance/features/api/
http://docs.openiam.com/self-service/index.htm

State of the Art

Gluu
The Gluu Server [60]
Criteria Description

License Gluu License [61]
Clustering / Scalability Clustering for HA [62] in the documentation
Disaster Recovery / Backup Gluu Server Backup [63] in the documentation
Authentication protocols Shibboleth SAML IDP [64], OAuth 2.0 federation stan-

dards like OpenID Connect & UMA
Authentication Integration SCIM, U2F, FIDO 2.0/WebAuthn, LDAP [65]
Authorization Services Authorization policies with: User-based Access Control

(UBAC), Attribute-based Access Control (ABAC), with
Group-based and Role-based policies as a natural subset
(cf. User Managed Access (UMA) 2.0 [66])

Auditing Audit Logging Configuration [67] in the documentation
Admin API Admin Guide - Accessing the UI [68] in the documentation
Self registration / User valida-
tion

User Registration [69] in the documentation

Comments Shibboleth for SAML & oxAuth for OAuth 2.0 [70]

Features table for Gluu.

Evolveum MidPoint
Evolveum MidPoint [71]
Criteria Description

License midPoint Licensing [72]
Clustering / Scalability High Availability and Load Balancing [73] in the docu-

mentation
Authentication protocols based on Spring Security framework [26]: Kerberos,

OAuth 1(a) and 2.0, SAML 2.0
Authentication Integration based on Spring Security framework [26]
Authorization Services Advanced Hybrid RBAC [27] to tackle the problem of Role

explosion [74]
Auditing SQL repository + auditing to PostgreSQL, audit also to

logs
Admin API Admin/User Interface [75] in the documentation
Self registration / User valida-
tion

Self-Registration Configuration [76] in the documentation

Comments RBAC/ABAC Hybrid Solution [77]

Features table for Evolveum MidPoint.

eduGAIN
EDUcation Global Authentication INfrastructure (eduGAIN) [78]
Criteria Description

License From custom repository: eduGAIN License [79]
Requirements RDBMS (MariaDB)
Authentication protocols SAML Shibboleth IdP, midPoint
Functionalities eg. Shibboleth, Jetty, LDAP, MySQL
Self registration / User valida-
tion

eduGAIN Access Check [80] in the documentation

Comments TNC-2018 INTERNET2 GEANT Campus IdP v1.0 [81]
(Platform architecture on slide 11)

Features table for eduGAIN.

33

https://gluu.org/docs/ce/4.0/#license
https://gluu.org/docs/ce/4.0/installation-guide/cluster/
https://gluu.org/docs/ce/4.0/operation/backup/
https://wiki.shibboleth.net/confluence/display/IDP30/AuditLoggingConfiguration
https://gluu.org/docs/ce/4.0/admin-guide/oxtrust-ui/#accessing-the-ui
https://gluu.org/docs/ce/user-management/user-registration/
https://www.gluu.org/shibboleth-idp/
https://wiki.evolveum.com/display/midPoint/Licensing
https://wiki.evolveum.com/display/midPoint/High+Availability+and+Load+Balancing
https://wiki.evolveum.com/display/midPoint/User+Interface
https://wiki.evolveum.com/display/midPoint/Self+Registration+Configuration
https://idm365.com/idm365-the-rbac-abac-hybrid-solution/
https://github.com/biancini/edugain-connectivity-check/blob/master/LICENSE
https://wiki.geant.org/display/eduGAIN/eduGAIN+Access+Check
https://docs.google.com/presentation/d/1y8NySPa1mQPEFKdCYodWMUv-a9zeK9dyZ6_VsZ6C_7o/edit?usp=sharing

State of the Art

Soffid
Soffid [82]
Criteria Description

License Soffid License [83]
Requirements RDBMS
Clustering / Scalability Multi-master MariaDB cluster [84] in the documentation
Disaster Recovery / Backup System backup [85] in the documentation
Authentication protocols SAML and OpenID bridge [86]
Authentication Integration LDAP directories, MS Active Directory, RDBMS and

most common Operating Systems; Two-Factor Authen-
tication (2FA)

Authorization Services RBAC; also XACML optional module available to define
Attribute-based control policy (ABAC)

Functionalities fine tuning permissions based on organisation role, organ-
isation unit or granted roles

Auditing IAM: Audit & Compliance [87] in the documentation
Storage it supports certain number of RDBMS including Mari-

aDB, MySQL, Oracle and SQL Server
User API A single, simple and intuitive web interface for the end

user to manage their own profile, request passwords, ac-
cess directly to their applications and manage their own
business processes.

Self registration / User valida-
tion

Web services reference [88] in the documentation

Features table for Soffid.

JOSSO
JOSSO [89]
Criteria Description

License JOSSO2 License [90]
Requirements JRE 8 or newer
Clustering / Scalability About High Availability [91] in the documentation
Authentication protocols SAML 2.0, OAuth 2.0, OpenID 2.0, SSL for certificate-

based, ID confirmation with OAuth 2.0 Access Token Is-
suance

Authentication Integration (following protocols order) LDAP for Directory-based
auth., Kerberos for Integrated Windows auth., WiKID
Two-Factor Authentication (2FA) with OTP, SSO
Domino Auth. with Lightweight Third-Party Authentica-
tion (LTPA from IBM), Certificate-based auth. via SSL,
JBoss Enterprise Portal Platform (or JBoss EPP)

Authorization Services Role-based Access Control (RBAC) with both accounts
and groups provisioning; Identity Appliance Life Cycle
Management, Account and Entitlement Management

Auditing Auditing [25] in the documentation
Admin API Java API for RESTful Services (JAX-RS) [92] in the doc-

umentation
User API JAX-RS - Sample Client code [93] in the documentation
Comments based on J2EE [94] and Atricore IAM Platform [95][96]

Features table for JOSSO.

34

http://www.soffid.com/doc/console/iam-core/license.html
http://confluence.soffid.org/display/SOF/Creating+a+multi-master+MariaDB+cluster
http://confluence.soffid.org/display/SOF/System+backup
http://www.soffid.com/our-solutions/#identity-governance-audit
http://confluence.soffid.org/display/SOF/Web+services+reference
https://github.com/atricore/josso2/blob/2.4.3/LICENSE
http://docs.atricore.com/josso2/2.4.0/josso-reference-guide/html/en-US/JOSSO_Reference.html#About_High_Availability
http://docs.atricore.com/josso2/2.4/tutorials/josso-auditing-tutorial/html/en-US/JOSSO_Tutorial_Auditing.html
http://docs.atricore.com/josso2/2.4/tutorials/josso-jaxrs-tutorial/html/en-US/JOSSO_Tutorial_JAXRS.html
http://docs.atricore.com/josso2/2.4/tutorials/josso-jaxrs-tutorial/html/en-US/JOSSO_Tutorial_JAXRS.html#_sample_client_code

State of the Art

Shibboleth
Shibboleth [97]
Criteria Description

License Apache License Version 2.0 [98]
Requirements System Requirements [99] in the documentation
Clustering / Scalability Clustering [100] in the documentation
Authentication protocols SAML 1.1 and 2.0, CAS 2 [101]
Authentication Integration LDAP, Kerberos, JAAS, X.509, SPNEGO, Duo Security,

and container-based authentication systems
Authorization Services Authorization policies with Access Control (type not spec-

ified)
Functionalities Interesting Features [102] in the documentation
Auditing Audit Logging Configuration [103] in the documentation
Admin API Administrative Configuration [104] in the documentation
Self registration / User valida-
tion

no user registration system

Comments Shibboleth for SAML & oxAuth for OAuth 2.0 [105]

Features table for Shibboleth.

Apereo CAS
Apereo CAS [106] CAS Protocol 2.0 specification [101]
Criteria Description

License CAS License [107]
Requirements Installation Requirements [108] in the documentation
Clustering / Scalability High Availability Guide (HA/Clustering) [109] in the doc-

umentation
Distributed / Multi site Multiple CAS Server Nodes [110] in the documentation
Authentication protocols CAS Protocol version 1,2 and 3 (exclusive for CAS),

SAML 1.1, OAuth 1.0 and 2.0, OpenID Connect, SCIM
and WS-Fed; possible to integrate with Shibboleth IdP
(SSO for Shibboleth IdP [111] in the documentation)

Authentication Integration Database, JAAS, LDAP, OAuth 1.0/2.0, OpenID, RA-
DIUS, SPNEGO (Windows), Trusted (REMOTE USER),
X.509 client SSL certificate, Remote Address, YubiKey,
Apache Shiro, pac4j; Multi-Factor Authentication (MFA)
(cf. Authentication Handlers [112] in the documentation)

Authorization Services CAS ABAC, Custom ABAC, LDAP support (cf. Securing
Access and Authorization [113] in the documentation)

Functionalities Java (Spring Webflow/MVC servlet) server compo-
nent; Pluggable authentication support (LDAP, database,
X.509, 2-factor); Support for multiple protocols (CAS,
SAML, OAuth, OpenID); Cross-platform client support
(Java, .Net, PHP, Perl, Apache, etc); Integrates with
uPortal, Liferay, BlueSocket, Moodle, and Google Apps
to name a few

Auditing Audits [114] in the documentation

Features table for Apereo CAS.

35

http://apache.org/licenses/LICENSE-2.0.html
https://wiki.shibboleth.net/confluence/display/IDP30/SystemRequirements
https://wiki.shibboleth.net/confluence/display/IDP30/Clustering
https://wiki.shibboleth.net/confluence/display/IDP30/InterestingFeatures
https://wiki.shibboleth.net/confluence/display/IDP30/AuditLoggingConfiguration
https://wiki.shibboleth.net/confluence/display/IDP30/AdministrativeConfiguration
https://www.gluu.org/shibboleth-idp/
https://apereo.github.io/cas/4.2.x/protocol/CAS-Protocol-Specification.html#appendix-e-cas-license
https://apereo.github.io/cas/4.2.x/planning/Installation-Requirements.html
https://apereo.github.io/cas/4.2.x/planning/High-Availability-Guide.html#high-availability-guide-haclustering
https://apereo.github.io/cas/4.2.x/planning/High-Availability-Guide.html#multiple-cas-server-nodes
https://apereo.github.io/cas/4.2.x/integration/Shibboleth.html
https://apereo.github.io/cas/4.2.x/installation/Configuring-Authentication-Components.html#authentication-handlers
https://apereo.github.io/cas/4.2.x/installation/Installing-ServicesMgmt-Webapp.html#securing-access-and-authorization
https://apereo.github.io/cas/4.2.x/installation/Installing-ServicesMgmt-Webapp.html#securing-access-and-authorization
https://apereo.github.io/cas/4.2.x/installation/Audits.html

State of the Art

Perun
Perun AAI [115]
Criteria Description

License Perun License [116]
Requirements Database (SQL, Oracle, PostreSQL), JAVA
Authentication protocols Kerberos, Shibboleth IdP, Certificate or REMOTE USER

like Apache config
Authentication Integration LDAP, Import (XML, CSV), SQL DB, G Suite Connector

is outdated (using P12 file instead of JSON)
Authorization Services privilegies associated with the user (cf. Perun RPC API

[117])
Functionalities User, Group, (No roles), User lifecycle management
Auditing Audit trail, but nothing about how to consume or export

it
Storage Database (SQL, Oracle, PostgreSQL)
Admin API Perun RPC API (Not REST) [117]
Self registration / User valida-
tion

User management [118] in the documentation (under Pe-
run benefits - Virtual organizations managers)

Comments GitHub repository [119]

Features table for Perun.

FreeIPA
FreeIPA [120]
Criteria Description

License FreeIPA License [121]
Clustering / Scalability Assuming that clients do intelligent caching, there is no

need for many FreeIPA servers to handle the load from all
clients. (cf. Scalability [122] in the documentation)

Disaster Recovery / Backup Backup and Restore [123] in the documentation
Authentication protocols SAML; LDAP
Authentication Integration System Security Services Daemon (SSSD); Kerberos (with

mod auth gssapi or mod auth kerb); Pure Application
Level, Kerberos SSO (ticket), SAML-based, Certificate-
based; Login form-based (cf. Web App Authentication
[124] in the documentation)

Authorization Services Host and service based access control (HBAC), with ac-
cess control check to the Kerberos authentication method
on the Apache level in order to prevent access to unautho-
rized users that are able to get the Kerberos ticket (Note:
default rule allow all grants access from anywhere to any-
where to any user and service. It needs to be disabled)

Functionalities The FreeIPA Directory Service is built on the 389 DS
LDAP server, acting as data backend for all identity, au-
thentication (Kerberos) and authorization services and
other policies

Auditing Session recording - Audit recording details [125] in the
documentation

Admin API Web UI or CLI
User API Self registration /
User validation

Self-Service Password Reset [126] in the documentation

Features table for FreeIPA.

36

https://github.com/CESNET/perun#license
https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://perun-aai.org/about-perun/overview
https://github.com/CESNET/perun
https://www.freeipa.org/page/License
https://www.freeipa.org/page/Goals/Scalability
https://www.freeipa.org/page/Backup_and_Restore
https://www.freeipa.org/page/Web_App_Authentication
https://www.freeipa.org/page/Session_Recording#Audit_recording_details
https://www.freeipa.org/page/Self-Service_Password_Reset

State of the Art

OpenAM
OpenAM [127]
Criteria Description

License OpenAM License [128]
Requirements fully qualified domain name (FQDN); Java JRE; Docker

and Apache HTTP Server
Clustering / Scalability “OpenAM provides both system failover and session

failover. These two key features help to ensure that no sin-
gle point of failure exists in the deployment, and that the
OpenAM service is always available to end-users. Redun-
dant OpenAM servers, policy agents, and load balancers
prevent a single point of failure. Session failover ensures
the user’s session continues uninterrupted, and no user
data is lost.” (from section High availability in OpenAM
Features - Wikipedia [129])

Authentication protocols SAML, OAuth 2.0, OpenID Connect 1; possible setup of
Web-Authn standard by W3C and FIDO

Authentication Integration Authentication modules [130] in the documentation
Authorization Services “Authorization policy from basic, simple, coarse-grained

rules to highly advanced, fine-grained entitlements based
on XACML (eXtensible Access Control Mark-Up Lan-
guage). Authorization policies are abstracted from the
application, allowing developers to quickly add or change
policy as needed without modification to the underlying
application.” (from section Authorization in OpenAM
Features - Wikipedia [129])

Auditing OpenAM Audit Logging [131] in the documentation
Admin API OpenAM provides client application programming inter-

faces with Java and C APIs and a RESTful API that can
return JSON or XML over HTTP, allowing users to access
authentication, authorization, and identity services from
web applications using REST clients in their language of
choice. OAuth 2.0 also provides a REST Interface for the
modern, lightweight federation and authorization proto-
col.

Self registration / User valida-
tion

Legacy User Self-Service [132] in the documentation

Features table for OpenAM.

37

https://github.com/OpenIdentityPlatform/OpenAM/blob/master/LICENSE.md
https://en.wikipedia.org/wiki/OpenAM#Features
https://en.wikipedia.org/wiki/OpenAM#Features
https://github.com/OpenIdentityPlatform/OpenAM/wiki/Authentication-modules
https://backstage.forgerock.com/docs/openam/13.5/reference/#chap-audit-log-messages
https://backstage.forgerock.com/docs/openam/13.5/reference/#legacy-user-self-service

State of the Art

Univention Corporate Server UCS
Univention Corporate Server [133]
Criteria Description

License Univention Corporate Server License [134]
Requirements 1GB memory and 8GB hard drive space
Distributed / Multi site Fault-tolerant domain setup [135] in the documentation
Disaster Recovery / Backup Domain controller backup [136] in the documentation
Authentication protocols SAML, Kerberos, SSL certificate, LDAP, OpenID Con-

nect; RADIUS; UMCP 2.0 (based on JSON)
Authentication Integration LDAP, Kerberos, Two-Factor Authentication (2FA)

(for example a TAN generated randomly each time),
Certificate-based auth. via SSL

Authorization Services Access to the information contained in the LDAP direc-
tory is controlled by Access Control Lists (ACLs) on the
server side; RADIUS

Functionalities Group and computer management, IP and network man-
agement, file share management

Auditing possible, on a share-by-share basis even. You’ll have to
enable the audit VFS module for the share (from UCS
Forum)

Admin API Univention Management Console (UMC) Documentation
[137]

User API “Web interface of UCS system. Microsoft Windows clients
and Mac OS X systems are integrated via a Samba-
based, AD-compatible Windows domain; most Linux dis-
tros (Ubuntu, Debian, SUSE or RedHat) can also be inte-
grated into the domain” (cf. UCS Clients [138] in the doc-
umentation). Web browser with Dojo/UMC JavaScript
API, communication to UMC HTTP server via AJAX and
JSON (UMC Architecture [139])

Self registration / User valida-
tion

UCS Self Services [140] in the documentation

Comments Release of UCS 4.1 with Docker, Single Sign-On Mecha-
nism and Two-Factor Authentication [141] in the docu-
mentation

Features table for Univention Corporate Server (UCS).

38

https://github.com/univention/univention-corporate-server/blob/4.4-1/LICENSE
https://docs.software-univention.de/manual-4.4.html#domain:fault-tolerant
https://docs.software-univention.de/manual-4.4.html#domain-ldap:Domain_controller_backup
https://docs.software-univention.de/manual-4.4.html#central:user-interface
https://docs.software-univention.de/quickstart-en.html#quickstart:clients
https://docs.software-univention.de/developer-reference-4.4.html#umc:architecture
https://www.univention.com/blog-en/2019/04/ucs-4-4-self-services-new-features/
https://www.univention.com/blog-en/2015/11/release-of-ucs-4-1-with-docker-single-sign-on-mechanism-and-two-factor-authentication/
https://www.univention.com/blog-en/2015/11/release-of-ucs-4-1-with-docker-single-sign-on-mechanism-and-two-factor-authentication/

State of the Art

Aerobase IAM
Aerobase IAM [142]
Criteria Description

License Aerobase IAM License [143]
Requirements Java 8 JDK, HW requirements (512M RAM + 1GB stor-

age), a shared external database (PostgreSQL, MySQL,
Oracle, etc) for Cluster mode

Clustering / Scalability Clustered Mode [144] in the documentation
Authentication protocols OpenID Connect, OAuth 2.0, SAML 2.0; LDAP, Kerberos
Authentication Integration LDAP, Identity brokering, Social login (Google, GitHub,

Facebook, etc), Kerberos bridging, Two-Factor Authenti-
cation (2FA)

Functionalities central management of users, roles, role mappings, clients
and configuration through Admin console

Admin API Admin REST API [145] in the documentation
User API web apps and RESTful web services
Comments Server Features [146] in the documentation

Features table for Aerobase IAM.

39

https://github.com/aerobase/unifiedpush-server/blob/master/LICENSE.txt
https://aerobase.io/docs/installation/index.html#_standalone-ha-mode
https://aerobase.io/docs/server_development/index.html#admin-rest-api
https://aerobase.io/docs/server_admin/index.html#features

Chapter 4

Solution Design

4.1 The chosen solution: Keycloak

After a detailed comparison among the three main above-mentioned solutions, Keycloak
has been chosen as the solution to be benchmarked, since it appears to cover all the
requirements and specifications collected (cf. subsection 3.7.2), while providing some
additional benefits with respect to OpenStack Keystone and Unity:

❼ it’s an open-source solution, supported by RedHat and a very active community,
allowing to perform User Federation, Authentication and Authorization in a sin-
gle framework. The provided user federation functionalities allow to connect with
external databases through LDAP and Active Directory;

❼ it provides Identity Brokering functionalities, allowing to use external Identity
providers or Social Networks (such as Google, GitHub, Facebook and Twitter)
to authenticate to Keycloak, with built-in support for OpenID Connect and SAML
2.0 protocols;

❼ it allows to define different Clients for different purposes(cf. subsection 4.3.1), which
can be used e.g. to interface with web applications or back-end services;

❼ it allows to define actions (Client Scopes) that Clients can perform over some re-
sources, and Roles to associate such actions with related permissions;

❼ it embeds further authentication functionalities, such as declaring requirements
for different OIDC Flows (which can be linked to specific actions on the server,
e.g. registration, browser authentication or credentials reset), specifying required
actions (to be performed at each new user registration or requested by the server
administration), and defining policies for password and OTP.

Thanks to its versatility, Keycloak can interface with all the components involved in
the LEXIS project. It’s worth to mention that iRODS integration, responsible of data
management and virtualization, required some adjustments to connect with Keycloak:
through an authentication plugin, iRODS can take advantage of OpenID login using
tokens provided by an OpenID provider; however, JWT Tokens used by Keycloak are
generally too long to be passed through the iRODS client-server interface.
As exposed in [147], two solutions were implemented to address such problem:

40

Solution Design

❼ for web-based applications (directly interfacing with the user), a helper thread is
launched to retrieve the authentication redirection URL and pass it to the main
thread, which will be performing the user authentication, and then redirecting to
the web portal. The helper thread will be also performing a query to the iRODS
system and store the result only after successful authentication of the user;

❼ for back-end applications, the iRODS authentication microservice has been modified
implementing opaque tokens, simply consisting of the hash of the actual token, small
enough to be passed through the iRODS client-server interface. Upon receiving
a hash, the microservice database is used to retrieve the token and perform the
verification operations.

The Proof of Concept with Keycloak had the purpose of excluding major obstacles to
the usage of Keycloak in the LEXIS ecosystem. Due to the success of its PoC, Keycloak
remained the selected solution.

4.2 Deployment with Ansible

The need for a uniform and automated method of deployment for the AAI system led to
the creation of an Ansible script, allowing to standardize the installation across multiple
server or cluster nodes, using the same configuration.

Ansible is a software based on YAML language allowing to specify a list of tasks
to be performed over the given hosts (either locale or remote, eventually divided into
operational groups), in a concise and schematic fashion.
Ansible allows running both ad-hoc commands or scripts, the latter called Playbooks,
representing a collection of plays which in turn consist of a group of tasks to be performed
over different hosts or groups of hosts. Tasks can also be grouped in so-called roles,
grouping tasks to be performed together.

Ansible comes with an additional utility called Ansible-Galaxy, allowing to share roles
with other users in the Ansible community. I used some of the shared Roles available
through Ansible-Galaxy, in particular:

❼ Mariadb by adfinis-sygroup [148]

❼ Keycloak by andrewrothstein [149]

These roles represented a useful starting point for the system deployment, despite needing
some additional changes in its setup and configuration.

I first worked on writing the Ansible Playbook to deploy the system, achieving the
following tasks:

❼ install system requirements, such as Python and Java JRE:

1 ## [site.yml]

2 pre_tasks:

3 - name: install python 2

4 raw: test -e /usr/bin/python || (apt -y update && apt install

-y python-minimal)

5 - name: install java jre

6 raw: test -e /usr/bin/java || (apt -y update && apt install -y

default-jre)

41

https://galaxy.ansible.com/adfinis-sygroup/mariadb
https://galaxy.ansible.com/andrewrothstein/keycloak

Solution Design

❼ install and configure MariaDB, according to [148]:

1 ## [site.yml]

2 - name: configure mariadb servers

3 hosts: dbservers

4 become: yes

5 roles:

6 - ansible-role-mariadb

❼ install the Keycloak server, according to [149], and set the system into a basic
configuration, e.g. creation of ‘root’ user in the ‘master’ realm:

1 ## [site.yml]

2 - name: configure keycloak servers

3 hosts: ssoservers

4 become: yes

5 roles:

6 - ansible-keycloak

7

8 ## [roles/ansible-keycloak/tasks/main.yml]

9 # create first user

10 - name: create root user

11 # Note: change password once logged-in

12 shell: "{{ keycloak_install_dir }}/bin/add-user-keycloak.sh -u

root -p root"

13 notify: restart standalone service

❼ set-up and launch the server as a system service, automatically starting at booting
time.

1 ## [roles/ansible-keycloak/tasks/main.yml]

2 - name: copy service configuration

3 with_items:

4 - f: keycloak.standalone.service

5 d: /etc/systemd/system

6 template:

7 src: "{{ item.f }}.j2"

8 dest: "{{ item.d }}/{{ item.f }}"

9 mode: "{{ item.m|default("0644") }}"

10 notify: reload systemctl

11

12 ## [roles/ansible-keycloak/handlers/main.yml]

13 - name: reload systemctl

14 become: true

15 command: systemctl daemon-reload

16 - name: restart standalone service

17 become: true

18 service:

19 name: keycloak.standalone.service

20 state: restarted

For the Ansible deployment guide please refer to Appendix A.

42

Solution Design

4.3 Authentication and Authorization mechanisms

Keycloak allows to create different Realms, sets of Users belonging to it that can be
organized in Groups and Roles, allowing to manage access with various Authentication
mechanisms (subsection 4.3.2). Every realm is isolated from the other ones hosted on the
same system, thus users can only authenticate on a realm they are belonging to.

Authentication and Authorization for a user is handled by some APIs, called Clients
in the Keycloak terminology, which are compliant to Standard Protocols (subsection 3.3.3)
and can define different ways to manage identities and access rights: they represent the
means for applications and services to interface with the server and the Realm, authen-
ticate a user and request an Identity or Access Token (subsection 4.3.3). These tokens
represent the building blocks of this process and they are used in conjunction with OpenID
Connect to provide the system with Single Sign-On functionalities.

4.3.1 Authentication in Keycloak

In Keycloak, the Authentication of the user is performed through Clients, offering
different mechanisms depending on their Access Type:

❼ public: suitable for client-side applications, thus requiring to restrict their access on
the server-side by proper URIs redirection, since it would be impossible to maintain
the confidentiality of their credentials and securely authenticate them;

❼ confidential: designed for server-side applications, this type of Clients needs to
additionally submit their credentials (issued by the authorization server) in order
to authenticate themselves and be able to perform an Access Token Request ;

❼ bearer-only: differently from the previous types (designed for browser login), it
only allows Bearer token requests, making it suitable for services which are never
initiating a login (e.g. an application connecting to a database).

Clients can authenticate using OpenID Connect or SAML, depending on the type of
applications they are securing: OpenID Connect is a newer protocol, designed for the
web through HTML5 and JavaScript and offering many predefined features, making it
easier to integrate and implement on the client-side; SAML, however, is more mature and
has been chosen as a standard for many years, offering more flexibility and control over
many features later introduced in the OIDC standard, and being retrofitted to work on
top of the web, despite being more verbose than OIDC.
For its better compatibility with web applications, OpenID Connect has been selected
as the recommended standard in Keycloak.

OIDC Clients can perform different types of authentication based on the OIDC/OA2
standard flows enabled [150]:

❼ Authorization Code Flow: it’s the recommended approach for browser-based
applications, as it is heavily depending on URL redirections: when attempting to
login, the user visits the application, which will redirect the browser to Keycloak
for authentication; upon successful authentication, Keycloak will use a callback
URL (redirect URI), previously provided by the application, to issue a temporary
authorization code (as a query parameter in the callback), to be used for retrieving
an Identity, Access and Refresh token through a REST invocation. In Keycloak,
this flow is available by enabling the Standard Flow option;

43

Solution Design

❼ Implicit Flow: it’s designed for browser-based application as well. It’s very similar
to the previous flow, except for the usage of the temporary code: upon authentica-
tion, Keycloak redirects to the application through the callback, directly passing the
Identity and Access tokens as query parameters. Since no Refresh token is issued,
access tokens have to be very long-lived, representing a possible security issue; the
only solution to cobble this problem would be to re-authenticate the user after their
access token expired. In Keycloak, this flow is available by enabling the Implicit
Flow option;

❼ Resource Owner Password Credentials Grant: it allows REST applications
to retrieve a token on behalf of the user, having access to their credentials and
submitting them via an HTTP POST request; the corresponding Identity, Access
and Refresh tokens are issued. In Keycloak, this flow is available by enabling the
Direct Access Grants option;

❼ Client Credentials Grant: it allows REST clients to request a token dedicated
to themselves, after authenticating their credentials; for this reason, this type of
Clients need to be confidential. In Keycloak, this flow is available by enabling the
Service Accounts option.

When needed, a confidential OIDC Client can authenticate against the Keycloak
server in 4 different ways:

❼ Client ID and Client Secret : the Keycloak server appoints the Client with a se-
cret, which needs to be know from both parties to successfully authenticate the
application;

❼ X509 Certificate: the Client can be authenticated by signing messages with its X509
Certificate, vouching for its identity;

❼ Signed JWT : during authentication, the Client generates a JWT token and signs it
using its private key, which can be verified by the Keycloak server using the Client’s
public key or certificate. [151] The public key or certificate can be either directly
uploaded on the server (hardcoding it in the server configuration) or configuring a
JWKS URL from where the Keycloak server can download the Client’s public key:
the latter method allows the Client to regularly change its keys, since the server
will always download the valid ones through the provided URL;

❼ Signed JWT with Client Secret : similar to the previous method, a signed JWT
token is generated by the Client and verified by the server. However, despite using
a private key and certificate, the token will be signed using the Client’s secret, which
needs to be known from both parties.

Multiple Clients can be defined within a single Realm, allowing to setup different
interfaces for different applications and services.
By default, every newly created Realm defines some default Clients (account, admin-
cli, broker, realm-management, security-admin-console), generally used to connect with
internal components.

4.3.2 Authorization in Keycloak

Regarding the Authorization scheme in Keycloak, there are 2 viable ways:

44

Solution Design

❼ Realm level: it’s possible to define some authorization rules by defining Realm
Roles and related attributes, that can be later assigned to the users and granting
them permissions regardless of the Client (API) used;

❼ Client level: it’s possible to define some fine-grained access control rules (Permis-
sions) over certain Resources, characterized by different Authorization Scopes and
linked by defined Policies. These rules are client-dependent and can provide some
additional control with different API usage.

Additionally, some Client Scopes can be defined, allowing to specify some Mappers
(to be newly created or imported from the built-in set) and mapping permissions
from specific scopes (Realm Roles, Client Roles, or a combination of the two - called
Composite Roles).
This is crucial to access some resources from a certain client, e.g. a client without
the Mappers for {‘realm roles’, ‘client roles’} is unable to access the set of roles assigned
to the user, hence denying them access even to resources they would be allowed to.

Building up the Authorization scheme for LEXIS, the first step has been to design an
RBAC matrix, defining roles to be created and permissions to be granted to each role.
Role-based Access Control (RBAC) represents the most commonly deployed Access Con-
trol model, allowing to manage users’ access based on the their job responsibilities, hence
identified by the assigned Roles.

However, an hybrid solution using both RBAC and ABAC approaches would
introduce a finer-grained management of access rights (cf. IDM365 RBAC/ABAC Hybrid
Solution [77]), based on who the user is (i.e. Attributes like user’s location, company or
project they work in) rather than what they do (i.e. Roles).

The following subsections will illustrate how these aspects of the Access Management
system have been designed for LEXIS.

Roles: RBAC Matrix

Designing the appropriate access control for LEXIS Project requires to identify the correct
mapping between job functions and the corresponding authority level.
To this extent, the following Roles have been identified [152]:

❼ LEXIS Administrator (lex adm): The LEXIS cloud admins have higher level (pre-
allocated resource pools for LEXIS) control over LEXIS-only infrastructures. Full
control is under responsibility of local production teams on both clouds locations.
YORC infrastructure components will be created out of the LEXIS portal. Scope:
LEXIS Administration.

❼ LEXIS Support (lex sup): The LEXIS platform may require some ”support” per-
sons that can access some information about LEXIS Customer/Client without hav-
ing full access to the LEXIS platform.Can be restricted to some Organization only.
Scope: LEXIS Support.

❼ LEXIS Organisation Manager (org mgr): From LEXIS Portal perspective, it’s
crucial to identify some Organization (can be a Company for instance) hierar-
chy in order to be able to handle the fact that an Organization can have several
projects.Restricted to the Organization by default. Scope: LEXIS Customer/-
Client.

45

Solution Design

❼ LEXIS Financial Manager (fin mgr): Financial Manager has control over all fi-
nancial (billing & payment) informations.Restricted to the Organization by default.
It can be restricted to some projects only. Scope: LEXIS Customer/Client.

❼ LEXIS License Manager (lic mgr): Licensing Manager has control over all licens-
ing informations.Restricted to the Organization by default. It can be restricted to
some projects only. Scope: LEXIS Customer/Client.

❼ LEXIS Project Manager (prj mgr): Project manager has control over all projects
within a LEXIS client organization.Restricted to the Organization by default. It
can be restricted to some projects only. Scope: LEXIS Customer/Client.

❼ LEXIS Workflow Manager (wfl mgr): Workflow manager has control other all
workflows, can create, delete and execute them within an organization. The Work-
flow manager can also assign resources to the workflow like computational hours
from a specific Project of an Organization.Restricted to the project by default, it
can be restricted to some workflow only. Scope: LEXIS Customer/Client.

❼ LEXIS IAM Manager (iam mgr): Users manager has control over one or more
group of users within a LEXIS client organization.Restricted to the Organization by
default. It can be restricted to some projects only. Scope: LEXIS Customer/Client.

❼ LEXIS User (end usr): End users have control over their own jobs and data
only. Can only know about group-level information for groups they are members
of.Restricted to the Organization by default. It can be restricted to some projects
only. Scope: LEXIS Customer/Client.

Roles have been assigned different types of permissions, according to possible restric-
tions related to their attributes:

❼ F: Full Access;

❼ P: Partial Access, restricted by attributes based on the Organization (PO), Project
(PP) or Workflow (PW) to which they belong.

The full RBAC Matrix is represented in Figure 4.1. [152]

Attributes: ABAC Approach in Keycloak

Building a hybrid access control requires to integrate an adequate Attribute-based Access
Control (ABAC) approach on top of the above-mentioned RBAC scheme.

Attributes represent some kind of metadata specifying additional information over
an object, element or file. In Keycloak, it’s possible to assign Attributes to Users,
Groups or Roles.

Although it’s possible and might be useful to assign Attributes to specific Roles, it
would bring additional complexity to the RBAC model, as it would require to grant the
Client with access to all the Realm roles and filtering for the wanted role and/or specific
attribute might be tricky, potentially introducing performance issues to the access control
management.

The other viable methods are assigning Attributes for Users or Groups. However, a
member of a group inherits all the attributes defined for that group, in addition to the
attributes defined for the user itself.

46

Solution Design

Figure 4.1. RBAC Matrix for LEXIS.

47

Solution Design

Hence, the most logical approach results in assigning Attributes to the Groups,
as it allows to define common attributes for all the members of the group instead of
directly appointing them to each user.
In this way, grouping the same type of users becomes very useful: for example, it’s possible
to create a Group for each Project, so that different users assigned with the same role
(e.g. “Admin”) can be distinguished based on the Project (Group) they are working in.

Attributes assigned to Users and Groups can be displayed in the access token by
defining a User Attribute Mapper for a given Client or Client Scope, that can be later
associated to multiple Clients.

In Keycloak, it’s possible to define multiple values for the same attribute, simply
concatenating them with the delimiter “##”. To display all the values, the Multivalued
option needs to be enabled in the Mapper settings, otherwise only the first one will be
displayed.
User and Group Attributes can also overlap, assigning additional values to one another.
In order to display any appointed value to the given attribute, despite being a User or
Group attribute, the Aggregated attribute values option needs to be enabled in the Mapper
settings. Duplicated values will be discarded, obtaining a unique set of all the effective
attributes assigned to the user. Using OpenID Connect mappers, the Multivalued option
needs to be enabled as well.

4.3.3 JWT Tokens

The Keycloak IAM makes use of Identity and Access tokens in the JSON Web Token
(JWT) format [153]: these tokens have proven to be very versatile, with a compact and
url-safe design, particularly useful in the SSO context.

JWTs are signed tokens, structured in 3 parts:

❼ a Header, containing useful information such as the signature algorithm used and
the type of token. The server could be using different keys for different algorithms,
labelling them with a kid flag (cf. subsection 4.3.4);

❼ a Payload, containing a set of Claims - i.e. standard and custom fields - with
information related to the token itself, such as details of the user requesting the
token and the system issuing it;

❼ a Signature, used to verify the integrity of the token - in case of using an asymmetric
signature method, it can be validated with the public key of the issuer.

These sections are encoded through the Base64Url Encoding algorithm and then con-
catenated, separated by dots:

token = base64urlEnc(header)⊕✬.✬⊕base64urlEnc(payload)⊕✬.✬⊕base64urlEnc(signature)

the signature being:

signature = H(base64urlEnc(header)⊕ ✬.✬⊕ base64urlEnc(payload), secret)

Through various Authentication mechanisms (subsection 4.3.1), the Client will re-
trieve different type of tokens:

❼ Identity token: asserting the user’s identity information;

48

Solution Design

❼ Access token: stating their access rights to connect with other secured resources
on the network. Once authenticated, the Client will be able to use this token to
make authenticated calls to secure APIs;

❼ Refresh token: allowing an authenticated Client to request a renewed access
token when the previous one expires: once the user is authenticated, the following
re-authentications will be transparent to them, as long as the Refresh token is valid.
However, not all the OIDC Flows will issue this type of token (cf. subsection 4.3.1).

Once the user is authenticated and retrieved the access token, every request for access-
ing secured services or resources will include this token, granting them access according to
their permissions: this is typically achieved by including the token in the Authorization
header, following the HTTP Bearer authentication scheme. [154]

4.3.4 Token Forgery

I’ve been analysing these tokens, especially in relation to the service APIs (Clients)
available in Keycloak and their Authentication and Authorization mechanisms: regardless
of the client (API) used to retrieve the token, once the user’s credentials are verified, a
valid token can be used by any client defined in the same Realm the user belongs
to. It is also possible to retrieve an Access token referred to a specific client instead of a
user, through the Client Credentials Grant OIDC flow (cf. subsection 4.3.1).

It’s possible to retrieve tokens in different ways:

❼ directly from the cookies on a web session (after authenticating on Keycloak);

❼ using the ‘cUrl ’ command from the command-line interface or using other libraries
(e.g. gocloak library [155] in Go language);

❼ using an API development platform and software, such as ‘Postman’.

For the performed tests, Postman has been chosen as the token retrieving method
to use for its simplicity and provided functionalities. To see the software configuration
used, please refer to Appendix B.
The token content can be easily decoded using any compatible libraries (e.g. PyJWT
library for Python) or browsing to https://jwt.io/.

As a simple example, I’ve been testing access tokens by retrieving a new token from
the system and performing a request to get user information or display all the users in
the realm, with different combinations of user’s and client’s permissions.
The following code snippet (in GO language) retrieves an access token for username

(upon successful authentication through clientA) and uses it to get user information
such as their name, ID number and e-mail, through clientB (in the same realm):

1 clientA := gocloak.NewClient(url)

2 userToken, err := clientA.Login(client1, secret1, realm, username,

password)

3 if err != nil {

4 panic("Something wrong with userlogin:" + err.Error())

5 }

6 fmt.Printf("Token from service A (%s): %v\n", client1, userToken.

AccessToken)

49

https://github.com/Nerzal/gocloak
https://jwt.io/

Solution Design

7 fmt.Printf("\n Connecting to clientB (%s):\n", client2)

8 clientB := gocloak.NewClient(url)

9 _, err = clientB.LoginClient(client2, secret2, realm)

10 if err != nil {

11 panic("Something wrong with clientlogin:" + err.Error())

12 }

13 user, err := clientB.GetUserInfo(userToken.AccessToken, realm)

14 if err != nil {

15 panic("Something wrong with checking usertoken:" + err.Error())

16 }

17 fmt.Printf("User Name: %v\nUser ID: %v\nUser Email: %v\n", user.

PreferredUsername, user.Sub, user.Email)

It’s important to notice how the outcome of this simple operation is largely dependent
on the Client Roles, Client Scopes and Mappers assigned to the given Client, as well as the
choice of the Client itself: an unauthorized Client, despite using a valid token granting
access to the related user, will be denied from accessing the requested resources.

The token analysis moved to evaluate the eventual reuse of tokens in term of security
and try to evaluate the system resistance against forged tokens.

I made some research on known vulnerabilities and misconfiguration in JWT
libraries [156][157]. I’ve been trying to perform one of the most common exploits against
JWT tokens: sometimes the server issuing JWTs can avoid specifying a default signature
algorithm (set to ‘none’) to act with greater flexibility and allow different types of tokens
for different uses; on the other hand, not specifying the algorithm to be used for token
verification leaves this choice to the algorithm used for the token signature, stated in the
token header.
However, accessing this value before verifying the token represents a huge security issue,
as the token needs to be validated first before being trustworthy, allowing the attacker
to dictate which algorithm to be used for the signature verification.

In this way, an attacker can forge a token using an arbitrary algorithm, inducing
the server to verify it with a different one: for example, the attacker can sign the token
with a symmetric algorithm (e.g. HMAC-SHA256) using the server’s asymmetric public
key (e.g. RSA public key, which is exposed and well-known) as the secret, driving the
server - expecting an RSA-signed token - to verify it with its public key, used
as a HMAC secret key. By referring to the algorithm stated in the token’s header,
the server will be tricked into considering it valid.
This flaw would allow any attacker to sign a token with an arbitrary payload, that would
be accepted by the server and allow them access to discretionary resources.

However, this type of attack can be easily prevented by avoiding using the
‘none’ algorithm, which is intended to be used for already validated tokens (inter-
estingly, ‘none’ and ‘HS256’ are the only 2 mandatory algorithms to be implemented,
according to the JWT standard), and specifying the verification algorithm to be
used at server level, preventing the attacker to choose it arbitrarily.
Additionally, the JWT standard provides a kid flag in the token header, used to label
the server keys and relate them to the corresponding algorithm. In this way, the server
can’t be tricked to verify the token with an algorithm different from the one supposed to
be used with the given key.

Keycloak implements all the possible countermeasures to these attacks:

50

Solution Design

❼ injecting arbitrary payload claims in a valid token: the signature would prevent an
attacker to retrieve or hijack a valid token and then change its payload with the
Base64Url Encoding of an arbitrary one, as its integrity would be compromised and
the token rejected;

❼ forging a new token: Keycloak includes the kid identifier in the tokens, making the
above-mentioned attack unfeasible.

51

Chapter 5

Conclusion

This thesis aimed to identify and build an appropriate Authentication and Au-
thorization Infrastructure with Single Sign-On capabilities for the LEXIS
project. Based on a qualitative analysis of the security features provided by several
open-source IAM solutions, the best fitting system has been selected as the Identity
Management system to secure the LEXIS Infrastructure and all its components.
Unfortunately, the lack of time and the periodic deadlines imposed for a shared project,
as LEXIS is, didn’t allow to accomplish a comprehensive study of all the analysed solu-
tions. However, the motivating results obtained by benchmarking the selected solution
reflected how suited it is for the integration in such a complex system.

Designing an appropriate Authorization scheme is crucial to the purpose of the project,
as it represents the basis on which the interconnection of all the secured compo-
nents involved is founded.
Identifying the perfect Access Control scheme to be adopted represents a tangled chal-
lenge. Thus, embracing an hybrid approach merging different mechanisms is surely a
bold choice, which however could represent the best working combination for meeting
all the requirements defined by LEXIS.

The project is moving forward to a new stage, as the work done by different teams in
the LEXIS project (e.g. Data model, Orchestrator, etc) is converging to a common
point. This process will surely take some time, as the due date for the project is expected
to be in June 2021.
Regarding the AAI sytem, the future work will surely include the deployment of the
defined Access Control scheme in the system and the integration with the other
components of the project.

52

Appendix A

Ansible deployment guide

Deployment of widely distributed systems like Keycloak for LEXIS Project can be auto-
mated via deployment tools such as Ansible. This guide refers to Ubuntu OS.

To install Ansible, run the following command:

1 sudo apt-get install ansible

The installation package also contains Ansible-Galaxy, usefui tool for installing community-
shared Ansible Roles.

The deployment can be performed on either local or remote machines, specified in the
hosts file, passed as an argument to the ansible command using the flag -i. In this file,
hosts can be divided in groups and some additional information can be provided, such as
ssh key location or other connection parameters.
An example of its format is available in the “hosts” file provided in the source files.

The system deployment is executed by running an Ansible-Playbook called “site.yml”,
provided in the source files. Playbooks group different types of operations, mainly: tasks
and pre-tasks, grouped in plays and representing commands to be executed when run-
ning the playbook; handlers, representing operations to be performed when a notify

command is used in tasks or pre-tasks; templates, representing files in ‘.j2 ’ format, which
can be easily copied in the destination machine using the command template.
Nevertheless, the file defines some requirements on the machine running the play-
book:

❼ installation of Python:

1 sudo apt-get install python

❼ installation of Java JRE:

1 sudo apt-get install default-jre

❼ installation of 2 Ansible-Galaxy shared Roles (cf. section 4.2):

– adfinis-sygroup.mariadb [148]

– andrewrothstein.keycloak [149]

Such Roles could be installed by running:

1 ansible-galaxy install adfinis-sygroup.mariadb

2 ansible-galaxy install andrewrothstein.keycloak

53

Ansible deployment guide

However, they have been slightly modified to adapt to the required setup and con-
figuration; additionally, installing the roles as presented above would require the
installation of ansible on each destination machine. For this reason, to deploy the
server I preferred to clone the GitHub repositories (available at [158] and [159]), in
accordance with GitHub repositories licensing, then modifying the roles as shown
in section 4.2. The installed roles are provided under the “roles” folder;

❼ finally, the installation can be executed by running the following command (optional
-vvvvv for verbose):

1 ansible-playbook site.yml -i hosts -u username --ask-become-pass

[-vvvvv]

which executes the “site.yml” playbook over the hosts specified in the “hosts” file,
runned by “username” as administrator (the path to the SSH key can be specified
in the same file).

Once the script is successfully terminated, the server is ready and fully operational.
The administration console can be reached at: http://<server_ip_address>:<port_

number>/auth/admin/, generally listening on port 8080. Default username and password
for the first admin user can be set in the file roles/ansible-keycloak/tasks/main.yml,
using the -u and -p options.

54

http://<server_ip_address>:<port_number>/auth/admin/
http://<server_ip_address>:<port_number>/auth/admin/

Appendix B

Postman configuration and testing

Postman is a popular collaboration platform for API development and testing, allowing
to organize test suites in Collections and subfolders and define different Environments
and related variables. Collections and Environments can be easily exported and shared,
e.g. within a testing team, or duplicated for different uses. Moreover, it provides high
availability as it just requires the user to login in the application to access all their saved
tests.

I have identified 3 main requests to perform:

❼ Retrieving the token for a user : it’s an HTTP POST request of type application/x-
www-form-urlencoded. Enter the token-endpoint in the request URL and fill in the
Body tab as in Figure B.1; as shown in the figure, environment variables (e.g.
master-user, master-pswd) can be used to set values.

Figure B.1. Token request via Postman (user).

Additionally, a short JavaScript code snippet allows to capture the Access token
retrieved from the request:

1 var jsonData = JSON.parse(responseBody);

2 postman.setEnvironmentVariable("master-token", jsonData.

access_token);

55

Postman configuration and testing

❼ Retrieving the token for a client : it’s similar to the previous case, but using a
different grant_type value and associated OIDC Flow (cf. Figure B.2);

Figure B.2. Token request via Postman (client).

❼ Using the token to access the server : once retrieved a valid Access token with one of
the previous requests, its value will be saved to the variable master-token by the
above-mentioned JavaScript code. This value can then be used to access protected
resources, according to the rights of the user or client linked to the issued token.
For example, the request in Figure B.3 shows the request to perform to list all the
users in the relarted realm (assuming both user and client have the right roles and
permissions to access this values).

Figure B.3. Request for displaying users in the realm.

56

Bibliography

[1] LEXIS Project website, https://lexis-project.eu/web/

[2] List of Single Sign-On implementations - Wikipedia, https://en.wikipedia.org/
wiki/List_of_single_sign-on_implementations

[3] LEXIS Deliverable D4.1, Analysis of mechanisms for securing federated infrastruc-
ture.

[4] Introduction to Keystone Federation, https://docs.openstack.org/keystone/

latest/admin/federation/introduction.html

[5] HEAppE Middleware, https://code.it4i.cz/ADAS/HEAppE/Middleware/wikis/
home

[6] iRODS website, https://irods.org

[7] iRODS Authentication, https://docs.irods.org/4.1.1/manual/

authentication/

[8] Redhat’s documentation on Key Concepts and Terms in the SSO environ-
ment, https://access.redhat.com/documentation/en-us/red_hat_single_

sign-on/7.0/html/server_administration_guide/overview#core_concepts_

and_terms

[9] Federated Identity - Wikipedia, https://en.wikipedia.org/wiki/Federated_

identity

[10] National Institute of Standards and Technology, FIPS 200, Minimum Security Re-
quirements for Federal Information and Information Systems, March 2006, https:
//csrc.nist.gov/publications/detail/fips/200/final.

[11] J. Katz and et al., Handbook of applied cryptography, CRC press, 1996.

[12] A. Singhal, T. Winograd and K. Scarfone, Guide to Secure Web Ser-
vices, August 2007, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-95.pdf.

[13] SAML specification, http://saml.xml.org/saml-specifications/

[14] SAML - Cover Pages by OASIS, http://xml.coverpages.org/saml.html

[15] OpenID Connect specification, https://openid.net/connect/

[16] E. E. Hammer-Lahav, “The OAuth 1.0 Protocol.” RFC-5849, April 2010, DOI
10.17487/RFC5849

[17] Session Fixation Attack against OAuth 1.0 Request Token approval flow, https:
//oauth.net/advisories/2009-1/

[18] OAuth 1.0 Revision A, https://oauth.net/core/1.0a/

[19] E. D. Hardt, “The OAuth 2.0 Authorization Framework.” RFC-6749, October 2012,
DOI 10.17487/RFC6749

[20] Introducing OAuth 2.0, https://hueniverse.com/

introducing-oauth-2-0-b5681da60ce2#04c9

[21] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos Network Authen-
tication Service (V5).” RFC-4120, July 2005, DOI 10.17487/RFC4120

57

https://lexis-project.eu/web/
https://en.wikipedia.org/wiki/List_of_single_sign-on_implementations
https://en.wikipedia.org/wiki/List_of_single_sign-on_implementations
https://docs.openstack.org/keystone/latest/admin/federation/introduction.html
https://docs.openstack.org/keystone/latest/admin/federation/introduction.html
https://code.it4i.cz/ADAS/HEAppE/Middleware/wikis/home
https://code.it4i.cz/ADAS/HEAppE/Middleware/wikis/home
https://irods.org
https://docs.irods.org/4.1.1/manual/authentication/
https://docs.irods.org/4.1.1/manual/authentication/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.0/html/server_administration_guide/overview#core_concepts_and_terms
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.0/html/server_administration_guide/overview#core_concepts_and_terms
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.0/html/server_administration_guide/overview#core_concepts_and_terms
https://en.wikipedia.org/wiki/Federated_identity
https://en.wikipedia.org/wiki/Federated_identity
https://csrc.nist.gov/publications/detail/fips/200/final
https://csrc.nist.gov/publications/detail/fips/200/final
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-95.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-95.pdf
http://saml.xml.org/saml-specifications/
http://xml.coverpages.org/saml.html
https://openid.net/connect/
https://doi.org/10.17487/RFC5849
https://oauth.net/advisories/2009-1/
https://oauth.net/advisories/2009-1/
https://oauth.net/core/1.0a/
https://doi.org/10.17487/RFC6749
https://hueniverse.com/introducing-oauth-2-0-b5681da60ce2#04c9
https://hueniverse.com/introducing-oauth-2-0-b5681da60ce2#04c9
https://doi.org/10.17487/RFC4120

Bibliography

[22] E. J. Sermersheim, “Lightweight Directory Access Protocol (LDAP): The Protocol.”
RFC-4511, June 2006, DOI 10.17487/RFC4511

[23] Active Directory Technical Specification, https://docs.

microsoft.com/en-us/openspecs/windows_protocols/ms-adts/

d2435927-0999-4c62-8c6d-13ba31a52e1a/

[24] Keycloak Auditing and Events, https://www.keycloak.org/docs/latest/

server_admin/index.html#auditing-and-events

[25] JOSSO 2.4 Auditing, http://docs.atricore.com/josso2/2.4/tutorials/

josso-auditing-tutorial/html/en-US/JOSSO_Tutorial_Auditing.html

[26] Spring Security framework website, https://spring.io/projects/

spring-security

[27] Advanced Hybrid RBAC, https://wiki.evolveum.com/display/midPoint/

Advanced+Hybrid+RBAC

[28] Keycloak website, https://www.keycloak.org/

[29] Keycloak - Server Admin documentation, https://www.keycloak.org/docs/

latest/server_admin

[30] Keycloak Authorization Services, https://www.keycloak.org/docs/latest/

authorization_services/

[31] StackHPC’s article on Federation and identity brokering using Keycloak, https:
//www.stackhpc.com/federation-and-identity-brokering-using-keycloak.

html

[32] OpenStack Keystone website, https://docs.openstack.org/keystone/latest/

[33] Openstack Keystone documentation, https://www.openstack.org/software/

releases/ocata/components/keystone

[34] DMTF CADF specification, https://www.dmtf.org/standards/cadf

[35] Auditing with CADF, https://docs.openstack.org/mitaka/

config-reference/identity/auditing.html

[36] Unity website, https://www.unity-idm.eu/

[37] Apache Syncope website, https://syncope.apache.org/

[38] Apache Licenses, https://www.apache.org/licenses/

[39] ConnId website, http://connid.tirasa.net/

[40] Apache Syncope Audit documentation, https://syncope.apache.org/docs/2.1/
reference-guide.html#audit

[41] Apache Syncope Admin console, https://syncope.apache.org/docs/2.1/

reference-guide.html#admin-console

[42] Apache Syncope End-user application, https://syncope.apache.org/docs/2.1/
reference-guide.html#enduser-application

[43] WSO2 website, https://wso2.com/identity-and-access-management/

[44] WSO2 Licenses, https://wso2.com/licenses

[45] WSO2 Installation Prerequisites, https://docs.wso2.com/display/IS580/

Installation+Prerequisites

[46] WSO2 Deployment Patterns, https://docs.wso2.com/display/IS580/

Deployment+Patterns

[47] Web Services Federation - OASIS standard, http://docs.oasis-open.org/

wsfed/federation/v1.2/ws-federation.html

[48] WSO2 - Calling Admin Services, https://docs.wso2.com/display/IS580/

Calling+Admin+Services

[49] WSO2 Self-Service Registration, https://wso2.com/whitepapers/

customer-identity-and-access-management-a-wso2-reference-architecture/

#2111

[50] OpenIAM website, https://www.openiam.com/

58

https://doi.org/10.17487/RFC4511
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/d2435927-0999-4c62-8c6d-13ba31a52e1a/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/d2435927-0999-4c62-8c6d-13ba31a52e1a/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/d2435927-0999-4c62-8c6d-13ba31a52e1a/
https://www.keycloak.org/docs/latest/server_admin/index.html#auditing-and-events
https://www.keycloak.org/docs/latest/server_admin/index.html#auditing-and-events
http://docs.atricore.com/josso2/2.4/tutorials/josso-auditing-tutorial/html/en-US/JOSSO_Tutorial_Auditing.html
http://docs.atricore.com/josso2/2.4/tutorials/josso-auditing-tutorial/html/en-US/JOSSO_Tutorial_Auditing.html
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://wiki.evolveum.com/display/midPoint/Advanced+Hybrid+RBAC
https://wiki.evolveum.com/display/midPoint/Advanced+Hybrid+RBAC
https://www.keycloak.org/
https://www.keycloak.org/docs/latest/server_admin
https://www.keycloak.org/docs/latest/server_admin
https://www.keycloak.org/docs/latest/authorization_services/
https://www.keycloak.org/docs/latest/authorization_services/
https://www.stackhpc.com/federation-and-identity-brokering-using-keycloak.html
https://www.stackhpc.com/federation-and-identity-brokering-using-keycloak.html
https://www.stackhpc.com/federation-and-identity-brokering-using-keycloak.html
https://docs.openstack.org/keystone/latest/
https://www.openstack.org/software/releases/ocata/components/keystone
https://www.openstack.org/software/releases/ocata/components/keystone
https://www.dmtf.org/standards/cadf
https://docs.openstack.org/mitaka/config-reference/identity/auditing.html
https://docs.openstack.org/mitaka/config-reference/identity/auditing.html
https://www.unity-idm.eu/
https://syncope.apache.org/
https://www.apache.org/licenses/
http://connid.tirasa.net/
https://syncope.apache.org/docs/2.1/reference-guide.html#audit
https://syncope.apache.org/docs/2.1/reference-guide.html#audit
https://syncope.apache.org/docs/2.1/reference-guide.html#admin-console
https://syncope.apache.org/docs/2.1/reference-guide.html#admin-console
https://syncope.apache.org/docs/2.1/reference-guide.html#enduser-application
https://syncope.apache.org/docs/2.1/reference-guide.html#enduser-application
https://wso2.com/identity-and-access-management/
https://wso2.com/licenses
https://docs.wso2.com/display/IS580/Installation+Prerequisites
https://docs.wso2.com/display/IS580/Installation+Prerequisites
https://docs.wso2.com/display/IS580/Deployment+Patterns
https://docs.wso2.com/display/IS580/Deployment+Patterns
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.html
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.html
https://docs.wso2.com/display/IS580/Calling+Admin+Services
https://docs.wso2.com/display/IS580/Calling+Admin+Services
https://wso2.com/whitepapers/customer-identity-and-access-management-a-wso2-reference-architecture/#2111
https://wso2.com/whitepapers/customer-identity-and-access-management-a-wso2-reference-architecture/#2111
https://wso2.com/whitepapers/customer-identity-and-access-management-a-wso2-reference-architecture/#2111
https://www.openiam.com/

Bibliography

[51] OpenIAM Documentation, http://doc.openiam.com/

[52] OpenIAM Identity and Access Governance - Licenses, https://www.openhub.net/
p/openiam-idm-ce

[53] 1.2 System requirements - OpenIAM Documentation, http://docs.openiam.com/
installation/about.htm?tocpath=Installation%20Guide%7C1.%20About%

20installing%20OpenIAM%7C_____0#1._About_installing_OpenIAM

[54] Web Services Security - OASIS standard, https://www.oasis-open.org/

committees/wss

[55] OpenIAM - Features, https://www.openiam.com/products/

identity-governance/features/

[56] OpenIAM Identity and Access Manager Technical Architecture Overview, https:
//www.openiam.com/wp-content/uploads/TechnicalArchitecture-v3-A.pdf

[57] OpenIAM - Administration Guide, http://docs.openiam.com/administration/
index.htm

[58] OpenIAM - User API, https://www.openiam.com/products/

identity-governance/features/api/

[59] OpenIAM - Self-Service Guide, http://docs.openiam.com/self-service/

index.htm

[60] Gluu website, https://gluu.org/docs

[61] Gluu License, https://gluu.org/docs/ce/4.0/#license

[62] Gluu - Clustering for HA, https://gluu.org/docs/ce/4.0/

installation-guide/cluster/

[63] Gluu Server Backup, https://gluu.org/docs/ce/4.0/operation/backup/

[64] Gluu Server: Shibboleth for SAML & oxAuth for OAuth 2.0, https://www.gluu.
org/shibboleth-idp/

[65] Gluu Authentication methods, https://gluu.org/docs/ce/4.0/authn-guide/

intro/

[66] Gluu User Managed Access (UMA) 2.0 Authorization Server, https://gluu.org/
docs/ce/4.0/admin-guide/uma/

[67] Gluu - Audit Logging Configuration, https://wiki.shibboleth.net/

confluence/display/IDP30/AuditLoggingConfiguration

[68] Gluu Admin Guide - Accessing the UI, https://gluu.org/docs/ce/4.0/

admin-guide/oxtrust-ui/#accessing-the-ui

[69] Gluu - User Registration, https://gluu.org/docs/ce/user-management/

user-registration/

[70] Shibboleth for SAML & oxAuth for OAuth 2.0, https://www.gluu.org/

shibboleth-idp/

[71] Evolveum MidPoint website, https://evolveum.com/midpoint/

[72] midPoint Licensing, https://wiki.evolveum.com/display/midPoint/

Licensing

[73] Evolveum midPoint - High Availability and Load Balancing, https://wiki.

evolveum.com/display/midPoint/High+Availability+and+Load+Balancing

[74] Role Explosion on midPoint guide, https://wiki.evolveum.com/display/

midPoint/Role+Explosion

[75] Evolveum midPoint - Admin and User Interface, https://wiki.evolveum.com/

display/midPoint/User+Interface

[76] Evolveum midPoint - Self-Registration Configuration, https://wiki.evolveum.

com/display/midPoint/Self+Registration+Configuration

[77] IDM365 RBAC/ABAC Hybrid Solution, https://idm365.com/

idm365-the-rbac-abac-hybrid-solution/

[78] EduGAIN website, https://edugain.org/

59

http://doc.openiam.com/
https://www.openhub.net/p/openiam-idm-ce
https://www.openhub.net/p/openiam-idm-ce
http://docs.openiam.com/installation/about.htm?tocpath=Installation%20Guide%7C1.%20About%20installing%20OpenIAM%7C_____0#1._About_installing_OpenIAM
http://docs.openiam.com/installation/about.htm?tocpath=Installation%20Guide%7C1.%20About%20installing%20OpenIAM%7C_____0#1._About_installing_OpenIAM
http://docs.openiam.com/installation/about.htm?tocpath=Installation%20Guide%7C1.%20About%20installing%20OpenIAM%7C_____0#1._About_installing_OpenIAM
https://www.oasis-open.org/committees/wss
https://www.oasis-open.org/committees/wss
https://www.openiam.com/products/identity-governance/features/
https://www.openiam.com/products/identity-governance/features/
https://www.openiam.com/wp-content/uploads/TechnicalArchitecture-v3-A.pdf
https://www.openiam.com/wp-content/uploads/TechnicalArchitecture-v3-A.pdf
http://docs.openiam.com/administration/index.htm
http://docs.openiam.com/administration/index.htm
https://www.openiam.com/products/identity-governance/features/api/
https://www.openiam.com/products/identity-governance/features/api/
http://docs.openiam.com/self-service/index.htm
http://docs.openiam.com/self-service/index.htm
https://gluu.org/docs
https://gluu.org/docs/ce/4.0/#license
https://gluu.org/docs/ce/4.0/installation-guide/cluster/
https://gluu.org/docs/ce/4.0/installation-guide/cluster/
https://gluu.org/docs/ce/4.0/operation/backup/
https://www.gluu.org/shibboleth-idp/
https://www.gluu.org/shibboleth-idp/
https://gluu.org/docs/ce/4.0/authn-guide/intro/
https://gluu.org/docs/ce/4.0/authn-guide/intro/
https://gluu.org/docs/ce/4.0/admin-guide/uma/
https://gluu.org/docs/ce/4.0/admin-guide/uma/
https://wiki.shibboleth.net/confluence/display/IDP30/AuditLoggingConfiguration
https://wiki.shibboleth.net/confluence/display/IDP30/AuditLoggingConfiguration
https://gluu.org/docs/ce/4.0/admin-guide/oxtrust-ui/#accessing-the-ui
https://gluu.org/docs/ce/4.0/admin-guide/oxtrust-ui/#accessing-the-ui
https://gluu.org/docs/ce/user-management/user-registration/
https://gluu.org/docs/ce/user-management/user-registration/
https://www.gluu.org/shibboleth-idp/
https://www.gluu.org/shibboleth-idp/
https://evolveum.com/midpoint/
https://wiki.evolveum.com/display/midPoint/Licensing
https://wiki.evolveum.com/display/midPoint/Licensing
https://wiki.evolveum.com/display/midPoint/High+Availability+and+Load+Balancing
https://wiki.evolveum.com/display/midPoint/High+Availability+and+Load+Balancing
https://wiki.evolveum.com/display/midPoint/Role+Explosion
https://wiki.evolveum.com/display/midPoint/Role+Explosion
https://wiki.evolveum.com/display/midPoint/User+Interface
https://wiki.evolveum.com/display/midPoint/User+Interface
https://wiki.evolveum.com/display/midPoint/Self+Registration+Configuration
https://wiki.evolveum.com/display/midPoint/Self+Registration+Configuration
https://idm365.com/idm365-the-rbac-abac-hybrid-solution/
https://idm365.com/idm365-the-rbac-abac-hybrid-solution/
https://edugain.org/

Bibliography

[79] eduGAIN License, https://github.com/biancini/

edugain-connectivity-check/blob/master/LICENSE

[80] eduGAIN Access Check, https://wiki.geant.org/display/eduGAIN/eduGAIN+

Access+Check

[81] TNC-2018 INTERNET2 GEANT Campus IdP v1.0, https://docs.google.com/
presentation/d/1y8NySPa1mQPEFKdCYodWMUv-a9zeK9dyZ6_VsZ6C_7o/edit?

usp=sharing

[82] Soffid website, https://www.soffid.com/

[83] Soffid License, http://www.soffid.com/doc/console/iam-core/license.html

[84] Soffid - Multi-master MariaDB cluster, http://confluence.soffid.org/

display/SOF/Creating+a+multi-master+MariaDB+cluster

[85] Soffid - System backup, http://confluence.soffid.org/display/SOF/System+
backup

[86] Bridging OpenID and SAML 2.0, https://www.terena.org/activities/

eurocamp/november07/slides/solberg-open-id.pdf

[87] Soffid - IAM: Audit & Compliance, http://www.soffid.com/our-solutions/

#identity-governance-audit

[88] Soffid - Web services reference, http://confluence.soffid.org/display/SOF/

Web+services+reference

[89] JOSSO website, http://www.josso.org/

[90] JOSSO2 License, https://github.com/atricore/josso2/blob/2.4.3/LICENSE

[91] About High Availability, http://docs.atricore.com/josso2/2.4.0/

josso-reference-guide/html/en-US/JOSSO_Reference.html#About_High_

Availability

[92] JOSSO Admin API - Java API for RESTful Services (JAX-RS), http:

//docs.atricore.com/josso2/2.4/tutorials/josso-jaxrs-tutorial/html/

en-US/JOSSO_Tutorial_JAXRS.html

[93] JOSSO - JAX-RS Sample Client code, http://docs.atricore.com/josso2/2.4/
tutorials/josso-jaxrs-tutorial/html/en-US/JOSSO_Tutorial_JAXRS.html#

_sample_client_code

[94] Java Enterprise Edition (Java EE/J2EE), https://www.oracle.com/java/

technologies/java-ee-glance.html

[95] JOSSO Architecture, http://www.josso.org/architecture.html

[96] JOSSO - Atricore IAM Platform, http://www.atricore.com

[97] Shibboleth website, https://www.shibboleth.net/

[98] Apache License Version 2.0, http://apache.org/licenses/LICENSE-2.0.html

[99] Shibboleth - System Requirements, https://wiki.shibboleth.net/confluence/
display/IDP30/SystemRequirements

[100] Shibboleth - Clustering, https://wiki.shibboleth.net/confluence/display/

IDP30/Clustering

[101] CAS Protocol 2.0 specification, https://apereo.github.io/cas/6.0.x/

protocol/CAS-Protocol-V2-Specification.html

[102] Shibboleth - Interesting Features, https://wiki.shibboleth.net/confluence/

display/IDP30/InterestingFeatures

[103] Shibboleth - Audit Logging Configuration, https://wiki.shibboleth.net/

confluence/display/IDP30/AuditLoggingConfiguration

[104] Shibboleth - Administrative Configuration, https://wiki.shibboleth.net/

confluence/display/IDP30/AdministrativeConfiguration

[105] Shibboleth for SAML & oxAuth for OAuth 2.0, https://www.gluu.org/

shibboleth-idp/

[106] Apereo CAS website, https://www.apereo.org/projects/cas

60

https://github.com/biancini/edugain-connectivity-check/blob/master/LICENSE
https://github.com/biancini/edugain-connectivity-check/blob/master/LICENSE
https://wiki.geant.org/display/eduGAIN/eduGAIN+Access+Check
https://wiki.geant.org/display/eduGAIN/eduGAIN+Access+Check
https://docs.google.com/presentation/d/1y8NySPa1mQPEFKdCYodWMUv-a9zeK9dyZ6_VsZ6C_7o/edit?usp=sharing
https://docs.google.com/presentation/d/1y8NySPa1mQPEFKdCYodWMUv-a9zeK9dyZ6_VsZ6C_7o/edit?usp=sharing
https://docs.google.com/presentation/d/1y8NySPa1mQPEFKdCYodWMUv-a9zeK9dyZ6_VsZ6C_7o/edit?usp=sharing
https://www.soffid.com/
http://www.soffid.com/doc/console/iam-core/license.html
http://confluence.soffid.org/display/SOF/Creating+a+multi-master+MariaDB+cluster
http://confluence.soffid.org/display/SOF/Creating+a+multi-master+MariaDB+cluster
http://confluence.soffid.org/display/SOF/System+backup
http://confluence.soffid.org/display/SOF/System+backup
https://www.terena.org/activities/eurocamp/november07/slides/solberg-open-id.pdf
https://www.terena.org/activities/eurocamp/november07/slides/solberg-open-id.pdf
http://www.soffid.com/our-solutions/#identity-governance-audit
http://www.soffid.com/our-solutions/#identity-governance-audit
http://confluence.soffid.org/display/SOF/Web+services+reference
http://confluence.soffid.org/display/SOF/Web+services+reference
http://www.josso.org/
https://github.com/atricore/josso2/blob/2.4.3/LICENSE
http://docs.atricore.com/josso2/2.4.0/josso-reference-guide/html/en-US/JOSSO_Reference.html#About_High_Availability
http://docs.atricore.com/josso2/2.4.0/josso-reference-guide/html/en-US/JOSSO_Reference.html#About_High_Availability
http://docs.atricore.com/josso2/2.4.0/josso-reference-guide/html/en-US/JOSSO_Reference.html#About_High_Availability
http://docs.atricore.com/josso2/2.4/tutorials/josso-jaxrs-tutorial/html/en-US/JOSSO_Tutorial_JAXRS.html
http://docs.atricore.com/josso2/2.4/tutorials/josso-jaxrs-tutorial/html/en-US/JOSSO_Tutorial_JAXRS.html
http://docs.atricore.com/josso2/2.4/tutorials/josso-jaxrs-tutorial/html/en-US/JOSSO_Tutorial_JAXRS.html
http://docs.atricore.com/josso2/2.4/tutorials/josso-jaxrs-tutorial/html/en-US/JOSSO_Tutorial_JAXRS.html#_sample_client_code
http://docs.atricore.com/josso2/2.4/tutorials/josso-jaxrs-tutorial/html/en-US/JOSSO_Tutorial_JAXRS.html#_sample_client_code
http://docs.atricore.com/josso2/2.4/tutorials/josso-jaxrs-tutorial/html/en-US/JOSSO_Tutorial_JAXRS.html#_sample_client_code
https://www.oracle.com/java/technologies/java-ee-glance.html
https://www.oracle.com/java/technologies/java-ee-glance.html
http://www.josso.org/architecture.html
http://www.atricore.com
https://www.shibboleth.net/
http://apache.org/licenses/LICENSE-2.0.html
https://wiki.shibboleth.net/confluence/display/IDP30/SystemRequirements
https://wiki.shibboleth.net/confluence/display/IDP30/SystemRequirements
https://wiki.shibboleth.net/confluence/display/IDP30/Clustering
https://wiki.shibboleth.net/confluence/display/IDP30/Clustering
https://apereo.github.io/cas/6.0.x/protocol/CAS-Protocol-V2-Specification.html
https://apereo.github.io/cas/6.0.x/protocol/CAS-Protocol-V2-Specification.html
https://wiki.shibboleth.net/confluence/display/IDP30/InterestingFeatures
https://wiki.shibboleth.net/confluence/display/IDP30/InterestingFeatures
https://wiki.shibboleth.net/confluence/display/IDP30/AuditLoggingConfiguration
https://wiki.shibboleth.net/confluence/display/IDP30/AuditLoggingConfiguration
https://wiki.shibboleth.net/confluence/display/IDP30/AdministrativeConfiguration
https://wiki.shibboleth.net/confluence/display/IDP30/AdministrativeConfiguration
https://www.gluu.org/shibboleth-idp/
https://www.gluu.org/shibboleth-idp/
https://www.apereo.org/projects/cas

Bibliography

[107] Apereo CAS License, https://apereo.github.io/cas/4.2.x/protocol/

CAS-Protocol-Specification.html#appendix-e-cas-license

[108] Apereo CAS - Installation Requirements, https://apereo.github.io/cas/4.2.
x/planning/Installation-Requirements.html

[109] Apereo CAS - High Availability Guide, https://apereo.

github.io/cas/4.2.x/planning/High-Availability-Guide.html#

high-availability-guide-haclustering

[110] Apereo CAS - Multiple Server Nodes, https://apereo.github.io/cas/4.2.x/

planning/High-Availability-Guide.html#multiple-cas-server-nodes

[111] Apereo CAS - SSO for Shibboleth IdP, https://apereo.github.io/cas/4.2.x/
integration/Shibboleth.html

[112] Apereo CAS - Authentication Handlers, https://apereo.github.io/cas/

4.2.x/installation/Configuring-Authentication-Components.html#

authentication-handlers

[113] Apereo CAS - Securing Access and Authorization, https://apereo.github.

io/cas/4.2.x/installation/Installing-ServicesMgmt-Webapp.html#

securing-access-and-authorization

[114] Apereo CAS - Audit, https://apereo.github.io/cas/4.2.x/installation/

Audits.html

[115] Perun AAI website, https://perun-aai.org

[116] Perun License, https://github.com/CESNET/perun#license

[117] Perun RPC API, https://perun-aai.org/documentation/

technical-documentation/rpc-api/index.html

[118] Perun - User management & Self-registration, https://perun-aai.org/

documentation/technical-documentation/rpc-api/index.html

[119] Perun GitHub repository, https://perun-aai.org/documentation/

technical-documentation/rpc-api/index.html

[120] FreeIPA website, https://www.freeipa.org/page/Main_Page

[121] FreeIPA - License, https://www.freeipa.org/page/License

[122] FreeIPA - Scalability, https://www.freeipa.org/page/Goals/Scalability

[123] FreeIPA - Backup and Restore, https://www.freeipa.org/page/Backup_and_

Restore

[124] FreeIPA - Web App Authentication, https://www.freeipa.org/page/Web_App_
Authentication

[125] FreeIPA - Audit session recording details, https://www.freeipa.org/page/

Session_Recording#Audit_recording_details

[126] FreeIPA - Self-Service Password Reset, https://www.freeipa.org/page/

Self-Service_Password_Reset

[127] OpenAM website, https://www.openidentityplatform.org/

[128] OpenAM License, https://github.com/OpenIdentityPlatform/OpenAM/blob/

master/LICENSE.md

[129] OpenAM Features - Wikipedia, https://en.wikipedia.org/wiki/OpenAM#

Features

[130] OpenAM - Authentication modules, https://github.com/

OpenIdentityPlatform/OpenAM/wiki/Authentication-modules

[131] OpenAM - Audit Logging, https://backstage.forgerock.com/docs/openam/

13.5/reference/#chap-audit-log-messages

[132] OpenAM - Legacy User Self-Service, https://backstage.forgerock.com/docs/
openam/13.5/reference/#legacy-user-self-service

[133] Univention Corporate Server website, https://github.com/univention/

univention-corporate-server

61

https://apereo.github.io/cas/4.2.x/protocol/CAS-Protocol-Specification.html#appendix-e-cas-license
https://apereo.github.io/cas/4.2.x/protocol/CAS-Protocol-Specification.html#appendix-e-cas-license
https://apereo.github.io/cas/4.2.x/planning/Installation-Requirements.html
https://apereo.github.io/cas/4.2.x/planning/Installation-Requirements.html
https://apereo.github.io/cas/4.2.x/planning/High-Availability-Guide.html#high-availability-guide-haclustering
https://apereo.github.io/cas/4.2.x/planning/High-Availability-Guide.html#high-availability-guide-haclustering
https://apereo.github.io/cas/4.2.x/planning/High-Availability-Guide.html#high-availability-guide-haclustering
https://apereo.github.io/cas/4.2.x/planning/High-Availability-Guide.html#multiple-cas-server-nodes
https://apereo.github.io/cas/4.2.x/planning/High-Availability-Guide.html#multiple-cas-server-nodes
https://apereo.github.io/cas/4.2.x/integration/Shibboleth.html
https://apereo.github.io/cas/4.2.x/integration/Shibboleth.html
https://apereo.github.io/cas/4.2.x/installation/Configuring-Authentication-Components.html#authentication-handlers
https://apereo.github.io/cas/4.2.x/installation/Configuring-Authentication-Components.html#authentication-handlers
https://apereo.github.io/cas/4.2.x/installation/Configuring-Authentication-Components.html#authentication-handlers
https://apereo.github.io/cas/4.2.x/installation/Installing-ServicesMgmt-Webapp.html#securing-access-and-authorization
https://apereo.github.io/cas/4.2.x/installation/Installing-ServicesMgmt-Webapp.html#securing-access-and-authorization
https://apereo.github.io/cas/4.2.x/installation/Installing-ServicesMgmt-Webapp.html#securing-access-and-authorization
https://apereo.github.io/cas/4.2.x/installation/Audits.html
https://apereo.github.io/cas/4.2.x/installation/Audits.html
https://perun-aai.org
https://github.com/CESNET/perun#license
https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://perun-aai.org/documentation/technical-documentation/rpc-api/index.html
https://www.freeipa.org/page/Main_Page
https://www.freeipa.org/page/License
https://www.freeipa.org/page/Goals/Scalability
https://www.freeipa.org/page/Backup_and_Restore
https://www.freeipa.org/page/Backup_and_Restore
https://www.freeipa.org/page/Web_App_Authentication
https://www.freeipa.org/page/Web_App_Authentication
https://www.freeipa.org/page/Session_Recording#Audit_recording_details
https://www.freeipa.org/page/Session_Recording#Audit_recording_details
https://www.freeipa.org/page/Self-Service_Password_Reset
https://www.freeipa.org/page/Self-Service_Password_Reset
https://www.openidentityplatform.org/
https://github.com/OpenIdentityPlatform/OpenAM/blob/master/LICENSE.md
https://github.com/OpenIdentityPlatform/OpenAM/blob/master/LICENSE.md
https://en.wikipedia.org/wiki/OpenAM#Features
https://en.wikipedia.org/wiki/OpenAM#Features
https://github.com/OpenIdentityPlatform/OpenAM/wiki/Authentication-modules
https://github.com/OpenIdentityPlatform/OpenAM/wiki/Authentication-modules
https://backstage.forgerock.com/docs/openam/13.5/reference/#chap-audit-log-messages
https://backstage.forgerock.com/docs/openam/13.5/reference/#chap-audit-log-messages
https://backstage.forgerock.com/docs/openam/13.5/reference/#legacy-user-self-service
https://backstage.forgerock.com/docs/openam/13.5/reference/#legacy-user-self-service
https://github.com/univention/univention-corporate-server
https://github.com/univention/univention-corporate-server

Bibliography

[134] Univention Corporate Server License, https://github.com/univention/

univention-corporate-server/blob/4.4-1/LICENSE

[135] UCS Fault-tolerant domain setup, https://docs.software-univention.de/

manual-4.4.html#domain:fault-tolerant

[136] UCS Domain controller backup, https://docs.software-univention.de/

manual-4.4.html#domain-ldap:Domain_controller_backup

[137] Univention Management Console (UMC) Documentation, https://docs.

software-univention.de/manual-4.4.html#central:user-interface

[138] Univention Corporate Server documentation - Clients, https://docs.

software-univention.de/quickstart-en.html#quickstart:clients

[139] UMC Architecture, https://docs.software-univention.de/

developer-reference-4.4.html#umc:architecture

[140] UCS Self Services, https://www.univention.com/blog-en/2019/04/

ucs-4-4-self-services-new-features/

[141] Release of UCS 4.1 with Docker, Single Sign-On Mechanism and Two-
Factor Authentication, https://www.univention.com/blog-en/2015/11/

release-of-ucs-4-1-with-docker-single-sign-on-mechanism-and-two-factor-authentication/

[142] Aerobase IAM website, https://aerobase.io/iam

[143] Aerobase IAM License, https://github.com/aerobase/unifiedpush-server/

blob/master/LICENSE.txt

[144] Aerobase IAM - Clustered Mode, https://aerobase.io/docs/installation/

index.html#_standalone-ha-mode

[145] A. I. A. R. API, https://aerobase.io/docs/server_development/index.html#
admin-rest-api

[146] Aerobase IAM - Server Features, https://aerobase.io/docs/server_admin/

index.html#features

[147] R. J. Garćıa-Hernández and M. Golasowski, “Supporting keycloak in irods sys-
tems with openidauthentication”, Presented at the CS3 2020 - Workshop on Cloud
Storage Synchronization and Sharing Services, Copenhagen (Denmark), Jan 27-29,
2020, pp. 1–6

[148] Mariadb by adfinis-sygroup - Ansible Galaxy, https://galaxy.ansible.com/

adfinis-sygroup/mariadb

[149] Keycloak by andrewrothstein - Ansible Galaxy, https://galaxy.ansible.com/

andrewrothstein/keycloak

[150] OpenID Connect Authentication Flows, https://www.keycloak.org/docs/

latest/server_admin/#_oidc-auth-flows

[151] M. Jones, B. Campbell, and C. Mortimore, “JSON Web Token (JWT) Profile for
OAuth 2.0 Client Authentication and Authorization Grants.” RFC-7523, May 2015,
DOI 10.17487/RFC7523

[152] LEXIS RBAC Matrix v3.2, January 2020

[153] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT).” RFC-7519,
May 2015, DOI 10.17487/RFC7519

[154] M. Jones and D. Hardt, “The OAuth 2.0 Authorization Framework: Bearer Token
Usage.” RFC-6750, October 2012, DOI 10.17487/RFC6750

[155] Gocloak library in Go language, https://github.com/Nerzal/gocloak

[156] Auth0 - Critical vulnerabilities in JSON Web Token libraries, https://auth0.com/
blog/critical-vulnerabilities-in-json-web-token-libraries/

[157] WebSecurify - Hacking JSON Web Tokens, https://blog.websecurify.com/

2017/02/hacking-json-web-tokens.html

[158] Mariadb by adfinis-sygroup - GitHub, https://github.com/adfinis-sygroup/

ansible-role-mariadb

62

https://github.com/univention/univention-corporate-server/blob/4.4-1/LICENSE
https://github.com/univention/univention-corporate-server/blob/4.4-1/LICENSE
https://docs.software-univention.de/manual-4.4.html#domain:fault-tolerant
https://docs.software-univention.de/manual-4.4.html#domain:fault-tolerant
https://docs.software-univention.de/manual-4.4.html#domain-ldap:Domain_controller_backup
https://docs.software-univention.de/manual-4.4.html#domain-ldap:Domain_controller_backup
https://docs.software-univention.de/manual-4.4.html#central:user-interface
https://docs.software-univention.de/manual-4.4.html#central:user-interface
https://docs.software-univention.de/quickstart-en.html#quickstart:clients
https://docs.software-univention.de/quickstart-en.html#quickstart:clients
https://docs.software-univention.de/developer-reference-4.4.html#umc:architecture
https://docs.software-univention.de/developer-reference-4.4.html#umc:architecture
https://www.univention.com/blog-en/2019/04/ucs-4-4-self-services-new-features/
https://www.univention.com/blog-en/2019/04/ucs-4-4-self-services-new-features/
https://www.univention.com/blog-en/2015/11/release-of-ucs-4-1-with-docker-single-sign-on-mechanism-and-two-factor-authentication/
https://www.univention.com/blog-en/2015/11/release-of-ucs-4-1-with-docker-single-sign-on-mechanism-and-two-factor-authentication/
https://aerobase.io/iam
https://github.com/aerobase/unifiedpush-server/blob/master/LICENSE.txt
https://github.com/aerobase/unifiedpush-server/blob/master/LICENSE.txt
https://aerobase.io/docs/installation/index.html#_standalone-ha-mode
https://aerobase.io/docs/installation/index.html#_standalone-ha-mode
https://aerobase.io/docs/server_development/index.html#admin-rest-api
https://aerobase.io/docs/server_development/index.html#admin-rest-api
https://aerobase.io/docs/server_admin/index.html#features
https://aerobase.io/docs/server_admin/index.html#features
https://galaxy.ansible.com/adfinis-sygroup/mariadb
https://galaxy.ansible.com/adfinis-sygroup/mariadb
https://galaxy.ansible.com/andrewrothstein/keycloak
https://galaxy.ansible.com/andrewrothstein/keycloak
https://www.keycloak.org/docs/latest/server_admin/#_oidc-auth-flows
https://www.keycloak.org/docs/latest/server_admin/#_oidc-auth-flows
https://doi.org/10.17487/RFC7523
https://doi.org/10.17487/RFC7519
https://doi.org/10.17487/RFC6750
https://github.com/Nerzal/gocloak
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://blog.websecurify.com/2017/02/hacking-json-web-tokens.html
https://blog.websecurify.com/2017/02/hacking-json-web-tokens.html
https://github.com/adfinis-sygroup/ansible-role-mariadb
https://github.com/adfinis-sygroup/ansible-role-mariadb

Bibliography

[159] Keycloak by andrewrothstein - GitHub, https://github.com/andrewrothstein/
ansible-keycloak

63

https://github.com/andrewrothstein/ansible-keycloak
https://github.com/andrewrothstein/ansible-keycloak

	List of Figures
	Introduction
	The LEXIS AAI Infrastructure
	LEXIS Infrastructure
	LEXIS Objectives and Requirements
	AAI System for the LEXIS Platform: Objectives
	Requirements and Specifications

	State of the Art
	Identity Federation
	Single Sign-On
	Identity Provider
	Service Provider
	Identity Broker

	Authentication mechanisms and protocols
	Multi-Factor Authentication
	Federation of web services and Social Login
	Standard Protocols
	Consent

	Client APIs
	Account Console
	Admin Console

	Authorization Services
	Auditing
	Existing SSO Systems
	Analysis criteria
	Keycloak
	OpenStack Keystone
	Unity
	Other evaluated systems

	Solution Design
	The chosen solution: Keycloak
	Deployment with Ansible
	Authentication and Authorization mechanisms
	Authentication in Keycloak
	Authorization in Keycloak
	JWT Tokens
	Token Forgery

	Conclusion
	Ansible deployment guide
	Postman configuration and testing
	Bibliography

