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Abstract 
 

The analysis of the behavior of motorcycles’ roll stability at rest and at low velocities is the aim of 

this project. Motorcycles present a significant difference with the other vehicles because of the 

presence of only two wheels, meaning that without the action of a driver it is a naturally unstable 

vehicle which when left alone to its own action would fall to the ground. 

After having analyzed the geometry of a motorcycle, the system was considered as an inverted 

pendulum with two equivalent point masses in order to study its behavior for what concerns the 

roll stability at low velocities in case of small roll angles. In order to do so the equivalent system was 

studied as an LTI system which was stabilized by means of a controller. 

After having studied the results with different types of the geometric parameters considering the 

motorcycle at rest, the influence of velocity and gyroscopic effects on the system was studied. 
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Introduction 

In the world of motorcycles the stability of the vehicle at low velocity is one of the issue that is more 

difficult to deal with because of the characteristics of the motorcycle is to be a system which support 

itself only with two wheels. Stability at medium to high speed is generally high, while at low speed 

it is very reduced, in fact when the vehicle is standing still it is necessary to support it with the rider’s 

feet on the ground. That is a great difference with respect to cars, in fact they are hyperstatic 

structure because of the presence of four wheels.  

Based on the idea of developing motorcycle with good self-standing performances, the aim of this 

project is to study the possibility of an effective attitude stabilization method by using the forces 

generated only through the steering control while the vehicle is standing still or it is moving at low 

speed, without adding weights or inertia to  the vehicle in order to generate restoring roll moments 

used to shift the tilted motorcycle to an upright position, so that the effects on the maneuverability 

during medium to high speed travel is not influenced negatively. 

This stabilization of the motorcycle can be of great importance from a safety and comfort point of 

view, in fact many motorcyclists in their experience can testify the casualty of falling at low velocity 

or even at standstill position. Having a motorcycle able to stand up for itself can be a great help for 

the less experienced drivers from a safety point of view and furthermore it can be of great comfort 

when standing in traffic being able to keep the feet on the footrests instead of putting them down 

on the ground.   

This project is focused on the dynamic model of the inverted pendulum, by studying the system an 

attitude stabilization method for a stationary or slowly moving motorcycle to use only the forces 

generated by steering control, in developing this method a dynamic model for motorcycles focusing 

on the conservation of momentum to represent the forces that are generated according to the 

geometry. During this study the effects of tire slipping, lateral forces, deformation and camber 

thrust are not considered.  The study  is   performed modifying the most important geometric 

parameters  for the steering behavior of motorcycles. 

Chapter one of this project is focused on the description of motorcycles and their basic parameters 

involved in their kinematic and dynamic behavior, chapter two is focused on the description of the 

automatic control systems and how to properly chose a control behavior of a system and chapter 

three is the study of the roll stability of motorcycles at low velocities. 
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1. Kinematics of motorcycles 
The kinematic study of motorcycle is important because it effects the dynamic behavior of 

motorcycles, in this chapter the kinematic study is used to show its influence  on the directional 

stability and maneuverability of motorcycles. 

1.1 Definition of motorcycles 
Altough motorcycles are composed of a great variety of mechanical parts, from a kinematic point of 

view and by considering the suspensions to be rigid bodies, a motorcycle can be defined as a spatial 

mechanism composed of four rigid bodies: 

 The rear assembly(frame, saddle, tank and motor-transmission drivetrain group) 

 The front assembly (fork, steering head and the handlebar) 

 The front wheel 

 The rear wheel 

These rigid bodies are connected by three revolute joints (the steering axis and the two wheel axles) 

and are in contact with the ground at two wheel/ground contact points as shown in figure 1.1. 

Each revolute joint inhibits five degrees of freedom in the spatial mechanism, while each 

wheel/ground contact point leaves three degrees of freedom free. Considering the pure rolling of 

tire on the road, it is easy to ascertain that each wheel, with respect to the fixed road can only rotate 

around 

 The contact point on the wheel plane (forward motion) 

 The intersection axis of the motorcycles and road planes (roll motion) 

 The axis passing through the contact point and the center of the wheel (spin). 

Figure 1.1: kinematic structure of a motorcycle 
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While driving the rider manages all three major movements according to his personal style and skill: 

the resulting movement of the motorcycle and its trajectory depend on the combination of the three 

motion related to the three degrees of freedom. All these considerations are under the hypothesis 

that the wheels move without any slippage, but in reality the tire movement is not just a rolling 

process. 

The generation of longitudinal driving and braking forces requires some degree of slippage in both 

the longitudinal and lateral direction depending on the road condition. These considerations bring 

to the calculus of the number of degrees of freedom, which becomes seven: 

 Forward motion of the motorcycle 

 Rolling motion 

 Handlebar rotation 

 Longitudinal slippage of the front wheel (braking) 

 Longitudinal slippage of the rear wheel (thrust or braking) 

 Lateral slippage of the front wheel 

 Lateral slippage of the rear wheel. 

1.2 The geometry of motorcycles 
This kinematic study refers to a rigid motorcycle, meaning that the vehicle is without suspensions 

with the wheels fitted to non-deformable tires and schematized as two toroidal solid bodies with 

circular sections as shown in figure 1.2 

 

Motorcycles can be described using the following geometric parameters: 

 p wheelbase 

 d fork offset: perpendicular distance between the ais of the steering head and the center of 

the front wheel 

Figure 1.2: model of the geometry of a motorcycle 
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 𝜽𝒄𝒇 caster angle 

 𝑹𝒇 The radius of the front wheel 

 𝑹𝒓The radius of the rear wheel 

 𝒓𝒇 radius of the front tire cross section 

 𝒓𝒓 radius of the rear wheel cross section 

The following equation describe how to find the correlation between the radius of the whole front 

wheel with the normal and the trail of the motorcycle: 

𝑡𝑛 = 𝑅𝑓 ∗ sin (𝜃𝑐𝑓)                                                                  (1) 

𝑡 = 𝑅𝑓 ∗ 𝑡𝑎𝑛 (𝜃𝑐𝑓)                                                                   (2) 

𝑡𝑛 = 𝑅𝑓 ∗ sin(𝜃𝑐𝑓) − 𝑑                                                               (3) 

𝑡 = 𝑅𝑓 ∗ tan(𝜃𝑐𝑓) −
𝑑

𝑐𝑜𝑠(𝜃𝑐𝑓)
                                                            (4) 

Equations (1) and (2) are valid in case of absence of front fork offset and equations (51) and (52) are 

valid in case of offset, with: 

 tn normal trail length; 

 t mechanical trail length; 

 d front fork offset, which corresponds to the perpendicular distance between the steering 

axis and the center of the wheel  

The geometric usually used to describe the geometry of motorcycles are 

 p wheelbase 

 t the trail 

 𝜽𝒄𝒇 the caster angle 

This parameters are measured with the motorcycle in a vertical position and the steering angle 𝛿𝑓 

of the handlebars set to zero. 

The wheelbase p is the distance between the contact points of the tires on the road, the caster angle 

𝜽𝒄𝒇 is the angle between the vertical axis and the rotation axis of the front section, which is the axis 

of the steering head and t the trail is the distance between the contact point of the front wheel and 

the intersection point of the steering head axis with the road measured in the ground plane. 

All these parameters together are important in defining the maneuverability of the motorcycle as it 

is perceived by the rider and it is not practical to examine the effects produced by only one of these 

geometric parameters because they are strongly related between them. The value of the wheelbase 

varies according to the type of vehicle considered and it ranges from 1200 [𝑚𝑚] in case of small 

scooters to 1300 [𝑚𝑚] for light motorcycle, to 1350 [𝑚𝑚] for medium displacement motorcycles 

up to 1600 [𝑚𝑚] for touring motorcycles with greater displacement of the engine.  
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In general an increase in the wheelbase without the variation of the other geometric parameters 

leads to: 

 An unfavorable increase in the flexional and torsional deformability of the frame, 

parameters very important for the maneuverability of the vehicle (the more deformability 

the motorcycles gets, the less maneuverable it becomes) 

 An unfavorable increase in the minimum curvature radius, since it makes it more difficult to 

turn on a path that has a small curvature radius 

 In order to turn the motorcycle there must be an unfavorable increase in the torque to be 

applied to the handlebars 

 A favorable decrease in the load transfer between the two wheels during the acceleration 

and braking phases, with a resulting decrease in the pitching motion; this makes forward and 

rearward flip-over more difficult 

 A favorable reduction in the pitching movement generated by road unevenness 

 A favorable decrease in the directional stability of the motorcycle 

The trail and the caster angle are especially important because they define the geometric 

characteristics of the steering head and so the properties of maneuverability and directional stability 

of the motorcycles depend on them. 

The caster angle varies according to the type of motorcycle: from 19° to 21° − 24° for competition 

or sport motorcycles, up to 27° − 34° for touring motorcycles. From a structural point of view a 

very small angle causes a lot of stress on the front fork during the braking phase, since the front fork 

is rather deformable, both flexionally and torsionally, small values of the angle will lead to greater 

stress and therefore greater deformations, which can cause dangerous vibration in the front 

assembly. 

The value of 𝜽𝒄𝒇 caster angle is closely related to the value of trail, in general in order to have a good 

feeling for the motorcycle’s maneuverability an increase in the caster angle must be linked to a 

corresponding increase in the trail. 

The value of the trail depends on the type of motorcycle and its wheelbase, but usually it ranges 

from 75 [𝑚𝑚] to 90 [𝑚𝑚] for competition vehicles, to values of 90 [𝑚𝑚] to 100 [𝑚𝑚] in touring 

and sport motorcycles up to 120 [𝑚𝑚] and beyond in purely touring motorcycles. 

1.3 The importance of trail 
One of the peculiarities of motorcycles is the steering system, whose function is essentially to 

produce a variation in the lateral force needed, for example to change the motorcycle’s direction or 

to assure equilibrium. 

According to this point of view the steering system could hypothetically be made up of two little 

rockets placed perpendicular to the front wheel, which could generate lateral thrusts (even if with 

high difficulties for the rider), meaning that it could perform the same function as the steering 

system. 
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From a geometrical point of view the classical steering mechanism is described by three parameters:  

 𝜽𝒄𝒇 the caster angle 

 d front fork offset 

 the radius of the front wheel 

These parameters make it possible to calculate the value of the normal trail 𝑡𝑛, which is the 

perpendicular distance between the contact point and the axis of the motorcycle’s steering head. 

This parameter is considered positive when the front wheel’s contact point with the road plane is 

behind the point of the axis intersection of the steering head with the road itself, as it is possible to 

see in figure 1.2. 

The trail measured on the road is related to the normal trail with the equation 

𝑡 = 𝑡𝑛/cos (𝜃𝑐𝑓)                                                            (5) 

The value of the trail is most important for the stability of the motorcycle, especially in rectilinear 

motion. 

Considering a motorcycle driving a straight path at constant velocity V and an external disturbance 

causes a slight rotation of the front wheel to the left, without considering the fact that the vehicle 

would start to lean to the right, in this way the wheel contact point has velocity V in the same 

direction, which is divided in two components as shown in figure 1.3: 

 the component 𝜔𝑓𝑅𝑓, which represent the velocity due to rolling 

Figure 1.3: influence of positive trail 
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 The component 𝑉𝑠𝑙𝑖𝑑𝑒 which represents the sliding velocity of the contact point 

In this way a frictional force F acts on the tire parallel to 𝑉𝑠𝑙𝑖𝑑𝑒 in the opposite sense, meaning that 

the friction force F generates a moment that tends to align the front wheel because the trail is 

positive. 

Considering a vehicle with a negative trail, meaning that the the contact point is in front of the 

intersection point of the steering axis with the road plane, the frictional force F is always in the 

opposite direction of the velocity 𝑉𝑠𝑙𝑖𝑑𝑒 which would lead to a moment around the steering head 

that would tend to increase the rotation to the left as it is possible to see in figure 1.4. The force F 

would amplify the disturbing effect, compromising the motorcycle’s equilibrium. 

Small trail values generate small aligning moment of the lateral friction force, even if the driver has 

the impression that the steering movement is easy, the steering mechanism is very sensitive to the 

irregularities of the road and higher values of the trail (they can be reached with high values of the 

caster angle) increase the stability of the motorcycle’s rectilinear motion, reducing maneuverability. 

Figure 1.4: influence of negative trail 

Figure 1.5: summary of the effects of trail 
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1.4 The center of gravity  
The position of a motorcycle’s center of gravity has a significant influence on the motorcycle’s 

dynamic behavior, its position depends on the distribution and quantity of masses of the individual 

components of the motorcycle. The engine is the heaviest component and its location greatly 

influences the location of the motorcycle’s center of gravity. 

The longitudinal distance Lr between the contact point of the rear wheel and the center of gravity 

can be easily determined by measuring the total mass of the motorcycle and the loads on the wheels 

under static conditions (front load Nsf and rear load Nsr): 

𝐿𝑟 =
𝑁𝑠𝑓𝑝

𝑚𝑔
= 𝑝 −

𝑁𝑠𝑟𝑝

𝑚𝑔
                                                                 (6) 

In general a motorcycle is characterized by the static loads that act on the wheels, expressed in a 

percentage formula 

% 𝑓𝑟𝑜𝑛𝑡 𝑙𝑜𝑎𝑑

% 𝑟𝑒𝑎𝑟 𝑙𝑜𝑎𝑑
=

𝑁𝑠𝑓/𝑚𝑔

𝑁𝑠𝑟/𝑚𝑔
=

𝐿𝑟/𝑝

𝐿𝑓/𝑝
                                                           (7) 

The distribution of the load on the wheels under static conditions is generally greater on the fron 

wheel for racing motorcycles (50-57% front, 43-50% rear) and it is greater on the rear wheel in the 

case of touring motorcycles (43-50% front, 50-57% rear). 

When the center of gravity is more forward, meaning that the front load is higher than 50%, 

wheeling the motorcycle becomes more difficult, or in other words there is an easier transfer of the 

power  to the ground. This is one reason why usually racing motorcycles are more loaded on the 

front wheel, furthermore this more weight on the front partially compensates for the aerodynamic 

effects that unload the front wheel, especially at high velocities. When the position of the center of 

Figure 1.7: center of gravity longitudinal position 
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gravity is more towards the rear of the motorcycle, braking capacity is increased reducing the danger 

of the rear wheel wheeling or even forward flip over during a sudden stop with the front brake. 

Modern sport motorcycles tends to have a 50-50% distribution in order to perform well in both 

acceleration and braking phases. For a question of safety it is preferable to have longitudinal slip of 

the rear wheel during the acceleration phase rather than longitudinal slip of the front wheel during 

the braking phase. The ratio 𝐿𝑟/𝑝 without the rider varies from 0.35 to 0.51 with the smallest values 

for the small motorcycles while the highest for racing motorcycles. In general the position of the 

rider shifts the whole center of gravity towards the rear, as it is possible to see in figure 1.6, the 

presence of the rider increases the load on the rear wheel diminishing the percentage of load on 

the front wheel. 

Once the longitudinal position of the center of gravity is found its height can be determined by 

measuring the load on one wheel, raising the front wheel of a known amount as shown in figure  

1.8, brings to  

ℎ = (
𝑁𝑠𝑓𝑝

𝑚𝑔
− 𝐿𝑟) cot [arcsin (

𝐻

𝑝
)] +

𝑅𝑓+𝑅𝑟

2
                                                 (8) 

The height of the center of gravity has a significant influence on the dynamic behavior of a 

motorcycle, especially in the acceleration and braking phases. A high center of gravity in 

acceleration leads to a larger load transfer from the front to the rear wheel, this change influences 

the quantity of driving force that can be applied to the rear wheel, but the fewer load on the front 

wheel makes the front wheel wheeling more probable.  

In braking an high center of gravity causes a greater load on the front wheel for the same principle 

quoted before, the load transfer occurs from the rear wheel to the front one. The greater load on 

the front wheel improves the braking characteristics of the motorcycle, but it also makes the 

forward flip-over more likely. 

Figure 1.8: center of gravity height estimation 
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The optimal height of the center of gravity also depends on the driving/braking traction coefficient 

between the tires and the road plane. With low values of the driving/braking traction coefficient it 

is good to have an higher center of gravity in order to improve both the acceleration and braking 

capacities. With high values of the friction coefficient it is better to have a lower center of gravity in 

order to avoid the limit conditions of wheeling and forward flip-over. 

The choice of the center of gravity position is therefore a compromise, it is necessary to take into 

account the purpose and the actual use that the motorcycle is going to have. All-terrain motorcycles 

are characterized by rather high centers of gravity, while sport and very powerful motorcycles are 

usually characterized by a lower center of gravity. The main effects of the position of the center of 

gravity are summarized in table 1.1 

Forward center of gravity The motorcycle tends to over-steer, the rear wheel tends to slip 

laterally when taking a turn 

Rear center of gravity The motorcycle tends to under-steer, the front wheel tends to slip 

laterally during a curve 

High center of gravity The front wheel tends to lift in acceleration and the rear wheel tends 

to lift in braking 

Low center of gravity The rear wheel tends to slip in acceleration and the front wheel 

tends to slip in braking 

The height of the center of gravity of the motorcycle alone has values varying from 0.4 to 0.55 [m], 

but the presence of the rider raises the center of gravity to values ranging from 0.5 to 0.7 [m], the 

displacement of the center of gravity due to the presence of the rider depends on the relation 

between the mass of the rider and the mass of the motorcycle.  

The ratio ℎ/𝑝 without rider and with fully extended suspensions varies in the range 0.3 − 0.4, the 

smallest values are valid for cruisers and scooter, while the highest for dual sport and endure type 

motorcycles. 

1.5 Motorcycle equilibrium in steady state rectilinear motion 

Considering a model of the motorcycle-rider system, as illustrated in figure 1.9 and assuming 

 The rolling resistance force is zero  

 The aerodynamic lift force 𝐹𝑙  is also considered zero 

 Since the road surface is flat, the force resisting the forward motion of the motorcycle is 

reduced to just the aerodynamic drag force 𝐹𝑑 

The pressure center of the motorcycle in which is applied the drag force coincides with the system’s 

center of gravity. 

Table 1.1: effects of the position of the center of gravity 
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In addition to the drag force, the other forces acting on the motorcycles are 

 The weight force 𝑚𝑔 that acts at the center of gravity 

 The driving force 𝑆 applied at the rear tire-ground contact point  

 The vertical forces 𝑁𝑓 and 𝑁𝑟 exchanged between the tires and the road plane 

The equations of equilibrium of a motorcycle make possible the computation of the vertical reaction 

forces 𝑁𝑓 and 𝑁𝑟 once the weight force, the driving force and the drag force are known. 

 

The equilibrium of the horizontal forces is 

𝑆 − 𝐹𝑑 = 0                                                                          (9) 

Vertical forces 

𝑚𝑔 − 𝑁𝑓 − 𝑁𝑟 = 0                                                                 (10) 

Equilibrium of the moments around the center of gravity 

𝑆ℎ + 𝑁𝑓𝐿𝑓 − 𝑁𝑟𝐿𝑟 = 0                                                           (11) 

The vertical forces exchanged between the tires and the front wheels are then found as 

𝑁𝑓 =
𝑚𝑔𝐿𝑟

𝑝
−

𝑆ℎ

𝑝
                                                                    (12) 

𝑁𝑟 =
𝑚𝑔𝐿𝑓

𝑝
+

𝑆ℎ

𝑝
                                                                    (13) 

The vertical reaction forces of the tires are then composed by the static load, which depends on the 

distribution of the load between front and rear, while the second term is call load transfer, which is 

directly proportional to the drive force 𝑆 and the height of the center of gravity and inversely 

Figure 1.9: Forces acting on the motorcycle 
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proportional to the motorcycle wheelbase 𝑝. The load transfer refers to the fact that there is a 

decrease in the front wheel load and a corresponding increase in the load on the rear wheel, 

meaning that the load is “transferred” from the front to the rear wheel. The ratio ℎ/𝑝 is higher in 

motorcycle with respect to that of other vehicles and it is usually in the interval 0.3 − 0.45, 

obviously the higher ratio brings to an higher load transfer.  

Figure 1.10 shows the load transfer angle, the weight force 𝑚𝑔 is equal to the sum of the static 

loads acting on the wheels 𝑁𝑠𝑓 and 𝑁𝑠𝑟, the driving force 𝑆 and the load transfer is applied to the 

rear wheel contact point with the ground, the load transfer is also applied at the front wheel in the 

opposite way with respect to the rear wheel. The direction of the resultant of the two driving force 

and of the load transfer at the rear wheel is inclined with respect to the road by the angle 

 𝜏 = arctan ℎ/𝑝                                                                 (14) 

In order for a motorcycle to maintain equilibrium this resultant force must be equal and opposite in 

sign to the resultant of the drag force and the load transfer of the front wheel.  

1.6 Steady turning 
During steady turning  motion the motorcycle can show can have neutral, under-steering or over-

steering behavior, in order to maintain equilibrium the rider applies a torque at the handlebars that 

can be zero, positive if it is in the same direction of the handlebar rotation or negative if the torque 

is applied in the opposite direction to the rotation of the handlebar and these characteristics define 

the handling behavior of the motorcycle. 

Figure 1.10: Load transfer angle 
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1.6.1 Ideal roll angle 

The motorcycle in steady turning is subjected to both a restoring moment, generated by the 

centrifugal force that tends to return to a vertical position, and to a tilting moment generated by 

the weight force that tends to increase the motorcycle’s inclination, which is called roll angle as 

illustrated in figure 1.11. 

The hypothesis in the following considerations are  

 The motorcycle runs along a curve of constant radius at constant velocity (steady state 

conditions) 

 The gyroscopic effects are considered negligible 

 The cross section thickness of the tires is zero 

By solving the equilibrium of the moments generated it is possible to derive the roll angle in terms 

of the turning radius 𝑅𝑐 and of the forward velocity 𝑉 = �̇�𝑅𝑐, with �̇� being the yaw rate of the 

motorcycle and the ideal roll angle is found as 

𝜙𝑖 = arctan
𝑅𝑐�̇�

2

𝑔
                                                                 (14) 

In conditions of equilibrium the resultant of the centrifugal force and the weight force passes 

through the line joining the contact points of the tires and the road plane, but this happens only 

when the tires have zero thickness and the steering angle is very small, in reality if a non-zero 

steering angle is assigned the front contact point is displaced laterally with respect to the x-axis of 

the rear frame and the contact points of the tires is no more contained in the plane of the rear 

frame. 

Figure 1.11: Ideal roll angle 
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1.6.2 Effective roll angle  

Considering a motorcycle with tires of thickness 2t that runs the same turn radius 𝑅𝑐 at the same 

velocity 𝑉 = �̇�𝑅𝑐, the roll angle which is necessary to reach the equilibrium of the moments exerted 

by the weight force and the centrifugal force is greater than the ideal one  

𝜙 = 𝜙𝑖 + 𝛥𝜙                                                                 (15) 

The increase in the roll angle is found with  

sin𝛥𝜙

𝑡
=

sin𝜙𝑖

ℎ−𝑡
                                                                 (16) 

So equation 15 becomes  

𝜙 = 𝜙𝑖 + 𝛥𝜙 = arctan
𝑅𝑐�̇�

2

𝑔
+ arcsin

𝑡 sin(arctan
𝑅𝑐�̇�2

𝑔
)

ℎ−𝑡
                             (17) 

Equation 17 shows that 𝛥𝜙 increases both as the roll angle and the cross tire section radius increase 

and as the height of the center of gravity decreases, this means that the use of wide tires forces the 

rider to use greater roll angles with respect to the angle necessary with motorcycles using smaller 

tires. Another conclusion is that with the same cross section of the tires to describe the same turn 

with the same forward velocity a motorcycle with low center of gravity needs to be more inclined 

with respect to one with a higher center of gravity.The motorcycle roll angle on a turn is influenced 

by the rider’s driving style, in fact by leaning with respect to the vehicle the rider changes its position 

of his center of gravity with respect to the motorcycle.  

Figure 1.12: Effective roll angle 
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1.6.3 Wheel velocity in a curve 

The velocity of the vehicle is represented by the forward velocity of the contact point of the rear 

wheel, so the yaw velocity is  

�̇� =
𝑉

𝑅𝑐
                                                                           (18) 

If the wheel slippage between the tires and the road surface in the forward direction of the wheels 

is not considered the spin velocity of the wheels in terms of the vehicle forward velocity, roll angle 

and steering angle are 

𝜔𝑟 =
𝑉

(𝑅𝑟−𝑟𝑟)+𝑟𝑟 cos𝜙  
                                                               (19) 

𝜔𝑓 =
𝑉

((𝑅𝑓−𝑟𝑓)+𝑟𝑓 cos𝛽)cos  𝛿𝑓  
                                                       (20) 

With the angle 𝛽 being the camber angle of the motorcycle. 

In reality during the thrust and braking phases there is always a longitudinal slippage between the 

rear wheel and the road plane, while in the front wheel there is slippage in the braking phase and 

under steady state condition the slippage is negligible because it is only due to rolling resistance. 

It is important to note that with the same longitunal velocity the angular velocity of the wheels 

increases during turning with respect to the angular velocity of the wheels in straight running 

because the contact does not occur on the largest circumference of the wheels. 

1.7 Torque applied to steering 
The equilibrium of moments around the steering axis enables the evaluation of the torque 𝑀 that 

the rider must apply to the handlebars to assure the motorcycle’s equilibrium in a curve, referring 

to steady turning. In transitory movement the torque the rider must apply is different from that 

calculated in steady state, especially if the variations in velocity and trajectory occur suddenly.  

The torque applied by the rider is equal, but of opposite sign to the resultant of all the moments 

generated by the forces acting on the front section and the resultant torque is composed of six 

terms: 

𝑀 = −𝑀𝑃𝑓 − 𝑀𝐶𝑓 − 𝑀𝑁𝑓 − 𝑀𝐹𝑓 − 𝑀𝑊𝑓 − 𝑀𝑀                                       (21) 

In table 1.2 each component of the resultant torque is shown 

𝑀𝑃𝑓 Disaligning influence due to the weight force of the front section 

𝑀𝐶𝑓 Aligning influence due to the centrifugal force of the front section 

𝑀𝑁𝑓 Disaligning influence due to the normal load on the front wheel 

𝑀𝐹𝑓 Aligning influence due to the lateral force on the front wheel 

𝑀𝑊𝑓 Aligning influence due to the gyroscopic effect of the front wheel 

𝑀𝑀 Disaligning influence due to the twisting torque of the front tire 

Table 1.2: components of the steering torque  
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Figure 1.13 describes the steering torque and all the moments which influence its characteristics, 

point A indicates the intersection of the steering axis with the normal line passing through the front 

tire contact point and the distance between point A and the contact point Pf represents the effective 

trail of the tire.  

The torque exercised by the rider is by definition positive if it tends to increase the steering angle 

into the turn, this means that: 

 At low velocities the steering torque is negative, therefore in steering the rider must block 

the handlebars, which otherwise tend to rotate further. When the values of the steering 

torque become strongly negative, the inclination and the entry into the turn becomes easier; 

Figure 1.13: steering torque components  

Figure 1.14: gyroscopic component of the steering torque 
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 With an increase in velocity the torque to be applied to the handlebars becomes positive, if 

the values remain high the torque generates in the rider the unpleasant sensation of driving 

a motorcycle that is hard to incline and to insert into tight turns. 

The various contributions have the following effects: 

 Vertical load: the vertical reactive force generates a positive moment of high value 

 Lateral force: the lateral reactive force generates a high value negative moment of the same 

order of magnitude generated by the vertical load 

 Front weight force: the moment is positive 

 Centrifugal force: the moment is negative and of the same order of magnitude of the 

moment generated by the front weight force 

 The gyroscopic effect generates a positive moment 

 The twisting moment generates a disaligning effect that increases with the roll angle 

For small roll angles the rider needs to apply a negative torque in order to obtain equilibrium, while 

for high roll angles the torque must be positive. 

The maximum maneuverability is obtained when the torque necessary to assure equilibrium is 

almost zero, in this conditions in fact if the rider lets the handlebars free the motorcycle continues 

to round the set turn. 

1.7.1 The influence of the motorcycle geometry on the steering torque 

The steady turning behavior of a motorcycle is a function of the vehicle geometry, inertia and tire 

properties.  

The first parameter considered is the normal trail, an increment in its value brings to lower steering 

torque needed to obtain equilibrium. This result can be explained considering the fact that when 

the trail increases the disaligning effect due to the front tire vertical load increases more than the 

aligning effect due to the lateral force, thus resulting in a more stable steering behavior. 

In case of an increase in the caster angle 𝜽𝒄𝒇 the effect is that of having a more aligning effect, since 

the steering torque increases, this parameter is in fact relevant. Considering that the real steering 

head angle is influenced by the motorcycle’s attitude, depending on speed, mass distribution and 

suspension behavior and so particular attention should be paid when choosing the parameter 

during the design. 

Increasing the front tire cross section radius 𝒓𝒇 brings to a strong aligning effect, this is caused by 

the displacement of the front wheel contact point due to the roll angle. 

The rider position is another parameter that influences the torque of the motorcycle, in fact a 

forward displacement of the rider’s center of mass has a slightly self-steering effect. If the rider 

moves remaining in the plane of symmetry of the motorcycle, the steering behavior does not change 

significantly. If the rider instead shows a lateral displacement towards the inside of the curve has a 

strongly aligning effect, in fact the steering characteristics of the motorcycle are strongly influenced 

by the driving style of the rider. The presence of a passenger alters the mass distribution of a 

motorcycle, the resulting effect is slightly aligning but the steady turning steering torque is not 

substantially changed. 
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The influence of the rider’s lateral position of the steering behavior of the motorcycle of 0.05 [m] 

towards the center of the curve corresponds to a decrease in the roll angle of about 1°. 

Any modifications to the motorcycle in each of its parameter bring to a variation in the torque to be 

applied to the handlebars in order to obtain equilibrium, the influence of the main geometric and 

inertial parameters on the steering torque is evidenced in table 1.3. The parameters that most 

influence the torque value are the caster angle 𝜽𝒄𝒇, the front tire cross section radius 𝒓𝒇, the height 

of the center of gravity and the normal trail tn . 

 Rider displacement inside the curve of 0.05 [𝑚] Strong aligning effect 

𝜽𝒄𝒇 Caster angle Strong aligning effect 

𝒓𝒇 Radius of the cross section of the front tire Aligning effect 

𝒉 Height of the motorcycle mass center Aligning effect 

tn Front tire normal trail Aligning effect 

𝑰𝒘𝒇 Front wheel spin inertia Small aligning effect 

𝑳𝒓 Distance motorcycle mass center-rear wheel Small disaligning effect 

t Mechanical trail Disaligning effect 

𝑴𝑴 Twisting torque of the front tire Disaligning effect 

 

In case of aligning effect the steering angle tends to decrease, the rider must steer into the turn to 

counteract this effect. If the torque is negative in sign, its value must increase. When there is a 

disaligning effect the steering angle tends to increase, the rider must steer out of the turn to 

counteract this effect, and if the torque is negative its value must continue to decrease. 

1.8 Modes and stability 
The front and rear end of a motorcycle in motion can start to oscillate around the steering axis, even 

if the wheels are well balanced. Oscillations can be observed at certain speeds, especially if the front 

wheel is out of balance, they reach their maximum amplitude and then decrease as speed decreases 

until they disappear completely. At low speed it is possible to observe that the motorcycle tends to 

fall over sideways.  

These observations of motorcycle dynamics show that there are three major modes: 

 Capsize, a non-oscillating mode used and controlled by the rider; 

 Weave, an oscillation of the entire motorcycle, but mainly the rear end; 

 Wobble, an oscillation of the front end around the steering axis which does not involve the 

rear end in any significant way. 

The rider’s control task can be considered to involve either fixed control or free control, i.e. with or 

without their hands grasping the handlebars. With the steering rotation fixed the motorcycle-rider 

system is unstable at all speeds, like a capsizing ship. In the unconstrained condition the steering 

system is free to steer itself, potentially relieving the rider of the need to apply steering control 

action for stabilization. At very low speeds a motorcycle is unstable because of capsize, the weave 

mode is unstable up to 7 − 8 [𝑚/𝑠]. Over this speed the vehicle usually enters into a stable zone, 

so that the rider could remove his hands from the handlebars without falling. As speed increases 

Table 1.3: effects of the increase of parameters on the steering behavior of a motorcycle 
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each mode may become unstable depending on the motorcycle’s characteristics and the rider has 

to counteract these modes with a torque applied at the handlebars. 

1.8.1 Capsize 

This mode is deeply influenced by the rider action on the handlebars, so this mode easily shifts from 

the unstable to the stable zone.  

Capsize is actually a mode used by the rider to roll the motorcycle, this action is achieved through 

the rider’s effort to hold or move the steering head rotation to some non-equilibrium position. Since 

the motorcycle exists as an inverted pendulum, this mode is always unstable. The capsize mode 

consists mainly of a roll motion combined with a lateral displacement plus some less important 

steering and yaw moment and depends on a number of factors: 

 Speed of the motorcycle 

 Wheel inertia 

 Position of the center of gravity 

 Motorcycle mass 

 Motorcycle roll inertia 

 Caster angle  

 Properties of the tires, primarily the cross sectional size of the tires, twisting torque and 

pneumatic trail of the front tire 

To highlight the influence of some geometrical and inertial properties of the motorcycle on the 

capsize mode it is useful to analyze the fall motion of a motorcycle with the steering head locked, 

in this hypothetical case, within the limits of linear approximation, capsize can be expressed as an 

exponential law: 

𝜙 = 𝜙0𝑒
𝑡/𝜏                                                                        (22) 

In this case 𝜏 is a positive time constant, therefore the capsize is always unstable. This time constant 

is a measure of how easily a motorcycle tends to lean over, racing motorcycles need a small time 

constant so that they can change their trajectory quickly, touring motorcycles need to roll more 

slowly, making them easier for the rider to control. 

Capsize instability should not be viewed as a drawback since it enables the motorcycle to lean into 

the curves and then execute them correctly: the smaller the time constant the less lead time is 

needed to start leaning the motorcycle into the curve. 

The simplified models, with the steering head locked and negligible gyroscopic effects, yield smaller 

time constant values than the ones which can be obtained by studying the complete model of a 

motorcycle. The simplified models clearly show how geometric and inertial properties affect the 

capsize time constant. Using a model with thin disk wheels as the one showed in figure 1.15 it is 

possible to understand the falling time of a motorcycle, since the mathematical modeling of 
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motorcycle capsize is complicated by the presence of the steering head, gyroscopic effects and tire 

contact forces arising from the slip and camber angles. 

The model follows the following assumptions: 

 The motorcycle is moving in direction x at speed V 

 The thickness of the cross section tires is null 

 There is no slippage between the tires and the road 

 The steering head is locked in place 

 Gyroscopic effects are considered negligible 

Based on these assumptions, capsize is a simple rotation of the motorcycle around the axis defined 

by the points in which the tires come into contact with the roadway and the equilibrium of moments 

with respect to the contact point gives the following equation 

(𝐼𝑥𝑔 + 𝑚ℎ2)�̈� = 𝑚𝑔ℎ sin𝜙                                                            (23) 

Linearizing the equation around the vertical equilibrium position  and introducing the solution      

𝜙 = 𝜙0𝑒
𝑠𝑡 it is possible to utilize the Laplace transform and obtain its solution, which is a real 

number and therefore corresponds to a non-oscillating motion: 

Figure 1.15: capsize model of the motorcycle with thin disk wheels 
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𝑠 =± √
𝑚𝑔ℎ

𝐼𝑥𝑔+𝑚ℎ2                                                                     (24) 

The time constant 𝜏 can be found as the inverse of the positive real eigenvalue of equation 24 

𝜏 = √
𝐼𝑥𝑔+𝑚ℎ2

𝑚𝑔ℎ
                                                                     (25) 

The time constant 𝜏 is determined by the height of the center of gravity, mass of the motorcycle 

and the motorcycle’s moment of inertia about the x-axis through the motorcycle’s center of gravity 

Using the radius of gyration 𝜌 to express the motorcycle’s moment of inertia (𝐼𝑥𝑔 = 𝑚𝜌2 ) it is 

possible to modify equation 25 into  

𝜏 = √
ℎ

𝑔
√1 +

𝜌2

ℎ2
                                                                     (25) 

Assuming that the mass and the center of gravity height are constant but it is possible to distribute 

differently the mass in order to modify the moment of inertia and so the radius of gyration 𝜌 it is 

possible to see that the time constant increases as the radius of gyration increases. For a given radius 

of gyration instead it is possible to see that the time constant 𝜏 decreases as the height of the center 

of gravity increases until it starts to in crease. This means that once the radius of gyration is set the 

time constant is at its lowest value when the height of the center of gravity is equal to the radius of 

gyration. 

Figure 1.16: capsize model of the motorcycle with lateral rolling of the tire 
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A second simplified model can be built from the first by removing the assumption that the wheels 

are thin disks, assuming a motorcycle with circular tire cross sections which do not slip laterally on 

the roadway during capsize. The equilibrium of the forces and moments of figure 1.16 are 

{

𝑚�̈�𝑔 = −𝑁 + 𝑚𝑔

𝑚�̈�𝑔 = 𝐹𝑠

𝐼𝑥𝑔�̈� = 𝑁(𝑦𝑔 − 𝑦) + 𝐹𝑠𝑧𝑔

                                                         (26) 

Under pure forward rolling conditions the system has just one degree of freedom, in this way 𝑦, 𝑦𝑔 

and 𝑧𝑔 can be expressed in function of the roll angle 

{

𝑦 = 𝜙𝑟𝑓
𝑦𝑔 = 𝜙𝑟𝑓 + ℎ0 sin 𝜙

𝑧𝑔 = −𝑟𝑓 − ℎ0 cos𝜙
                                                              (27) 

With mathematical substitutions it is possible to use the Laplace transform and obtain the following 

equation 

[𝐼𝑥𝑔 + 𝑚(ℎ0 + 𝑟𝑓)
2]𝑠2 − 𝑚𝑔ℎ0 = 0                                                (28) 

The resulting time constant is  

𝜏 = √
ℎ0

𝑔
√(1 +

𝑟𝑓

ℎ0
)2 +

𝜌2

ℎ2                                                           (29) 

Equation 29 shows that the time constant increases with the radius of the tire cross section, so 

entering a curve with a motorcycle with large tires takes longer to lean with respect to one with 

small tires. 

1.8.2 Wobble 

Wobble is an oscillation of the front assembly around the steering axis that that can become 

unstable at fairly low to middle speeds. These oscillations resemble the ones obtained when an 

airplane lands, their typical frequency value range from 4 [𝐻𝑧] for heavy motorcycles up to 10 [𝐻𝑧] 

for lightweight motorcycles. Wobble frequency increases as the trail increases and the front frame 

inertia decreases, and it is determined by the stiffness and damping of the front tire. In the forward 

speed range from 10 − 20 [𝑚/𝑠] wobble is slightly damped and can therefore become unstable, 

adding a steering damper increases the damping effect and so the stability of the system. 

This mode can be thought of in complete isolation from the rear assembly motion and roll, the front 

end can be considered as a rigid body rotating around the steering axis while the rear frame is fixed. 

1.8.3 Weave 

Weave is an oscillation of the entire motorcycle, but mainly the rear end. The natural frequency of 

this side to side motion is zero when the forward speed is also zero and ranges from 0 − 4 [𝐻𝑧] at 

high speed. The factors that determine weave are: 

 Position of the center of gravity of the rear assembly and that of the front assembly 

 Wheel inertia 

 Caster angle 

 Trail 
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 Cornering stiffness of the rear tire 

Weave is usually unstable at low speed up to 7 − 8 [𝑚/𝑠], usually stable in the middle range and 

can become uncontrollable at high speed since its damping might decrease substantially and its 

natural frequency can become too high for the rider to control. The weave is generated by the 

coexistence of two unstable non-oscillating modes: 

 Body capsize  

 Steering capsize 

Body capsize indicates the capsize of the entire motorcycle, the time constant with the steering free 

of motion decreases slightly, supposing that the vehicle is falling to the rider’s right the steering 

geometry causes the vehicle to steer to the left, moving the contact point towards the rider’s right, 

increasing in this way the gravitational torque with the whole vehicle capsizing less quickly. 

Steering capsize is a capsize of the steering head due to the disaligning effect of both the front tire 

normal load and front frame weight force. The time constant of the steering capsize has values in 

the range of 0.1 − 0.2 [𝑠] for speed lower than 1 [𝑚/𝑠]. 

1.9 Gyroscopic Moments 
A gyroscopic effect is generated by a rigid body rotating around an axis which in turn is rotating 

around a second axis not parallel to the first one, the gyroscopic effect takes the form of a moment 

which is equal to the vector product of the angular momentum of the body around the first axis and 

the speed of rotation around the second axis.  

Motorcycle dynamics incorporate a variety of gyroscopic effects, they can be classified as: 

 Yaw gyroscopic effects 

 Roll gyroscopic effects  

 Steering gyroscopic effects 

In the following section these effects are examinated. 

1.9.1 Gyroscopic effects generated by yaw motion 

The first case considered is  the one in which the gyroscopic effect is generated by the wheels during 

cornering, the front wheel is rotating at an angular speed 𝜔𝑓 and the motorcycle is travelling 

through a curve of radius 𝑅𝑐 at a constant yaw rate �̇�. 

The angular motion of the wheel generates a gyroscopic moment around the horizontal axis which 

has the effect of straightening the wheel 

𝑀𝑔 = 𝐼𝑤𝑓𝜔𝑓�̇�cos (𝜙)                                                             (30) 

This equation can be considered valid if the �̇� can be considered small with respect to the angular 

velocity 𝜔𝑓 of the front wheel and this assumption is verified in practice because the turning radius  

is much greater than the wheel radius. The reference frame taken in consideration for the wheel is 

linked to the front fork. Motorcycle equilibrium is reached when the resultant of the weight force 

and the centrifugal force intersects the line joining the contact points of the two wheels, which both 

contribute to the total gyroscopic effect which will be  
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 𝑀𝑔 = 𝐼𝑤𝜔�̇�cos (𝜙)                                                                (31) 

Without considering the gyroscopic effect and assuming the wheels without any thickness the ideal 

roll angle for a motorcycle in steady state cornering is given by  

𝜙 = arctan (
𝑅𝑐𝜓2̇

𝑔
)                                                                 (32) 

The gyroscopic effect of the wheels during cornering is manifested by a righting moment and in 

order to counteract this effect and maintain equilibrium during the corner the rider can lean into 

the turn in a way that the resultant of the weight force and the centrifugal force generates a moment 

equal and opposite to the gyroscopic moment of the two wheels: 

𝑀 = −𝑑√(𝑚𝑔)2 + (𝑚𝑅𝑐𝜓2̇ )
2

= −𝑀𝑔                                              (33) 

Figure 1.17: gyroscopic moment generated by the wheel rotational speed 𝜔𝑓 and the yaw motion 𝜓 

 

Figure 1.18: gyroscopic moment generated by the wheel rotational speed 𝜔𝑓 and the yaw motion 𝜓 
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In this way the final lean angle will be greater than the ideal roll angle calculated on the assumption 

that the gyroscopic moment is zero. 

In this case the righting moment generated by both the gyroscopic moment and the centrifugal 

force are offset by the overturning moment of the weight force, this means that the gyroscopic 

moment makes the actual roll angle greater than the ideal roll angle that would be achieved without 

this effect. The increase of roll angle 𝛥𝜙 needed to counterbalance the gyroscopic effect is given by 

𝛥𝜙 = arcsin
𝑑

ℎ
= arcsin

𝐼𝑤𝜔�̇�cos (𝜙+𝛥𝜙)

ℎ√(𝑚𝑔)2+(𝑚𝑅𝑐𝜓2̇ )
2
                                            (34) 

Since 𝛥𝜙 is smaller than 𝜙 it can be neglected in the computation and the equation (57) becomes 

𝛥𝜙 = arcsin
𝑑

ℎ
= arcsin

𝐼𝑤𝜔�̇�cos (𝜙)

ℎ√(𝑚𝑔)2+(𝑚𝑅𝑐𝜓2̇ )
2
                                            (35) 

The increase 𝛥𝜙 makes the motorcycle less maneuverable, since the motorcycle takes more time 

to reach the incrementally larger equilibrium roll angle. 

1.9.2 Gyroscopic effects generated by transversally mounted engine 

The gyroscopic effect generated by the engine is determined by the engine’s rotational speed 𝜔𝑚, 

which depends on what gear the motorcycle is in. Assuming a motorcycle in steady state cornering 

and neglecting the inertia of the front and rear wheels, the gyroscopic effect is generated by the 

rotation of the engine, its main shaft rotates in the same direction as the wheels. 

The gyroscopic effect generated by the engine brings the driver to lean the motorcycle of an angle 

greater than the ideal roll angle that would be necessary if this effect were absent, the increase in 

roll angle is given by  

𝛥𝜙 = arcsin
𝐼∗𝑤𝑚𝜔𝑚�̇�cos (𝜙)

ℎ√(𝑚𝑔)2+(𝑚𝑅𝑐𝜓2̇ )
2
                                                      (36) 

Figure 1.19: Increase in the roll angle 𝜙 caused by yaw gyroscopic effect 
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The sign of the angle is positive if the engine is rotating in the same direction as the wheels and 

negative for a counter-rotating engine. 

The term 𝐼∗
𝑤𝑚𝜔𝑚 expresses the engine total angular momentum, incorporating the angular 

momentum of the drive shaft, transmission shafts and any other rotating shaft parallel to the rear 

wheel axis. 

𝐼∗
𝑤𝑚𝜔𝑚 = 𝛴 𝐼𝑤𝑓𝜔𝑓                                                               (37) 

The engine contribution should be added or subtracted (depending on the sign of the gyroscopic 

moment) to the contribution given by the wheels. 

1.9.3 Gyroscopic effects generated by longitudinally mounted engine 

If the engine is mounted longitudinally with the drive shaft rotating toward the outside of the curve 

and the motorcycle is taking a turn to the left with respect to the forward direction of motion, the 

gyroscopic moment will be around the 𝑦𝑚 axis and it is equal to 

𝑀𝑔 = −𝐼∗
𝑤𝑚𝜔𝑚�̇�                                                                 (38) 

The gyroscopic moment has the effect of extending the front suspension and compressing the rear 

suspension to a greater degree, this brings the motorcycle to pitch backwards, when the motorcycle 

leans to the right the gyroscopic moment has the opposite effect, compressing the front suspension 

and extending the rear suspension. 

If the drive shaft is rotating toward the inside of the curve the gyroscopic moment changes sign and 

becomes 

𝑀𝑔 = 𝐼∗
𝑤𝑚𝜔𝑚�̇�                                                                   (39) 

Figure 1.20: gyroscopic moment generated by the transversal engine rotational speed 𝜔𝑚 and the yaw 

motion 𝜓 
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The effect generated by the gyroscopic moment is increasing the load on the front suspension and 

decreasing the load on the rear suspension, but the moment generated by the suspension forces 

balances out the gyroscopic moment with the end result of the motorcycle slightly pitching 

forward. 

1.9.4 Gyroscopic effects generated by roll motion and front wheel 

It is possible to look at the front wheel while the motorcycle is rolling to the right. The front wheel 

is revolving at an angular velocity 𝜔𝑓 and its motion coupled to the rolling rate �̇� generates a 

gyroscopic moment 𝑀𝑔 that acts on the front frame around an axis lying in the plane of the 

motorcycle and perpendicular to the longitudinal roll axis as shown in the figure. The equation of 

the gyroscopic moment generated is: 

𝑀𝑔 = −𝐼𝑤𝑓𝜔𝑓�̇�                                                                   (40) 

The projection along the steering axis provides the beneficial moment around the steering axis 

𝑀𝑔𝑢 = −𝐼𝑤𝑓𝜔𝑓�̇� cos 𝜗𝑐𝑓                                                           (41) 

This means that the gyroscopic moment has the effect of turning the steering head to the right, 

thereby helping the motorcycle enter the turn because increasing the steering angle 𝛿𝑓 reduces 

the  

turning radius 𝑅𝑐. Furthermore when the roll rate �̇� changes sign as the motorcycle returns to the 

vertical position the gyroscopic moment changes sign and it has the effect of reducing the steering 

angle 𝛿𝑓 helping the motorcycle exit the turn and return to rectilinear motion. 

Figure 1.21: gyroscopic moment generated by the longitudinal engine rotational speed 𝜔𝑚 and the yaw  
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1.9.5  Gyroscopic effects generated by roll motion and both wheels 

If the motorcycle is assumed to be a rigid body with the steering head locked in place, the gyroscopic 

moment of the wheel revolving at 𝜔𝑓 and 𝜔𝑟 during roll motion can be shown as a generation of a 

yawing moment as shown in the picture. 

Considering a motorcycle rolling from left to right, the gyroscopic moment acting on the motorcycle 

is equal to  

𝑀𝑔 = −(𝐼𝑤𝑓𝜔𝑓 + 𝐼𝑤𝑟𝜔𝑟)�̇�                                                          (42) 

This moment tends to make the motorcycle yaw to the right and is balanced by the lateral resistance 

exerted on the wheels by the ground. This means that the front lateral force slightly increases of 

𝛥𝐹, while the rear lateral force decreases by the same amount 

𝑀𝑔 = −(𝐼𝑤𝑓𝜔𝑓 + 𝐼𝑤𝑟𝜔𝑟)�̇� = 𝛥𝐹 𝑝 cos 𝜙                                            (43) 

When exiting the turn the motorcycle rolls from right to left and the gyroscopic moment reverses 

sign and in this way also the variation in the tire lateral forces 𝛥𝐹 changes sign.  

 

Figure 1.22: gyroscopic moment generated by the front wheel rotational speed 𝜔𝑓 and the roll rate �̇� 
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1.9.6 Gyroscopic effects generated by steering 

Since the wheel’s direction of angular velocity 𝜔𝑓 is perpendicular to the steering head axis, turning 

the handlebars from right to left generates a gyroscopic moment around an axis perpendicular to 

both the steering axis and the axis of the front wheel, the equation expressing the moment is: 

𝑀𝑔 = 𝐼𝑤𝑓𝜔𝑓�̇�                                                                      (44) 

This has the effect of leaning the motorcycle over towards the right, the projection of the gyroscopic 

moment on the roll axis is expressed as 

𝑀𝑔 = 𝐼𝑤𝑓𝜔𝑓�̇� cos 𝜗𝑐𝑓                                                              (45) 

Figure 1.23: gyroscopic moment generated by the both wheels rotational speed 𝜔𝑓 and 𝜔𝑓 and the roll 

rate �̇� with the steering head locked 

 

Figure 1.24: gyroscopic moment generated by the front wheel rotational speed 𝜔𝑓 and the steering rate �̇�  
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2 Automatic control system 
Automatic control is essential in any field of engineering and science, in fact it is an important and 

integral part of space-vehicle systems, robotic systems, modern manufacturing systems and many 

industrial operations involving control of temperature, pressure, humidity, flow etc.  

Some basic terminology is here explained: 

 Controlled variable and control signal or manipulated variable. The controlled variable is 

the quantity or condition that is measured and controlled, the control signal is the quantity 

or condition that is varied by the controller so as to affect the value of the controlled variable 

and it is usually the output of the system. Control means measuring the value of the 

controlled variable of the system and applying the control signal to the system to correct or 

limit deviation of the measured value from a desired value. 

 Plants. A plant can be a piece of equipment with the purpose of performing a particular 

operation 

 Processes. Any operation to be controlled is considered a process 

 Systems. A system is a combination of components that act together and perform a certain 

objective and this concept can be applied to abstract, dynamic phenomena such as those 

encountered in economics. 

 Disturbances. A disturbance is a signal that tends to adversely affect the value of the output 

of a system, if a disturbance is generated within the system it is called internal, while an 

external disturbance is generated outside the system and is an output. 

 Feedback control. It refers to an operation that in the presence of disturbances tends to 

reduce the difference between the output of a system and some reference input and dos so 

on the basis of this difference. 

2.1 Closed-loop control versus open-loop control 
A system that maintains a prescribed relationship between the output and the reference input by 

comparing them and using the difference as a means of control is called a feedback control system.  

 Closed-loop control systems. Feedback control systems are often referred to as closed-loop 

control systems. In a closed-loop control system the actuating error signal, which is the 

difference between the input signal and the feedback signal is fed to the controller so as to 

reduce the error and bring the output of the system to a desired value. The term closed-loop 

control always implies the use of feedback control action in order to reduce system error. 

 Open-loop control systems. Those systems in which the output has no effect on the control 

action are called open-loop control systems, in these systems the output is not measured or 

fed back for comparison with the input. To each reference input there corresponds a fixed 

operating condition and as a result the accuracy of the system depends on the calibration. 

In the presence of disturbances an open-loop control system can not perform the desired 

task, so these systems can be used only if the relationship between the input and output is 

known and if there are neither internal or external disturbances, so they are not feedback 

control systems. 

 Closed-loop versus open-loop control systems. An advantage of the closed-loop control 

system is the fact that the use of feedback makes the system response relatively insensitive 

to external disturbances and internal variations in systems parameters. It is therefore 



 

31 
 

possible to use relatively inaccurate and inexpensive components to obtain the accurate 

control of a given plant and this is impossible in case of an open-loop system. From the point 

of view of stability the open-loop control system is easier to build because system stability 

is not a major problem, while in closed-loop systems it is a major problem.  

For systems in which the inputs are known ahead of time and in which there are no 

disturbances it is advisable to use open-loop controls, closed-loop control systems have 

advantages only when unpredictable disturbances and/or unpredictable variations in system 

components are present.  

The major advantages of open-loop control systems are the simplicity of construction and 

ease of maintenance, no stability problem is present, they are convenient when the output 

is hard to measure. Their disadvantages are the fact that when disturbances occur errors are 

present, so the output may become different from the desired one. 

2.2 Mathematical modeling of control systems 
A mathematical model of a dynamic system is defined as a set of equations that represents the 

dynamics of the system accurately, a system may be represented in many different ways and may 

have many mathematical models and the dynamics of many systems can be described in terms of 

differential equations.  

Mathematical models may assume many different forms depending on the particular system and 

the particular circumstances, for example in optimal control problems it is advantageous to use 

state-space representations, while for the transient-response or frequency-response analysis of 

single-input single-output linear time invariant systems the transfer-function representation may 

be more convenient than any other.  

A system is called linear if the principle of superposition applies, this principle states that the 

response produced by the simultaneous application of two different forcing functions is the sum of 

the two individual responses. For linear system the response to several inputs can be calculated by 

treating one input at a time and adding the results. 

A differential equation is linear if the coefficients are constants or functions only of the independent 

variable. Dynamics system that are composed of linear time-invariant parameter can be described 

by linear time-invariant differential equations, these systems are called linear time-invariant 

systems or LTI systems. Systems which are represented by differential equations whose coefficients 

are functions of time are called linear time-varying systems. 

In control theory the transfer functions are commonly used to characterize the input-output 

relationships of components or systems that can be described by linear, time-invariant, differential 

equations. The transfer function of an LTI system is defined as the ratio of the Laplace transform of 

the output to the Laplace transform of the input under the assumption that all the initial conditions 

are set to zero. Using the concept of transfer function it is possible to represent system dynamics 

by algebraic equations in the variable 𝑠. 

 The transfer function of a system is a mathematical model in that it is an operational method 

of expressing the differential equation that relates the output variable to the input variable. 

 The transfer function is a property of a system itself, independent of the magnitude and 

nature of the input function 
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 The transfer function includes the units necessary to relate the input to the output, however 

it does not provide any information concerning the physical structure of the system. 

 If the transfer function of a system is known the output response can be studied for various 

forms of inputs with a view toward understanding the nature of the system. 

 If the transfer function of a system is unknown it may be established experimentally by 

introducing known inputs and studying the output of the system, once established it gives a 

full description of the dynamic characteristics of the system. 

In order to describe a control system it is useful to use a diagram called block diagram, it is a pictorial 

representation of the functions performed by each component and of the flow of the signals, 

differing from a purely abstract mathematical representation a block diagram has the advantage of 

indicating more realistically the signal flows of the actual system. In a block diagram all system 

variables are linked to each other through functional blocks. The functional block is a symbol for 

mathematical operations on the input signal to the block that produces the output. Figure 2.1 shows 

an element of the block diagram, the arrowhead pointing toward the block indicates the input and 

the arrowhead leading away from the block represents the output, each arrow is referred to as a 

signal. 

Figure 2.2 shows an example of a block diagram of a closed-loop system. The output 𝐶(𝑠) is fed back to the 

summing point, where it is compared with the reference input 𝑅(𝑠). The output of the block 𝐶(𝑠) is obtained 

by multiplying the transfer function 𝐺(𝑠) by the input to the block, 𝐸(𝑠). Any linear control system may be 

represented by a block diagram consisting of blocks, summing points and branch points. 

When the output is fed back to the summing point for comparison with the input it is necessary to convert 

the form of the output signal to that of the input signal. This conversion is accomplished by the feedback 

element whose transfer function is 𝐻(𝑠) as shown in figure 2.3, the role of the feedback element is to modify 

the output before it is compared to the input. 

Figure 2.1: element of a block diagram  

 

Figure 2.2: block diagram of a closed-loop system 
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2.3 Modeling in State Space 
The modern trend in engineering system is toward greater complexity, due mainly to the 

requirements of complex tasks and good accuracy. Complex systems may have multiple inputs and 

multiple outputs and may be time varying, this new approach is based on the concept of state. 

The state of a dynamic system is the smallest set of variables (called state variables) such that the 

knowledge of these variable at 𝑡 = 𝑡0 together with the knowledge of the input for 𝑡 ≥ 𝑡0 

completely determines the behavior of the system for any time 𝑡 ≥ 𝑡0. The state variables of a 

dynamic system are the variable making up the smallest set of variables that determine the state of 

the dynamic system. If at least 𝑛 variables 𝑥1, 𝑥2, … , 𝑥𝑛 are needed to completely describe the 

behavior of a dynamic system, this set of variables are a set of state variables. It is convenient to 

choose easily measurable quantities for the state variables, if this is possible, because optimal 

control laws will require the feedback of all state variables with suitable weighting. If 𝑛 state 

variables are needed to completely describe the behavior of a given system, then these can be 

considered the 𝑛 components of a vector 𝑥, which is called a state vector. 

The 𝑛-dimensional space whose coordinate axes consist of the 𝑥1axis, 𝑥2 axis, …, 𝑥𝑛axis, where 

𝑥1, 𝑥2, … , 𝑥𝑛 are state variables is called a state space.  

The dynamic system must involve elements that memorize the values of the input for  𝑡 ≥ 𝑡0. Since 

integrators in a continuous-time control system serve as memory devices, the outputs of such 

integrators can be considered as the variables that define the internal state of the dynamic system. 

The system can be described by two equations that are function of the variables 𝑥, 𝑢, 𝑡 

�̇�(𝑡) = 𝑓(𝑥, 𝑢, 𝑡)                                                                  (46) 

𝑦(𝑡) = 𝑓(𝑥, 𝑢, 𝑡)                                                                  (47) 

Equation 46 is the state equation of the system while equation 47 is the output equation, if those 

equations involve time 𝑡 explicitly, the system is called a time-varying system. Those two equations 

can be linearized about the operating state and they become 

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡)                                                      (48) 

𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) + 𝐷(𝑡)𝑢(𝑡)                                                      (49) 

Figure 2.3: block diagram of a closed-loop system 
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Where 𝐴(𝑡) is called the state matrix, 𝐵(𝑡) the input matrix, 𝐶(𝑡) the output matrix and 𝐷(𝑡) the 

direct transmission matrix. 

If time is not involved in the computations, the system is called a time-invariant system and 

equations 48 and 49 become 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                                                            (50) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                                                            (51) 

Equation 50 is the state equation of the linear time-invariant system and equation 51 is the output 

equation for the same system. 

2.4 Control systems analysis in State Space 
In order to analyze complex systems that can have many inputs and many outputs, it is essential to 

reduce the complexity of the mathematical expressions, as well as to resort to computers for most 

of the difficult computations necessary for the analysis and the state-space approach to system 

analysis is best suited from this point of view. Conventional control theory is based on the input-

output relationship or transfer function, modern control theory is based on the description of 

system equations in terms of 𝑛 first-differential equations, which may be combined into a first order 

vector-matrix differential equation. The use of vector-matrix notation greatly simplifies the 

mathematical representation of systems of equations.  

The increase in the number of state variables, the number of inputs or the number of outputs does 

not increase the complexity of the equations. In fact the analysis of complicated multiple-input, 

multiple-output systems can be carried out by procedures that are only slightly more complicated 

than those required for the analysis of first-order scalar differential equations. 

 

Considering a system defined by 𝑛 derivates of the 𝑦 with 𝑛 parameters 𝑎𝑖 and 𝑛 derivatives of the 

input signals 𝑢 it is possible to state  

𝑌(𝑠)

𝑈(𝑠)
=

𝑏0𝑠𝑛+𝑏1𝑠𝑛−1+⋯+𝑏𝑛−1𝑠+𝑏𝑛

𝑠𝑛+𝑎1𝑠𝑛−1+⋯+𝑎𝑛−1𝑠+𝑎𝑛
                                                       (52) 

It is possible to represent the state space of the system in controllable canonical form: 

[
�̇�1

…
�̇�𝑛

] = [
0 1     0   ⋯ 0
0 0    1   ⋯ ⋮ ′

−𝑎𝑛 ⋯ −𝑎1

] [

𝑥1

…
𝑥𝑛

] + [
0
0
1
] 𝑢                                        (53) 

2.5 Controllability and Observability 
A system is said to be controllable at time 𝑡0 if it is possible by means of an unconstrained control 

vector to transfer the system from any initial state 𝑥(𝑡0) to any other state in a finite interval of 

time. A system is said to be observable at time 𝑡0 if, with the system in state 𝑥(𝑡0), it is possible to 

determine this state from the observation of the output over a finite time interval. These two 

concepts play an important role in the design of control system in state-space, in fact the conditions 

of controllability and observability may govern the existence of a complete solution to the control 

system design problem. The solution to this problem may not exist if the system considered is not 

controllable. Although most physical systems are controllable and observable, corresponding 
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mathematical models may not posses the property of controllability and observability, so it is 

necessary to know the conditions under which a system is controllable and observable. 

Considering a continuous-time system  

�̇�(𝑡) = 𝐴𝑥 + 𝐵𝑢                                                                   (54) 

 𝑥 is a state vector 

 𝑢 is a control signal 

 A is an 𝑛 𝑥 𝑛 matrix 

 B is an 𝑛 𝑥 1 matrix 

This system is considered to be state controllable at 𝑡 = 𝑡0 if it is possible to construct an 

unconstrained control signal that will transfer an initial state to any final state in a finite time interval 

𝑡0 ≤ 𝑡 ≤ 𝑡1. If every state is controllable the system is said to be completely state controllable. 

The condition for complete state controllability are defined assuming that the final state is the origin 

of the state space and that the initial time is 𝑡0 = 0. The solution of equation 54 is 

𝑥(𝑡) = 𝑒𝐴𝑡 + ∫ 𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏 
𝑡

0
                                                 (55) 

If the system is completely state controllable it is possible to find the controllability matrix given any 

initial state 𝑥(0), it is necessary that the rank of the 𝑛 𝑥 𝑛 controllability matrix is of the rank 𝑛.  

An alternative form of the condition for complete state controllability is considering the system 

defined in equation 54 with the same conditions for the previous case but the B matrix is in the form 

𝑛 𝑥 𝑟, if the eigenvectors of A are distinct then it is possible to find a transformation matrix P such 

that  

𝑃−1𝐴𝑃 = 𝐷 = [
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

]                                                    (56) 

If the eigenvalues of A are distinct, then the eigenvectors of A are distinct. Furthermore each column 

of the P matrix is an eigenvector of A associated with 𝜆𝑖, with 𝑖 = 1,2, … , 𝑛. Defining 𝑥 = 𝑃𝑧 it is 

possible to modify equation 54 and obtain 

�̇�(𝑡) = 𝑃−1𝐴𝑃𝑧 + 𝑃−1𝐵𝑢                                                     (57) 

The condition of complete state controllability is that the eigenvectors of A are distinct, then if and 

only if no row of 𝑃−1𝐵 has all zero elements the system is completely controllable. In order to have 

this condition the matrix 𝑃−1𝐴𝑃 must be in diagonal form. If the A matrix doess not possess distinct 

eigenvectors the diagonalization is impossible, in this case it is possible to transform A into a Jordan 

canonical form. 

Complete state controllability of the state is neither necessary nor sufficient condition for 

controlling the output of the system, so it is possible to define separately complete output 

controllability. Considering the system  

�̇�(𝑡) = 𝐴𝑥 + 𝐵𝑢                                                                    (58) 

𝑦(𝑡) = 𝐶𝑥 + 𝐷𝑢                                                                    (59) 
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 𝑥 is a state vector (𝑛-vector) 

 𝑢 is a control vector (𝑛-vector) 

 𝑦 is the output vector (𝑚-vector) 

 A is an 𝑛 𝑥 𝑛 matrix 

 B is an 𝑛 𝑥 𝑟 matrix 

 C is an 𝑚 𝑥 𝑛 matrix 

 D is an 𝑚 𝑥 𝑟 matrix 

The system is completely output controllable if and only if it is possible to construct an 

unconstrained control vector 𝑢(𝑡) that will transfer any given initial output 𝑦(𝑡0) to any final output 

𝑦(𝑡1) in a finite time interval 𝑡0 ≤ 𝑡 ≤ 𝑡1. The condition for complete output controllability is that 

the rank of the output controllability matrix is 𝑚. 

A system is uncontrollable when it has a subsystem that is physically disconnected from the input. 

A partially controllable system is said to be stabilizable if the uncontrollable modes are stable and 

the unstable modes are controllable. 

Considering an unforced system  

�̇�(𝑡) = 𝐴𝑥                                                                      (60) 

𝑦(𝑡) = 𝐶𝑥                                                                      (61) 

With  

 𝑥 is a state vector (𝑛-vector) 

 𝑦 is the output vector (𝑚-vector) 

 A is an 𝑛 𝑥 𝑛 matrix 

 C is an 𝑚 𝑥 𝑛 matrix 

The system is said to be completely observable if every state 𝑥(𝑡0) can be determined by the 

observation of 𝑦(𝑡) over a finite time interval 𝑡0 ≤ 𝑡 ≤ 𝑡1. The system is therefore completely 

observable if every transition of the state eventually affects every element of the output vector, the 

concept of observability is useful in solving the problem of reconstructing unmeasurable state 

variables from measurable variables in the minimum possible length of time. 

The concept of observability is very important because the difficulty encountered with state 

feedback control is that some of the state variables are not accessible for direct measurement, with 

the result that it becomes necessary to estimate the unmeasurable state variables in order to 

construct the control signals. For the observability conditions the unforced system is considered 

because the matrices 𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝐷 are known and 𝑢(𝑡) is also known, therefore they can be 

subtracted from the observed value of 𝑦(𝑡). In this way the output vector 𝑦(𝑡) is  

𝑦(𝑡) = 𝐶𝑥𝑒𝐴𝑡𝑥(0)                                                                (62) 

If the system is completely observable the observability matrix 𝑛 𝑥 𝑛𝑚 must be of rank 𝑛, or if this 

matrix has 𝑛 linearly independent column vectors. 
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2.6 Control systems design in state space 
The methods for the design of state-space system are based on the pole-placement method, 

observers, quadratic optimal regulator systems and robust control systems. 

2.6.1 Pole placement 

Pole placement is  a design method to design control systems in state space. Assuming that all the 

variables of a system are measurable and available for feedback, this design technique begins with 

a determination of the desired closed-loop poles based on the transient-response and/or frequency 

response requirements. By choosing an appropriate gain matrix for state feedback it is possible to 

force the system to have closed-loop poles at the desired locations, provided that the original 

system is completely state controllable. 

In the conventional approach to the design of a single-input single-output control system a 

controller is designed such that the dominant closed-loop poles have a desired damping ratio ζ and 

a desired undamped natural frequency 𝜔𝑛. The present pole-placement approach specifies all 

closed-loop poles. The requirement is that the system is completely state controllable. 

Considering a control system  

�̇�(𝑡) = 𝐴𝑥 + 𝐵𝑢                                                                    (63) 

𝑦(𝑡) = 𝐶𝑥 + 𝐷𝑢                                                                    (64) 

Where  

 𝑥 is a state vector (𝑛-vector) 

 𝑢 is a control signal (scalar) 

 𝑦 is the output signal (scalar) 

 A is an 𝑛 𝑥 𝑛 matrix 

 B is an 𝑛 𝑥 1 matrix 

 C is an 1 𝑥 𝑛 matrix 

 D is a constant 

The control signal is chosen to be  

𝑢 = −𝐾𝑥                                                                         (65) 

The control signal u is determined by an instantaneous state, this scheme is called state feedback. 

The 1 𝑥 𝑛 matrix K is called the state feedback gain matrix, all the state variables are assumed to be 

available for feedback. This closed-loop system has no input, its objective is to maintain the zero 

output, since there may be some disturbances present the output will deviate from zero. The 

nonzero output is returned to the zero reference input because of the state feedback scheme of the 

system as shown in figure 2.4. It is possible to substitute equation 65 in equation 63, obtaining 

�̇�(𝑡) = (𝐴 − 𝐵𝐾)𝑥(𝑡)                                                               (66) 

The solution of this equation is given by 

𝑥(𝑡) = 𝑒(𝐴−𝐵𝐾)𝑡𝑥(0)                                                               (67) 

With 𝑥(0) being the initial state caused by external disturbances. 
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The stability and transient-response characteristics are determined by the eigenvalues of the matrix 

𝐴 − 𝐵𝐾. If matrix 𝐾 is chosen properly the matrix 𝐴 − 𝐵𝐾 can be made an asymptotically stable 

matrix, and for all 𝑥(0) ≠ 0 it is possible to make 𝑥(𝑡) approach 0 as t approaches infinity. The 

eigenvalues of the matrix 𝐴 − 𝐵𝐾 are called the regulator poles. 

The necessary and sufficient condition for arbitrary pole placement is that the system should be 

completely state controllable. 

When a system defined by equations 63 and 65, the feedback gain matrix that forces the eigenvalues 

of 𝐴 − 𝐵𝐾 to be the desired values can be determined following this procedure: 

1. Check the controllability condition for the system 

2. From the characteristic polynomial for matrix 𝐴 |𝑠𝐼 − 𝐴| = 𝑠𝑛 + 𝑎1𝑠
𝑛−1 + ⋯+ 𝑎𝑛 

determine the 𝑎𝑖 values 

3. Determine the transformation matrix 𝑇 that transforms the system state equation into the 

controllable canonical form 

4. Using the desired eigenvalues (desired closed-loop poles 𝜇𝑖) write the desired characteristic 

polynomial (𝑠 − 𝜇1)… (𝑠 − 𝜇𝑛) = 𝑠𝑛 + 𝛼1𝑠
𝑛−1 + ⋯+ 𝛼𝑛 and determine the values of 

𝛼1, … , 𝛼𝑛 
5. The required state feedback gain matrix 𝐾 can be determined as  

𝐾 = [𝛼𝑛 − 𝑎𝑛  ⋮ ⋯  ⋮ 𝛼1 − 𝑎1]𝑇
−1  

2.6.2 Quadratic Optimal regulator systems 

An advantage of the quadratic optimal control method over the pole-placement method is that the 

former provides a systematic way of computing the state feedback control gain matrix, considering 

a system  

�̇�(𝑡) = 𝐴𝑥 + 𝐵𝑢                                                                    (68) 

It is possible to determine the K matrix of the optimal control vector  

𝑢(𝑡) = −𝐾𝑥(t)                                                                     (69) 

So as to minimize the performance index  

𝐽 = ∫ (𝑥′𝑄𝑥 + 𝑢′𝑅𝑢)
∞

0
𝑑𝑡                                                           (70) 

Figure 2.4: closed-loop control system with 𝑢 = −𝐾𝑥 
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Where Q is a positive definite Hermitian or real symmetric matrix and R is a positive-definite 

Hermitian or real symmetric matrix. Those two matrices determine the relative importance of the 

error and the expenditure of the energy, since the second term of equation 70 accounts for the 

expenditure of the energy of the control signals. The linear control law given by equation 69 is the 

optimal control law, therefore if the unknown elements of the matrix 𝐾 are determined so as to 

minimize the performance index, then 𝑢(𝑡) = −𝐾𝑥(t) is optimal for any initial state 𝑥(0). 

Substituting equation 69 in equation 68 it is possible to obtain the matrix 𝐴 − 𝐵𝐾, which is assumed 

to be stable and its eigenvalues have negative real parts.  

𝐽 = ∫ 𝑥′(𝑄𝑥 + 𝐾′𝑅𝐾)𝑥
∞

0
𝑑𝑡                                                        (71) 

It is possible to set 𝑥′(𝑄𝑥 + 𝐾′𝑅𝐾)𝑥 = −
𝑑

𝑑𝑡
(𝑥′𝑃𝑥), with P being a positive definite Hermitian or 

real symmetric matrix, in this way it is possible to state 

(𝐴 − 𝐵𝐾)′𝑃 + 𝑃(𝐴 − 𝐵𝐾) = −(𝑄 + 𝐾′𝑅𝐾)                                         (72) 

If 𝐴 − 𝐵𝐾 is a stable matrix, a positive-definite matrix P exists in order to satisfy equation 72. 

The performance index J can be evaluated as 

𝐽 = ∫ 𝑥′(𝑄𝑥 + 𝐾′𝑅𝐾)𝑥
∞

0
𝑑𝑡 = −𝑥′(∞)𝑃𝑥(∞) + 𝑥′(0)𝑃𝑥(0)                            (73) 

Since the eigenvalues of 𝐴 − 𝐵𝐾 are assumed to have negative real parts, 𝑥(∞) = 0, equation 73 

becomes 

𝐽 = 𝑥′(0)𝑃𝑥(0)                                                                      (74) 

To obtain the solution of the quadratic optimal control problem, the matrix 𝑅 is written as 𝑅 = 𝑇′𝑇, 

with T as a nonsingular matrix. Equation 72 becomes  

(𝐴′ − 𝐾′𝐵′)𝑃 + 𝑃(𝐴 − 𝐵𝐾) + 𝑄 + 𝐾′𝑇′𝑇𝐾 = 0                                         (75) 

It is possible to write  

𝐴′𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅′𝐵′𝑃 + 𝑄 = 0                                                (76) 

Equation 76 is the Riccati equation, solving this equation it is possible to find the 𝑃 matrix, if it exists 

the system is stable and the matrix 𝐴 − 𝐵𝐾 is stable. Substituting the 𝑃 matrix into the equation 

𝐾 = 𝑅−1𝐵′𝑃 it is possible to find the optimal matrix 𝐾. 

Given any initial state 𝑥(𝑡0) the optimal regulator problem is to find an allowable control vector 

𝑢(𝑡) that transfers the state to the desired region of the state space and for which the performance 

index is minimized. For the existence of an optimal control vector 𝑢(𝑡) the system must be 

completely state controllable. 

The system that minimizes the selected performance index is by definition optimal. The 

characteristic of an optimal control law based on a quadratic performance index is that it is a linear 

function of the state variables, which implies the need to feedback all state variables. If not all 

variables are available for feedback a state observer must be used in order to estimate 

unmeasurable state variables and use the estimated values to generate optimal control signals. 

When the optimal control system is designed in the time domain it is desirable to investigate the 
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frequency response characteristics to compensate for noise effects. If the upper limit of integration 

in the performance index J is finite, the optimal control vector is still a linear function of the state 

variables with time varying coefficients. 
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3 Roll stability at low velocity 
The problem of roll stability in motorcycles at low speed or in stationary situations is evaluated in 
this report because in those conditions there are no sufficient restoring forces to maintain the 
vehicle stationary. Following the article "Study of Riding Assist Control Enabling Self-standing in 
Stationary State" a model of the motorcycle having roll stability when the vehicle is stationary or at 
low speed with a steering control for self-standing assist was taken into account in order to 
represent the dynamics of the roll motion composed by a fixed point mass above the center of 
gravity and a movable point mass below the center of gravity on the ground.  

3.1 Dynamic model  
According to the model, the steering action allows the roll moment direction  generated by the 
movable point mass to become the same as the direction generated by the ground contact point 
shift of the front tire, in this way the total roll moment is enough to restore the vehicle inclination 
only by steering control and because of this action it’s possible to establish a self standing control 
for the stationary state. 
The dynamic model used to study the conditions to enable roll stabilization by steering control is 
introduced following the assumptions that: 

1. the whole vehicle is a rigid point mass with mass m at the center of gravity and moment of 
inertia I about the roll axis; 

2. only the lateral movement of the vehicle’s point mass and the moment of the grounding 
point of the cross-sectional profile of the front and rear tires are considered as the dominant 
elements that generate roll moment. 

Figure 3.1 shows the dynamic model, the coordinates are set in this way: 

 Both the front wheel steering angle and the roll angle are set to zero in the reference 
attitude. 

 The origin of the coordinate system is placed in the projected point on the ground of the 
center of gravity of the vehicle in the reference attitude, from that point the Cartesian 
coordinate system has X, Y and Z axes in a right handed system. 

Figure 3.1: Dynamics model of a motorcycle 



 

42 
 

 In the reference attitude, Ef is the point of intersection between the line that connects the 
center of the front wheel and the line of the steering axis. 

 With a line parallel to the ground passing through Ef the point E is found with the intersection 
of the Z axis, while Er is the point on the line directly below the center of the rear wheel. 

After the definition of the relevant parameters it is possible to find the relationship between the 
height a and the trail length: 𝑡 = 𝑎 tan 𝜃𝑐𝑓. 

Following these assumption the system can be converted to the equivalent system consisting of two 
point mass, the first is at a height above the center of gravity h with a mass m1 and a height h’, the 
second point mass is on the ground with mass m2 and a height 0 as shown in figure 3.2. 

With simple equilibrium equations it is possible to find the values of m1, m2 and h’: 
 

𝑚1 + 𝑚2 =  𝑚                                                                      (77) 

 

𝑚1(ℎ
′ − ℎ) = 𝑚2                                                                   (78) 

 

𝑚1(ℎ
′ − ℎ)2 + 𝑚2ℎ

2 = 𝐼                                                             (79) 
 
The results from these three equations bring to  
 

ℎ′ = ℎ + 𝐼/(𝑚ℎ)                                                                    (80) 
 

𝑚1 = (
ℎ

ℎ′)𝑚                                                                        (81) 

 

𝑚2 = (1 −
ℎ

ℎ′)𝑚                                                                    (82) 

 
From here it is possible to show the roll motion of a motorcycle in the approximate model of the 
two point mass system consisting of the two point masses in order to approximately represent a 
near-reference attitude. The initial angular momentum is considered to be zero and the change in 

Figure 3.2: Approximate dynamics model of an equivalent two point mass system 
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angular momentum due to the gravity term is now ignored and the point masses are assumed to be 
movable only horizontally. 

 
Under these assumption the position of the second point mass is solely determined by the steering 
angle and since any movement of the second point mass will not generate an angular momentum 
the first point mass remains stationary: if gravity terms are ignored the first point mass can be 
regarded as a fixed point for steering, resulting in a rotation about the first point mass in the roll 
direction. It is now possible to express the displacement of the second point mass along the Y-axis 
as 𝑃2_𝑦in function of the tilt angle in the roll direction as 𝜙𝑏0, which is sufficiently small so that 

sin𝜙𝑏0 = 𝜙𝑏0: 
 

𝑃2_𝑦 = ℎ′𝜙𝑏0                                                                        (83) 

 
Also if the value of the steering angle is sufficiently small the roll angles of front and rear wheel can 
be approximated as follows: 
 

𝜙𝑓 = −(sin 𝜃𝑐𝑓)𝛿𝑓 + 𝜙𝑏0                                                            (84) 

 
𝜙𝑟 = 𝜙𝑏0                                                                           (85) 

  
Then also the displacement of Ef, Er and E in the Y-axis are expressed as follows: 
 

𝑒𝑓 = −𝑎𝜙𝑓                                                                        (90) 

 
𝑒𝑟 = −𝑎𝜙𝑟                                                                        (91) 

 

𝑒 =
𝐿𝑟

𝐿𝑓+𝐿𝑟
𝑒𝑓 +

𝐿𝑓

𝐿𝑓+𝐿𝑟
𝑒𝑟                                                             (92) 

 
The angle of inclination of the line that connects the point E and the second point mass is equal to 
the roll angle 𝜙𝑏0 of the vehicle, this means that 𝑃2_𝑦 can be also given by 

Figure 3.3: steering action and the resulting movement of the second point mass and associated roll 

angle change in the approximate dynamics model of an equivalent two point mass system 
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𝑃2_𝑦 = 𝑒 + 𝑎𝜙𝑏0                                                                  (93) 

 
This means that both 𝑃2𝑦

 and 𝜙𝑏0 can be represented as function of 𝛿𝑓 

𝑃2_𝑦 =
𝐿𝑟

𝐿𝑓+𝐿𝑟
𝑎 (sin 𝜃𝑐𝑓)𝛿𝑓                                                           (94) 

 

𝜙𝑏0 =
𝐿𝑟

𝐿𝑓+𝐿𝑟

𝑎

ℎ′
(sin 𝜃𝑐𝑓)𝛿𝑓                                                           (95) 

 
From the above discussion the roll moment M2 about the origin generated by the movement of the 
second point mass in the Y-axis direction can be represented as a function of 𝛿𝑓 because 

 
𝑀2 = −𝑔𝑚2𝑃2_𝑦                                                                  (96) 

 

𝑀2 = −(1 −
ℎ

ℎ′
)𝑚𝑔

𝐿𝑟

𝐿𝑓+𝐿𝑟
𝑎 (sin 𝜃𝑐𝑓)𝛿𝑓                                               (97) 

 
The roll moment generated by the movement of the grounding points of front and rear wheels 
needs to be evaluated, first of all the displacement of the front and rear wheels’ grounding point 
are found as: 
 

𝑃𝑟𝑝𝑡_𝑓𝑦 = −𝑅𝑓𝜙𝑓                                                                  (98) 

 
𝑃𝑟𝑝𝑡_𝑟𝑦 = −𝑅𝑟𝜙𝑟                                                                  (99) 

 
And the vertical road surface reaction forces applied to the front and rear wheel grounding points 
can be represented as: 

𝐹𝑟𝑝𝑡_𝑓𝑧 =
𝐿𝑟

𝐿𝑓+𝐿𝑟
𝑚𝑔                                                                 (100) 

 

𝐹𝑟𝑝𝑡_𝑟𝑧 =
𝐿𝑓

𝐿𝑓+𝐿𝑟
𝑚𝑔                                                                 (101) 

 
It is now possible to evaluate the roll moment 𝑀𝑟𝑝𝑡 about the origin generated by the movement of 

the grounding points in the Y-axis direction, and it is represented as follows: 
 

𝑀𝑟𝑝𝑡 = 𝐹𝑟𝑝𝑡_𝑓𝑦𝑃𝑟𝑝𝑡_𝑓𝑦 + 𝐹𝑟𝑝𝑡_𝑟𝑧𝑃𝑟𝑝𝑡_𝑟𝑦                                               (102) 

  
Also 𝑀𝑟𝑝𝑡 can be represented as a function of 𝛿𝑓 

 

𝑀𝑟𝑝𝑡 = 𝑚𝑔
𝐿𝑟

𝐿𝑓+𝐿𝑟
𝛿𝑓(𝑅𝑓 −

𝑎

ℎ′ 𝑅𝑔) (sin 𝜃𝑐𝑓)𝛿𝑓                                         (103) 

 

             𝑅𝑔 =
𝐿𝑟

𝐿𝑓+𝐿𝑟
𝑅𝑓 +

𝐿𝑓

𝐿𝑓+𝐿𝑟
𝑅𝑟                                                            (104) 

 
It is now possible to find the total moment of inertia about the origin, which is represented as a 
function of 𝛿𝑓 
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𝑀𝑠𝑢𝑚 = 𝑀2 + 𝑀𝑟𝑝𝑡 =
𝐿𝑟

𝐿𝑓+𝐿𝑟
(𝑅𝑓 −

𝑅𝑔+ℎ′−ℎ

ℎ′
𝑎)𝑚𝑔(sin 𝜃𝑐𝑓)𝛿𝑓                       (105) 

 
Then 𝑀𝑠𝑢𝑚 can be represented as  
 

𝑀𝑠𝑢𝑚 = 𝑚𝑔𝑘𝑠𝑢𝑚(𝑎𝑠𝑢𝑚 − 𝑎) 𝛿𝑓                                                    (106) 

 

                                                            𝑘𝑠𝑢𝑚 =
𝐿𝑟

𝐿𝑓+𝐿𝑟

𝑅𝑔+ℎ′−ℎ

ℎ′
sin 𝜃𝑐𝑓                                                       (107) 

 

                                                                   𝑎𝑠𝑢𝑚 =
ℎ′

𝑅𝑔+ℎ′−ℎ
𝑅𝑓                                                                 (108) 

 
When a motorcycle is rolled in a negative roll angle during a medium to high speed run it normally 
steers to the positive steering angle through the self steering effect which results in a positive 
moment that tends to pull up the vehicle body. This fact indicates that for a motorcycle in a 
stationary state to show the same roll and steering behavior as demonstrated at medium to high 
speed the coefficient (𝑎𝑠𝑢𝑚 − 𝑎) in the equation of 𝑀𝑠𝑢𝑚 must be a positive value, which means 
that 𝑎 must be smaller than 𝑎𝑠𝑢𝑚 and this indicates that the smaller this coefficient becomes the 
larger roll moment will be generated. In order to obtain those results this means that the trail length 
t must be smaller than 𝑎𝑠𝑢𝑚 tan 𝜃𝑐𝑓, the trail length should be made as small as possible, even 

allowing negative values, to be advantageous in generating a sufficient roll moment for a motorcycle 
in stationary state to achieve a self-standing condition. 

3.1.1 Control Law 

It is important to establish a control law to ensure roll stability, so an equation of motion applicable 
to the two point masses system must be found. Here the gravitational forces are considered and so 
the angular momentum of the equivalent system will change according to them acting on the first 
point and second point masses and the road surface reaction forces on the grounding points. The 
position of the second point mass is basically determined by the steering angle and no angular 
momentum is generated by the second point mass, the angular momentum of the first point mass 
becomes the angular momentum of the equivalent system.  
The roll angle 𝜙′ of the first point mass is defined as: 
 
                                                                         𝜙′ = 𝜙𝑏_𝑎𝑐𝑡 − 𝜙𝑏0                                                             (109) 

 

Figure 3.4: Roll angle of the first point mass in the approximate dynamics model of the equivalent two 

point masses system 



 

46 
 

When the vehicle is running in addition to the roll moments 𝑀2, 𝑀𝑟𝑝𝑡 another roll moment 𝑀𝑖  

composed by the Y-axis acceleration component and the centrifugal force component is generated 
and expressed as: 
 

𝑀𝑖 = 𝑚1ℎ′𝑉𝑜𝑦
̇ + 𝑚1ℎ′𝑉𝑜𝑥𝜔𝑧                                                      (110) 

 
In this expression 𝑉𝑜𝑥 is the running velocity in the X-axis direction, 𝑉𝑜𝑦 is the traveling rate in the Y-

axis direction and 𝜔𝑧 is the yaw rate about the Z-axis. 𝑉𝑜𝑦 and 𝜔𝑧 can be expressed in function of 

the actual steering angle 𝛿′𝑓: 

 

𝑉𝑜𝑦 =
𝐿𝑟

𝐿𝑓+𝐿𝑟
𝑉𝑜𝑥 tan 𝛿′𝑓                                                               (111) 

 

𝜔𝑧 =
1

𝐿𝑓+𝐿𝑟
𝑉𝑜𝑥 tan 𝛿′𝑓                                                               (112) 

 
A further approximation is applicable: 
 

tan 𝛿′𝑓 ≅ 𝛿′
𝑓 ≅ (cos 𝜃𝑐𝑓)𝛿𝑓                                                        (113) 

 
So it is possible to express both  𝑉𝑜𝑦 and  𝜔𝑧 in function of 𝛿𝑓 

 

𝑉𝑜𝑦 =
𝐿𝑟

𝐿𝑓+𝐿𝑟
𝑉𝑜𝑥(cos 𝜃𝑐𝑓)𝛿𝑓                                                          (114) 

 

𝑤𝑧 =
1

𝐿𝑓+𝐿𝑟
𝑉𝑜𝑥(cos 𝜃𝑐𝑓)𝛿𝑓                                                          (115) 

 
The equation of motion about the origin around the X-axis is given by: 
 

𝑚1ℎ
′𝜙′̈ = 𝑚1ℎ

′𝑔𝜙′ + 𝑀2 + 𝑀𝑟𝑝𝑡 + 𝑀𝑖                                                (116) 

 
Under the assumption that 𝜙′ is sufficiently small the displacement of the first point mass can be 
expressed as: 
 

𝑃1_𝑦 = −ℎ′𝜙′                                                                      (117) 

 
The previous equation (116) can be now represented in this way: 
 

𝑃1_𝑦 =̈  
𝑔

ℎ′
𝑃1_𝑦 −

𝑔

ℎ
𝑘𝑠𝑢𝑚(𝑎𝑠𝑢𝑚 − 𝑎)𝛿𝑓 −

1

𝐿𝑓+𝐿𝑟
𝑉2

𝑜𝑥(cos 𝜃𝑐𝑓)𝛿𝑓 − 𝑉𝑜𝑦
̇                   (118) 

 

A new parameter 𝑉𝑏𝑦 = 𝑉𝑜𝑦 + �̇�1_𝑦 is introduced and it is possible to deform this equation into: 

 

�̇�1_𝑦 = 𝑉𝑏𝑦 −
𝐿𝑟

𝐿𝑓+𝐿𝑟
𝑉𝑜𝑥(cos 𝜃𝑐𝑓)𝛿𝑓                                                   (119) 

 

�̇�𝑏𝑦 =
𝑔

ℎ′
𝑃1_𝑦 −

𝑔

ℎ
𝑘𝑠𝑢𝑚(𝑎𝑠𝑢𝑚 − 𝑎)𝛿𝑓 −

1

𝐿𝑓+𝐿𝑟
𝑉2

𝑜𝑥(cos 𝜃𝑐𝑓)𝛿𝑓                          (120) 
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From these equations it is possible to represent a state-space model, which is represented as 
follows: 
 

�̇� = 𝐴𝑥 + 𝐵𝑢                                                                     (121) 
 

𝑦 = 𝐶𝑥                                                                          (122) 
The states of the system are: 
 

𝑥 = [𝑃1_𝑦 𝑉𝑏𝑦𝛿𝑓 𝛿�̇� ]                                                              (123) 

 
The matrices are represented here below: 
 

𝐴 =

[
 
 
 
0 1 𝐴13 0
𝑔

ℎ
 0 𝐴23 0

0  0   0  1
0   0  0   0]

 
 
 

                                                                   (124) 

 

𝐵 = [

0
0
0
1

]                                                                          (125) 

 

𝐶 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]                                                                     (126) 

 

The input is 𝑢 = 𝛿�̈�. 

The parameters inside the A matrix of the system 𝐴13 and 𝐴23 are: 
 

𝐴13 = −
𝐿𝑟

𝐿𝑓+𝐿𝑟
𝑉𝑜𝑥(cos 𝜃𝑐𝑓)                                                        (127) 

 

𝐴23 = −
𝑔

ℎ
𝑘𝑠𝑢𝑚(𝑎𝑠𝑢𝑚 − 𝑎) −

1

𝐿𝑓+𝐿𝑟
𝑉2

𝑜𝑥(cos 𝜃𝑐𝑓)                                   (128) 

 
From here the control law is defined as 𝑢 = 𝐾𝑥. 
 

3.2 First simulation 
 
After setting all the parameters in a Matlab script the first step of the work was focused on the study 
of the state-space system, the eigenvalues of the A matrix and the poles of the system give the 
same results, in each case a positive value was found and that suggests that the system is obviously 
unstable and it needs to be controlled. Then a Simulink model was performed in order to represent 
the system, it brings to the expected results of instability of the system. Furthermore it was 
important to check if the system was controllable and observable, so the controllability and 
observability matrix were found in Matlab and their rank was inspected, with the result of finding 
out that the system is both controllable and observable. 
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Since the problem is the roll stability in motorcycles at low speed an initial speed considered is   

𝑉𝑜𝑥 = 0 [
𝑘𝑚

ℎ
] and the results show the instability of the system, in figure 3.6 it is possible to observe 

the curves of the states of the system: 

Figure 3.5: Simulink model representing the State-space system 

Figure 3.6(a): displacement of the first point mass 

in y direction, result of the simulation performed 

without a controller 

Figure 3.6(b): velocity of the first point mass in y 

direction, result of the simulation performed 

without a controller 

Figure 3.6(c): steering angle of the motorcycle 𝛿𝑓, 

result of the simulation performed without a 

controller 

Figure 3.6(d): steering angle velocity 𝛿�̇�, result of 

the simulation performed without a controller 
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The results obtained in the simulation show the instability of the system, in fact both the curve in 
figure 3.6(a) of the displacement of the first point mass and the curve in figure 3.6(b) of the velocity 
of the first point mass tend to −∞, highlighting the fact that the motorcycle without an action on 
the steering system or without a driver putting their feet on the ground tends to fall at low velocities. 
Following these results a controller was designed in order to stabilize the system. 
 

3.3 Design of the controller 
After checking the instability of the system the poles were investigated, their results were 
𝑝𝑜𝑙𝑒𝑠(𝑠𝑦𝑠) = [ 4.1115,−4.1115, 0, 0], the controller could be designed both by 

 using  the method of the second order dominant poles so that the desired eigenvalues are 
chosen in such a way that the controlled system becomes similar to a second-order system 
with desired damping and natural frequency 

 using the method of the optimal control (Linear Quadratic Regulator, LQR) 
The main advantage of pole placement technique is that the poles are placed at the desired location 
using state feedback gain matrix, the poles can be shifted and so it is possible to shape the closed 
loop characteristics of the system in order to meet the design requirement. Pole placement method 
can give the desired performance characteristics but it does not guarantee a robust system, while 
LQR gives the optimal solution considering the control signal with the advantage of having the 
system always stable and robust, but it only allows pole placement in a specific region and the pole 
that gives the desired performance may or may not be in the desired region.  
The poles with the first method were placed in [−8,−8, −8,−8] in Matlab via the command acker 
and the system is now represented in Simulink as shown in Figure 3.7. 

The parameters of the motorcycle taken in consideration are listed on the table below: 
 

L_f Distance from the origin to the front wheel 
contact point with the ground 

L_f=0.865 [m] 

L_r Distance from the origin to the rear wheel 
contact point with the ground 

L_r=0.789 [m] 

p Wheelbase  p=1.654 [m] 

R_f Radius of the front tire cross sectional profile R_f=0.109 [m] 

R_r Radius of the rear tire cross sectional profile R_r=0.108 [m] 

Figure 3.7: Simulink model of the system with a controller 
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d Front fork offset d=0.0463 [m] 

t Front trail length  t=0.110 [m] 

a Height of the points Ef, Er,E a=0.2131 [m] 

𝜽𝒄𝒇 Front wheel caster angle 𝜃𝑐𝑓 = 27.3°  

m Total mass including a driver of 75 Kg m=270 [Kg] 

I Total roll inertia about the center of gravity I=13 [Kg*m2] 

h Height of the center of gravity h=0.480 [m] 

𝜹𝒇  Front wheel steering angle 𝛿𝑓 = [−]  

From this list it is possible to notice that some of the parameters taken in consideration in the 
simulation are not the ones usually used in traditional motorcycles, mostly for the radius of the front 
tire cross sectional profile which is large with respect to traditional motorcycles, expecially for a 
front tire. However the front tire was considered as a 218/45-17 and the value of the front fork 
offset 𝑑 = 0.0463 [𝑚] was chosen accordingly to the parameters of traditional motorcycles, which 
also correspond to having a trail of length 𝑡 = 0.110 [𝑚], then the simulation of the system was 
performed on Simulink. 
In the first case no external forces were taken into account and the main assumptions for the 
computation were: 

 𝜙𝑏_𝑎𝑐𝑡 = 1°; 

 The initial condition of the state are 𝑥0 = [𝑃1_𝑦 𝑉𝑏𝑦𝛿𝑓 𝛿�̇� ] with 𝑃1_𝑦 and 𝑉𝑏𝑦 set as the  result 

of the computation of the previously discussed equations,   𝛿𝑓 and  𝛿�̇� set as 0. 

 The initial longitudinal velocity of the vehicle was considered 𝑉𝑜𝑥 = 0 [
𝑘𝑚

ℎ
] 

In the case of the vehicle with a trail of 𝑡 = 0.110 [𝑚] it is possible to see that the results have very 

high values for what concerns the 𝛿𝑓 and  𝛿�̇� states, that is mainly due to the fact that with the trail 

set to 𝑡 = 0.110[𝑚] the result of the equation (26) brings to a negative value. From the previous 

discussion and because of the correlation between 𝑡 and 𝑎 from the equation = 𝑎 tan𝜃𝑐𝑓 , the 𝑎 

parameter should be smaller than 𝑎𝑠𝑢𝑚 but with those set of assumption the results are: 𝑎𝑠𝑢𝑚 =

0.1758, while 𝑎 = 0.2131. In figure 3.8 it is possible to see the results of the simulation. 

Table 3.1: List of parameters and their values 
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However the results show that the system can be controlled, by changing the values of the poles 
the control can act faster but with higher overshoot or slower but with a lower overshoot, in this 
case the compromise between performance and handling of the control are considered valid. 
The following step was to investigate what happens if the value of the trail length was changed, the 
process was studied by changing the value of the front fork offset. 

Figure 3.8: Results of the simulation with 𝑡 = 0.110 [𝑚] and 𝑑 = 0.0463 [𝑚] 

 

Figure 3.9: Results of the simulation with offset 𝑑 = 0[𝑚] and 𝑡 = 0.1621 [𝑚] 
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Since the results obtained in case of having a motorcycle with a mechanical trail 𝑡 = 0.110 [𝑚] did 

not bring to satisfactory results a simulation was performed considering the same parameters of 

the motorcycle but the front fork offset was set to zero. This annulment of the offset brought to a 

mechanical trail length of 𝑡 = 0.1621 [𝑚] and the results obtained are shown in figure (3.9). 

The results obtained with these set of parameters show an improvement in the behavior of the 𝛿𝑓 

and  𝛿�̇� curves even if the peak is still an high value, in fact in motorcycles the 𝛿𝑓 is usually in the 

range 𝛿𝑓 = ±35°, the peak is in found at 0.2 seconds and its value is 𝛿𝑓 = 82°, the problem with a 

vehicle without offset would become even greater when travelling from medium to high speed for 

what regards its stability. An interesting consideration is the fact that with this set of values                        

𝑎 = 0.3140 [𝑚] and it is bigger than 𝑎𝑠𝑢𝑚 = 0.178 [𝑚], this brings to having the steering angle 

positive as in the case with mechanical trail 𝑡 = 0,110 [𝑚]. 

The following step was to set the front fork offset to a value of 𝑑 = 0.0774 [𝑚], with such a value 

the mechanical trail becomes 𝑡 = 0.075 [𝑚]. This value of mechanical trail guarantees an important 

improvement in the results of equation (26) because it brings the difference 𝑎𝑠𝑢𝑚 − 𝑎 to a positive 

value in fact 𝑎 = 0.145 [𝑚]. In figure 3.10 are shown the results of the simulation. 

The results obtained with those set of parameters show the negative value for the 𝛿𝑓 curve, the 

peak results to be 𝛿𝑓 = −380° which is of course an impossible value to reach for the steering of a 

Figure 3.10: Results of the simulation with offset  𝑑 = 0.0774 [𝑚] and 𝑡 = 0.075 [𝑚]. 

 



 

53 
 

motorcycle. For what concerns the curves of the position and velocity of the first point mass their 

behavior is the same as when they are set in the other configuration, with their peak values changing 

of some very small quantities.  

After this configuration the front fork offset was set with a negative value in order to see if the peak 

of the 𝛿𝑓 curve would increase or decrease, it was set 𝑑 = −0.083 [𝑚] without varying the 𝜃𝑐𝑓. This 

is a theoretic consideration, in figure 3.12 this configuration is shown while in figure 3.11 it is 

possible to see the results obtained with the simulation. 

 

The peak of the 𝛿𝑓 curve in this case is 𝛿𝑓 = 36.5°, this value is pretty close to the actual range of 

the steering of a traditional motorcycle. In order to implement this solution it would be necessary 

to mount the triple clamp of the front fork in the opposite way with respect to a traditional 

motorcycle and with a big value of offset, this could also bring to structural problems for what 

concerns the whole front fork assembly. 

The following step was to implement the solution proposed by the SAE article, this means that the 

value of the mechanical trail is to be set in a negative value in order to control the system properly. 

Figure 3.11: Results of the simulation with offset  𝑑 = −0.083 [𝑚] and 𝑡 = 0.255 [𝑚]. 

ypi 
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The value of the front fork offset needed in this configuration in order to have 𝑡 = −0.060 [𝑚] is 

𝑑 = 0.1973 [𝑚] and the results obtained with the simulation using these parameters are shown in 

figure 3.13. 

The state 𝛿𝑓 in this case show a negative behavior and its peak value is 𝛿𝑓 = −40°, which is still 

pretty close to the steering range of a traditional vehicle. For what concerns the other states the 

same considerations for the other configurations are valid.  

The objective has become the improvement of the behavior of the system via the controller, so the 

desired poles were set to [−6,−6, −6,−6] and the results with the same parameters as the ones 

set for the previous simulation are shown in figure 3.14.  

Figure 3.13: Results of the simulation with offset  𝑑 = 0.1973 [𝑚] and 𝑡 = −0.060 [𝑚]. 

ypi 

Figure 3.12: Typical triple clamp of a front fork with positive offset 
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The results show a slight decrease in the absolute value of the peak of the 𝛿𝑓 curve, in fact its value 

is 𝛿𝑓 = −39°, but the peak value is reached in a longer time, in fact it is found at 𝑇𝑖𝑚𝑒 = 0.3 [𝑠] 

while in the other simulations with the poles set at  [−8, −8,−8,−8] it was reached at 𝑇𝑖𝑚𝑒 =

0.2 [𝑠]. This means that the control acts in a slower way with the new set of desired poles but the 

overshoot of the curve is also lower. 

  

After these experiments it was decided to change the length of the wheelbase of the motorcycle, 

the value of 𝐿𝑓 was set to 𝐿𝑓 = 0.665 [𝑚], this means having a total wheelbase of 𝑝 = 1.454 [𝑚] 

but the difference in the set 𝐿𝑓 means that the position of the center of gravity is now shifted 

towards the front assembly of the motorcycle in the longitudinal position, this means that as stated 

in table 1.1 having the center of gravity positioned more forward will make the motorcycle tend to 

over-steer and the rear wheel tends to slip laterally when taking a turn. 

Figure 3.14: Results of the simulation with offset  𝑑 = 0.1973 [𝑚] and 𝑡 = −0.060 [𝑚] and the 

poles set at [−6,−6,−6,−6] 

ypi 
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The poles of the controller were set back to [−8,−8,−8,−8] and the results obtained are shown 

in figure 3. 15. 

With this new configuration of the vehicle the curve of 𝛿𝑓 show the same behavior as the one 

obtained with the previous wheelbase, but its peak value is now 𝛿𝑓 = 35°, now the value is in the 

range of the steering of a motorcycle and so the result is quite good. 

3.4 LQR Control 
In the previous discussion the difference between LQR and the pole placement technique was 

discussed, from now the simulations are computed with a controller using the LQR method. Using 

the same parameters for the motorcycle as the ones used before, the results obtained with the LQR 

are now analyzed. The first simulation was performed with the motorcycle set as the traditional 

motorcycle suggested by the SAE article, 𝑡 = 0.110 [𝑚] and 𝑑 = 0.0463 [𝑚] and the results are 

shown in figure 3.16. 

The results of this simulations are not good, the control acts way too slow and the values obtained 

for the 𝛿𝑓 and 𝛿�̇� curves are really high, furthermore the peak value of the steering state is                       

𝛿𝑓 = 283°. Furthermore there is an increase in the state of the position of the first point mass 𝑃1_𝑦, 

Figure 3.15: Results of the simulation with offset  𝑑 = 0.1973 [𝑚] and 𝑡 = −0.060 [𝑚] and the 

modified wheelbase with 𝐿𝑓 = 0.665 [𝑚] 

ypi 
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its peak value is now 𝑃1_𝑦 = −0.0159 [𝑚] and it is found at 𝑇𝑖𝑚𝑒 = 0.7 [𝑠] and in order to obtain 

the first point mass to get to the position  𝑃1_𝑦 = 0 [𝑚] ten seconds of simulation are not enough. 

However the simulation was then performed with the same parameters for the LQR control but 

changing the value of offset and of the mechanical trail of the motorcycle and the results obtained 

are now analyzed. The motorcycle with zero front fork offset is the first taken in consideration and 

in figure 3.17 it is possible to see the outcome of the simulation. 

The curves obtained show a system controlled in a faster way with respect to the previous 

simulation, in fact the position 𝑃1_𝑦 = 0 [𝑚] is reached right before the end of the simulation, which 

is set at 𝑇𝑖𝑚𝑒 = 3 [𝑠]. Furthermore the peak of the curve of  𝛿𝑓  is found at  𝑇𝑖𝑚𝑒 = 0.3 [𝑠], with a 

value of 𝛿𝑓 = 70° , which is not suitable for the steering of a classical motorcycle, but it is possible 

to compare it with the curve of 𝛿𝑓 in figure 10 in which the controller was set with the pole 

placement method and it is possible to see that the peak value is 𝛿𝑓 = 82°. This means that the 

control even if acting a little slower with respect to the one used with the pole placement method 

has lower values for the curve. Another interesting result is concerned with the position of the first 

point mass, the curve has the same behavior as the ones obtained with the pole placement method 

and even the values obtained are similar as it is possible to see confronting figure 3.17 with figure 

3.9. 

Figure 3.16: Results of the simulation with 𝑑 = 0.0463 [𝑚] and 𝑡 = 0.110 [𝑚] with the LQR control 
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The next simulation was performed considering the solution proposed by the SAE article, the 

mechanical trail was set with the negative value of 𝑡 = −0.060 [𝑚] and the results are shown in 

figure 3.18.The 𝛿𝑓 state in this configuration has the same behavior as the one obtained in figure 

3.13, in which the peak of the curve was reached at 𝑇𝑖𝑚𝑒 = 0.2 [𝑠] with a value of 𝛿𝑓 = −40° while 

with the LQR control the peak value is at 𝑇𝑖𝑚𝑒 = 0.2 [𝑠] with 𝛿𝑓 = −33°, this means that the 

steering of the motorcycle is able to perform with this type of controller (because 𝛿𝑓 ≅ ±35°) and 

the motorcycle can be balanced with just an action on the steering pad. 

Figure 3.17: Results of the simulation with 𝑑 = 0 [𝑚] and 𝑡 = 0.1621 [𝑚] with the LQR control 
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3.5 Influence of velocity  
All the previous simulations were performed assuming a longitudinal velocity of the motorcycle 𝑉𝑜𝑥 

of 0 [
𝐾𝑚

ℎ
], the problem with roll stability at low velocities is studied in this work and it is interesting 

to see the influence of the increment of velocity in the longitudinal direction. When considering the 

state space model it is possible to see that equation (127) and (128) are influenced by 𝑉𝑜𝑥 and these 

two parameters influence the A matrix of the system �̇� = 𝐴𝑥 + 𝐵𝑢. The parameters of the 

motorcycle considered in this computation are the ones that gives the solution shown in Figure 3.18, 

meaning that the LQR control is still the one in use, when increasing the longitudinal velocity to 

𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
] the results are shown in Figure 3.19. The results show a similar behavior for what 

concerns the curves of the velocity 𝑉𝑏𝑦, the steering angle 𝛿𝑓 and the steering angle velocity �̇�𝑓 as 

the one with  𝑉𝑜𝑥 = 0 [
𝐾𝑚

ℎ
], what it is interesting to see is the difference in the curve of the position 

of the first point mass 𝑃1_𝑦 that is not decreasing after the 

   

 

Figure 3.18: Results of the simulation with 𝑑 = 0.1973 [𝑚] and 𝑡 = −0.060 [𝑚] with the LQR control 
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In the following figures 3.20 and 3.21 the results obtained with 𝑉𝑜𝑥 = 2 [
𝐾𝑚

ℎ
] and 𝑉𝑜𝑥 = 4 [

𝐾𝑚

ℎ
]  are 

reported and it is possible to see that they show the same behavior as the one with 𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
].  

Figure 3.19: Results of the simulation with 𝑑 = 0.1973 [𝑚] and 𝑡 = −0.060 [𝑚] and 𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
]  

 

Figure 3.20: Results of the simulation with 𝑑 = 0.1973 [𝑚] and 𝑡 = −0.060 [𝑚] and 𝑉𝑜𝑥 = 2 [
𝐾𝑚

ℎ
]  

 



 

61 
 

The peak value for the steering angle 𝛿𝑓 = −8.67° with 𝑉𝑜𝑥 = 2 [
𝐾𝑚

ℎ
], the position of the first point 

mass has basically the same behavior of the one with 𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
] while its velocity reaches lower 

values for both the velocity of the first point mass and the steering velocity �̇�𝑓. 

The same results are found when increasing the velocity up to 𝑉𝑜𝑥 = 4 [
𝐾𝑚

ℎ
], now the peak value of 

the steering angle further decreases down to 𝛿𝑓 = −4.83° but a greater overshoot in the second 

part of the graph is found, the same behavior of a bigger overshoot is found in the position of the 

first point mass 𝑃1_𝑦. The curve of the velocity of the first point mass behaves differently from the 

one found with a  𝑉𝑜𝑥 = 2 [
𝐾𝑚

ℎ
], in fact it shows a positive peak higher with respect to the negative 

part of the curve.  

The results obtained with the increase of the velocity are those expected when considering the roll 

stability of a motorcycle, a motorcycle is a vehicle normally unstable when is travelling at low 

velocity especially when the velocity is null, bringing to the conclusion that the intervention of the 

driver is fundamental to obtain the roll stability, but with this type of control it is possible to stabilize 

the vehicle. Increasing the velocity brings to a good improvement in both the value of the steering 

angle 𝛿𝑓 to supply to the vehicle, furthermore even the position of the first point mass and its 

velocity have narrower curves with respect to those obtained at zero velocity.  

Figure 3.21: Results of the simulation with 𝑑 = 0.1973 [𝑚] and 𝑡 = −0.060 [𝑚] and 𝑉𝑜𝑥 = 4 [
𝐾𝑚

ℎ
]  
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After these computations it is possible to modify the equations found until now with the study of 

the influence of gyroscopic effects on the system, since the control should be able to act even when 

the vehicle is moving and in a motorcycle the presence of the wheels rotating generate some 

moments that needs to be taken in consideration. 

3.6 Influence of gyroscopic effects on the simulation 

3.6.1 Yaw motion 

The gyroscopic effects are now considered in the following computations for the system, of course 

they can be considered only when the wheels are actually spinning with an effective rotational 

velocity 𝜔𝑓 and 𝜔𝑟, so at 𝑉𝑜𝑥 = 0 [
𝐾𝑚

ℎ
] these effects are actually not part of the problem.  

The first effect considered is the gyroscopic moment generated by the yaw motion of the vehicle, 

the motorcycle is imagined to be taking a curve with a small radius of curvature 𝑅𝑐 = 2 [𝑚] since 

the velocities taken in consideration are really small. Furthermore the effect of the gyroscopic 

moments given by the engine inertia are not considered because of the small velocities and the 

small contribution given by these effects, since the gyroscopic moments created by the engine are 

about 5% − 15% of the gyroscopic moments generated by the wheels.  As shown in figure 1.15 the 

gyroscopic moment generated by the yaw motion increases the ideal roll angle of the vehicle so it 

is possible to consider this effect in the simulation by modifying equation (29) into  

 𝜙′ = 𝜙𝑏_𝑎𝑐𝑡 − 𝜙𝑏0 + 𝛥𝜙 = 𝜙𝑏𝑎𝑐𝑡
− 𝜙𝑏0 +

(𝐼𝑤𝑓𝜔𝑓+𝐼𝑤𝑓𝜔𝑓)�̇�cos(𝜙𝑏𝑎𝑐𝑡
)

√(𝑚𝑔)2+(𝑚𝑅𝑐𝜓2̇ )
2

                      (129) 

For what concerns the value of �̇�, equation (70) comes in help 

�̇� =
𝑉𝑜𝑥

𝑅𝑐
                                                                           (130) 

This brings to an increment in the roll angle of the vehicle, bringing to a slight difference in the 

results given by the simulation performed with this new effect taken into account. In the following 

figures the results at different velocities are shown. 
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 At 𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
] the effects generated are really small, in fact the graphs show the same behavior 

as the one shown by the same vehicle in figure 3.23 but there is a slight increment in the values 

obtained: the steering angle has its peak value found at 𝛿𝑓 = −14.60°, the same slight increment is 

found in the peak value for the position of the first point mass, which decreases down to 𝑃1_𝑦 =

−0.0102 [𝑚]. 

Figure 3.22: Results of the simulation with the yaw gyroscopic effects generated at 𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
]  

 

Figure 3.23: Results of the simulation with the yaw gyroscopic effects generated at 𝑉𝑜𝑥 = 2 [
𝐾𝑚

ℎ
]  
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Increasing the velocity up to 𝑉𝑜𝑥 = 2 [
𝐾𝑚

ℎ
] the gyroscopic moment increases its effect on the roll 

angle obtained, it is possible to notice that the curves always maintain the same behavior as the one 

shown in figure 22 but the values are more divergent because of the increase in the yaw rate �̇� (the 

same 𝑅𝑐 is still considered). So while taking a curve with a 𝑅𝑐 = 2 [𝑚] at  𝑉𝑜𝑥 = 2 [
𝐾𝑚

ℎ
] the peak of 

the curve to stabilize the vehicle increases up to 𝛿𝑓 = −8.88° with respect to the one obtained 

without considering the gyroscopic effect 𝛿𝑓 = −8.67°. The same thing applies for both the position 

of the first point mass 𝑃1_𝑦 = −0.0104 [𝑚] and its velocity 𝑉𝑏𝑦 as it is possible to see in figure 3.24. 

The same reasoning also applies for when the velocity is increased up to 𝑉𝑜𝑥 = 4 [
𝐾𝑚

ℎ
] and in figure 

3.25 it is possible to see the curves obtained with this simulation. 

In this case the increase in the peak for the steering angle reaches up to 𝛿𝑓 = −5.35°, meaning that 

when taking a turn at 𝑉𝑜𝑥 = 4 [
𝐾𝑚

ℎ
] with a radius of curvature 𝑅𝑐 = 2 [𝑚] brings to an increase of 

the steering angle with respect to traveling with a straight path of almost 0.5° in order to maintain 

the stability in the same time necessary with the control system used. The increase in the 

displacement of the first point mass 𝑃1_𝑦 is instead bigger than with the other velocities and it 

reaches a value of 𝑃1_𝑦 = −0.0112 [𝑚].  

Figure 3.24: Results of the simulation with the yaw gyroscopic effects generated at 𝑉𝑜𝑥 = 4 [
𝐾𝑚

ℎ
]  
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3.6.2 Roll motion 

As it is possible to see in figure 1.21 the roll motion �̇� combined with the front wheel rotational 

speed 𝜔𝑓 generate a gyroscopic moment around the steering axis which contribute to the 

movement of the handlebar when the vehicle is running. In first approximation the effect is 

considered when the vehicle is running a straight trajectory and the inclination of the vehicle is 

reached with a constant roll rate �̇� = 0.05 [
𝑟𝑎𝑑

𝑠
] which directly correlate to the velocity in the lateral 

direction of the first point mass, remembering that  𝑉𝑏𝑦 = 𝑉𝑜𝑦 + �̇�1_𝑦 and deriving equation (37) it 

is obtained 

�̇�1_𝑦 = −ℎ′�̇�′                                                                     (131) 

𝑀𝑔𝑢 = 𝐼𝑓�̈�𝑓                                                                       (132) 

In this way it is possible to express the angular acceleration obtained by the handlebar, considering 

that 𝐼𝑓 is the moment of inertia of the steering handlebar 

�̈�𝑓 =
−𝐼𝑤𝑓𝜔𝑓�̇� cos𝜗𝑐𝑓

𝐼𝑓
                                                              (133) 

After these considerations it is possible to perform the simulations in order to see the effect of the 

gyroscopic moments due to the roll motion. The first velocity considered was 𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
], figure 

3.25 shows the results obtained  

Figure 3.25: Results of the simulation with the roll gyroscopic effects generated at 𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
]  
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As before the simulations show a similar behavior to the results obtained without considering the 

gyroscopic effects, of course the major factor influencing these results is the constant roll rate which 

influences 𝑉𝑏𝑦 that usually started at 𝑉𝑏𝑦 = 0 [
𝑚

𝑠
], while now starts at 𝑉𝑏𝑦 = −0.029 [

𝑚

𝑠
] but still 

the peak values are actually 𝛿𝑓 = −24.43°, 𝑃1_𝑦 = −0.0118 [𝑚]. The difference in the steering 

angle is actually quite high with respect to the ones found considering the yaw motion or without 

considering any gyroscopic effects, in fact it is of about 10°.  

Figure 3.26 shows the results obtained when increasing the velocity up to 𝑉𝑜𝑥 = 2 [
𝐾𝑚

ℎ
], as before 

each state has basically the same behavior as the one obtained without considering the gyroscopic 

effects, the peak values obtained are now 𝛿𝑓 = −14.18°, which is bigger than the one obtained 

before but the difference is now of about 6°, while the position of the first point mass is now found 

at 𝑃1_𝑦 = −0.0112 [𝑚]. 

In figure 3.28 it is possible to find the results for when the velocity 𝑉𝑜𝑥 increases up to 4 [
𝑘𝑚

ℎ
], this 

change in the velocity brings to a better stabilization of the vehicle, in fact even if the velocity of the 

first point mass starts at 𝑉𝑏𝑦 = −0.029 [
𝑚

𝑠
], which is the same as the other found with the other 

velocities, the peak value for the steering angle state is found at 𝛿𝑓 = −7.46° with a difference of 

Figure 3.26: Results of the simulation with the roll gyroscopic effects generated at 𝑉𝑜𝑥 = 2 [
𝐾𝑚

ℎ
]  
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about 3° with respect to the one without gyroscopic effects. For what concerns the position of the  

first point mass its peak value is found at 𝑃1_𝑦 = −0.0108 [𝑚]. 

 

 

 

3.7 Steering velocity  
As explained in the previous section the movement of the handlebars is another cause of gyroscopic 

effect, since the moment generated is in the same direction as the gyroscopic moment generated 

by the yaw motion it is possible to include its effect in equation (109), which now becomes  

𝜙′ = 𝜙𝑏_𝑎𝑐𝑡 − 𝜙𝑏0 + 𝛥𝜙 = 𝜙𝑏𝑎𝑐𝑡
− 𝜙𝑏0 +

(𝐼𝑤𝑓𝜔𝑓+𝐼𝑤𝑓𝜔𝑓)�̇� cos(𝜙𝑏𝑎𝑐𝑡
)

√(𝑚𝑔)2+(𝑚𝑅𝑐𝜓2̇ )
2

+
𝐼𝑤𝑓𝜔𝑓�̇�𝑓 cos(𝜗𝑐𝑓)

√(𝑚𝑔)2+(𝑚𝑅𝑐𝜓2̇ )
2
   (134) 

If the vehicle is traveling in a straight path the influence of the yaw motion is not included in the 

computation and it is possible to see the effect of the steering velocity �̇�𝑓 on the vehicle. It is 

supposed that the motorcycle is travelling straight when a steering velocity �̇�𝑓 = 0.5 [
𝑟𝑎𝑑

𝑠
] is applied 

at a velocity  𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
], in figure 36 the results of the simulation are shown, taking in 

Figure 3.27: Results of the simulation with the roll gyroscopic effects generated at 𝑉𝑜𝑥 = 4 [
𝐾𝑚

ℎ
]  
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consideration that the 𝛥𝜙 generated by the steering motion is quite small, given the fact that the 

velocities considered are small. The results show a behavior even in this case similar to the one 

obtained without considering the gyroscopic effects, the peak values for the curve 𝛿𝑓 = −14.74°, 

that means that just a small increase in the steering angle is needed to stabilize the motorcycle in 

the same time. 

 

 

 

 

  

Figure 3.28: Results of the simulation with the steering gyroscopic effects generated at 𝑉𝑜𝑥 = 1 [
𝐾𝑚

ℎ
]  
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4 Conclusions and future works 
The study of the stability of a motorcycle stability at standstill and low velocities was studied in this 

project, the results obtained show that it is possible to control the stability of motorcycles with an 

action taken on the handlebars of the steering head causing a restoring roll moment able to set the 

motorcycle in an upright position. The particular fact is that it was possible to obtain these results 

by modifying mostly the mechanical trail and setting it to a negative value,  this type of action is 

possible only at low velocities since the mechanical trail is a parameter that influences the dynamic 

behavior of a motorcycle at all speed ranges, in fact its value is designed in order to have the best 

performances depending on the target of the motorcycle and usually it is set to be a positive value. 

This means that it is necessary to design a tool that is capable of modifying the inclination of the 

front fork of a motorcycle without changing the inclination of the steering axis, acting only at low 

velocity in order to have this type of configuration of motorcycle for low velocities, while returning 

to the designed inclination of the front fork at medium to high speed ranges in order to have a 

classical type of behavior for a motorcycle. This operation can be possible using a trail length 

changing mechanism, the trail length is changed by pivoting the front fork back and forth about the 

upper triple clamp with the steering axle fixed on the vehicle frame. 

The influence of gyroscopic effects has been also studied, with the result of slightly influencing the 

results firstly obtained without the consideration of them.  

Future studies may concern the implementation of the trail length mechanism in the performance 

of the vehicle in order to find out if the result of changing the trail from a negative to a positive 

value, reducing the amount of steering control as the speed is increased, can achieve a smooth 

transition to normal control characteristics of a motorcycle. 
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