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Abstract

Nowadays cardiovascular diseases are the major cause of death. Among all of
the origin of this problem, the commonest is hypertension. For this reason,
continuous monitoring of the blood pressure is necessary for early death risk
prevention. The optimum method for prevention and diagnosis is the cre-
ation of wearable devices within a Body Area Network for continuous blood
pressure monitoring. Recent studies exploit the use of Electrocardiography
and photoplethysmography devices combined in order to obtain the Pulse
Wave Velocity or the Pulse Transit Time, i.e. measures which appear to be
proportional with the blood pressure. The drawback of these techniques is
that simultaneous recording from different regions of the body is requested.
In such approach, the use of Artificial Neural Networks has been proved to
be beneficial since it increases its accuracy. The newest technologies aim at
further improving these techniques by the use of only the photoplethysmog-
raphy (PPG) signal to perform the blood pressure measure, that is combined
with the computational power of Artificial Neural Networks for further im-
provements. As input data some features representing the morphology of the
photoplethysmography signal are chosen, because are considered correlated
to the blood pressure. The aim of this project is to create a systolic pressure
classifier based on Artificial Neural Networks. The classifier should be able to
correctly predict the relative systolic pressure range for each PPG period. A
dataset containing 124616 PPG periods features and relative systolic pressure
values has been created from freely accessible MIMIC database. The features
chosen represent each single PPG period morphology. The dataset has been
balanced and the features normalized. Moreover, the systolic pressure values
have been discretized basing on 7 preselected systolic pressure (SP) range.
The chosen neural network was a Multilayer feed-forward back-propagation
Neural Network, with 15 input neurons, two hidden layers of 120 and 600
neurons respectively, and 7 output neurons that represented the 7 SP classes.
The hyperparameters optimization has been performed both manually and
with a cross validation.

The results show an accuracy of 79% over the test set. Moreover, the
chosen neural network tuned with the chosen parameters shows a good gen-
eralization (no overfitting). Furthermore, the precision and recall metrics
show much higher performances over the external ranges classes that refer to
either the lowest and highest pressures.
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Introduction
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Hypertension is the main cause of cerebrovascular disease and of ischemic
heart disease deaths. Furthermore, it is the commonest death factor through-
out the world and causes millions of deaths per year [28]. Awareness, preven-
tion, treatment and control of this epidemic is a public health duty, resulting
in huge expenses and efforts. For this reason, nowadays low-cost method
for continuous and remote hypertension control is highly requested, along
with development of the primary prevention[12]. The new developments of
Telemedicine monitoring systems respond to this problem. This monitoring
can be achieved with wearable devices that allow the specialist to always
keep the patients under control from a web-based link, with the support of
low-cost monitoring systems.
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1.1 Aim of the project

The aim of this project is to implement a non-invasive system for continuous
systolic blood pressure (SP) monitoring. Contrarily to the current oscillo-
metric blood pressure monitoring devices, the system must be cuff-less and
suitable for continuous monitoring even for days or months.
This purpose can be achieved by implementing a Telemedicine monitoring
system, that includes a Wireless Body area sensor. The embedded sensor
would be a Photopletysmography one. In fact, a proportionality between the
PPG signal morphology and the pressure value exist, but it is non-linear.
The Artificial Neural Networks (ANNs) are an efficient tool for investigating
the non-linear relationship of data. Nevertheless, the ANNs use could be a
more efficient approach than the signal processing and analysis.
Hence, the primary intent of the project is to create an Artificial Neural
Network able to correctly and accurately detect systolic blood pressure from
small PPG segments corrispondent to a single cardiac cycle period. In this
way, the ANN needs only the morfology parameters of one PPG period,
corresponding to roughly 1 second, resulting suitable for online beat-to-beat
pressure monitoring on a wearable device. The implemented ANN is inspired
to those already tested in literature [29, 40]. However, while these studies
predict a numerical value, this project aims at implementing a multiclass
classificator for various SP ranges. That is, having divided the possible sys-
tolic pressure values into the ranges shown in Table 1.1, the Neural Network
duty is being able to assign every new PPG period to a SP range.

80 - 100
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 169

Table 1.1: Systolic pressure ranges division

If reasonably accurate and computationally light, the produced Neural
Network would be then implemented within the microcontreoller unit (MCU)
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of a ST Microelectronics wearable device for continuous beat-to-beat pres-
sure detection. In fact, once trained, the artificial Neural Network reduces to
simple aritmetics operations that, if they are not too numerous, can be per-
formed on a MCU. The MCU should be embedded into a Wireless Body area
sensor device that would be able to continuously acquire the data, analyze
them though the implemented ANN and then send the predicted SP value
to a storage center through the help of a Body Control Unit (a gateway).

1.1.1 Telemedicine

Preface

Within the next 10 years, 20% of the world population will be constituted
by over 65 years old people. For this reason, a method for healthcare cost
reduction and efficient prevention is a necessity for the modern societies.
These are experiencing common problems such as: growing number of chronic
patients due to life expectancy increasing; the demand of healthcare services
much higher than the offer; governmental healthcare expenditures growing
faster than economic growth. Telemedicine respond to this necessity [26].
By definition, telemedicine is an healthcare system that, exploiting the ICT
transfer of biomedical data, offers the possibility of diagnosis, education or
treatment from distance [17]. This results in low - cost and more efficient
services. Of course, these systems do not replace the traditional healthcare
structure, but improve their effectiveness and efficiency, also in doctor-patient
relationship.

Telecommunication networks

Telemedicine relies on the connection links developed from Telecommunica-
tion networks technologies, that allow communication in a short, medium
and long range [62]:

• The short range network (up to 30 meters) is called a Wireless Personal
Area Network or WPAN: it exploits technologies such as Bluetooth,
RFID, IrDA or ZigBee;

• The medium range networks (30 -100 meters) are called Wireless Local
Area Network or WLAN and exploit the 802.11a, 802.11b, and 802.11g
Wi-Fi protocols;
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• The long range (more than 100 meters) Wireless metropolitan area net-
works or WMAN, exploit the IEEE802.16 and IEEE802.20 protocols.
They cover longer distances with better quality-of-service (QoS) sup-
port than Wi-Fi [62].

In the late 1990’s several techniques for compressing videos, images and
biomedical data emerged, facilitating their transmission [20]. The bandwidth
refers to the possible datarate of a trasmission channel: if it is large huge files
can be sent (such videos or similar), else if it is small, a larger time is needed
to upload the data acquired. Nowadays, the telecommunication aim is the
trasmission bandwidth enlarging, meaning that more and heavier files can
be sent in the unit time[20]. With the recent implementation of the 5GHz
bandwidth, telemedicine is thought to further improve its efficiency.

Telemedicine services

Telemedicine services can be grouped into a few categories [17]:

• Teleconsultation: consists in the commuication between

– two pair careers, for opinion exchange about a patient’s case;

– patient and a career , aiming at the creation of real - time feedback
(consultation), in order to facilitate the physician decision making.

This telemedicine modality is used in the 35% of cases.

• Tele-education: it is represented by everything that concerns clinical
education on the internet or from teleconsulation, puclic education or
academic study through the web.

• Telemonitoring : it consists in the monitoring of a patient vital signs
from a remote location, with the aid of a device connected to the
telecommuication networks. Each patient is controlled with monitor-
ing systems, that gather the data and upload them on the web, and
a clinician, which checks the data and takes actions in response. The
majority of Telemonitoring systems are composed of five main parts
[37]:

– data acquisition system, that consists of an electronic system with
an embedded sensor and usually a battery;
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– system for the transfer of the patient data to the clinician, based
on telecomunication technologies;

– system for the aggregation of received data from the acquisition
system. In this way the patient history is virtually recreated in
order to be able to correctly assess the patient status.

– possibility to take an action in correspondence of an abnormal
status of the patient.

– storage of data, that can either be on the cloud or in a local ma-
chine.

• Telesurgery : it can either be:

– telepresence-surgery, which is the practice by which the surgeon
controls a robotic arm that actually perform the surgery in a re-
mote location;

– telementoring, which is a simple real-time video mentoring by an
experienced surgeon, to another surgeon which is performing the
surgical practice.

1.1.2 Body area wearable sensor

Telemedicine sensor devices used for continuous monitoring are usually wear-
able, but can sometimes be implanted into a patient [26]. The recent elec-
tronic improvements, especially regarding the MEMS introduction and the
reduction of chips dimension and consumption, allow for portable and low
power applications. The device application depends on the sensor type, which
among all can be electrochemical (for example in ECG applications), me-
chanical (such as accelerometers) or optical (like in Photoplethysmography
or PPG applications). Nowadays the wearable devices usually incorporate
short range radio systems (WPAN), such as Bluetooth. The rest of data
transfer is done by the Body Control Unit (BCU), that in conjunction with
the WPAN, takes part in a WLAN as gateway. The BCU can also transfer
the data over the Internet with a GSM connection and perform other actions,
such as store data, run some pre-processing algorithms or send any clinical
alarms. This is the principle of Wireless Body Area Network (WBAN)[60]
(Figure 1.1).
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Figure 1.1: An example of WBAN diagram [60]
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1.2 Theoretical framework

Blood pressure is an indicator of the cardiovascular system status, which can
be compromised by many diseases, among which one is hypertension. The
latter is a parameter that indicates the presence of other cardiovascular dis-
eases and can be measured in many ways. The most recent methods exploit
the use of either electrocardiography and photoplethysmography techniques
combined or even just photoplethysmography. Moreover, in all cases the use
of artificial neural networks helps in obtaining better results.

1.2.1 Cardiovascular system

The cardiovascular system distribute oxygen, nutrients and hormones through-
out the whole human body and it removes the waste products. It is composed
of the heart and blood vessels.

The Heart is composed of a particular muscle cells tissue, the my-
ocardium and a specialized conduction system. The combination of these
two elements produce a physiological pump for the blood inside the body.
The human heart is composed of four chambers with different functions, two
atria and two ventricles: while the atria receive the blood, the ventricles
pump it by mean of a strong myocardium contraction.
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Figure 1.2: The human heart anatomy [55]

The four chambers are separated vertically by a thick wall called septum
that avoids the left and right heart side blood to be mixed together. The
reason of this left to right separation is the presence of two circulation circuits
[25]:

• pulmonary circulation: a circle that passes through the heart and
lungs, needed for the blood and heart tissues oxygenation.

• systemic circulation: the loop that delivers the oxygenated blood to
the body periphery.
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Figure 1.3: Diagram of the circulatory system [25]

In order to generate the correct sequence of the four heart chambers con-
traction, a conduction system generates electrical impulses and propagates
them through a specifical pathway into the myocardium 1.4. The electrical
pulse begins in the Natural pacemaker or sinoatrial node (SA), which is made
of particular cells capable to automatically generate action potentials with
a defined rhythm [55]. Hence, the electrical pulse depolarizes the atria first
and then travels toward the atrioventricular (AV) node, located between the
right atria and ventricle. Here, the signal is delayed and then spread through
the bundle of His, located in the inter-ventricular septum. The bundle of His
is divided into two branches, left and right, which continue in the Purkinje
fibers. These two last conduction elements guarantee a coordinated contrac-
tion of the left and right ventricles, with a delay respect to the atria activation
[56, 55].
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Figure 1.4: Diagram of the heart conduction system

Cardiac cycle The alternance of myocardium contraction and myocardium
relaxation determines a periodical pumping mechanism. The period occuring
from the beginning of a systole until the beginning of the next one is called
the cardiac cycle [16]. It is constituted of two phases: diastole and systole
[31].

• During the diastole phase, the blood is led into the right atrium
through the inferior and superior vena cava. On the opposite side, the
oxygenated blood enters into the left atrium, increasing its pressure.
The tricuspid and mitral valves open when the atrium pressure exceeds
the ventricle one. In this way the ventricles filling is started.

• During the systole phase, the blood is first injected into the ventri-
cles by mean of an early atria contraction due to SA node electric im-
pulse. Then follows the beginning of the ventricular contraction, called
isometric contraction: in this phase the electrical pulse has reached
the ventricles, causing their early contraction, which is still not strong
enough to open the pulmonary and aortic valves. As soon as the ven-
tricles contraction generates a pressure higher than the arterial tree,
then the semilunar valves open and the blood is finally ejected. The
diastole ends with the whole myocardium relaxation.
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Figure 1.5: Cardiac cycle diagram [31]

Describing parameters and available measuring techniques

Many parameters that describe the circulatory system status exist, such as
Heart rate, blood pressure, Cardiac output and many others. Each of them
has a different clinical importance:

• Heart rate HR is the indicator of the number of heart contraction per
minute and it is a strong health indicator. For example, an accelerate
HR at rest could be an indicator of a cardiovascular disease. Further-
more, a rapid change of HR value can indicate a heart arrhythmia,
which indicates a fail in the heart conduction system and can be a
death risk factor. The HR at rest in healthy subjects is between 60
and 100 beats per minute.

• Blood pressure BP refers to the pressure exerted on the vessels walls
by the blood. A high pressure or hypertension is an indicator of a
cardiovascular disease and it is often correlated with an abnormal HR
value. The BP value should stay within a physiological range because
if it decrease too much, it means that the cardiac output is not enough
to reach the peripheral capillaries, while if increases over healthy values
it can be dangerous for the vessels integrity.
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Electrocardiograpy The most common and reliable technique used in
the field of cardiovascular system status assess is the Electrocardiography
(ECG), that is a technique by which graphically represent the electrical ac-
tivity of the heart. It is measured at the body surface level and requires
the measure of the voltage difference between two or more sites of the body,
though its optimal configuration requires 12 derivations over the limbs and
the chest. Its waveform represent the depolarization and repolarization of
the myocardium during the cardiac cycle.

Figure 1.6: ECG typical waveform representation

Hence an abnormality in the ECG is an indicator of a cardiovascular
disease. By means of ECG can be calculated:

• HR

• Heart rate variability

• R-R wave (each sample represents the distance between two subsequent
R peak)

• Various forms of arrhythmias indicators

• other parameters useful for vascular diseases diagnosis
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Photoplethysmography A less classical approach to the cardiovascular
parameter monitoring is the Photoplethysmography (PPG), which is a
simple and low cost optical technique. The PPG signal reflects the blood
volume fluctuation into the superficial capillaries of the skin, that reflects
the cardiac cycle behaviour.

Figure 1.7: PPG typical waveform representation

By PPG is possible to obtain informations about:

• Heart rate

• Respiration

• SpO2

• Heart rate variability

• Blood pressure

The blood pressure

Depending on the vessel in which the BP is measured, it is referred as venous
or arterial pressure. The venous pressure is much lower than the atrial one,
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because the veins do not receive the direct heart ejection thrust. For this
reason, venous pressure is not a common pressure parameter used for the
health status description. Yet, the Arterial blood pressure (ABP) is used as
a health status descriptor, since its abnormal values are strong indicators of
circulatory system diseases [16].
The first vessel that the blood encounter is the aorta, a thick-wall artery with
a lot of elasticity and a larger diameter than the average vessels [55]. The
aorta and other arteries elasticity is very important to maintain the ABP at
similar values: if they were stiff, the ABP would increase at very high values
and would be dangerous.

Arterial blood pressure waveform The ABP waveform follows the blood
volume profile during the cardiac cycle: the more is the blood volume inside
the artery, the more it is stretched and, hence, the higher is the ABP. The
ABP increases during the systole, reaching a peak of intensity at the com-
plete contraction, and then decreases during the diastole until it reaches its
minimum, in correspondence of the complete relaxation of the heart. Hence,
ABP waveform is a periodic series of peaks and troughs, in which the maxi-
mum peak represents the systolic pressure SP and the minimum through is
called the diastolic pressure DP [1, 16].

Figure 1.8: Aortic pressure variation during the cardiac cycle [1]
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The blood is forced from the left ventricles into the aorta, thus creating
a pressure wave that propagates along the whole cardiovascular system. The
ABP is composed of a stationary and pulsating component. The station-
ary component is called Mean Pressure value ( MBP) and represents the
effective organs perfusion pressure. Moreover, this steady state component
is correlated only to the cardiac output and total peripheral resistance. The
pulsating components are much more complex than the steady one. The
SP is determined by haemodynamic factors such as arterial stiffness, stroke
volume, and left ventricular ejection fraction. The DP, on the other hand, is
due to total peripheral resistance, heart rate, arterial stiffness, and systolic
blood pressure [53, 16]. Furthermore, the ABP shows an increasing trend for
older age [53].

Importance of pressure monitoring SP and DP values are used to
understand if the pressure status is within specific healthy ranges. In fact, a
too low SP means that the peripheral body regions are not perfused enough
with nutrients and oxygen, while a too high SP is a risk for the vessels and
organs integrity. Indeed, although the SP and DP values can change during
time due to autoregulation, a long time lasting hypertension could be fatal.
Nevertheless, altered values of SP and DP can be indicators of atherosclerosis
or another cardiovascular disease and can be used to reduce the death risk
[28].

Arterial blood pressure ranges (mmHg)
Category Systolic pressure and Diastolic pressure
Optimal < 120 and < 80
Normal 120-129 and/or 80-84

High normal 130 - 139 and/or 85 - 89
Grade 1 hypertension 140-159 and/or 90-99
Grade 2 hypertension 160-179 and/or 100-109
Grade 3 hypertension >180 and/or >110

Isolated systolic hypertension ≥ 140 and <90

Table 1.2: Table reporting the ABP ranges classification of American Heart
Association [32]

For all the reasons discussed, continuous pressure monitoring is very im-
portant for the medical specialist in order to adjust its patient therapy. Nev-
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ertheless, an accurately chosen pressure monitoring system is fundamental for
early detection and complications prevention. This type of monitoring sys-
tem can be created by the implementation of a PPG sensor tele-monitoring
device.

1.2.2 Photoplethysmography

The term Photoplethysmography (1930) refers to a non -invasive technique
for measuring the volume of blood flowing within the vessels[49]. The pulsat-
ing behaviour of arterial blood volume has such a clinical importance, that
it can be used for pressure monitoring. Nevertheless, it overcomes some of
the limits of the classical methods for detecting cardiovascular diseases, such
as ECG. In fact, ECG devices need to acquire the signal from at least two
different regions of the body, hence needing more devices connected wire-
lessly or a single device with more sensor connected by cables. This aspect
makes ECG recording bulky, especially when the sensor-device connection is
not wireless. On the contrary, the PPG devices require only a sensor that
is usually integrated into the device case, resulting in an easier and more
comfortable set up for heart monitoring[15].

Light-matter interaction principles

There are three ways by which an incident light interacts with the tissues:
reflection, refraction and absorption. The transmitted light is the portion of
the incident light that have not been refracted, scattered or absorbed [38] by
the tissues.

Figure 1.9: Light-matter interaction principles [38]
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Reflection is defined as the incident light wave return back. When the
wavelength of the radiation is smaller than the discontinuities of the surface,
it is called specular reflection. In this case the reflected angle is equal to the
incident one θ0 = θ. Whenever the incident wavelength is larger than these
irregularities, the diffuse scattering occurs, by which the beam is broken
down and re-emitted in several directions.

Figure 1.10: Reflection versus diffuse scattering [38]

Refraction is represented by a change in the incident light wave speed
along its propagation direction. When this happen, the light direction is
changed according to the Snell’s Law:

sin(θ)

sin(θ00)
=

v

v0
(1.1)

where θ00 is the angle of refraction and v and v’ are the velocities of light
before and after the reflective surface respectively.

Absorption is the phenomenon by which a portion of light is retained
by the tissue. When travelling through the biological tissues, the light is
attenuated in a proportional way to the tissue absorption coefficient α. If the
hypothesis that the tissue is composed of only arteries (homogeneous tissue)
can be made, the Lambert-Beer Law describes this behaviour. This law states
that in a homogeneous medium, light intensity decays exponentially as a
function of path length (l) and light absorption coefficient (α), corresponding
to medium properties at a specific wavelength:

I = I0e
−αl (1.2)

where I is the intensity of the transmitted light through the medium and I0
is the emitted light intensity.
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The PPG sensor

The PPG sensor works in contact with the skin and can be placed in various
regions of the body such as nose, earlobe, finger tip , wrist and so on. The
PPG sensors are very tiny and are composed of two elements: light source
and photodetector:

• light source: for this purpose semiconductor technologies such as
LEDs are exploited. The LED intensity and emission band have to
be carefully chosen in order to not ionize the cells and the organic
tissues[3]. Furthermore, the signal characteristics change together with
the bandwidth of the light emitted (for example there is a slight differ-
ence between red and green light wavelengths), hence the choice have
to be calibrated on this as well.

• photodetector: it is usually a photodiode that is able to capture the
light that travels through the irradiated tissues. This light is then
converted into an electrical output signal. Because the photodetector
can not capture all bandwidth radiations, it has to be chosen coherently
with the emitting LED wavelength choice[3].

The sensor configurations

Basing on the light source and photodetector positioning it is possible to
define two different configurations [18].

• transmission mode: light source and photodetector are placed in dia-
metrically opposite sides, facing each other. The photodetector catches
the light not absorbed by the tissues. Only a few quite thin body re-
gions are suitable for this technique, such as earlobes, fingertips, be-
cause they allow enough light to pass through them. However, this
technique allows to isolate in a better way the sensor from the environ-
ment light, that can produce artefacts [3].

• reflection: light source and photodetector are placed on the same side.
An optical shield is needed between the light diode and the photode-
tector for artefact avoiding. In this case the scattered emitted light
is detected from the photodetector. Moreover, because this technique
does not require the measured body region to be thin, it can be used
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in many other regions, such as wrist, forehead, limbs or chest. How-
ever, this method is more sensible to motion and environmental light
artefacts. [49, 35].

Figure 1.11: An example of transmission and reflectance mode [6]

Skin influences on the trasmitted light

Being the PPG sensors placed on the skin, its properties are very important
for the outcome of the sensing. Human skin can be divided into epidermis,
dermis and hypodermis [23].

25



Figure 1.12: Skin layers schematic representation [34]

The epidermis is 0.027 - 0.15 mm thick and does not have blood supply,
hence it represent an element of light obstacle. The 90% of its cells are
keratinocytes and continuously shed and replaced. Some other cells, called
melanocytes, contain the melanin, that is a substance responsible of some
dangerous wavelength absorption for skin protection[5]. The dermis layer
is 0.6 - 3 mm thick, is the one that contains the smallest skin vessels [14].
Finally, the hypodermis or subcutis is much thicker (1-6 mm) and contains
the skin largest vessels together with connective tissues [22].

Skin layers response to light incidence Due to their different thickness
and being composed of different tissues and components, these three layer re-
spond differently to incident light. For further understanding, the absorption
spectrum of the different skin component is reported.
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Figure 1.13: Absorption spectrum of water, melanin, Haemoglobin, Oxy-
genated haemoglobin and deoxygenated haemoglobin [30]

Water composes the majority of each tissue and allows only wavelengths
shorter than 950 nm: if higher, they are strongly absorbed by it and do not
penetrate much. Melanin spectrum present a very high peak in correspon-
dence of 510-600 nm. However, because it is restricted to a very thin layer,
even with a high absorption coefficient its effect on light propagation is very
low. Haemoglobin is the main component of our blood and can be found in
three configurations: dysfunctional haemoglobin (which does not bind with
oxygen), oxygenated haemoglobin (HbO2) and deoxygenated haemoglobin
(Hb). Moreover, different wavelengths reach a different depth into the skin
(Figure 1.14). Because of the skin spectrum properties described above,
the wavelength chosen in PPG applications ranges from 510 nm (green) to
920 nm (red). The choice is very important and depends on the desired
application and on which configuration (reflection or transmission) is used.
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Figure 1.14: Depth reached from different wavelength that incide to the skin
[4]

Because red wavelength can reach up to 5 mm depth into the skin,
the PPG signal oscillatory shape is associated to the pulsating nature of the
arteries.

The green wavelength results more suitable for wearable devices ap-
plications. The nature of the signal in this case is still associated to the
pulsating nature of the arteries, but in an indirect way. Indeed, the green
wavelength can reach only roughly 3 mm in depth, that is a skin region in
which we find only capillaries. Because capillaries are not characterized by
a pulsating flow, the nature of the PPG signal is in this case associated to a
capillarity density increase as a consequence of deeper layer pulsating volume
change. As to say, we still measure the arterial pulsating flow, but from the
consequences it implies in the more superficial layers [24].
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Figure 1.15: Capillary density change in epidermis layer due to deeper layers
arterial pulsating flow [24]

.

PPG signal waveform

Some experimental studies show that the PPG signal intensity is inversely
proportional to the blood volume in the tissue[19, 42] (Figure ??). Although
it applies to both configurations, for an easier understanding it is better to
consider the transmission mode first. The key concept is that the tissues
are less opaque than the blood, that is, the blood absorbs a higher amount
of light than the tissues. Thus, being the diastole characterized by a less
blood volume into the vessels, during this phase there is a high amount
of transmitted light and, hence, low absorption. Contrarily, the increasing
blood amount during the systole results in a low transmitted light measure,
indicating high absorption.

PPG signal waveform is composed of [52]:

• a DC component, due to respiration, autoregulation an sympathetic
nervous system activity;

• an AC component that reflect the cardiac cycle periodical activity.
This is the most informative component between the two.
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Figure 1.16: PPG waveform [52]

The AC component has a characteristic periodic shape (see Figure 1.16),
which is composed of a so called catacrota (descending phase) and a anacrota
phase (rising phase). The catacrota is due to the blood vessels stretch for
the blood volume increase in correspondence with the systole. On the other
hand, the increasing intensity during the anacrota is due to the progressive
decreasing amount of blood during the diastole. Usually, for a more natural
comprehension of the signal, the PPG signal is inverted. In this way the
intensity increase represents an increase in blood volume [2].

The anacrota can vary significantly from subject to subject, because it
is affected by vascular conditions such as arteries stiffness. Usually it is
composed of a first pre-dicrotic dip, followed by a dicrotic notch and a final
dip at the end [46] (Figure 1.17). The dicrotic notch is due to a reflexed
wave, caused from arterial elasticity. This aspect of the anacrota is lost
when the monitored patient suffers from vascular diseases that increase the
vascular resistance. If the vascular resistance increase, the dicrotic notch can
be invisible if the signal is acquired in periphery (for example fingertip).
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Figure 1.17: Inverted PPG waveform of an healthy adult [46]

In general, the characteristic points of the PPG waveform are named
as illustrated in (Figure 1.18). The pulse wave begin (PWB) represents
the start of the systolic phase, that ends at the pulse wave systolic peak
(PWSP). The pulse wave end (PWE) indicates the end of the diastolic phase
and the time between PWB and PWE is called pulse wave duration. The
time elapsing from a PWSP to the consecutive, usually expressed in ms, is
called inter-beat interval (IBI) and has high correlation with the inter-beat
R-R interval of the ECG signal. (Figure 1.18).

Figure 1.18: PPG descriptors diagram [46]
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1.2.3 Artificial Neural Networks

Artificial intelligence has been defined in many ways, machines with minds [59],
or the study of creating machines that perform functions which require intel-
ligence when performed by people [41]. It comes from the human will to make
computers think like the human being do, in order to increase their potential-
ity and contemporarily to understand the thinking functioning [44]. Neural
networks are considered part of Artificial intelligence and their primary pecu-
liarity is that they can learn from the data, through a process called training.
Of course, in order to imitate the human thinking, the Artificial Intelligence
is inspired to the brain and the physiological neural network functioning.

Brain physiology It is well known that the neuron is the fundamental
unit of the brain and the rest of nervous system. It is composed of:

• several dendrites, by which it receives signals from other neurons;

• a soma (or cell body), where the nucleus is located, that elaborates the
received input signals and produces an output signal;

• an axon, a much longer fiber that, acting as an isolated conductor,
serves as output signal propagator;

• the Myelin sheath, that is the axon insulating material. It is composed
of Schwann cells separated from many gaps called Node of Ranvier.

Figure 1.19: Diagram of the human brain neuron [57]
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At the end of each branch, the synapses manage the communication between
different neurons: a specific connection between two neurons is strong or
weak depending on the frequency of excitation: if a connection is never used,
becomes weak.
When a neuron cell body receives many impulses from many different stimu-
lating neurons, these stimulus are summed spatially and temporally. Within
the input stimulation summation a different importance is given to each stim-
ulating neuron, basing on the specifical connection strength. If the intensity
of the summation overcomes a physiological threshold, then the neuron
is fired. In this way, the neuron produce an action potential and transmits it
as output signal through the axon. Despite the exact way the brain works is
not really known, it has been nowadays established that the brain thinking is
the result of specific path firing among the whole set of neurons connections
[44].

Following this pathway, the ANNs attempt to emulate this working prin-
ciples by the recreation of the physiological structure of the brain:

Figure 1.20: A simple schematic of ANN

• neurons are represented by single computational units or perceptrons
that receive inputs and create outputs;

• axons, dendrites and synapses are summarized into the links among
perceptrons;

• each neuron-to-neuron interaction is characterized by a different strength,
defined as a weight.
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Input data The input data can be given either as raw data, such as
images or temporal series, or as features, that are a list of preset parame-
ters characterizing each input element. The data type depends on the need
of neural network architecture that is intended to be used. Moreover, the
dataset can be either labelled or unlabelled. Labelling means assigning to
each sample the correct output label (target).

input feature1 feature2 ... feature i ... feature n
1
2
.
.
.
N

Table 1.3: Unlabelled dataset

input feature1 feature2 ... feature n target1 target2 ... target n
1
2
.
.
.
N

Table 1.4: Labelled dataset

The single perceptron

In the field of ANNs, the single unit is called perceptron and was introduced
by McCulloch and Pitts in 1943 [33]. As a parallel to the biology, it first
performs a weighted summation of the inputs, applies a threshold to its
result and produces an output.
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Figure 1.21: Perceptron: the single unit of Artificial neural networks [44]

Taking into consideration a single perceptron i, every input aj is multi-
plied by a weight wj. Then, all inputs are summed, producing the result:

ini = x1 +
X

wj,i ∗ aj (1.3)

where x1 is called the bias and defines the threshold of activation of the
perceptron. This input is then passed into a non-linear function or activa-
tion function g(ini). This function determines an activation level ai, that is
propagated as output:

ai(x) = g(ini) (1.4)

Being a simple sum of weighted inputs, the single perceptron is just a different
representation of a linear equation, that varies basing on the bias and weights
values.

Activation functions The activation function is the non-linear part of
the perceptron computation and its choice determines a different behaviour.

35



Figure 1.22: Step activation function [44]

The easiest function that represent the actual neurons behaviour is the
step function, which output is set to one only when a certain threshold has
been reached from the input. The step function decides if the neuron either
fires or not. By the way, the step function introduces a very rigid threshold
that often results unusable. The sigmoid is the most common and fulfilling
activation function is the , that defines an activation level between 0 and 1
basing on its non-linearity.

g(x) = sigmoid(x) =
1

1 + e−x
(1.5)

Figure 1.23: Sigmoid activation function [44]
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A lot of other activation function are used in the practice: the choice
among all possible activation functions is made basing on the ANN architec-
ture and application.

ANN architectures

Many different Architectures of ANNs exist [27] and are used for different
purposes. However, the basic principles are common to any of them [51].
Usually single units are grouped in layers. By linking different layers neu-
rons it is possible to create infinite architectures. Usually, by increasing the
complexity of the architecture, that is the number of layers (depth) and their
neurons number (width), it is possible to create more complex non-linear
functions.

Basing on the direction of the information within the ANN, these can
be defined as feed-forward or recurrent. Within the recurrent ANNs the
information can spread forward and backwards thanks to their bidirectional
links and capability to form loops. On the other hand, within the feed-
forward ANNs the information can spread only in one way, from inputs to
the output.

An ANN is composed of:

• input layer: it is not considered a layer of the ANN because it only
represent the inputs given to it. Its width is equal to the number of
features ;

• an optional number of hidden layers, each one having an optional
width;

• output layer: it represents the output of the ANN. In case of regres-
sion problems, each output layer neuron returns a numerical prediction.
Otherwise, in case of classification problems, each output layer neuron
correspond to a different class. In the latter case, the fired neurons (the
green neuron in Figure 1.24) are the indicators of the predicted classes.
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Figure 1.24: A schematic difference between Regression and Classification
problem related ANN architectures

An ANN with more than one hidden layer is called Multilayer perceptron
(MLP). In the MLP every neuron is fully connected with all the neurons
of the previous and subsequent layers and is not connected to the same
layer neurons [44]. As it was said before, the MLP can have an optional
depth and hidden layers width. A more complex MLP can detect some data
characteristics that are not easy to be detected by the human user. However,
finding the optimal architecture is a difficult task because a too small ANN
causes underfitting and a too big ANN generates overfitting. Underfitting is
the inability of the ANN to find the correct peculiarities of the data, while
overfitting refers to the fact that the ANN learns too well to recognize the
training set inputs, but lacks of generalization to new unseen samples [51].

The learning process

The learning process consists in an algorithm that iteratively evaluates the
input data and update the ANN weights values basing on the result obtained.
It is also called training algorithm and it can be:

• supervised: the ANN knows the correct output and modifies its inter-
nal parameters in order to achieve a prediction as close to the ground
truth as possible. The intent of this modality is building an approxi-
mator. In this case the training set must be labelled.

• unsupervised: the ANN is provided with only the input data and
does not know the output. It is duty of the ANN to find relationships
and patterns that describe the data [51]. The aim of the unsupervised
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learning is to perform a clusterization of the input data. In unsuper-
vised learning the training set is unlabelled.

A complete iteration over the training dataset is called epoch. The weights
can be updated after each epoch, or after the iteration over a training set
portion, of a desired dimension also called batch size. Although the typical
batch size is between 32 and 512, it can vary from 1 to the entire training
set dimension and it is usually a power of 2. Dividing the training set into
batches is used in order to insert some variability into the dataset. In fact it
is known that the use of the whole training set, if big, can produce lack of
generalization: thus, the introduction of variability becomes a very impor-
tant factor in overfitting risk reduction. In the Supervised training, it is
possible for the neural network to estimate the loss at each iteration. The loss
is the penalty for a poor prediction, that is expressed by a number indicating
the error on a single prediction. The loss varies as a function of the weights
combination: it is useful to describe it with the aid of the cost function
J(w1,1, w2,1, ..., wp,q) (or J(W ), where W represent the weight space). The
cost function assigns a loss value to each input weight combination.
If a problem consists of an only input, the loss function is a single curve
assigning a loss value to every weight assigned to the input value.

Figure 1.25: One-dimensional cost function as a function of the weight w1 [8]

If an ANN has two inputs, then the cost function is represented on a
plane and a different error value will be associated to each couple of weights
w1 and w2.
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Figure 1.26: Two-dimensional cost function representation [8]

As the weights space W size increases, the cost function spreads over
more dimensions and becomes computationally very heavy. The loss func-
tion is fundamental in the learning process, which intent consists in finding
the optimum combination of weights (wi,j) and biases x1j that minimize the
loss. However, instead of the cost function computation and subsequent
minimization, lighter or faster techniques have to be used: these are called
the optimization algorithm. The optimization algorithms exploit the cost
function for the loss defining, but bypass its computation over the whole W
space, by finding alternative strategies and calculating the loss only for a
reduced portion of W. The most used optimization algorithm is the gradient
descent and most of the rest of optimizers are inspired to its working princi-
ples or even a slightly modified copy of it.

Gradient descent algorithm Starting from a random initial point, the
loss partial derivative is calculated over all the W dimensional directions and
inserted into the gradient function, which indicates the direction of greatest
increase of the function. If its negative value is taken, -∇f , then it is possible
to move towards the minimum of the loss function. Then, the calculated
gradient value is inserted into the weight updating equation:

wi,j = wi,j −∇
dJ(W )

dwi,j
(1.6)
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Figure 1.27: Gradient descent working principle [8]

For the weight update, the MLP exploits a back-propagation algorithm,
that basing on the calculated loss, back propagates it backward in order to
modify the weights according to it [44].

back-propagation algorithm In order to perform this algorithm, it is
needed to calculate the J(w) first. In fact, in this way the algorithm can
proceed towards its aim, that is the calculation of the partial derivatives ∂J

∂w

and ∂J
∂b

of the cost function J over the weights space and the biases, for each
layer.
Let us consider the number m of input training examples, the number of
network layers L, a loss vector δ(l) composed of a loss δ

(l)
j calculated for each

node j in the layer l and a matrix ∆
(l)
i,j containing all δ(l) calculated for each

training example (i). Thus, the back-propagation algorithm consists in the
following: That, in simple words, means that for every training set example,
the loss calculated at the output layer is back propagated once layer at a
time until the first hidden layer [?].

It is possible to mathematically demonstrate that a
(l)
j δ

(l+1)
i correspond to the

partial derivatives calculated for the i-th training example. Hence, the term
∆

(l)
i,j can be considered as an accumulator of these partial derivatives. Then,
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Algorithm back-propagation algorithm

1: Training set← (x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))

2: Set ∆
(l)
i,j = 0 (for all l,i,j )

3: for i = 1 to m do
4: Set a(1) = x(i)

5: Perform forward propagation to compute a(l)(for l = 2,3,..,L)
6: Using y(i), compute δ(L) = a(L) − y(i)

7: Compute δ(L−1), δ(L−2), ... , δ(2)

8: ∆
(l)
i,j = ∆

(l)
i,j + a

(l)
j δ

(l+1)
i

9: end for

the partial derivatives calculated are:

∂J

∂w
= D

(l)
i,j =

1

m
∆

(l)
i,j + λW l

i,j (1.7)

(where λ is the regularization term) for j 6= 0, and:

∂J

∂b
= D

(l)
i,j =

1

m
∆

(l)
i,j (1.8)

for j = 0. These partial derivatives are then used by the optimization algo-
rithm chosen, for the cost function optimization.

The MLP feed-forward back-propagation Neural Network

Multi-layer feed-forward neural networks (MLP) are used for non-linear prob-
lems solving, that can not be solved with Linear Regression algorithms.

The MLP can be used in training and in prediction mode [51]: training
is the process by which the MLP learns, by modifying its parameters, in
order to reduce the errors obtained at each iteration over the training set
data; prediction mode is the process of evaluating the resulting MLP per-
formances over another dataset called test set. The prediction mode allows
one to assess the generalization ability of the network: if the performances
over the test set are similar to those obtained on the training set, then the
generalization over new unseen data is good. On the other hand, if the per-
formances on the test set are much lower than the training set ones, the MLP
lacks of generalization: it suffers from Overfitting.
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Avoiding overfitting

Overfitting means lack of generalization, and can occur for several reasons.
However, the cause of overfitting is always the same: the hypothesis function
becomes such detailed in describing the input data, that cannot describe a
new set of unseen data.

Figure 1.28: Overfitting example: the black curve represent a good general-
ization of data, while the green one represents an Overfitting scenario [58]

A very useful method to assess overfitting is the initial dataset division
into three partitions: Training set, validation set and test set. While training
set comprehend the majority portion of the dataset and is used for the actual
training of the network, the remaining two portions are a much smaller and
are used for overfitting verification. The substantial difference between the
validation and test set, is that:

• overfitting is firstly evaluated during the training over the validation
set. Epoch after epoch, the performances difference between valida-
tion and training set are evaluated A big difference is an indicator of
overfitting: the learning process in this way can be stopped before this
difference becomes too big.

• Afterwards, overfitting is evaluated also on the test set. Let us say
that after the training process, the generalization over the validation
has been proved good. In this case, there is the need to demonstrate
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that the neural network has not overfitted over the validation set as well
[8]. In order to verify this, a new unseen dataset, that is the test set,
is introduced for the last prediction test. If the performances over the
test set are comparable to the training set ones, then the generalization
to new data has been proved to be good.

The most common partitioning of the original dataset are either 80% training
set, 10% validation set and 10% test set or 70% training set, 15% validation
set and 15% test set.
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1.3 State of the Art

Preface: invasive and non invasive methods

The technique that offer the most reliable pressure readings requires an inva-
sive intra-arterial set up. This approach is considered the reference technique.
However, because an invasive set up is not suitable for clinical practice, non
invasive methods are the most common in both ambulatory measurements
and for continuous monitoring [36]. The classical approach for non-invasive
pressure measuring before the 21st century has been the auscultation or Ko-
rotkoff technique. Auscultation technique consist in an observer that listens
to the stethoscope while watching a sphygmomanometer. The sphygmo-
manometer is a pressure measurement device composed of a cuff that is
wrapped around the patient’s arm causing the brachial artery to occlude.
The cuff is then gradually deflated so that the blood can flow again and
start to produce the Korotkoff sounds. With a stethoscope placed over the
brachial artery is possible to hear these sounds and associate them with the
concurrent pressure value seen in the sphygmomanometer. However, this
approach accuracy strongly relies on clinical staff preparation (it is user-
dependent) and is easily compromised by many factors, thus resulting not
accurate [36, 39]. For this reason, automated or semi-automated devices
that are based on the oscillometry technique, have been introduced in clin-
ical practice during the last two decades. Oscillometry technique is widely
used in clinic, ambulatory and at home by the patient in holter mode [39].
The readings rely on the oscillation amplitude measured on the lateral walls
of upper arm. The Mean arterial blood pressure is identified as the cuff pres-
sure value when the oscillation amplitude is at its maximum. Thus, SP and
DP are calculated starting from the MLP value, applying some fixed ratios
[10]. Semi-automated devices acquire only one pressure value for each single
activation, while automated devices are able to acquire several pressure val-
ues separated by a rest period with a single activation [36]. The techniques
cited before have been validated and commercialized devices exploit them,
but they suffer of many limits. The main limit is that the monitoring is not
continuous, but requires a recovery time from 3 (sphygmomanometer) to 20
minutes (oscillometric devices) [39]. Moreover, although the accurate mea-
sures, when the cuff inflation results very uncomfortable, especially during
the night time monitoring [39].
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Figure 1.29: Diagram that show the methods of pressure values defining via
auscultatory and oscillometric methods [39]

1.3.1 Continuous pressure monitoring systems: Cuff
based methods

During the last two decades many new methods have been proposed for
non invasive continuous monitoring of blood pressure, that hypothetically
overcome the previous techniques limits.

Tonometry

is a more adapt technique to continuous pressure monitoring, because does
not occlude the arteries and offer beat-to-beat pressure measurements. Al-
though it does not use a cuff, a device that push a superficial artery towards
a bone is needed. The pushing strength should be low, because the artery
should be not occluded. In this way the device can be hold constantly with-
out ischaemic damage. Meanwhile an embedded force sensor measures the
pressure at contact. Because the partial occlusion is maintained during the
entire cardiac cycle, the blood pressure profile is obtained 1.30. The accu-
racy of this technique is high only if its placement is continuously verified by
an expert, because misplacement of millimetres produce high errors. More-
over, it is suitable only at rest conditions because it suffers significantly from
motion artefacts [39].
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Figure 1.30: Diagram that show the methodology of tonometry technique
[39]

Volume clamp method

Some modern optical based technologies such as Finapres (1990s) have been
developed basing on the volume clamp method or Penáz technique, first de-
scribed in 1973. Penáz technique offers beat-to-beat pressure measurement,
in which the finger peripheral vessels are unloaded through a small finger
cuff. Unloading the vessels means keeping the blood volume constant by the
use of a Photoplethysmography (contained into the cuff) for blood volume
estimation, within a feedback loop. Finapres refine the technique consider-
ing that if the volume under the finger is constant, then the arterial pressure
equals the cuff pressure. Hence, by knowing arterial pressure, it is possible
to reconstruct the brachial artery pressure through an algorithm [7]. Thus,
Finapres monitoring is suitable for continuous pressure monitoring, but it
still result uncomfortable.
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Figure 1.31: Diagram that show the methodology of volume clamp technique
[39]

1.3.2 The modern trend: cuff-less methods

The modern trend is, however, the creation of cuff-less pressure continuous
monitoring systems.

Pulse wave velocity It is possible to calculate accurate pressure values
starting from the pressure wave velocity (PWV) throughout the arterial tree.
In fact, the arterial blood pressure increase with the PWV increase. How-
ever, this method is suitable only for central elastic arteries, while for other
arteries the accuracy is lowered. A way to make the measurement process
easier is to measure the PWV at two substitute sites along the same periph-
eral artery as close to the aorta as possible. The best sites for non-invasive
measuring are the first arteries, which begin at the aorta, that is the carotid
and the femoral artery [13, 39].
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Figure 1.32: Graphical explanation of the PWV measuring technique [39]

By knowing the exact distance between the aorta and the measure site, it
is possible to calculate the pulse transit time (PTT) [39]. The PWV is then
calculated as:

PWV = distance/PTT (1.9)

The PTT can be defined as the time difference between the occurrence of
the ECG R-wave and the pulse appearance at the artery detection site. The
pulse detection at periphery can be done through a Photoplethysmograph
PTT is inversely proportional to SP, while DP and MBP are not easily de-
ducible [7]. This method required an experienced technician and is user
dependent. It is hence subject to many errors [39].
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Figure 1.33: Graphical explanation of the PTT derivation technique [39]

These two techniques exploit the use of cuff-less sensors, but more than
sensors are needed, making the whole device bulky and not comfortable. The
last developments are moving towards the use of the Photoplethysmographic
sensor alone. The reason is that the use of only one tiny sensor such as the
PPG one, allow for may wearable applications.

Wearable devices

Photoplethysmographic sensor wearable devices are being investigated lately
for non-invasive continuous blood pressure monitoring. Some studies have
tried the development of some equations in order to calculate BP values
from PPG waveform analysis [54, 45, 43, 50]. It is known that the ABP and
PPG waveform are similar and that the physiological principles of the signal
source are similar. However, although this is a perceptible relationship, it is
very hard to characterize. In some studies, has been shown a linear relation
between BP with cardiac cycle duration detected through PPG. It seems that
a higher BP correspond to a quicker cardiac period [54]. However, parameters
such as Systolic upstroke time, Diastolic and width of 2/3 and 1/2 pulse
amplitude were considered separately for deeper studies. It has been shown
that the Diastolic time is the most correlated PPG morphology parameter
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with the BP, but that this correlation is not always linear. Indeed, people
with same Diastolic time can have different BP. Different studies provide their
methods and coefficients for BP detection from PPG wave analysis, but they
lack of generalization, resulting accurate only for the studied dataset. [29,
54, 11]. In order to look for the BP-PPG relationship, many newest studies
exploit the computational power of the Artificial Neural Networks (ANN)
nowadays, which appears to be the most efficient method for the purpose.
The first study [29]in which ANNs were introduced used a multilayer feed-
forward back-propagation ANN, with two output neurons for SP and DP
estimation. After the architecture investigation trials, it was found that 2
hidden layers offered the best performance, with 35 neurons within the first
and 20 neurons in the second.

Figure 1.34: Multilayer perceptron for SP and DP estimation [29]

It has been seen that PPG amplitude is too compromised by motion arte-
fact to be exploited as a feature for the ANNs inputs. Thus, such features
were at first Systolic upstroke time (SUT), Diastolic time (DT), Cardiac pe-
riod (CP), and the width of the PPG signal at 10%, 25%, 33%, 50%, 66% and
75% of the signal height. Moreover, other cross-features were extrapolated
by combination of some of the previous (Figure 1.35).
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Figure 1.35: Calculated features [29]

In the study of Zhang and Wang [61], the previous work has been de-
veloped more in deep by performing a feature reduction on the 21 features
previously selected, among which only 16 have been confirmed to be relevant
for BP estimation. Moreover, because of the low prediction accuracy due
to the random initialization of the NN, a genetic algorithm (GA) has been
implemented to optimize the initial coefficients of the NN and hence obtain
more accurate results.

Recently, very encouraging results were obtained [40] by using varied
(modified) temporal periods of PPG waveforms as features for ANN train-
ing. Indeed the parameters used (SUT, DT, CP, R-PTT) (Figure 1.36 ) are
averaged over time in order to create the new features that will be given as
inputs to the NN (only mean values are used).
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Figure 1.36: Features used within the study [40]

A newer study is presented starting from the consideration that the pre-
vious works suffer from long time accuracy decay since they do not take into
consideration BP modelling over time [48]. This work considered different
temporal acquisitions (1st day, 2nd day, 3rd day, 4th day and 6th months
after the first recording) and estimated BP using a deep recurrent neural
network consisting of multilayered Long Short-Term Memory networks. This
method is shown to be the most effective in literature so far, surpassing the
accuracy of all the previous BP prediction ANNs methods.
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Chapter 2

Materials and methods
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The study has been carried on at the St Microelectronics s.r.l., within the
Remote monitoring group, belonging to the ST Reasearch and Development
division. The group deals with the design of telemedicine wearable devices
for biomedical purposes and it is specialized in Heart monitoring wearable
devices such as Bio2Bit NewMove. These devices are tiny and portable and
have been designed in order to continuously monitor the patient health sta-
tus. The Bio2Bit NewMove has not been used inside this thesis project, but
it is involved since the future applications include the created ANN otimiza-
tion in order to be implemented into this device.
The chosen ANN to be implanted was a Multilayer feedforward backprop-
agation perceptron (MLP). This MLP is intended to perform a supervised
multiclass classification task. The classes representing the different pressure
ranges chosen were 7: [80 -100], [100-109], [110-119], [120-129], [130-139],[140-
149] and [150-170]. Those classes are referred to with the central value of the
range, i.e. with the labels 90, 105, 115, 125, 135, 145, 160 repectively.
The training dataset needed for the supervised learning task was a labeled
dataset. Each row of the dataset described 15 morphological features of the
single PPG period and a SP value.
The dataset was created from online freely available data containing ABP
and PPG signals. The ABP signal was filtered and preprocessed in order
to obtain a precise SP value for each PPG period. The PPG signal was
preprocessed and segmented into periods in order to create a dataset con-
taining an only PPG period in each row. From each segmented period were
subsequently extracted the 15 features that represented the morphology of
each PPG period and placed into the final training dataset together with the
correspondent SP value.
The ANN was created with Keras, a python environment library for easy
ANNs prototyping [8]. Moreover, for a faster convergence of the algorithm,
the ANN was trained on Google Colab online available notebooks. These
are remote hardware notebooks available from a web based platform, which
provide free use of GPUs for AI reasarch.
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2.1 Dataset creation

2.1.1 Data collection

The MIT Lab for Computational Physiology Physionet MIMIC III Dataset
[21] has been the source of Photopletysmography and Arterial blood pressure
data. The physionet website offers the possibility to get access to the anoni-
mous data in a free way. Several types of signals are acquired simultaneously
from intensive care unit patients, such as PPG, ECG, ABP, annotations
about diseases and pathologies or events (e.g. arrhytmias or apnea). Each
patient recording contains several hours or days of acquisition. Furthermore
this dataset ha been chosen as data source because of the huge amount of
available data and because, discarded the motion artefacts, many segments
of acquisition show a very good quality.

Data extraction through Physionet wfdb tool The Physionet wfdb is
a tool that allows the user to set some research filters in order to get a list
containing only records with the desired characteristics. The desired charac-
teristics can be the signal of interest, the desired anomalies/pathologies on
the signal, specifical event-realted annotations and many more. In our case,
a list of the patient records containing at least PPG and ABP was needed.
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Figure 2.1: Example of raw concurrent PPG and ABP signals extracted

Another intention was to select only the records without artefacts, which
required the visualization of the signals before downloading. The visualiza-
tion of these signals was a long process because, given the long duration of
the signals (even 6 days of cointinuous recording), the same record could
contain several bad quality segments, that should have been discarded be-
fore downloading in order to avoid storage problems. Thanks to wfdb tool,
these signals could be plotted and analyzed before downloading. The data
extraction algorithm was performed on Google Colaboratory notebooks. For
each record/patient, a new folder was created and the record informations
were saved into it.
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Algorithm Data extraction algorithm

Import selected Patient list
for patient in Patient list do:

divide patient record in p Segments
for segment in Segments do:

visualize 10 random windows of 1 minute duration
assign a good/bad label to the segment

end for
Dowload segments labelized as good
Save information about record and segment intervals downloaded

end for

Dataset Eight patients simultaneous PPG and ABP records have been
extracted. The aim was to create a Dataset containing a set of given features
calculated for each PPG signal and to associate them with a unique SP value
as shown in Figure 2.2.

Figure 2.2: Template of the desired final Dataset

The number of inputs n correspond to the total number of PPG periods
extracted from the recordings stored: in this project case n it was 124616. In
Figure 2.2, the green columns names correspond to the features calculted over
each PPG period. The features are inspired from the work [29] (graphically
represented in the Figure 1.35 ) and are:
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• CP: Cardiac Period

• SUT: Systolic Upstroke time

• DT: Diastolic time

• SW(x): width ∆t (in seconds) between the pulse wave systolic peak
PWSP and the time by which the x% of the systole is reached (e.g.
SW10: ∆t between the end of the systole and the 10% of the systole
amplitude)

• DW(x): width ∆t (in seconds) between the PWSP and the time by
which the x% amplitude of the diastole is reached (e.g. DW75: ∆t
between the beginning of the diastole and the 75% of the diastole)

The target SP is the systolic pressure corresponding to the same row PPG
period.
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2.2 Implemented algorithm

2.2.1 Signal preprocessing

The signal preprocessing has been carried out on Matlab 2017R.
The first part of the preprocessing consisted in the downloaded signals vi-
sualization. The matlab visualization was a lot quicker and fluider than the
previous wfdb one, because the plot window could be browsed and zoomed
in order to identify compromized portions of the signals. If either ABP or
PPG contained some compromized time segments, they were cut and deleted
from both PPG and ABP signals, for consistency. In this way some infor-
mation was lost, but the loss was not significant given the huge quantity of
PPG periods available within each record. Nevertheless, the temporal subse-
quence of PPG periods was not an important factor for our Neural Network
algorithm since the algorithm analyzes the single PPG period and not the
temporal series.

ABP signal preprocessing

The aim of the ABP signal preprocessing was to remove the high frequency
noise from the signal and to calculate the Systolic wave. The Systolic wave
is a signal obtained from the envelope of the systolic peaks detected on the
ABP signal.
First, the ABP was low-pass filtered at 6.6 Hz in order to remove the high
frequency noise, while the low frequency components were kept in order to
not alterate the SP and DP values.

Systolic pressure calculation algorithm

the algorithm for the SP calculation consisted in:

• a peak detection algorithm, which returned the SP value and the index
of each peak: their sequence represent the systolic pressure wave or SP
wave 2.5;

• a resampling of the SP wave at 125 Hz;

• a smoothening of the SP wave, based on a moving average FIR fil-
ter. This was done in order to avoid a too high beat-to-beat pressure
variability.
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Figure 2.3: SP wave plot over the ABP waveform

Then, in a final step after the PPG preprocessing, the SP wave values
were averaged over the correspondent PPG-period temporal window in order
to obtain only one SP value. In fact, for the classification purpose, only one
SP value per PPG period was required, that would have been its classification
target.

PPG preprocessing

The aim of the PPG signal processing was to clean and to segment the PPG
signal into periods. The next step was in fact the creation of a matrix con-
taining a PPG period per row. The advantage of the segmentation is that
the PPG periods could undergo a preliminary step of segmentation quality
verification before the calculation of the features. The period segmentation
started from each PWB until the PWE. The PPG matrix had dimension (n,
maxLen), where n was the total number of PPG periods extracted from the
recordings and maxLen was a fixed length at 2∗(average PPG period length)
in order to avoid problems due to the length variability of the PPG periods
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segmented. In order to fit into the matrix row, a zero padding tail was added
to each PPG period shorter than maxLen.

Filtering The PPG signal was high-pass IIR filtered at 0.6 Hz for trend
remotion and low-pass IIR filtered at 6.6 Hz for the high frequency noise
remotion.

Segmentation Then, an algorithm of PPG segmenting was performed (see
algorithm ), which was divided into three parts:

1. PPG diastolic valleys and systolic peaks detection through the algo-
rithm double threshold peak detection with minmax alternation (see
2.4);

2. detecting of PPG periods outliers by period length. All periods shorter
than threshold1 and all those longer than threshold2, were labeled as
outliers and not considered in the next segmentation step. In fact, the
former were usually portions of PPG periods, while the latter were usu-
ally composed of two PPG periods by mistake. The values of threshold1
and threshold2 were defined experimentally.

3. The PPG periods were cut basing on the remaining diastolic trough
indexes. Furthermore, there was the need of keeping track of the cor-
responding ABP values to each PPG period. Hence, th systolic wave
was cut into slices basing on the same diastolic trough indexes. Each
SP slice values were averaged in order to obtain only one SP value for
each PPG period. This SP value was saved into the SP vector, which
was used to map the PPG period-to-SP value corrispondence.
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Algorithm Dataset preprocessing

PPG and ABP signal load
PPG and ABP coherent compromised segment remotion

PPG preprocessing

High – pass IIR filter, cut – off frequency = 0.6 Hz . detrending
Low – pass IIR filter, cut – off frequency = 6.6 Hz . high frequency noise
remotion

ABP preprocessing

Low – pass IIR filter, cut – off frequency = 6.6 Hz . high frequency noise
remotion

Systolic wave calculation

ABP peaks detection . see block diagram in Figure 2.5
SP filtering FIR MA filter, order = 200 . Systolic wave smoothening
SP transient and tail first order polyfit interpolation

PPG segmentation

PPG peaks detection . see block diagram in Figure 2.4
PPG periods length analysis and labeling into too short, average or too
long
PPG periods segmentation and allocating into a PPG periods matrix
Creation of SP vector, containing an SP average for each PPG period saved

The algorithm used for PPG peaks detection was designed in order to
concurrently perform:

• the detection of minimum peaks (PWB/PWE) and maximum peaks
(PWSP);

• the check of their alternance: in order to avoid the subsequent detection
of two peaks of the same type (two minimum or two maximum peaks),
a minimum could be detected only if the last peak detected was a
maximum and viceversa. For this purpose were used the two flags
Flag max and Flag min, e.g.when Flag max was true, the Flag min
was automatically set to False and only a minimum could be detected.

• a check on the distance between two consecutive peaks of the same
type, that should always be higher than the MaxMax dist threshold;
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• a check on the distance between two consecutive peaks of different type,
that should always be higher than the MinMax dist threshold;

For this reason the algorithm is called Double threshold peak detection with
min-max alternation block diagram 2.4.
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Figure 2.4: Double threshold peak detection with minmax alternation block
diagram
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The result of this algorithm was the detection of peaks quite far from
each other. When there was the necessity to detect closer peaks or when the
accuracy of peak detection was not as important as the PPG systolic peaks
detection, the algorithm 2.5 was used. Hence, it was for:

• the correct detection of the PWB for the correction of the segmented
PPG periods with an initial fluctuation;

• the ABP peaks detection: in fact, if a systolic peak was not detected
on the ABP signal it was not as dangerous as not detecting a correct
systolic peak on the PPG signal. This is due to the fact that the ABp
systolic peaks compose the systolic wave, that is then filtered with a 200
order moving average FIR filter. For this reason, the missed detection
of a peak in ABP signal is not a problem, in fact the error is then
repaired with the FIR filtering.
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Figure 2.5: Peaks detection 2 algorithm block diagram
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In order to check the status of the segmentation, all periods of the PPG
periods matrix were plotted in the same figure. As we can see from the figure
2.6, there are many periods in which the peaks have been wrongly detected.

Figure 2.6: Plot of the PPG periods segmentation from one patient record

The most evident aspect is the presence of many segment mistakenly
containing two PPG periods (the longest ones). This can be easily solved
by deleting all the segments containing two periods. The second important
thng is a short signal fluctuation at the beginning of some PPG periods. This
fluctuation represents the diastolic tail of the previous PPG segment wrongly
inserted before the beginning of the systole. This error can be deleted by
detecting the real PWB right before the systolic upstroke start. After these
correction, the plot of the same record PPG periods appears much cleaner
as in figure 2.7.
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Figure 2.7: Plot of the PPG periods segmentation from one patient record
after correction

Summarizing, the result of the segmentation is a matrix containing all
these different PPG periods.

2.2.2 Feature extraction

Feature extraction is the process by which are calculated the parameters that
will be the neural network inputs.

The features The algorithm used for the purpose is shown in the 2.8.
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Figure 2.8: Features extraction algorithm block diagram
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Features validation In order to verify the correctness of the features cal-
culation, a graphical visualization has been done over the 10% of the dataset
elements. In fact, the features represented temporal values, that in a plot,
have to perfectly fit to the shape of the waveform. If they do not fit per-
fectly, they have been wongly calculated. The Figure 2.9 shows an example
of visualization of the calculated features.

Figure 2.9: An example of visualization of the calculated features

2.2.3 Feature engineering

The feature engineering was carried on into the Google Colab notebooks in
order to convert the training dataset into a python compatible format. This
was necessary because the ANN algorithm would have been performed on
Keras. For this purpose, the features matrix and the SP vector values are
integrated into a pandas DataFrame(see algorithm ). In these type of python
structures, each column is named after the feature name and the last column
was named ’SP’ and the contained the SP vector values in it (an example
is shown in Figure 2.10). In this way, a dataset as described in 2.2 was
obtained. The SP vector into the algorithm is called targets.
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Figure 2.10: shuffled DataFrame example visualization

Normalization and Standardization

The obtained features are never given to the Neural Network in raw format,
but they have to be either normalized or standardized. Because all of the
features represent temporal values, for logical reason the initial idea was to
normalize them would e within the range [0 - 1]. However, different Scalers
have been tried in order to find the most suitable option in terms of accuracy
performances. The Scikit Learn scalers were compared:

• StandardScaler: removes the mean and scales the standard deviation
to the unit;

• MinMaxScaler: scales the features to the given range (various ranges
were tried, such as [-1,1],[-3,3],[0,1]);

The best results (in terms of performances) were obtained with the use of
StandardScaler, that was then chosen.

2.2.4 Dataset preprocessing

Dataset targets discretization The Dataset targets (SP values) initially
contained a numeric value from 80 to 170. In order to implement a multiclass
classification algorithm, these values had to be discretized, i.e. condensating
all values within a range with a unique label. The choice of the ranges was
difficult because the narrower the range, the more precise is the prediction,
but it is also more difficult for the ANN to classify an input within the correct
SP range. In this work, the ranges were chosen to be 10 mmHg and 20 mmHg
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wide. The chosen ranges are described into Table 2.1, where each range is
also associated to the relative class name. In this way each targets column

SP range Class label
80 - 100 90
100 - 109 105
110 - 119 115
120 - 129 125
130 - 139 135
140 - 149 145
150 - 169 160

Table 2.1: Systolic pressure ranges division

value is converted into a label. In order to do this, two variables have to
be created: the bins variable described the SP ranges borders in one vector
(i.e. bins = [80, 100, 110, ..., 150, 170]) and the labels variable contained
the class labels as indicated in 2.1. For semplicity, a number respresenting
the aritmetic average of the two range limits is taken as label for each range.
The discretization algorithm discretized the target column values basing on
the bins values and associated to each of them the correspondent label. Then
the label was converted into a categorical value. The categorical values range
from zero to Z, where Z is the number of classes (classNum) -1. Each
categorical value is then converted into a binary vector (one-hot-encoded
vector) containing Z -1 zeroes and a one in corrispondence of the belonging
label (see table 2.2).

SP value label Categorical One-hot-encoded
89,2 90 0 1000000
101,7 105 1 0100000
119,9 115 2 0010000

...
165 160 6 0000001

Table 2.2: Example of targets discretization and one-hot-encoding
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Dataset balancing Moreover, an analysis over the classes distribution was
done for assessing the dataset balancing (Figure 2.11).

Figure 2.11: Dataset balancing analysis

Because of the evident unbalancing, an algorithm for Dataset balancing
was performed. First of all, the desired number of examples per class was
expressed through the samplesNum variable. Then, the Dataset balancing
algorithm performed an Upsampling of the classes which elements numeros-
ity was less than the samplesNum and a Downsampling of the classes with
more than samplesNum elements.

Different trials were made for the number of examples per class to be
considered. The best choice resulted to be 20000 samples per class.
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Figure 2.12: Result of dataset balancing

Dataset partitioning

In order to avoid overfitting, in order to avoid overfitting, the dataset was
divided in training set (70%), validation set (15%) and test set (15%), re-
sulting:

• 97966 training examples and targets;

• 20999 validation examples and targets;

• 21000 test examples an targets.
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Algorithm Dataset preprocessing

Initialization

random seed declaring . for reproducibility
import features matrix and SP vector
targets ← SP vector
bins ← [80 , 100 , 110 , 120 , 130 , 140 , 150 , 170] . bins borders
labels ← [90 , 105 , 115 , 125 , 135 , 145 , 160] . Classification labels
categorical← [0, 1, 2, .., 6]

Create and shuffle dataset

procedure Create and shuffle dataset(features, targets)
df ← features matrix and targets . df is a pandas DataFrame
shuffle df rows

end procedure

Discretization of target column

binned targets ← targets discretized and labelized . Each target value
contains a label
procedure From label to one-hot-encoding(sets)

categorical targets← converted binned targets into categorical values
one hot encoded targets ← converted categorical targets into one-

hot-encoded vector
df [’targets’] ← one hot encoded targets

end procedure

Dataset balancing

samplesNum ← 20000 . desired number of elements per each class
Balanced ds . New balanced DataFrame initialization
for label in labels do :

temp df indexes ← indexes of df for which targets == label
label count ← temp df indexes rows number
if label count < samplesNum then:

num ← samplesNum - label count
procedure Upsampling(num, temp df indexes)

newElems ← choose num random rows into temp df indexes
temp ds← append newElems

end procedure
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else if label count > samplesNum then
num ← samplesNum
procedure Downsampling(num, temp df indexes)

temp ds ← choose num random rows into temp df indexes
end procedure

end if
Balanced ds ← append temp ds

end for
Shuffle Balanced ds

Dataset division into Training, Validation and Test set

N ← number of Balanced ds rows
train perc← 70% N
valid perc← 15% N
test perc← 15% N
shuffle Balanced ds
valid examples← first (train perc ∗N9 elements of Balanced ds
test examples ← elements between (train perc ∗ N) and ((train perc +
valid perc) ∗N)Balanced ds elements
training examples← last (test perc ∗NBalanced ds) elements
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2.2.5 Artificial Neural Network algorithm

The artificial Neural Network algorithm has been created on Keras, which
is a Deeplearning API created primarily by Google for reducing the cognitive
load [9]. Furthermore, for a faster ANN training, the algorithm was carried
on exploiting the GPU computational power of Google Colab Notebooks.
In this way, all the heavy computational load was traslated in a web based
python environment, avoiding the overloading of local hardware resources.
Moreover, the process could be parallelized in several notebooks in order to
achieve a much faster training.

2.2.6 The model creation

The model is created as a Keras Sequential, because each layer can be added
in a sequential way by the add function. The standard guidelines for the
creation of a MLP for multiclass-classification were followed. The model was
initialized as follows:

• the input layer had input dimension equal to the input features, that
is 15;

• all the hidden layers were Dense layers, which are fully connected with
the previous and following layers;

• all neurons of the hidden layers were initially characterized by a sig-
moid activation function;

• the output layer was a Dense layer and was composed by a number of
neurons correspondent to the number of classes; its activation function
is called softmax and is necessary in multiclass classification prob-
lems because it associates a probability to each output layer neuron.
The winner neuron can be only one and is the one with the highest
probability.

To this model were added:

• a Dropout layer for Regularization after each hidden layer, initialized
with 0.0 dropout rate;

• a normal weights inizialization for each layer;
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The initial neural network was named the model zero and was used for the
parameters optimization: the hidden layer were two, of 120 and 240 neurons
respectively.

Figure 2.13: Keras MLP model zero schematic

The training was performed using the parameters:

• Adam algorithm as optimizer

79



• categorical crossentropy as loss function

• categorical accuracy as metric

• Model Checkpoint callback, that saved the model weights corre-
sponding to the epoch of early stopping as best model of the training.

Other than the insertion of the Dropout layers, two Early stopping
callbacks were inserted for avoiding overfitting that stopped the algorithm
either when the validation data loss reached its minimum and when the
validation data accuracy reached its maximum. Both the early stopping
function had a toleration of 60 epochs.

2.2.7 Optimization of ANN parameters

For ANN optimization, many parameters have to be chosen by the program-
mer, that is:

• architecture: depth and width;

• hyperparameters: epochs number, batch size, activation function of the
single units, weight initialization mode, optimizer, learning rate and
dropout rate.

The parameters optimization consisted of two phases: the initial phase con-
sisted in a cross validation over the hyperparameters, that was followed by
a manual optimization of the architecture.

Cross validation

The cross validation served both as validation of the previous manual tuning
and for investigating a set of combinations of new parameters that would have
requested much more time if performed manually. In fact, the cross validation
has been performed with the GridSearchCv function built in SciKitlearn li-
brary. This function performs a grid cross validation over the parameters that
the user chooses. In this thesis were performed the following grid searches:
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Parameters Values
Activation function relu, linear, tanh, sigmoid, hard sigmoid, softmax,

elu, selu, softplus, softsign
Optimizer sgd, rmsprop, Adagrad, Adadelta,

Adam, Adamax, Nadam
Learning rate 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.5

Optimizer Adam, Nadam
Learning rate 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008

Optimizer Adam, Nadam
SGD learning rate 0.005, 0.01, 0.03, 0.1, 0.2, 0.3, 0.5
SGD momentum 0.0, 0.2, 0.4

batch size 32, 64, 128, 256,
512, 1028, 2056, 4112, 8224, 16448

Epochs 500, 750, 1000, 1250, 1500, 2000, 2500
Dropout rate 0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9

0.02, 0.04, 0.06, 0.08
Initialization mode uniform, normal, zero, lecun uniform

glorot normal, glorot uniform, he normal, he uniform
Activation function sigmoid, hard sigmoid, softsign
Initialization mode lecun uniform, glorot normal, he uniform
Activation function relu, linear, tanh, sigmoid
Initialization mode uniform, normal, zero

Manual tuning

The manual tuning was performed by fixing all parameters except the one
that was investigated. First of all, the architecture of the neural network
was investigated, by varying the number of layers and their numerosity (see
Figure 3.1, 3.2). Afterwards, batch size was optimized for the architecture
defined.

One Hidden layer depth The use of only one layer allows the MLP to
learn the linear relations between features and targets. This is a very efficient
way to study those linear relations, but the use of only one layer does not suit
for the project purpose, which aims at investigating the non - linear relation
between the PPG morphology and the relative SP value. However, one layer
optimization is needed to extract as many linear relations as possible because
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they help to improve the next layers performances.

Two Hidden layer depth It can be demonstrated that implementing a
MLP with two layers of appropriate width, every non-linear relation can be
approximated. The first layer width that guarantees the best performances
has been fixed in order to proceed with the second layer width optimization.
It can be seen that by incresing the second layer width, the MLP accuracy
continues to rise, while the loss continues to be reduced.

Higher depths The cases where the performances improve with a number
of layer larger than 2 are sporadic. The exploration of higher depths is done
through the same method mentioned above: firstly, when the optimum width
of a layer is found, it is fixed and the following layer width can be explored.
As it can be seen from the results, increasing the depth to more than 2 layers
does not correspond to a significant increase of accuracy.
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Algorithm Artificial Neural Network algorithm for training, saving and
evaluation over test set

Model zero Initialization

Learning rate = 0.01
batch size = 1024
epoch num = 1500
inputNum = 15 . number of input features
classNum = 7 . number of output classes
hidden layers = [120, 240]
sets = training set, validation set, test set
myOpt← Adam . optimizer choice
myLoss← Categorical crossentropy . Loss function choice
myMetric← Categorical accuracy . metric choice
IL Activ Func← sigmoid function . Input layer activation function
HL Activ Func← sigmoid function . Hidden layers activation function
O Activ Func← softmax function . Output layer activation function
Drop rate = 0.0
Init mode← normal

Model creation

Model ← Sequential . Keras Sequential model
define input layer with inputNum neurons and sigmoid activation func-
tion
for hidden layer in hidden layers do

Model ← add Dense hidden layer with HL Activ Func activation
function and Init mode initializer

Model ← add Dropout with Dropout rate Drop rate .
Regularization
end for
define output layer with softmax activation function outputNum
Model compilation (myOpt,myLoss,myMetric)

Training

Model training for epoch num
performances dict← training set (min(loss),max(accuracy))
performances dict← validation set (min(loss),max(accuracy))
save Modelweights

Overfitting validation

prediction(test examples, test targets))
performances dict← test set (loss, accuracy)
predicted classes← Model predictions over the test examples
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2.2.8 The performances calculation

At the end of the 2.2.7 algorithm, the final model is considered as the model
saved by the Model checkpoint and named best model. The performances are
calculated over the best model. The evaluated performances metrics, beyond
the categorical accuracy already estimated on the test set, are the Precision,
the Recall and the F1-score (see 2.2.8).

Algorithm Performance metrics calculation

CM ← confusion matrix(predicted classes)
TP ← diag(CM) . True positive
FP ← sum(columns)− TP . False positive
FN ← sum(rows)− TP . False negative

Precision = TP
TP+FP

Recall = TP
TP+FN

F1− score = 2* Precision∗Recall
Precision+Recall

First of all, it is necessary introduce the concept of true positive, false
positive and false negative.

The True positive (TP)are highlighted in blue within the confusion ma-
trix Figure 2.14 and correspond to the test examples being correctly classi-
fied. The False Poisitives (FP), for each class, are the elements wrongly
predicted as belonging to the current class: they are represented by the sum of
the column elements, except the diagonal ones. The False Negatives (FN)
of each class are the elements belonging to the currently analyzed class, that
were predicted as belonging to another class. They are represented by the
sum of the row elements, except the diagonal ones.

The Precision is inversely proportional to the false positive elements
classified by the model. In fact, a low precision for a specific class x (let us
say 10%) indicates that the model often classifies the elements within the x
class even if they do not belong to it. On the other hand, a 95% precision ratio
illustrates the great model attitude to predict the x class element correctly.
A high precision reduces the number of false positives.

The Recall is inversely proportional to the elements classified as false
negative by the model. A low Recall means that the number of false negatives
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is high, while a low Recall means that the number of false negatives is low.
The F1-score is a weighted harmonic sum between precision and recall.

It is used for a first understanding of the model performances: indeed it
assigns the same importance to both Precision and Recall. On the contrary,
the importance given to precision and recall should be problem-related. In
this project,it was used to compare different architectures of MLP, in order
to find the optimum.

For a better understanding, let us focus on the class ’90’(see Figure 2.14).
The TP are 2368. The FP are 416 + 54 + 23 + 29 + 20 + 8 = 550. The
FN are 469 + 48 + 19 + 41 + 32 + 25 = 634. The precision would be

2368
2368+550

= 0, 811 and the Recall 2368
2368+634

= 0, 788.

Figure 2.14: Example of confusion matrix

Importance given to Precision and Recall It is known that the weight
given to Precision and Recall in the performances evaluation is problem re-
lated. In medical and clinical applications, a low FN ratio is often much
more important than the FP ratio, especially for the classes that indicate a
patology. In this project, 135, 145 and 160 are the SP classes that represent
a pathological condition (see table 1.2). For this reason it is very important
to have a very high Recall for those classes, i.e. low number of FN . On the
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other hand, too many false alarms would lead to a lack of reliability in the
monitoring device: for this reason, a high Precision, that is a low number of
FP, for these three classes is needed as well. Summarizing, the most impor-
tant value to be evaluated in terms of performances of a clinical device is the
Recall, that should be high enough for the classes indicating hypertension.
However, high Precision is requested too in order to lower the number of
false alarms. Precision and high recall together are the best solution for the
classes indicating high pressure or hypertension.

For this reason, the whole optimization of the MLP parameters was done
firstly by assessing the accuracy, in order to have an idea of the general quality
of the classification averaged over all classes. Then Recall and Precision were
evalued separately for all classes, but the decisions about the final parameters
choice were done in order to maximize the hypertension classes Recall.

2.2.9 Computational cost and memory load of the model

In order to choose the final model, it is very important to take under control
the computational cost of the model in terms of memory storage needed. In
fact, in order to execute the inference of an ANN algorithm on a MCU, it is
necessary to store the weights, activation, the input data and theoutput data,
usually in 32 bit floating point format that requires 4 Bytes. For the compu-
tational cost analysis of the final model, the STM32CUBE.AI toolkit from
STMicroelectronics was used. This toolkit is capable of interoperating with
the commonest Artificial Intelligence libraries (such as Keras, Tensorflow,
Caffe, Lasagne and ConvNetJs) in order to convert any pre-trained ANN
in a C-language format, ready to be written onto the STMicroelectronics
(MCUs)[47].

This tool is able to.

• provide informations about the CPU load (multiply and accumulate
macc operations) and memory (RAM and ROM) required in order to
embed the ANN into a MCU;

• show a list of STMicroelectronics MCUs containing the necessary mem-
ory to both store the necessary parameters and support the calculus;

• perform a layer-per-layer analysis of the CPU load and memory re-
quirements;
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• Compress the weights from a 32-bit floating point format to 8-bit quan-
tized: this allows both saving of flash memory and in some cases the
reduction of the computational cost, since operating with 8-bit format
requires less operations;

• compare the compiled model with the original one in terms of accuracy
and time required for the single inference;

The flash memory (ROM) of the STMicroelectronics MCUs vary from a
few dozens of kB to 1024 or 2048 kB, while the ram varies from a few dozens
of kB to hundreds of kB. The MCU used within the Remote monitoring group
devices is the STM32L4R7 and contains:

• a ROM of 2048 kB

• a RAM of 640 kB

In order to say that the ANN is embeddable, the flash and RAM memory it
requires must be lower than the STM32L4R7 available ones.

The weights, which are the most memory requiring part of the ANN,
are stored into the ROM, while the input values, the output values and the
activations are stored into the RAM. After loading, the Keras model was
compiled in C and different compression of the weights were evaluated: they
can be compressed by 4 or 8 times, basing on the memory saving necessities.
In case the model is compressed, a validation cross-correlation analysis is
performed between the keras and the C-compiled model performances, to
check if the accuracy of the latter was compromised. Both models inferences
are done on random data and the output classification of the original model
is taken as the ground truth for the C-compiled one. If the Validation results
in terms of accuracy are low, it does not always mean that the implemented
model performances have decreased, yet a further analysis on the network is
required to check the accuracy.

The inference time is very important to understand if it can be done
in real-time. In fact, being the purpose of the project to create a real-time
and beat-to-beat pressure monitoring system, the inference time should be
inferior to the physiological duration of a cardiac cycle. The Heart rate at rest
can vary from 60 to 100 bpm. This means that the inference time should be
lower than 0.6 seconds in order to evaluate each PPG period. If the inference
time were higher, it could still be done in real-time, but it would not be a
beat-to-beat evaluation because some PPG periods would be lost.
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Chapter 3

Results
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3.1 Parameters optimization

For the parameters optimization the Model zero was used: the accuracy of
this model before the parameters and hyperparameters optimization was 73%
and the loss was 0.71 over the test set.

3.1.1 Cross validation

The first parameters to be investigated were the activation function and the
Optimizer.

Activation function Accuracy
relu 0.743

linear 0.501
tanh 0.750

sigmoid 0.757
hard sigmoid 0.754

softmax 0.729
elu 0.734
selu 0.718

softplus 0.749
softsign 0.756

Optimizer Accuracy
sgd 0.679

rmsprop 0.727
Adagrad 0.683
Adadelta 0.71

Adam 0.74
Adamax 0.734
Nadam 0.742

As it can be seen the sigmoid activation function clearly reaches the highest
values. Contrarily, the optimizer choice has been trickier because both Adam
and Nadam return very similar accuracies. Because of this reason, Adam and
Nadam optimizers were further investigated with another cross validation
perfromed by varying the learning rate.
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Learning rate Adam accuracy Nadam accuracy
0.001 0.748 0.750
0.002 0.754 0.750
0.003 0.760 0.761
0.004 0.761 0.755
0.005 0.761 0.761
0.006 0.762 0.762
0.007 0.763 0.757
0.008 0.759 0.751
0.01 0.759 0.750
0.03 0.745 0.669
0.06 0.661 0.254
0.1 0.351 0.252
0.2 0.163 0.141
0.3 0.199 0.141
0.5 0.141 0.141

Table 3.1: Adam and Nadam optimization algorithm CV

The Adam optimizer showed better performances, hence the initial choiche
of using it was confirmed. Moreover, the Stocastic Gradient Descent (SGD)
is investigated because is well known that if used in a MLP with the proper
learning rate and momentum values it can lead to better performances than
the others optimization algorithms. Unfortunately, the SGD performances
were much lower than Adam optimizers.
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SGD learning rate SGD momentum Accuracy
0.005 0.0 0.577
0.005 0.2 0.579
0.005 0.4 0.579
0.01 0.0 0.625
0.01 0.2 0.623
0.01 0.4 0.624
0.03 0.0 0.673
0.03 0.2 0.674
0.03 0.4 0.675
0.1 0.0 0.673
0.1 0.2 0.675
0.1 0.4 0.677
0.2 0.0 0.469
0.2 0.2 0.471
0.2 0.4 0.390
0.3 0.0 0.16
0.3 0.2 0.532
0.3 0.4 0.337
0.5 0.0 0.49
0.5 0.2 0.166
0.5 0.4 0.143

Table 3.2: SGD CV

Epochs and batch size were explored after the optimization algorithm
grid search.
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Epochs Accuracy
500 0.755
750 0.757
1000 0.759
1250 0.758
1500 0.761
1750 0.756
2000 0.755
2500 0.754

Batch size Accuracy
32 0.753
64 0.756
128 0.758
256 0.758
512 0.760
1024 0.762
2048 0.757
4096 0.749

Table 3.3: Epochs number and Batch size CV

The regularization was assessed by changing the dropout rate first by
0.1 step into the range [0-1]. Because a descending trend was observed with
the increase of dropout rate, the range was reduced to [0-0.1] and the step
to 0.02. Because the best result was given by Dropout 0.02, a third search
was given for values close to 0.2. The best result was achieved with a 0.13
dropout rate. The initialization mode was tested, with a good result shown
by lecun uniform and glorot normal.
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Dropout Accuracy
0.0 0.757
0.1 0.749
0.2 0.737
0.4 0.721
0.5 0.711
0.6 0.698
0.8 0.642
0.9 0.551
0.02 0.761
0.04 0.759
0.06 0.753
0.08 0.751
0.013 0.764
0.017 0.763
0.023 0.761
0.026 0.760

Initialization mode Accuracy
uniform 0.753
normal 0.757

zero 0.609
lecun uniform 0.762
glorot normal 0.761
glorot uniform 0.759

he normal 0.760
he uniform 0.761

Table 3.4: Dropout rate and Initialization mode CV

Finally a wide search over the activation functions and Initialization mode
was done in order to find the best combination, that resulted to be the use
of sigmoid function together with glorot uniform.
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Activation function Initialization mode Accuracy
relu uniform 0.740
relu normal 0.742
relu zero 0.142

linear uniform 0.503
linear normal 0.501
linear zero 0.145
tanh uniform 0.747
tanh normal 0.750
tanh zero 0.140

sigmoid uniform 0.754
sigmoid normal 0.757
sigmoid zero 0.609
sigmoid lecun uniform 0.761
sigmoid glorot uniform 0.763
sigmoid glorot normal 0.759
sigmoid he normal 0.760
sigmoid he uniform 0.759

hard sigmoid lecun uniform 0.755
hard sigmoid glorot uniform 0.757
hard sigmoid glorot normal 0.754
hard sigmoid he normal 0.756
hard sigmoid he uniform 0.754

softsign lecun uniform 0.756
softsign glorot uniform 0.756
softsign glorot normal 0.756
softsign he normal 0.756
softsign he uniform 0.755

Table 3.5: Activation function and initialization mode combined CV

3.1.2 Manual tuning

Architecture tuning

The first task of architecture tuning is to understand what are the architec-
tures that represent the best compromise between low complexity and high
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performances.
As it can be seen from the following figures, increasing the architecture

size, the performances over the test set in terms of accuracy 3.1, loss 3.2, F1-
score 3.4, Precision 3.6 and Recall 3.5 firstly improve and subsequently reach
a plateau, that represents the best achievable performances. The plateau
average value is calculated for each of these metrics, by averaging the values
of the 3, 4 and 5 layer architectures for each curve. Then, a plateau threshold
was calculated as

plateau threshold = plateau average− ((2)%plateau average) (3.1)

for accuracy, Recall, Precision and F1-score and as

plateau threshold = plateau average + ((3)%plateau average) (3.2)

for the loss metric. The plateau threshold is represented in the graphs by a
dotted line and make easy to understand which are the architectures with
performance values comparable to the plateau average, i.e. the ones eligible
as final model architecture.

Figure 3.1: Accuracy variation as a function of width and depth. The red
line represent the plateau threshold.
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Figure 3.2: Loss variation as a function of width and depth. The red line
represent the plateau threshold.

Let us call these the plateau architectures. Although the plateau architec-
tures have similar performances in terms of loss and accuracy, their compu-
tational complexity, which is described by the number of total parameters,
varies a lot when the width and the depth increase (see Figure 3.3).

Figure 3.3: Keras model number of total parameters variation of the different
architectures tested

The preferred ANNs for the MCU implementation are those with a little
number of total parameter, i.e. the ones on the left side of the Figure 3.3.

For example, among all of the architecture tests, [120,360] is considered
a good compromise because it shows one of the lowest complexities, with
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48007 total parameters, and loss and accuracy values within the plateau
threshold. Contrarily, the choice of the architecture [120, 600, 240, 120, 360]
would not add significant information respect to the [120,360] model, though
it contains much more neurons, because it shows similar values of accuracy
and loss, resulting only heavier.

The F1-score metric clarifies what are the performances for each different
class. All of them show the characteristic plateau. The plateau average and
plateau threshold have been calculated separately for each class.

Figure 3.4: F1-score variation of all SP classes as a function of ANN archi-
tecture. The plateau thresholds are represented by a dot line of the same
color of the correspondent class.

From the plot it is possible to see that [120,120] architecture is the
minimum complexity architecture by which the plateau threshold has been
reached by all classes curves.

Moreover, by F1-score plateau average values of Table 3.6 it is introduced
an interesting aspect of the performances over the different classes: the ex-
ternal classes show much better performances than the central ones.

Class 90 105 115 125 135 145 160
F1-score 0.84 0.82 0.64 0.61 0.67 0.78 0.93

Table 3.6: Plateau average values for F1-score metric
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This fact is remarked by the Recall and Precision analysis over the classes,
which plateau average values are shown in the table 3.7:

Class 90 105 115 125 135 145 160
Recall 0.83 0.86 0.60 0.61 0.67 0.81 0.94

Precision 0.86 0.80 0.70 0.61 0.68 0.75 0.92

Table 3.7: Plateau average values for Recall and Precision

Figure 3.5: Classes Recall variation as a function of ANN architecture
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Figure 3.6: Classes Precision variation as a function of ANN architecture

In Table 3.8 the classes were ordered basing on Recall performances:

Class SP range (mmHg) Precision Recall
160 [150 - 170] 0.92 0.94
105 [100 - 109] 0.80 0.86
90 [80 -99] 0.86 0.83
145 [140-149] 0.75 0.81
135 [130 - 139] 0.68 0.67
115 [110 - 119] 0.7 0.60
125 [120 - 129] 0.61 0.61

Table 3.8: Summary of precision and recall average values after reaching the
plateau in order of Recall performances
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The outcome of the Recall plot analysis is that the most performant
architectures for Recall oltimization are [120,120], [120,240], [120, 600], [120,
600, 60], [120, 600, 120] and [120, 600, 240, 100, 60]. Of course, the first two
are the preferred because of the lowest computational cost.

Recall Precision
Class 135 145 160 135 145 160

[120,120] 0,70 0,78 0,93 0,63 0,75 0,92
[120,240] 0,74 0,76 0,92 0,62 0,76 0,91
[120, 600] 0,68 0,81 0,95 0,68 0,76 0,91

[120, 600,60] 0,69 0,78 0,94 0,65 0,78 0,93
[120, 600,120] 0,68 0,83 0,92 0,66 0,74 0,92

[120, 600, 240, 100, 60] 0,69 0,82 0,93 0,66 0,72 0,91

From this table it is clear the trade-off between high recall of the 145
class (above 0.8) and good enough recall for 135 class (above 0.7). A good
choice would be to maximize the recall for the most critical classes, i.e. 145
and 160, and in the meanwhile look for a good Precision for the less critical
class, i.e. 135. This compromise is obtained with the [120, 600] architecture,
which raises 160 class Recall to 0.95, its highest value, and 145 class Recall to
0.81, which is almost the maximum value reached by this class over the whole
trials. Furthermore, it can be seen as this architecture choice maximizes the
Precision value of the 135 class, that reaches 0.68 value, without penalizing
the precision of 145 and 160 classes that stay high for both cases. Hence the
architecture [120, 600] was chosen as the final model architecture. The
number total parameters of this architecture is 78727.
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3.2 Final model

After the manual tuning and the cross validations performed, the final model
was defined as:

• architecture: [120, 600];

• optimization algorithm: Adam

• learning rate: 0.007;

• initialization mode: glorot uniform;

• activation function (hidden layers): sigmoid ;

• Dropout rate: 0.013;

• Batch size: 1024;

• Epochs number:1500;

Class Precision Recall F1-score
90 0,91 0,88 0,89
105 0,85 0,92 0,88
115 0,67 0,60 0,63
125 0,60 0,61 0,61
135 0,71 0,69 0,70
145 0,83 0,88 0,85
160 0,95 0,97 0,96

accuracy 0.79

Table 3.9: Adam and Nadam optimization algorithm CV
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Figure 3.7: Final model confusion matrix

Figure 3.8: Final model confusion matrix expressed as percentage of the total
class elements.
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3.3 Computational cost of the final ANN model

The results obtained from the STM32Cube.AI toolkit are presented below.

3.3.1 ROM and RAM required

The following results should be compared with the STM32L4R7 MCU mem-
ories:

• ROM: 2048 kB;

• RAM: 640 kB;

The input and output are stored in FLOAT32 format, i.e. each value requires
4 Bytes. Being the input and output sizes 15 and 7 respectively, the total
memory needed for them can be obtained by multiplying these sizes by 4.

no compr compr by 4 compr by 8
input 60 B 60 B 60 B

output 28 B 28 B 28 B
macc 85305 85305 85305

weights 307.53 KB 86.29 KB 41.17 KB
activations 2.81 KB 2.81 KB 2.81 KB

ROM (total) 307.53 KB 86.29 KB (-71.94%) 41.17 KB (-86.61%)
RAM (total) 2.90 KB 2.90 KB 2.90 KB

Table 3.10: General details about the ANN final model requirements in terms
of maccs, ROM and RAM. Comparison of no compression (no compr), com-
pression by 4 (compr by 4) and compression by 8 (compr by 8) cases.

Considering that in C language each Keras Dense layer is splitted into two
layers, a Dense layer (indicated as D) and a Non-linearity layer (indicated as
NL), the layer by layer analysis are presented below.
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Layer out shape param # macc (#)
Input (15,)
1 D (120,) 1920 1800

1 NL (120,) 1200
2 D (600,) 72600 72000

2 NL (600,) 6000
out D (7,) 4207 4200

out NL (7,) 105

Table 3.11: macc required for each layer.

Layer out shape params #
ROM (kB)

no compr compr by 4 compr by 8
Input (15,)
1 D (120,) 1920 7.5 7.5 7.5

1 NL (120,)
2 D (600,) 72600 283.59 3.66 37.56

2 NL (600,)
out D (7,) 4207 16.43 5.13 2.14

out NL (7,)

total (kB)
ROM required 307,53 86,29 41,17

ROM required reduction -71,94% -86,61%

Table 3.12: Layer by layer ROM requirements comparison. The cases of no
compression (no compr), compression by 4 (compr by 4) and compression by
8 are compared.
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Layer out shape param # macc (%) rom (%)
Input (15,) 0 0
1 D (120,) 1920 2.1 3.6

1 NL (120,) 1.4 0
2 D (600,) 72600 84.4 91.2

2 NL (600,) 7 0
out D (7,) 4207 4.9 5.2

out NL (7,) 0.1 0

Table 3.13: Layer by layer analysis over the layer load in terms of macc and
ROM percentage

no compr compr by 4 compr by 8
cross correlation accuracy 100% 100% 50%

Table 3.14: Validation results of cross correlation between the reference and
the C-compiled model ouput. The accuracy is not to be intended as the
metric, but as accuracy in reproducing original model performances

elapsed time(s) Original no compr compr by 4 compr by 8
10 inputs 0.202 6.15 6.14 6.15

single inference 0.0202 0.615 0.614 0.615

Table 3.15: Validation results of inference time. The elapsed time of the
single inference time is the one that counts.
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3.4 Results Discussion

The ANN classification performances As it can be seen from the final
ANN model results, the classification performances are acceptable for con-
tinuous monitoring. The Recall over the most critical classes 145 and 160
indicating grade 1 and grade 2 hypertension show a very high Recall and
Precision. This means that a hypertension case of this type, that represents
a high death risk, can be correctly detected by the monitoring device.

Furthermore, it can be seen from the 3.7, that the class 160, for the 93%
of the misclassification is wrongly classified in the 145 class, which is still an
hypertension class. Hence, the error over this class can be considered close to
zero, considering that the misclassification would generate an hypertension
alarm in 93% of cases.

The 145 class is classified for the 4.9% of times as 135 and 4.0% of times in
the 160 class. Hence, the classification error of this class is not very dangerous
because:

• if the classification is 135, it still generates a state of alert, because it
represents high-normal SP values

• if the classification is 160, it is a False positive of critical hypertension
a little bit more severe than the 145 class one, but it is less dangerous
than a False negative.

The potentially dangerous misclassification of the 145 class is represented
by 90, 105, 115, 125 and 135 classes, that represent the 0.67% of the total
misclassification, that is the 8.17% of classifications.

The class 135, corresponding to high normal pressure, presents a 69%
recall and 71% precision, which can be considered good enough for a class
which represent a lower death risk than the previous ones. This is a class in
which both a good Recall and a good Precision would be required because:

• a false positive in the 115 and 125 classes would result in absence of
alarm, which is not correct, being 135 a value indicating not hyperten-
sion, but still a high pressure;

• each false positive that falls in the 145 class would generate an alarm
that overestimates the risk.
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Considering that the 135 represent a potentially risky condition over long-
term, its classification are considered good enough for an hypertension mon-
itoring system, but they should be increased at least to 80% for both Recall
and Precision.

The classification over the classes 115 and 125, indicating normal pres-
sure, are not very satisfactory, with a Recall of 0.6 for both classes and a
precision of 0.6 for the 125 class and 0.67 for the 115 class. This is not a de-
sirable performance in classification, but considering that these classes do not
represent a pathological condition, this value can be considered acceptable.
It can be seen from 3.7 and 3.8 that the ANN reaches its major misclassifi-
cation errors for these two classes, that are often exchanged between them
during the prediction.

The ANN computational cost The computational cost of the final
model is low enough to allow the ANN embedding into the STML4R7 MCU.
The original model, without compression, already shows satisfactory mem-
ory requirements: it would occupy only the 15 % of the ROM and the 0,4
% of the RAM. This is a very good computational cost, that allows the em-
bedding of the ANN on a MCU that, other than the pressure monitoring,
contains other functionalities and needs to reserve ROM and RAM space to
other applications.

Although this very low computational load, if it is desired by the user,
that for example wants to embed the same model on a less performant board,
the ROM occupation can be lowered to 4.3% and 2.0% in case of compression
by 4 and by 8 respectively. Moreover, it can be seen from Table 3.12 3.13
that the layer which requires more ROM memory usage is the second layer
of the model, that contains 600 neurons. By adopting another architecture
with a smaller second layer, such as [120, 120] or [120,240], the performances
would be penalized by a few percentage points, but the load of the model
could be further decreased.

From the cross-correlation results it can be seen as the not compressed
and the compressed by 4 C-compiled model are perfectly suitable for the
embedding, because they show an accuracy of 100% with respect to the
reference (original model result). On the other hand, for the compressed by
8 model the cross correlation accuracy drops to 50%, meaning that before
embedding it into a MCU, further analysis over the model performances
should be done.

107



The time requested by an inference has been described in 3.15. The
prediction time for the single input is slightly too high for a beat-to-beat
monitoring. In fact, as it was said, for the beat-to-beat prediction the in-
ference time should have been inferior to 0.6 seconds in healthy conditions.
However, the time window required for a single prediction largely satisfies
the necessity of pressure monitoring in real applications of systolic pressure
continuous monitoring. Furthermore, in order to allow the pressure beat-to-
beat monitoring on people with tachyarrhythmias, the inference time should
be lowered to a lower value. If the inference time was 0.4 seconds, it would
allow the inference of 150 beats per minutes, while a 0.33 inference time
would allow the inference of 180 beats per minutes.

In fact, the classical techniques pressure measuring devices have a time
resolution from 3 minutes (sphygmomanometer) to 20 minutes (oscillometric
devices).

3.4.1 Future improvements

The optimization process led to an 8% improvement in accuracy over the
test set. Future expedients could improve very much the ANN performances
by improving the dataset:

• Enlarging of the dataset by number of patients records and by increas-
ing the number of training examples of the classes that were represented
by many less number of values i order to avoid the upsampling of some
classes examples;

• Creation of a dataset specific for the device in which the ANN should
be embedded. In this way the data would be device specific and the
performances would be higher;

• moving average over a window of several predictions: in this way, false
positives and false negatives value should be averaged out and a value
of systolic pressure closer to the real one would be achieved.

• incrementation of features calculated over the morphology

Moreover, the classes representing the two ranges 110-119 and 120-129
mmHg could be merged in the classification process because both represent
normal values of SP and a 20 mmHg interval class would not arise problems.
Moreover, since the two classes distinguish is the major difficulty of the
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model, probably the performances over these two classes would be increased
by merging them.
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Chapter 4

Conclusions and future
applications
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4.1 Conclusion

The aim of this project was to to create a MCU embeddable classifier based
on neural networks able to correctly predict the systolic pressure range from
the Photoplethysmography signal morphology. The work was not easy due
to the non linear relationship between PPG morphology and SP. A large
dataset containing 124616 PPG periods was created and 15 features were
calculated for each of them. A supervised learning algorithm was chosen
and, hence, each PPG period of the dataset was labelled with the correct SP
value. Furthermore, the features were standardized, the targets discretized
and one-hot-encoded and the dataset itself was balanced in order to present
20000 examples per class.

The ANN model chosen was a MLP with 15 input neurons, and 7 output
classes representing 7 different SP ranges. The initial model had good values
of classification performances, with an initial accuracy of around 73 % over
the test set. After a cross validation of the Keras model parameters and a
manual tuning of the MLP depth and width, the accuracy over the test set
raised to 79%. The cross validation was performed on activation function,
optimizer, learning rate, epochs number, batch size, Dropout, initialization
mode and a combination of activation function and initialization mode. After
the cross validation, the manual tuning was performed over 1,2,3,4 and 5
depth architectures and the best models were decided by assessing the Recall
performances over the most critical classes that represent grade I and II
hypertension, i.e. 145 and 160.

The final model achieved 97% and 88% recall and 95% and 83% precision
values for 160 and 145 respectively. This is a very good result because a
critical hypertension value can be detected in a very accurate way and with
a very low percentage of error. For the very low SP classes such as 90 and 105
the results are still over 85% for both precision and recall. The only classes
that the MLP does not classify accurately are 115, 125 and 135, meaning
that it gets confused over them. By assessing the confusion matrix of the
final model, 115 and 125 are the two classes that the ANN confuses the most.
All of this can be confirmed with the co

The memory required from the final chosen model, if compiled in C and
embedded into a MCU is of 307 kB of ROM and 2.9 kB of RAM, that is
acceptable since the STM32 MCUs ROM and RAM can reach up to 20148
kB and 640 respectively. The computational cost of the ANN is acceptable
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for be embedded into a STM32L4R7, because the time required for each
inference is 614 ms.
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