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Abstract 

In the past years a lot of different chassis control system have been developed in order to improve handling 

performance, ride comfort and safety of the vehicle. These chassis control systems are based mainly on 

the active control of the steering system, the traction/braking system and the suspensions. Depending on 

the riding conditions one of these systems can be more effective than the others, so it difficult to choose 

the best compromise for al the possible scenarios. For this reason, most of the new studies on this topic 

are focusing on the integration of all of the available control system to obtain and Integrated Chassis 

Control (ICC) system able to improve the vehicle performances in a wide range of operation conditions. 

In this context, being able to formulate the control law for the ICC is the key to achieve the expected 

results. In this thesis a model-based procedure for the design of the controllers is presented taking as an 

example the synthesis of an anti-roll moment distribution controller for yaw rate tracking. The model 

used in this case is a simple model in which only 3 degrees of freedom are taken into account, but in order 

to apply the model-based approach to a wide range of active systems like dynamic lift or pitch control, a 

more advanced vehicle model is needed. For this purpose, a full vehicle model with 6 degrees of freedom 

with active suspensions and which takes the suspension kinematics into account is presented. The response 

of the newly developed model is then compared to that of a validated vehicle model by simulating different 

manoeuvres. Finally, the procedure to linearise the model is presented to obtain the state space formulation 

which can be used, by using the model-based approach, to synthetize a variety of controllers and thus to 

obtain the control laws needed for the implementation of an Integrated Chassis Control. 
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1 Introduction 

In the last years many studies have been focused on the design of automatic control devices for road 

vehicles which are able to perform autonomously different control functions that usually are a support for 

the driver, but, in some cases, they can even replace the driver action. As said in “The automotive chassis: 

volume 2” (2008) by the author G. Genta, the most actively studied control system are: 

• Engine control systems 

• Longitudinal slip control in traction (ASR, Anti Spin Regulator) 

• Longitudinal slip control in braking (ABS, Antilock Braking System) 

• Vehicle dynamics control systems, (VDC, Vehicle Dynamic Control, ESP, Enhanced Stability 

Program, DSC, Dynamics Stability Control) 

• Suspension control systems (semi-active and active suspensions) that are capable of adapt the 

suspension characteristics to the type and conditions of the road 

• Active steer control 

• Electric braking 

• Servo controlled gearbox and clutch 

In particular, the vehicle dynamics control systems are implemented in order to achieve improved vehicle 

performance and safety in limit conditions. Usually these systems act by generating a yaw torque capable 

of modifying the vehicle behaviour. This yaw torque is often produced by differentially braking or 

differentially driving (torque vectoring) the wheels of the same axle. When these systems are activated, 

the driver can control the trajectory normally through the steering wheel and the control device tries to 

modify the vehicle behaviour, by applying the yaw torque, to obtain the response required by the steering 

input of the driver. 

Another way to control the lateral dynamics of the vehicle it by actively modifying the balance of the 

lateral forces exerted by the tires. This can be obtained by means of active anti-roll bars that can be 

controlled to modify the lateral load distribution between he front and rear axle of the vehicle, thus 
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controlling the lateral force generated by the two axles. This kind of system has been studied by many 

authors, and in the next section this topic will be discussed more in details. 

1.1 Anti-Roll moment distribution control (Force Vectoring) 

It is possible to enhance the cornering response of a vehicle by means of an active suspension system, 

which allows to vary the lateral load transfer distribution between the front and rear axles, e.g., to enable 

higher levels of lateral acceleration during cornering and to mitigate vehicle understeering in quasi-steady-

state conditions, and to increase yaw and sideslip damping in transient conditions. Lateral load transfer 

produces a variation of the axle lateral force and in particular its distribution, between the front and rear 

axle, affects the cornering response of the vehicle. In [1]-[2] the authors analyse this effect by observing 

the resulting axle lateral forces from fully nonlinear tyre models under different conditions. 

Clover et al. [3] examine how the lateral load transfer distribution influences the understeering 

characteristics of the vehicle, via computer simulation. The analysis is carried out for different values of 

the vehicle lateral acceleration and the results show that, in limit handling conditions, the distribution of 

lateral load transfer is indeed very influential on the understeer characteristics of the vehicle. 

Electronically controllable suspension systems have been already used for tracking a reference yaw rate 

and shaping the understeer characteristics of a vehicle and some results are presented in [4]-[7]. Moreover, 

Shim et al. [6] addresses the effectiveness of active suspension control over lateral and longitudinal vehicle 

dynamics obtained by modulating the normal load for each wheel. The control of normal forces is assessed 

on several scenarios including split µ and cornering over bumpy roads. The results show improved vehicle 

handling when normal force control is active. In addition, the authors investigate the power requirements 

of the active suspension actuators. Varnhagen et al. [8] propose an active suspension system to improve 

the vehicle lateral dynamics by controlling the wheel vertical forces, but with negligible effects on the 

chassis heave-pitch-roll dynamics. Yamamoto [9] analyses the effect of different active control systems 

(including vertical load control) on yaw and lateral motion of the vehicle in both the linear and nonlinear 

range of the tyre forces. The results confirm the improvement in vehicle handling given by the use of 

active systems. Finally, Elbeheiry et al. [7] propose an integration between active front steering and active 

roll moment control systems in order to enhance vehicle controllability in case of emergency manoeuvres. 
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1.2 Thesis content 

The content of this thesis can be summarised in three main parts: 

• Section 2 will present a procedure based on the model-based design approach to design the 

controller for active anti-roll bars (force vectoring) 

• Section 3 will present the procedure used to obtain a novel vehicle model in which the suspensions 

kinematic is taken into account and an active suspension system is implemented. After the model 

definition, a procedure to linearise it for controller design purpose will be described. 

• Section 4 will present the conclusions and the future developments of this study  

2 Model based controller design: anti-roll moment distribution 

controllers for yaw rate tracking 

In the context of anti-roll moment distribution active control, a model-based approach can be used in 

order to synthesize the final controller for the vehicle. The model-based approach involves the creation of 

a vehicle model, capable of representing faithfully the yaw dynamics, which is then linearised to be used 

as the plant of the system. The plant of the system consists in a transfer function between the input given 

to the system and the output needed to create the feedback loop, ones this transfer function is obtained 

it’s possible to apply a simple PI controller and tune it via an optimization routine built in MATLAB 

environment, thus obtaining the optimal gains for the controller. 

In this context it is essential to formulate mathematical vehicle models that correctly approximate the 

tyre behaviour in cornering under different vertical loading conditions and that can therefore be used for 

control design purpose. Furukawa et al. [1] assess the effectiveness of direct yaw moment control and 

active steering in case of high lateral acceleration conditions and state that: “taking the nonlinearity of 

tyres and vehicle dynamics into consideration is essential for introducing the control law for the chassis 

controls”. In particular, their study shows how the tyre nonlinearities can heavily influence the generation 

of the stabilising yaw moment, and therefore why it is of the essence to consider them in the controller 
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design stage. In addition to that, the study recognises the treatment of nonlinear tyre characteristics as 

the main issue in the area of chassis controls. 

Regarding model-based suspension control design, Jialing et al. [2] state that due to the high level of 

nonlinearity in the effect of the lateral load transfer on the lateral dynamics of the vehicle, it is necessary 

to formulate mathematical models that, although approximated, are still able to catch the fundamental 

effects of load transfer. Various approaches have been proposed in the past years in the literature. In [3] 

[4] [5] the authors use the commonly adopted parabolic relationship between the axle cornering stiffness 

and lateral load transfer. In particular, Chu et al. [5] investigate the relationship between the nonlinear 

cornering stiffness, tyre coefficients, front-to-rear roll stiffness ratio and lateral load transfer. Similarly, in 

[6] Bodie et al. present a formulation for the axle cornering stiffness which includes a quadratic relationship 

with the axle lateral load transfer. Badji et al. [7] propose a cubic formulation of the lateral force via a 

Taylor series expansion of the Pacejka magic formula [8], while Lakehal-Ayat et al. [9] adopt a nonlinear 

single-track vehicle model including a combination between a parabolic formulation and a simplified 

Pacejka Magic Formula to describe the axle lateral force, and use this model for the design of a yaw rate 

tracking controller. In [10] Cho et al. compute the cornering stiffness to be used in the tyre model of a 

single-track vehicle model as a weighted function of two different cornering stiffness values corresponding 

to specific vehicle cornering conditions (namely agility and manoeuvrability cornering stiffness). Similarly, 

Shin et al. [11] propose a linearised model formulation for state estimation purpose in which the cornering 

stiffness value is updated depending on the operating conditions of the vehicle.  

This section presents a linearised model for control design specifically applied to the design of front-to-

total anti-roll moment distribution controllers for yaw rate tracking. The control strategy implies a feed 

forward contribution that is derived using a quasi-static model whereas the feedback part is based on a 

PI (proportional-integral controller) that is designed using the presented vehicle model. The controller is 

then tested in simulation using a validated nonlinear vehicle model of an SUV (Sport Utility Vehicle). 
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2.1 Model description 

 
Figure 1. Top view of the single-track model and rear view of the vehicle with indication of the sign conventions, main variables 

and constants 

In this model the roll moment balance equation is added to the force balance equations of the classic  

bicycle model resulting in the following system: 

 

⎩�
⎨
�⎧ 𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟� = 𝐹𝐹𝑦𝑦,𝐹𝐹 + 𝐹𝐹𝑦𝑦,𝑅𝑅

𝐼𝐼𝑧𝑧𝑟𝑟̇ = 𝐹𝐹𝑦𝑦,𝐹𝐹 𝑎𝑎 − 𝐹𝐹𝑦𝑦,𝑅𝑅𝑏𝑏 + 𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸

 𝐼𝐼𝐸𝐸�̈�𝜑 = 𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟�ℎCG + 𝑚𝑚𝑚𝑚ℎCG𝜑𝜑 − 𝑀𝑀𝐴𝐴𝑅𝑅,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐹𝐹 − 𝑀𝑀𝐴𝐴𝑅𝑅,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑅𝑅 − 𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝐹𝐹 − 𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝑅𝑅

 (1) 

where 𝑚𝑚 is the mass of the vehicle, 𝑚𝑚  is the vehicle speed, 𝑟𝑟 is the vehicle yaw rate, 𝛽𝛽 ̇is the time derivative 

of the sideslip angle at the centre of gravity of the vehicle, 𝐹𝐹𝑦𝑦,𝐹𝐹  and 𝐹𝐹𝑦𝑦,𝑅𝑅 are the lateral forces at the front 

and rear axles,  𝐼𝐼𝑧𝑧 is the yaw moment of inertia, 𝑟𝑟 ̇is the yaw acceleration, 𝑎𝑎 is the front semi-wheelbase, 

𝑏𝑏 is the rear semi-wheelbase, 𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸 represents the external contributions of the yaw moment,  𝐼𝐼𝐸𝐸 is the 

roll moment of inertia, �̈�𝜑 is the roll acceleration, ℎCG is the centre of gravity height, 𝑚𝑚 is the gravity 

acceleration, 𝜑𝜑 is the roll angle, 𝑀𝑀𝐴𝐴𝑅𝑅,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐹𝐹  and 𝑀𝑀𝐴𝐴𝑅𝑅,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑅𝑅 are the passive contributions of the anti-roll 
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moments on the front and rear axles, 𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝐹𝐹  and 𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝑅𝑅 are the active contributions of the anti-

roll moment.  

The passive contributions of the anti-roll moment are described by: 

 
𝑀𝑀𝐴𝐴𝑅𝑅,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐹𝐹 = 𝐾𝐾𝐹𝐹 𝜑𝜑 + 𝐷𝐷𝐹𝐹 �̇�𝜑 

𝑀𝑀𝐴𝐴𝑅𝑅,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑅𝑅 = 𝐾𝐾𝑅𝑅𝜑𝜑 + 𝐷𝐷𝑅𝑅�̇�𝜑 
(2) 

where 𝐾𝐾𝐹𝐹  and 𝐾𝐾𝑅𝑅 are the roll stiffnesses on the front and rear axles, 𝐷𝐷𝐹𝐹  and 𝐷𝐷𝑅𝑅 are the roll damping 

coefficients on the front and rear axles and �̇�𝜑 is the roll rate.  

The active contribution of the anti-roll moments is expressed as function of the lateral acceleration as 

follows: 

 
𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝐹𝐹 = 𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟��

𝑏𝑏
𝑎𝑎 + 𝑏𝑏

𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑓𝑓(ℎ𝐶𝐶𝐶𝐶 − 𝑅𝑅𝑅𝑅𝑅𝑅 �𝑘𝑘 

𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝑅𝑅 = 𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟� � 𝑎𝑎
𝑎𝑎 + 𝑏𝑏

𝑅𝑅𝑅𝑅𝑅𝑅 + (1 − 𝑓𝑓 (ℎ𝐶𝐶𝐶𝐶 − 𝑅𝑅𝑅𝑅𝑅𝑅 �𝑘𝑘 

(3) 

where the term 𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟� represents the lateral acceleration 𝑎𝑎𝑦𝑦, 𝑘𝑘 is a gain that indicates the level of 

activation of the controller. The term 𝑅𝑅𝑅𝑅𝑅𝑅 represents the height of the roll center from the ground. The 

term 𝑓𝑓 is the control variable and it is defined as the ratio between the active front anti-roll moment and 

the total active anti-roll moment: 

 
𝑓𝑓 =

𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝐹𝐹

𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝑇𝑇𝑇𝑇𝐸𝐸
 

𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝑇𝑇𝑇𝑇𝐸𝐸 = 𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝐹𝐹 + 𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝑅𝑅 
(4) 

For the design of the controller it is supposed that ℎ𝑟𝑟𝑇𝑇𝑟𝑟𝑟𝑟 = ℎ𝐶𝐶𝐶𝐶 (Figure 1), so that 𝑅𝑅𝑅𝑅𝑅𝑅 is zero.  

By making these assumption Equation (1) can be re-written as: 

 
𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝐹𝐹 ≈ 𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟�ℎ𝐶𝐶𝐶𝐶𝑓𝑓𝑘𝑘 

𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝑅𝑅 ≈ 𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟�ℎ𝐶𝐶𝐶𝐶(1 − 𝑓𝑓 𝑘𝑘 
(5) 

The front and rear sideslip angles are: 
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𝛼𝛼𝐹𝐹 = 𝛽𝛽 + 𝑎𝑎
𝑚𝑚

𝑟𝑟 − 𝛿𝛿𝑤𝑤 

𝛼𝛼𝑅𝑅 = 𝛽𝛽 − 𝑏𝑏
𝑚𝑚

𝑟𝑟 
(6) 

where 𝛿𝛿𝑤𝑤 is the steering angle. The lateral load transfer on the i-th axle is then calculated as: 

 𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖 =
𝑀𝑀𝐴𝐴𝑅𝑅,𝐴𝐴𝐴𝐴𝐸𝐸,𝑖𝑖 + 𝑀𝑀𝐴𝐴𝑅𝑅,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑖𝑖

𝑡𝑡𝑖𝑖
 (7) 

where 𝑡𝑡𝑖𝑖 is the track width of the i-th axle.  

In this model a linearised model is realised so that it expresses the relationship between lateral axle force 

𝐹𝐹𝑦𝑦,𝑖𝑖, sideslip angle 𝛼𝛼𝑖𝑖 and lateral load transfer ∆𝐹𝐹𝑧𝑧, for the 𝑖𝑖-th axle. The linearisation point is defined by 

the value of the lateral load transfer 𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖,0 and sideslip angle 𝛼𝛼𝑖𝑖,0, as well as the corresponding axle 

lateral force 𝐹𝐹𝑦𝑦,𝑖𝑖,𝑟𝑟𝑖𝑖𝑙𝑙,0 and axle cornering stiffness 𝑅𝑅𝑖𝑖,0. The axle lateral force 𝐹𝐹𝑦𝑦,𝑖𝑖 can be expressed as linear 

function of the sideslip angle 𝛼𝛼𝑖𝑖: 

 𝐹𝐹𝑦𝑦,𝑖𝑖 ≈ 𝐹𝐹𝑦𝑦,𝑖𝑖,𝑟𝑟𝑖𝑖𝑙𝑙 + 𝑅𝑅𝑖𝑖�𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖,0� (8) 

The values of 𝐹𝐹𝑦𝑦,𝑖𝑖 and 𝑅𝑅𝑖𝑖 can be expressed as functions of the lateral load transfer 𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖, consequently, 

adopting a first order Taylor series expansion, the following linear equations are obtained: 

 
𝑅𝑅𝑖𝑖 ≈ 𝑅𝑅𝑖𝑖,0 + 𝑅𝑅′

𝑖𝑖,0�𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖 − 𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖,0� 

𝐹𝐹𝑦𝑦,𝑖𝑖,𝑟𝑟𝑖𝑖𝑙𝑙 = 𝐹𝐹𝑦𝑦,𝑖𝑖,𝑟𝑟𝑖𝑖𝑙𝑙,0 + 𝐹𝐹′
𝑦𝑦,𝑖𝑖,𝑟𝑟𝑖𝑖𝑙𝑙,0�𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖 − 𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖,0� 

(9) 

Where 𝑅𝑅′
𝑖𝑖,0 and 𝐹𝐹′

𝑦𝑦,𝑖𝑖,𝑟𝑟𝑖𝑖𝑙𝑙,0 are the axle cornering stiffness and lateral axle force gradients with respect to 

load transfer. Combining Equation (8) and Equation (9) the final linearised model is represented by: 

 𝐹𝐹𝑦𝑦,𝑖𝑖 ≈ 𝐹𝐹𝑦𝑦,𝑖𝑖,𝑟𝑟𝑖𝑖𝑙𝑙,0 + 𝐹𝐹′
𝑦𝑦,𝑖𝑖,𝑟𝑟𝑖𝑖𝑙𝑙,0�𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖 − 𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖,0� + �𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖,0�[𝑅𝑅𝑖𝑖,0 + 𝑅𝑅′

𝑖𝑖,0(𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖 − 𝛥𝛥𝐹𝐹𝑧𝑧,𝑖𝑖,0 ] (10) 

Substituting Equation (5), Equation (6) and Equation (7) in Equation (10) the front and rear axle lateral 

forces become: 
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𝐹𝐹𝑦𝑦,𝐹𝐹 ≈ 𝐹𝐹𝑦𝑦,𝐹𝐹,𝑟𝑟𝑖𝑖𝑙𝑙,0 + 𝐹𝐹′
𝑦𝑦,𝐹𝐹,𝑟𝑟𝑖𝑖𝑙𝑙,0 �

𝑓𝑓ℎ𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟�𝑘𝑘 + 𝐾𝐾𝐹𝐹 𝜑𝜑 + 𝐷𝐷𝐹𝐹 �̇�𝜑
𝑡𝑡𝐹𝐹

− 𝛥𝛥𝐹𝐹𝑧𝑧,𝐹𝐹,0�

+ �𝛽𝛽 + 𝑎𝑎
𝑚𝑚

𝑟𝑟 − 𝛿𝛿𝑤𝑤 − 𝛼𝛼𝐹𝐹,0��𝑅𝑅𝐹𝐹,0

+ 𝑅𝑅′
𝐹𝐹,0 �

𝑓𝑓ℎ𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟�𝑘𝑘 + 𝐾𝐾𝐹𝐹 𝜑𝜑 + 𝐷𝐷𝐹𝐹 �̇�𝜑
𝑡𝑡𝐹𝐹

− 𝛥𝛥𝐹𝐹𝑧𝑧,𝐹𝐹,0�� 

(11) 

 

𝐹𝐹𝑦𝑦,𝑅𝑅 ≈ 𝐹𝐹𝑦𝑦,𝑅𝑅,𝑟𝑟𝑖𝑖𝑙𝑙,0 + 𝐹𝐹′
𝑦𝑦,𝑅𝑅,𝑟𝑟𝑖𝑖𝑙𝑙,0 �

(1 − 𝑓𝑓 ℎ𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟�𝑘𝑘 + 𝐾𝐾𝑅𝑅𝜑𝜑 + 𝐷𝐷𝑅𝑅�̇�𝜑
𝑡𝑡𝑅𝑅

− 𝛥𝛥𝐹𝐹𝑧𝑧,𝑅𝑅,0�

+ �𝛽𝛽 − 𝑏𝑏
𝑚𝑚

𝑟𝑟 − 𝛼𝛼𝑅𝑅,0��𝑅𝑅𝑅𝑅,0

+ 𝑅𝑅′
𝑅𝑅,0 �

(1 − 𝑓𝑓 ℎ𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟�𝑘𝑘 + 𝐾𝐾𝑅𝑅𝜑𝜑 + 𝐷𝐷𝑅𝑅�̇�𝜑
𝑡𝑡𝑅𝑅

− 𝛥𝛥𝐹𝐹𝑧𝑧,𝑅𝑅,0�� 

(12) 

By replacing Equation (2) and (Equation (5) in the roll equation in Equation (1), dividing for 𝐼𝐼𝐸𝐸 and 

rearranging it holds that: 

 �̈�𝜑 = 𝑚𝑚𝑚𝑚 �𝛽𝛽 ̇+ 𝑟𝑟�(1 − 𝑘𝑘 ℎ𝐶𝐶𝐶𝐶
𝐼𝐼𝐸𝐸

+ 𝑚𝑚𝑚𝑚 ℎ𝐶𝐶𝐶𝐶
𝐼𝐼𝐸𝐸

𝜑𝜑 − 𝐾𝐾𝐹𝐹 𝜑𝜑 + 𝐷𝐷𝐹𝐹 �̇�𝜑 + 𝐾𝐾𝑅𝑅𝜑𝜑 + 𝐷𝐷𝑅𝑅�̇�𝜑
𝐼𝐼𝐸𝐸

 (13) 

By substituting Equation (11) and Equation (12) in the system Equation (1), the final equations of the 

model are obtained. The states of the system finally are: 𝛽𝛽, 𝑟𝑟, 𝜑𝜑 and �̇�𝜑 while 𝑓𝑓 and 𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸 represent the 

inputs. The variable 𝛿𝛿𝑤𝑤 is not directly influenced by the controller, so it is considered as a disturbance of 

the system.  

2.2 Linearisation 

The state 𝑥𝑥, the input 𝑢𝑢 and disturbance 𝑑𝑑 vectors are defined as follows: 

 𝑥𝑥 = �

𝛽𝛽
𝑟𝑟
𝜑𝜑
�̇�𝜑

� ,         𝑢𝑢 = �
𝑓𝑓

𝑀𝑀𝑧𝑧,𝑒𝑒𝑒𝑒𝑒𝑒
� ,       𝑑𝑑 = [𝛿𝛿𝑤𝑤] (14) 

The variables are linearised resulting in the following: 
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 𝑥𝑥 = 𝑥𝑥0 + 𝛿𝛿𝑥𝑥          𝑥𝑥̇ = 𝑥𝑥0̇ + 𝛿𝛿𝑥𝑥 ̇        𝑢𝑢 = 𝑢𝑢0 + 𝛿𝛿𝑢𝑢         𝑑𝑑 = 𝑑𝑑0 + 𝛿𝛿𝑑𝑑 (15) 

where 𝑥𝑥0, 𝑥𝑥0̇ and 𝑢𝑢0 are the equilibrium points. 

By substituting (26) in the previously defined differential equations, the system becomes: 

 

⎩
��
⎨
��
⎧𝛽𝛽0̇ + 𝛿𝛿𝛽𝛽 ̇ = 𝐹𝐹�𝛽𝛽0 + 𝛿𝛿𝛽𝛽, 𝑟𝑟0 + 𝛿𝛿𝑟𝑟, 𝜑𝜑0 + 𝛿𝛿𝜑𝜑, �̇�𝜑0 + 𝛿𝛿�̇�𝜑, 𝑓𝑓0 + 𝛿𝛿𝑓𝑓, 𝛿𝛿𝑤𝑤,0 + 𝛿𝛿𝛿𝛿𝑤𝑤,𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸,0 + 𝛿𝛿𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸�

𝑟𝑟0̇ + 𝛿𝛿𝑟𝑟̇ = 𝐺𝐺�𝛽𝛽0 + 𝛿𝛿𝛽𝛽, 𝑟𝑟0 + 𝛿𝛿𝑟𝑟, 𝜑𝜑0 + 𝛿𝛿𝜑𝜑, �̇�𝜑0 + 𝛿𝛿�̇�𝜑, 𝑓𝑓0 + 𝛿𝛿𝑓𝑓, 𝛿𝛿𝑤𝑤,0 + 𝛿𝛿𝛿𝛿𝑤𝑤, 𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸,0 + 𝛿𝛿𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸�
�̇�𝜑0 + 𝛿𝛿�̇�𝜑 = 𝐵𝐵�𝛽𝛽0 + 𝛿𝛿𝛽𝛽, 𝑟𝑟0 + 𝛿𝛿𝑟𝑟, 𝜑𝜑0 + 𝛿𝛿𝜑𝜑, �̇�𝜑0 + 𝛿𝛿�̇�𝜑, 𝑓𝑓0 + 𝛿𝛿𝑓𝑓, 𝛿𝛿𝑤𝑤,0 + 𝛿𝛿𝛿𝛿𝑤𝑤, 𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸,0 + 𝛿𝛿𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸�
�̈�𝜑0 + 𝛿𝛿�̈�𝜑 = 𝑅𝑅�𝛽𝛽0 + 𝛿𝛿𝛽𝛽, 𝑟𝑟0 + 𝛿𝛿𝑟𝑟, 𝜑𝜑0 + 𝛿𝛿𝜑𝜑, �̇�𝜑0 + 𝛿𝛿�̇�𝜑, 𝑓𝑓0 + 𝛿𝛿𝑓𝑓, 𝛿𝛿𝑤𝑤,0 + 𝛿𝛿𝛿𝛿𝑤𝑤,𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸,0 + 𝛿𝛿𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸�

 (16) 

where 𝐹𝐹 , 𝐺𝐺 and 𝑅𝑅 are the three initial differential equations and B is a trivial equation (i.e. 𝑑𝑑
𝑑𝑑𝐸𝐸 𝜑𝜑 = �̇�𝜑) to 

obtain a square state matrix 𝐴𝐴. 

The linearised equations are now in the following general form: 

 

𝛿𝛿𝛽𝛽 ̇ = � 𝜕𝜕𝐹𝐹
𝜕𝜕𝛿𝛿𝑥𝑥𝑗𝑗

�
𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑥𝑥𝑗𝑗

𝑙𝑙

𝑗𝑗=1
+ � 𝜕𝜕𝐹𝐹

𝜕𝜕𝛿𝛿𝑢𝑢𝑘𝑘
�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑢𝑢𝑘𝑘 + � 𝜕𝜕𝐹𝐹
𝜕𝜕𝛿𝛿𝑑𝑑𝑖𝑖

�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑑𝑑𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑚𝑚

𝑘𝑘=1
 

𝛿𝛿𝑟𝑟̇ = � 𝜕𝜕𝐺𝐺
𝜕𝜕𝛿𝛿𝑥𝑥𝑗𝑗

�
𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑥𝑥𝑗𝑗

𝑙𝑙

𝑗𝑗=1
+ � 𝜕𝜕𝐺𝐺

𝜕𝜕𝛿𝛿𝑢𝑢𝑘𝑘
�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑢𝑢𝑘𝑘 + � 𝜕𝜕𝐺𝐺
𝜕𝜕𝛿𝛿𝑑𝑑𝑖𝑖

�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑑𝑑𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑚𝑚

𝑘𝑘=1
 

𝛿𝛿�̇�𝜑 = � 𝜕𝜕𝐵𝐵
𝜕𝜕𝛿𝛿𝑥𝑥𝑗𝑗

�
𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑥𝑥𝑗𝑗

𝑙𝑙

𝑗𝑗=1
+ � 𝜕𝜕𝐵𝐵

𝜕𝜕𝛿𝛿𝑢𝑢𝑘𝑘
�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑢𝑢𝑘𝑘 + � 𝜕𝜕𝐵𝐵
𝜕𝜕𝛿𝛿𝑑𝑑𝑖𝑖

�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑑𝑑𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑚𝑚

𝑘𝑘=1
 

𝛿𝛿�̈�𝜑 = � 𝜕𝜕𝑅𝑅
𝜕𝜕𝛿𝛿𝑥𝑥𝑗𝑗

�
𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑥𝑥𝑗𝑗

𝑙𝑙

𝑗𝑗=1
+ � 𝜕𝜕𝑅𝑅

𝜕𝜕𝛿𝛿𝑢𝑢𝑘𝑘
�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑢𝑢𝑘𝑘

𝑚𝑚

𝑘𝑘=1
+ � 𝜕𝜕𝑅𝑅

𝜕𝜕𝛿𝛿𝑑𝑑𝑖𝑖
�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑑𝑑𝑖𝑖

𝑝𝑝

𝑖𝑖=1
 

(17) 

where 𝑥𝑥𝑗𝑗, 𝑢𝑢𝑘𝑘 and 𝑑𝑑𝑖𝑖 represent the 𝑗𝑗-th, the 𝑘𝑘-th, and the 𝑖𝑖-th element of the state vector, input vector and 

disturbance vector, respectively. 𝑛𝑛, 𝑚𝑚 and 𝑝𝑝 are the dimensions of the state vector, input vector and 

disturbance vector. 

Considering Equation (15), the time derivative of the right-hand-side of the state vector equation 𝑥𝑥0 + 𝛿𝛿𝑥𝑥 

can be written in the Taylor series expansion form: 

 𝑥𝑥0̇ + 𝛿𝛿𝑥𝑥̇ =  𝑄𝑄(𝑥𝑥0, 𝑢𝑢0, 𝑑𝑑0 + 𝜕𝜕𝑄𝑄
𝜕𝜕𝑥𝑥

�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑥𝑥 + 𝜕𝜕𝑄𝑄
𝜕𝜕𝑢𝑢

�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑢𝑢 + 𝜕𝜕𝑄𝑄
𝜕𝜕𝑑𝑑

�𝛿𝛿𝐸𝐸=0
𝛿𝛿𝛿𝛿=0
𝛿𝛿𝑑𝑑=0

𝛿𝛿𝑑𝑑 (18) 
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where 𝑄𝑄 is the generic function considered.  

Since: 

 𝑥𝑥0̇ =  𝑄𝑄(𝑥𝑥0, 𝑢𝑢0, 𝑑𝑑0  (19) 

it is possible to write the system of linearised equations in a matrix form: 

𝛿𝛿𝑥𝑥̇ = 𝐴𝐴𝛿𝛿𝑥𝑥 + 𝐵𝐵𝛿𝛿𝑢𝑢 + 𝐸𝐸𝛿𝛿𝑑𝑑 (31) 

where 𝐴𝐴, 𝐵𝐵 and E are the state, input and disturbance Jacobian matrices. 

2.2.1 Selection of the linearisation points  

The constant terms found into the Jacobian matrices derived from the vehicle models are: i) the constants 

of the models and ii) the linearisation points. The latter are calculated by means of the quasi-static model 

in [12] and [13]. Table I shows the main vehicle parameters used for this operation.  

TABLE I. MAIN VEHICLE PARAMETERS 
 

Symbols 
 

 

Description 
 

 

Quantity 
 

 

𝑚𝑚 
 

Vehicle mass 
 

2530 kg 

𝑎𝑎 Front semi-wheelbase 1.559 m 

𝑏𝑏 Rear semi-wheelbase 1.374 m 

ℎ𝐶𝐶𝐶𝐶 Height of the centre of gravity 0.72 m 

𝑡𝑡𝐹𝐹  Front track width 1.676 m 

𝑡𝑡𝑅𝑅 Rear track width 1.742 m 

𝐾𝐾𝐹𝐹  Front roll stiffness 58589 N/rad 

𝐾𝐾𝑅𝑅 Rear roll stiffness 49900 N/rad 

𝐷𝐷𝐹𝐹  Front roll damping 5730 Nm s/rad 

𝐷𝐷𝑅𝑅 Rear roll damping 5730 Nm s/rad 

𝐼𝐼𝐸𝐸 Roll inertia 560.7 kg m2 

𝐼𝐼𝑧𝑧 Yaw inertia 3500 kg m2 
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In particular, the following constants are selected: 𝛼𝛼𝑖𝑖,0, ∆𝐹𝐹𝑧𝑧,𝑖𝑖,0, 𝜑𝜑0, 𝛽𝛽0, 𝑟𝑟0, 𝛿𝛿𝑤𝑤,0, 𝑓𝑓0, 𝐹𝐹′𝑦𝑦,𝑖𝑖,0 and 𝑅𝑅′𝑖𝑖,0. All 

the terms with the index “i” are related to the i-th axle; 𝐹𝐹′𝑦𝑦,𝑖𝑖,0 and 𝑅𝑅′𝑖𝑖,0 are the derivatives of the lateral 

force and the cornering stiffness on the i-th axle, respectively, calculated in the linearisation point. 

Different values of lateral accelerations (i.e., 3 m/s2, 6 m/s2 and 9 m/s2) are considered together with a 

vehicle speed of 100 km/h. The term 𝐹𝐹𝑦𝑦,𝑖𝑖,0 is calculated through an interpolation procedure using the 

Pacejka magic formula for the three linearisation conditions (i.e. different lateral accelerations).  

As expected, if the constants calculated above were taken directly form a quasi-static model and imposed 

in the analysed model, this would generate inconsistency in the linearisation points due to the different 

level of fidelity of the model respect to the quasi-static one. In particular the dynamic response of the 

dynamic model can differ from the quasi-static model by imposing the same values for yaw rate and front-

to-total anti-roll moment ratio found with the latter. The following generic procedure was used to tackle 

this issue.  

Starting from Equation (16), a steady state condition is imposed resulting in: 

⎩
��
⎨
��
⎧0 = 𝐹𝐹�𝛽𝛽0 + 𝛿𝛿𝛽𝛽, 𝑟𝑟0 + 𝛿𝛿𝑟𝑟, 𝜑𝜑0 + 𝛿𝛿𝜑𝜑, �̇�𝜑0 + 𝛿𝛿�̇�𝜑, 𝛿𝛿𝑤𝑤,0 + 𝛿𝛿𝛿𝛿𝑤𝑤, 𝑓𝑓0 + 𝛿𝛿𝑓𝑓,𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸,0 + 𝛿𝛿𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸�

0 = 𝐺𝐺�𝛽𝛽0 + 𝛿𝛿𝛽𝛽, 𝑟𝑟0 + 𝛿𝛿𝑟𝑟, 𝜑𝜑0 + 𝛿𝛿𝜑𝜑, �̇�𝜑0 + 𝛿𝛿�̇�𝜑, 𝛿𝛿𝑤𝑤,0 + 𝛿𝛿𝛿𝛿𝑤𝑤, 𝑓𝑓0 + 𝛿𝛿𝑓𝑓, 𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸,0 + 𝛿𝛿𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸�
0 = 𝐵𝐵�𝛽𝛽0 + 𝛿𝛿𝛽𝛽, 𝑟𝑟0 + 𝛿𝛿𝑟𝑟, 𝜑𝜑0 + 𝛿𝛿𝜑𝜑, �̇�𝜑0 + 𝛿𝛿�̇�𝜑, 𝛿𝛿𝑤𝑤,0 + 𝛿𝛿𝛿𝛿𝑤𝑤, 𝑓𝑓0 + 𝛿𝛿𝑓𝑓, 𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸,0 + 𝛿𝛿𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸�
0 = 𝑅𝑅�𝛽𝛽0 + 𝛿𝛿𝛽𝛽, 𝑟𝑟0 + 𝛿𝛿𝑟𝑟, 𝜑𝜑0 + 𝛿𝛿𝜑𝜑, �̇�𝜑0 + 𝛿𝛿�̇�𝜑, 𝛿𝛿𝑤𝑤,0 + 𝛿𝛿𝛿𝛿𝑤𝑤, 𝑓𝑓0 + 𝛿𝛿𝑓𝑓,𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸,0 + 𝛿𝛿𝑀𝑀𝑧𝑧,𝐸𝐸𝐸𝐸𝐸𝐸�

 (32) 

At this point 𝑓𝑓0 and 𝑟𝑟0 are imposed equal to the quasi-static model values, whereas 𝛽𝛽0, 𝜑𝜑0 and 𝛿𝛿𝑤𝑤,0 are 

calculated solving the system of three equations and three unknowns. This was achieved using the symbolic 

algebra software Maple. 
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2.3 Frequency response 

Once the model has been linearised it is possible to obtain the frequency response of the plant (𝛿𝛿𝑟𝑟/𝛿𝛿𝑓𝑓).  

 
Figure 2. Amplitude and phase of the frequency response 𝛿𝛿𝑟𝑟/𝛿𝛿𝑓𝑓 of the plant linearised for a longitudinal speed 𝑚𝑚0 = 100 km/h 

and for 𝑓𝑓0 = 0.5. 

The thus obtained transfer function of the plant will be used in the next step to compute the open-loop 

performances of the system. The analysis is carried out considering the output that has to be tracked, 𝛿𝛿𝑟𝑟, 

and the control input, 𝛿𝛿𝑓𝑓.  

2.4 Controller design 

In Figure 3 a simplified schematic of the controller shows how the front-to-total anti-roll moment ratio is 

generated, starting from the measured/estimated variables of the vehicle. The desired anti-roll moment 

ratio 𝑓𝑓 is given by two contributions: i) a feedforward contribution fFF computed via the quasi-static model 

( [12] and [13]); ii) a feedback contribution fFB is  generated from a PI (i.e. proportional-integral) scheme. 

The PI controller gains vary with the vehicle speed 𝑣𝑣𝐸𝐸  in a gain-scheduling fashion. The reference yaw 

rate and the feedforward contribution are modified based on the value of the rear axle side slip angle 𝛽𝛽𝑅𝑅𝐴𝐴 

and lateral acceleration 𝑎𝑎𝑦𝑦 by the two modifier blocks. This is done when 𝛽𝛽𝑅𝑅𝐴𝐴 and/or 𝑎𝑎𝑦𝑦 exceed some 

threshold values set by design, in order to avoid unstable behaviour of the vehicle. 



13 

 

 
Figure 3. Simplified schematic of the controller 

The output of the feedback controller is combined with the feedforward action weighting the two 

contributions depending on the steady-state value of the vehicle lateral acceleration (i.e. computed 

multiplying the actual values of vehicle speed and yaw rate). After the computation of the final front-to-

total anti-roll moment ratio f  the allocator block generates the front active anti-roll moment MAR,Act,F and 

the rear active anti-roll moment MAR,Act,R, which are then sent as control action to the suspension actuators. 

The yaw rate error used as input of the feedback controller is given by: 

 𝑒𝑒 = 𝑟𝑟 − 𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅  (20) 

where 𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅  is computed through an optimisation routine using the quasi-static model in steady-state 

conditions and 𝑟𝑟 is the measured yaw rate of the vehicle.  

In order to consider the delay of the suspension actuators a first order transfer function multiplied for a 

pure time delay is used herein: 

 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐸𝐸𝛿𝛿𝑃𝑃𝐸𝐸𝑇𝑇𝑟𝑟 = 𝑒𝑒−𝜏𝜏1𝑃𝑃

𝜏𝜏2𝑠𝑠 + 1
 (21) 

where 𝜏𝜏1 and 𝜏𝜏2 are the time constants such that 𝜏𝜏1 ≠ 𝜏𝜏2. In this paper 𝜏𝜏1 is assumed to be 0.015 s and 𝜏𝜏2 

is calculated starting from experimentally measured actuator cut off frequency of 6.6 Hz: 
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 𝜏𝜏2 = 1
2𝜋𝜋𝑓𝑓

= 0.024 𝑠𝑠 (22) 

The plant of the systems used to design the PI controller is represented by the product: 

 𝐺𝐺𝑃𝑃𝑟𝑟𝑃𝑃𝑙𝑙𝐸𝐸 = 𝑒𝑒−𝜏𝜏1𝑃𝑃

𝜏𝜏2𝑠𝑠 + 1
�𝛿𝛿𝑟𝑟
𝛿𝛿𝑓𝑓

� (23) 

where 𝛿𝛿𝑟𝑟/𝛿𝛿𝑓𝑓 is the relevant transfer function in Laplace domain that can be obtained from the state space 

of the model. The generic transfer function of the PI controller is the following: 

 𝐺𝐺𝑃𝑃𝑃𝑃 = 𝐾𝐾𝑃𝑃 + 𝐾𝐾𝑃𝑃
𝑠𝑠

 (24) 

with 𝐾𝐾𝑃𝑃  and 𝐾𝐾𝑃𝑃 proportional and integral gains. Therefore, the open-loop transfer function of the system 

can be calculated as: 

 𝐿𝐿(𝑠𝑠 = 𝐺𝐺𝑃𝑃𝑟𝑟𝑃𝑃𝑙𝑙𝐸𝐸𝐺𝐺𝑃𝑃𝑃𝑃 = � 𝑒𝑒−𝜏𝜏1𝑃𝑃

𝜏𝜏2𝑠𝑠 + 1
��𝛿𝛿𝑟𝑟

𝛿𝛿𝑓𝑓
��𝐾𝐾𝑃𝑃 + 𝐾𝐾𝑃𝑃

𝑠𝑠
 � (25) 

Whereas the closed-loop transfer function is: 

 𝑇𝑇 (𝑠𝑠 = 𝐿𝐿(𝑠𝑠
1 + 𝐿𝐿(𝑠𝑠

 (26) 

The PI gains are obtained using an optimisation procedure that will be fully explained in the remainder 

of this section. The optimisation problem considers as non-linear constraints the performance indicators 

(gain margin and phase margin) related to the 𝐿𝐿(𝑠𝑠  transfer function response in the frequency domain.  

The mathematical definitions of the gain margin (𝐺𝐺𝑀𝑀) and phase margin (𝑃𝑃𝑀𝑀) are: 

 
𝐺𝐺𝑀𝑀 = 1

|𝐿𝐿(𝑗𝑗𝜔𝜔180 |
 

𝑃𝑃𝑀𝑀 = 𝜙𝜙�𝐿𝐿(𝑗𝑗𝜔𝜔𝐴𝐴 � + 180° 
(27) 

where 𝜔𝜔180 is the phase crossover frequency and 𝜔𝜔𝐴𝐴 is the gain crossover frequency when: 
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 |𝐿𝐿(𝑗𝑗𝜔𝜔𝐴𝐴 | = 1 (28) 

Suggested values of the gain margin and phase margin thresholds from the literature [14] for the stability 

of the system are assumed as follows: 

 
𝐺𝐺𝑀𝑀 > 2  

𝑃𝑃𝑀𝑀 > 30° 
(29) 

The Matlab fmincon function is used for the optimisation process. The specific command finds the 

minimum of constrained non-linear multivariable functions. The cost function to be minimised is based 

on the rise time, the overshoot and settling time of a step response of the closed-loop transfer function. 

The rise time is the time it takes for the output to reach for the first time the 90 % of its final steady-

state value; the overshoot is the value of the first peak of the response divided by its steady-state value; 

the settling time is the time needed  by the response curve to settle within ±5% of the final value. 

The cost function implemented in the optimisation loop results as follows: 

 𝑅𝑅𝐹𝐹 =  𝑊𝑊1𝑡𝑡𝑟𝑟����� + 𝑊𝑊2𝑂𝑂𝑂𝑂�������� + 𝑊𝑊3𝑡𝑡𝑃𝑃𝑅𝑅𝐸𝐸��������� (30) 

where 𝑡𝑡𝑟𝑟�����, 𝑂𝑂𝑂𝑂�������� and 𝑡𝑡𝑃𝑃𝑅𝑅𝐸𝐸��������� are the values of actual rise time, overshoot and settling time scaled with some 

characteristic values.  

𝑊𝑊1, 𝑊𝑊2 and 𝑊𝑊3 are the weight factors of the cost function which is: 

 𝑅𝑅𝐹𝐹 =  𝑊𝑊1 �
𝑡𝑡𝑟𝑟

𝑡𝑡𝑟𝑟,𝐴𝐴ℎ𝑟𝑟
� + 𝑊𝑊2 �

𝑂𝑂𝑂𝑂
𝑂𝑂𝑂𝑂𝐴𝐴ℎ𝑟𝑟

� + 𝑊𝑊3 �
𝑡𝑡𝑃𝑃𝑅𝑅𝐸𝐸

𝑡𝑡𝑃𝑃𝑅𝑅𝐸𝐸,𝐴𝐴ℎ𝑟𝑟
� (31) 

where 𝑡𝑡𝑟𝑟,𝐴𝐴ℎ𝑟𝑟, 𝑂𝑂𝑂𝑂𝐴𝐴ℎ𝑟𝑟 and 𝑡𝑡𝑃𝑃𝑅𝑅𝐸𝐸,𝐴𝐴ℎ𝑟𝑟 are the characteristic values of the rise time, overshoot and settling time, 

respectively. For this study the following values are used: 

 

𝑡𝑡𝑟𝑟,𝐴𝐴ℎ𝑟𝑟 = 0.10 s 

𝑂𝑂𝑂𝑂𝐴𝐴ℎ𝑟𝑟 = 20 % 

𝑡𝑡𝑃𝑃𝑅𝑅𝐸𝐸,𝐴𝐴ℎ𝑟𝑟 = 0.85 s 

(32) 
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2.4.1 Optimisation procedure results: controller gains 

The presented procedure is carried out for the three values of lateral acceleration (i.e. 3 m/s2, 6 m/s2 and 

9 m/s2) and three values of longitudinal speed (i.e. 60, 80, 100 km/h), thus obtaining nine different sets 

of gains for the controller. Table II report the values of controller gains, GM and PM, obtained as 

discussed. 

TABLE II. GAIN SCHEDULING AND STABILITY INDICATORS 

V [km/h] 60 80 100 

𝑎𝑎𝑦𝑦 [m/s²] 
𝐾𝐾𝑃𝑃,1 

[s/rad] 
𝐾𝐾𝐼𝐼,1 

[1/rad] 
𝐺𝐺𝑀𝑀1 
[-] 

𝑃𝑃𝑀𝑀1 
[deg] 

𝐾𝐾𝑃𝑃,1 
[s/rad] 

𝐾𝐾𝐼𝐼,1 
[1/rad] 

𝐺𝐺𝑀𝑀1 
[-] 

𝑃𝑃𝑀𝑀1 
[deg] 

𝐾𝐾𝑃𝑃,1 
[s/rad] 

𝐾𝐾𝐼𝐼,1 
[1/rad] 

𝐺𝐺𝑀𝑀1 
[-] 

𝑃𝑃𝑀𝑀1 
[deg] 

3 475,77 4871,9 2,35 50,21 244,9 2193,9 2,09 39,4 112,9 790,7 2,62 49,55 
6 49,9 590,9 2 36,52 27,3 151,6 2,01 36,81 16,1 58,8 2 35,26 
9 7,6 28,2 2,25 40,22 4,9 12,5 2,64 46,22 3,4 9,7 3,07 50,31 

2.5 Simulation with validated vehicle model 

 
Figure 4. Nonlinear simulation model validation results in terms of: (a) understeer characteristics, (b) rear axle sideslip angle 

characteristics, (c) lateral acceleration as a function of time and (d) yaw rate as a function of time 

 
 

 

 

 
              a) 

 
          b) 

 

   
 

 
              c) 

 
           d) 
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The dynamic behaviour of an electric SUV equipped with active suspensions is simulated with an 

experimentally validated non-linear Matlab-Simulink model, which takes into account the same degrees 

of freedom of the quasi-static model in [12] and [13].  

In Figure 4 the validation results for the model against experimental results employing the passive vehicle 

are reported during a skidpad test. Given the good match between simulations and experimental data, 

the model can be considered reliable for controller assessment. 

 

2.5.1 Double step steer manoeuvre 

Figure 5 reports the profiles of the main variables during the simulation of a double step steer from an 

initial speed of 100 km/h, with high tyre-road friction conditions.  

 

 
Figure 5. Double step steer simulation results for an initial speed of 100 km/h and  μ=1 in terms of: yaw rate, front-to-total anti-

roll moment distribution, rear axle side slip angle and roll rate 
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The simulated manoeuvre consists of a first steering wheel angle variation from 0 deg to 150 deg, 

a second step from 150 deg to -150 deg, and a final step that brings the steering wheel angle back 

to 0 deg. All steering angle variations are performed at 400 deg/s. Moreover, during the whole 

manoeuvre the total traction torque demand was set to zero. The results of the controlled 

configurations are reported together with those of the passive vehicle, i.e., the vehicle without 

active suspension functionality, nor stability control actuated through friction brakes. 

The results show a significant improvement of the vehicle behaviour using the active suspensions. 

In particular, the active vehicle shows, for the vehicle yaw rate and sideslip angle, reduced 

overshoots and settling times compared to the passive vehicle. Tables III and IV report RMS 

(root mean square) and peak values of the yaw rate error and the rear axle sideslip angle 𝛽𝛽𝑅𝑅𝐴𝐴, 

for each of the six controlled cases and for the passive vehicle.  

TABLE III. RMS AND PEAK VALUES OF YAW RATE ERROR 

Yaw rate error Active Vehicle Passive Vehicle 

RMS (deg/s) 1.19 4.35 

Peak value (deg/s) 7.19 15.59 

TABLE IV. RMS AND PEAK VALUES OF REAR AXLE SIDE SLIP ANGLE 

𝛽𝛽𝑅𝑅𝐴𝐴 Active Vehicle Passive Vehicle 

RMS (deg) 1.58 2.53 

Peak value (deg) 3.28 7.51 

The use of an active suspension system with anti-roll moment distribution control provide a 

significant improvement with respect to the passive vehicle. 
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3 Full 6-DoF vehicle model with suspension kinematics 

As seen before, in the context of model-based design, the fidelity of the vehicle model to be used 

as plant of our system is of paramount importance. In the previous example the model that has 

been used is based on the bicycle model, that is a really simplified model which implies many 

approximations. With the bicycle model for example the vertical and pitch dynamics of the body 

and the suspension geometry are completely neglected, but if we are interested in implementing 

an ICC it may be necessary to consider all of these variables. 

For these reasons a more complex vehicle model has to be developed in which we consider six 

degrees of freedom for the vehicle body, and, in order to properly model the exchange of forces 

between the tires and the body of the vehicle, also the suspension kinematic will be taken into 

account. This will result very important because with the suspension kinematic is possible to 

introduce into the model the Jacking forces, which in some cases have a big impact on the vertical 

dynamic of the body and on vertical tire loads. 

In this chapter all the procedure needed to obtain the model will be described, but first some 

basic concepts about rotation matrices are introduced in order to better understand the following 

sections. This procedure has been developed following the one proposed in The automotive 

chassis: volume 2: system design (G. Genta and L. Morello, 2008). 
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3.1 Rotation matrices 

In order to describe the motion of the system we define three reference systems: 

1. Fixed reference frame 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, where the plane XY is parallel to the ground and 𝑂𝑂 lies on the 

latter. 

2. The body reference frame Gxyz, which is fixed respect to the vehicle body (suspended mass), is 

centred in its centre of gravity, and its axis are parallel to the body principal axis of inertia. 

3. The intermediate reference frame 𝑅𝑅𝑥𝑥∗𝑦𝑦∗𝑧𝑧∗, which is parallel to the ground and the origin 𝑅𝑅 lies 

on the ground. The frame is rotated along the Z-axis until the 𝑥𝑥∗-axis is parallel to the projection 

of 𝑥𝑥 on the ground. In this case the 𝑧𝑧∗-axis is equivalent to the Z-axis so the frame can be referred 

as 𝑅𝑅𝑥𝑥∗𝑦𝑦∗𝑂𝑂 .  

 

 
Figure 6: Reference frames 

The position of the rigid body is thus defined if the position of G is known in the fixed reference frame, 

and ones the transformation matrix to pass from 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 to Gxyz is defined. 

The intermediate frame follows the vehicle translation along the ground plane and present the same 

rotation of the body reference frame along the Z-axis. It will result useful in order to properly define the 

longitudinal and lateral speed of each wheel, and thus obtain the side slip angles of the wheels. 
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3.1.1 Rotation matrices - Euler angle 

In order to define the rotation of the body reference frame Gxyz and the intermediate frame 𝑅𝑅𝑥𝑥∗𝑦𝑦∗𝑂𝑂 

respect to the fixed reference frame OXYZ it is possible to use 3x3 rotation matrices. The latter can be 

obtained by considering a sequence of three rotations about the axis of the frame, and in this case the 

order in which the rotations are performed influence the final rotation of the axis. 

 
Figure 7: Tait - Bryan angles definition 

The rotation of the Gxyz frame is thus defined by means of the Tait-Bryan angles, where the three rotation 

are performed in the order 𝑂𝑂 → 𝑂𝑂 → 𝑂𝑂 (Figure 7), while the intermediate frame 𝑅𝑅𝑥𝑥∗𝑦𝑦∗𝑂𝑂 is subject only 

to the rotation along the Z axis. 

Each rotation is defined by a rotation matrix, which in this case are: 

1. First rotation (𝑂𝑂-axis): The XYZ reference frame is rotated about the 𝑂𝑂-axis of a 𝜓𝜓 angle, thus 

defining the intermediate reference frame 𝑥𝑥∗𝑦𝑦∗𝑂𝑂. The angle 𝜓𝜓 is named yaw angle, and the matrix 

that defines the respective rotation is the following: 

 𝑅𝑅𝑧𝑧 = �
cos (𝜓𝜓 −𝑠𝑠𝑖𝑖𝑛𝑛 (𝜓𝜓 0
𝑠𝑠𝑖𝑖𝑛𝑛 (𝜓𝜓 cos (𝜓𝜓 0

0 0 1
� (33) 
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2. Second rotation (𝑦𝑦∗-axis): The rotated reference frame 𝑥𝑥∗𝑦𝑦∗𝑂𝑂 is subject to a second rotation about 

the 𝑦𝑦∗-axis of a 𝜃𝜃 angle, which leads to the second rotated reference frame 𝑥𝑥′′𝑦𝑦′′𝑧𝑧′′. The angle 𝜃𝜃 is 

named pitch angle, and the matrix that defines the respective is the following: 

 𝑅𝑅𝑦𝑦 =
⎣
⎢⎡

cos (𝜃𝜃 0 𝑠𝑠𝑖𝑖𝑛𝑛 (𝜃𝜃
0 1 0

−𝑠𝑠𝑖𝑖𝑛𝑛 (𝜃𝜃 0 cos (𝜃𝜃 ⎦
⎥⎤ (34) 

3. Third rotation (𝑥𝑥′′-axis): The second rotated reference frame 𝑥𝑥′′𝑦𝑦′′𝑧𝑧′′ is subject to the final rotation 

about the 𝑥𝑥′′-axis of a 𝜑𝜑 angle, which leads to the final reference frame 𝑥𝑥𝑦𝑦𝑧𝑧. The angle 𝜑𝜑 is named 

roll angle, and the matrix that defines the respective is the following: 

 𝑅𝑅𝐸𝐸 =
⎣
⎢⎡
1 0 0
0 cos (𝜑𝜑 −𝑠𝑠𝑖𝑖𝑛𝑛 (𝜑𝜑
0 𝑠𝑠𝑖𝑖𝑛𝑛 (𝜑𝜑 cos (𝜑𝜑 ⎦

⎥⎤ (35) 

The rotation matrix obtained by multiplying 𝑅𝑅𝐸𝐸,𝑅𝑅𝑦𝑦 and 𝑅𝑅𝑧𝑧 is the transformation matrix which allows to 

write any vector in the body reference frame 𝑥𝑥𝑦𝑦𝑧𝑧 to be written in the fixed reference frame 𝑂𝑂𝑂𝑂𝑂𝑂: 

 

𝑅𝑅 = 𝑅𝑅𝑧𝑧𝑅𝑅𝑦𝑦𝑅𝑅𝐸𝐸 

𝑅𝑅 =
⎣
⎢⎡
𝑐𝑐(𝜓𝜓 𝑐𝑐(𝜃𝜃 𝑐𝑐(𝜓𝜓 𝑠𝑠(𝜃𝜃 𝑠𝑠(𝜑𝜑 − 𝑠𝑠(𝜓𝜓 𝑐𝑐(𝜑𝜑 𝑐𝑐(𝜓𝜓 𝑠𝑠(𝜃𝜃 𝑐𝑐(𝜑𝜑 + 𝑠𝑠(𝜓𝜓 𝑠𝑠(𝜑𝜑
𝑠𝑠(𝜓𝜓 𝑐𝑐(𝜃𝜃 𝑠𝑠(𝜓𝜓 𝑠𝑠(𝜃𝜃 𝑠𝑠(𝜑𝜑 + 𝑐𝑐(𝜓𝜓 𝑐𝑐(𝜑𝜑 𝑠𝑠(𝜓𝜓 𝑠𝑠(𝜃𝜃 𝑐𝑐(𝜑𝜑 − 𝑐𝑐(𝜓𝜓 𝑠𝑠(𝜑𝜑
−𝑠𝑠(𝜃𝜃 𝑐𝑐(𝜃𝜃 𝑠𝑠(𝜑𝜑 𝑐𝑐(𝜃𝜃 𝑐𝑐(𝜑𝜑 ⎦

⎥⎤ 
(36) 

Where cos and sin have been substituted with c and s, respectively, for the sake of clarity. The values of 

roll, pitch and yaw angle of the vehicle are not constant, indeed they vary with time thus the rotation 

matrix is not a constant matrix, but it’s a time dependent matrix (when referring to the rotation matrix 

the dependence is implied, so instead of 𝑅𝑅(𝑡𝑡  only 𝑅𝑅 will be reported). 

In this formulation the roll angle, 𝜑𝜑, the pitch angle, 𝜃𝜃, and the yaw angle can assume large values so the 

trigonometric functions containing the latter cannot be linearised with a first order Taylor expansion. 

The rotation matrix 𝑅𝑅 becomes: 
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𝑅𝑅 ≈ �

cos(𝜓𝜓 − sin(𝜓𝜓 0
sin(𝜓𝜓 cos(𝜓𝜓 0

0 0 1
� ∙

⎣
⎢⎡

𝑐𝑐(𝜃𝜃 𝑠𝑠(𝜃𝜃 𝑠𝑠(𝜑𝜑 𝑠𝑠(𝜃𝜃 𝑐𝑐(𝜑𝜑
0 𝑐𝑐(𝜑𝜑 −𝑠𝑠(𝜑𝜑

−𝑠𝑠(𝜃𝜃 𝑐𝑐(𝜃𝜃 𝑠𝑠(𝜑𝜑 𝑐𝑐(𝜃𝜃 𝑐𝑐(𝜑𝜑 ⎦
⎥⎤ 

𝑅𝑅 ≈ 𝑅𝑅𝑧𝑧𝑅𝑅𝑦𝑦𝐸𝐸 

(37) 

The rotation matrix to pass from the body reference frame to the intermediate reference frame 𝑅𝑅𝑦𝑦𝐸𝐸 =

𝑅𝑅𝑦𝑦𝑅𝑅𝐸𝐸 is:  

𝑅𝑅𝑦𝑦𝑅𝑅𝐸𝐸 =
⎣
⎢⎡

𝑐𝑐(𝜃𝜃 𝑠𝑠(𝜃𝜃 𝑠𝑠(𝜑𝜑 𝑠𝑠(𝜃𝜃 𝑐𝑐(𝜑𝜑
0 𝑐𝑐(𝜑𝜑 −𝑠𝑠(𝜑𝜑

−𝑠𝑠(𝜃𝜃 𝑐𝑐(𝜃𝜃 𝑠𝑠(𝜑𝜑 𝑐𝑐(𝜃𝜃 𝑐𝑐(𝜑𝜑 ⎦
⎥⎤ (38) 

Using the rotation matrix, it is possible to compute the coordinate in the fixed reference frame 

({𝑂𝑂, 𝑂𝑂 , 𝑂𝑂}𝑇𝑇 ) of a point which coordinated are known in the body reference frame ({𝑥𝑥, 𝑦𝑦, 𝑧𝑧}𝑇𝑇 ): 

 �
𝑂𝑂
𝑂𝑂
𝑂𝑂

� = 𝑅𝑅 �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� (39) 

If instead we write the transformation between the moving reference frame 𝑥𝑥𝑦𝑦𝑧𝑧 and the intermediate 

reference frame 𝑥𝑥∗𝑦𝑦∗𝑂𝑂, the only rotations involved are roll and pitch, thus the rotation matrix needed to 

pass from the first to the second frame is just 𝑅𝑅𝑦𝑦𝐸𝐸. The use of the intermediate reference frame will be 

helpful in the next sections because the coordinates written in this frame do not depend on the yaw angle, 

thus the system can be linearised easily. If we want to pass from the intermediate frame to the fixed one, 

we need to apply the yaw rotation, thus the rotation matrix 𝑅𝑅𝑧𝑧: 

 �
𝑂𝑂
𝑂𝑂
𝑂𝑂

� = 𝑅𝑅𝑧𝑧𝑅𝑅𝑦𝑦𝐸𝐸 �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = 𝑅𝑅𝑧𝑧 �

𝑥𝑥∗

𝑦𝑦∗

𝑂𝑂
� (40) 

In general, a rotation matrix is an orthogonal matrix (𝑅𝑅−1 = 𝑅𝑅𝑇𝑇 ), thus: 

 𝑅𝑅𝑅𝑅𝑇𝑇 = 𝐼𝐼 (41) 

By deriving the equation above: 
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 �̇�𝑅𝑅𝑅𝑇𝑇 + 𝑅𝑅�̇�𝑅𝑇𝑇 = 0 (42) 

And by differentiating �̇�𝑅𝑅𝑅𝑇𝑇 = 𝑂𝑂, the following relations are obtained: 

 
�̇�𝑅 = 𝑂𝑂𝑅𝑅 

𝑂𝑂 + 𝑂𝑂𝑇𝑇 = 0 
(43) 

S is a skew-symmetric matrix, so it contains only 3 independents elements and is defined as: 

 𝑂𝑂(𝑤𝑤 =
⎣
⎢⎡

0 −𝑤𝑤𝑧𝑧 𝑤𝑤𝑦𝑦
𝑤𝑤𝑧𝑧 0 −𝑤𝑤𝐸𝐸

−𝑤𝑤𝑦𝑦 𝑤𝑤𝐸𝐸 0 ⎦
⎥⎤ (44) 

Where {𝑤𝑤} = �𝑤𝑤𝐸𝐸 𝑤𝑤𝑦𝑦 𝑤𝑤𝑧𝑧�𝑇𝑇  is a generic vector and for all 𝑤𝑤, 𝑝𝑝 ∈ 𝑅𝑅3 it holds: 

 𝑂𝑂(𝑤𝑤 · {𝑝𝑝} = {𝑤𝑤} ∧ {𝑝𝑝} (45) 
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3.1.2 Speed of a generic point 𝑷𝑷  

The position respect to OXYZ of a generic point 𝑃𝑃  of the rigid body, defined by the constant vector {𝑝𝑝′} 

in the body reference frame Gxyz, can be computed with the following relationship: 

 {𝑝𝑝} = {𝑝𝑝𝐶𝐶} + 𝑅𝑅 · {𝑝𝑝′} (46) 

Where {𝑝𝑝} = {𝑂𝑂𝑃𝑃 , 𝑂𝑂𝑃𝑃 ,𝑂𝑂𝑃𝑃 } and {𝑝𝑝𝐶𝐶} = {𝑂𝑂𝐶𝐶,𝑂𝑂𝐶𝐶, 𝑂𝑂𝐶𝐶} define the position of 𝑃𝑃  and G, respectively, in the 

OXYZ reference frame. The speed of 𝑃𝑃  in the fixed reference frame is computed as: 

 {𝑝𝑝̇} = {𝑝𝑝�̇�𝐶} + �̇�𝑅 · {𝑝𝑝′} + 𝑅𝑅 · {𝑝𝑝̇′} (47) 

 Given that {𝑝𝑝′} is a constant vector and substituting equation Equation (43) it follows: 

 {𝑝𝑝̇} = {𝑝𝑝�̇�𝐶} + 𝑂𝑂𝑅𝑅 · {𝑝𝑝′} (48) 

Which, given Equation (45), is equal to: 

 {𝑝𝑝̇} = {𝑝𝑝�̇�𝐶} + {𝑊𝑊} ∧ 𝑅𝑅 · {𝑝𝑝′} (49) 

Where {𝑊𝑊} = {�̇�𝜑 𝜃𝜃 ̇𝜓𝜓}̇𝑇𝑇  are the rotational speeds of the body reference frame respect to the non-rotated 

reference frame (in this case the angular ratio in the fixed reference frame and the intermediate one are 

equivalent). The angular speeds obtained by taking the first derivative of the Euler angles 𝜓𝜓,̇ 𝜃𝜃 ̇and �̇�𝜑 are 

applied along the Z, 𝑦𝑦′ and 𝑥𝑥′′ axis, so to obtain the angular speeds in the body reference frame (rotations 

along 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧) a transformation matrix is needed: 

 
⎩�
⎨
�⎧

Ω𝐸𝐸
Ω𝑦𝑦

Ω𝑧𝑧⎭�
⎬
�⎫

= �
�̇�𝜑
0
0
� + 𝑅𝑅𝐸𝐸

𝑇𝑇 · �
0
𝜃𝜃 ̇
0
� + 𝑅𝑅𝑦𝑦𝐸𝐸

𝑇𝑇 · �
0
0
𝜓𝜓̇
� (50) 

In matrix form: 

 
⎩�
⎨
�⎧

Ω𝐸𝐸
Ω𝑦𝑦

Ω𝑧𝑧⎭�
⎬
�⎫

=
⎣
⎢⎡
 1 0 −sin(𝜃𝜃
 0 cos(𝜑𝜑 sin(𝜑𝜑 cos(𝜃𝜃
 0 −sin(𝜑𝜑 cos(φ cos(𝜃𝜃

 
⎦
⎥⎤ ·

⎩�
⎨
�⎧

�̇�𝜑
𝜃𝜃 ̇
𝜓𝜓⎭̇�
⎬
�⎫

= 𝐸𝐸 ·
⎩�
⎨
�⎧

�̇�𝜑
𝜃𝜃 ̇
𝜓𝜓⎭̇�
⎬
�⎫

 (51) 

And taking the inverse: 
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⎩�
⎨
�⎧

�̇�𝜑
𝜃𝜃 ̇
𝜓𝜓⎭̇�
⎬
�⎫

=
⎣
⎢⎡
 1 sin(𝜑𝜑 tan(𝜃𝜃 cos(𝜑𝜑 tan(𝜃𝜃
 0 cos(𝜑𝜑 −sin(𝜑𝜑
 0 sin(𝜑𝜑 /cos(𝜃𝜃 cos(φ /cos(𝜃𝜃

 
⎦
⎥⎤ ·

⎩�
⎨
�⎧

Ω𝐸𝐸
Ω𝑦𝑦

Ω𝑧𝑧⎭�
⎬
�⎫

= 𝐸𝐸−1 ·
⎩�
⎨
�⎧

Ω𝐸𝐸
Ω𝑦𝑦

Ω𝑧𝑧⎭�
⎬
�⎫

 (52) 

Which is not defined at 𝜃𝜃 = ± 𝜋𝜋
2, but in this case of study the pitch angle 𝜃𝜃 is by far within the limit 

values, so the matrix is well defined. By using these matrices is it possible to pass from the angular speed 

expressed in the body reference frame to the rate of change of the Euler angles, and vice versa. 

3.2 Model description 

In first approximation, the suspension can be modelled as a rigid link between the centre of the tire contact 

patch, indicated in Figure 8 as 𝑇𝑇𝑖𝑖, and the instantaneous centre of rotation of the suspension respect to 

the vehicle body, indicated as 𝐽𝐽𝑖𝑖.  

 
Figure 8: Schematic of the 6 DoF model 

Each suspension is thus composed by a rigid link and a subsystem containing spring, damper ad actuator, 

which are assumed to exchange forces with the tire and the body only in vertical direction between the 

points 𝑇𝑇𝑖𝑖 and 𝐴𝐴𝑖𝑖. The effect of anti-roll bars is taken into account by beans of two torsional springs 

between the body and the suspension, in order to generate vertical load transfer at the wheels when the 

vehicle is subject to roll. In general, the position of each point 𝐽𝐽𝑖𝑖 depends on suspension geometry, and it 
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varies according to the body movements. Its trajectory can be analytically described only by knowing the 

kinematic of the specific suspensions, so is not possible to have a general-purpose model, valid for different 

kind of suspensions, if the position of the points 𝐽𝐽𝑖𝑖 is given by kinematic equations.For this reason, the 

position of the points 𝐽𝐽𝑖𝑖 has been assumed to be constant, respect to the body, around a linearisation 

point. By doing this approximation the four 𝐽𝐽𝑖𝑖 are rigidly linked to the body during movement around 

the linearisation point, and the only data needed to properly describe the suspensions are the positions of 

these points, respect to the body, only in the linearisation point chosen to obtain the linearised model. 

3.2.1 Computation of the Degrees of Freedom of the system 

The model in Figure 8 is composed by 5 rigid bodies: 4 massless rigid links to model the four suspensions, 

and 1 rigid body that represent the suspended mass of the vehicle. Each one of the five rigid bodies have 

6 Degrees of Freedom in the space (3 translations + 3 rotations), so the system presents a total of 30 

DoF. The number of degrees of freedom is reduced by introduction of the following kinematic constraints: 

• The four point 𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3 and 𝑇𝑇4 represent the contact point between the tires and the ground; 

These points are free to move in the plane XY and the allowed rotations are 𝛾𝛾𝐸𝐸,𝑖𝑖 and 𝛾𝛾𝑧𝑧,𝑖𝑖, so each 

one of these points maintain four degrees of freedom, while the other 2 are locked by the constraints 

(displacement along 𝑧𝑧 and rotation along 𝑦𝑦). 

• The four point 𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽3 and 𝐽𝐽4 represent the points of instantaneous rotation for the four 

suspensions respect to the vehicle body; In these points, the only movements allowed between the 

links and the suspended mass are the two rotation 𝛾𝛾𝐽𝐽,𝐸𝐸,𝑖𝑖 (to allow roll motion) and 𝛾𝛾𝐽𝐽,𝑦𝑦,𝑖𝑖 (to allow 

pitch motion). The four joints remove 4 degrees of freedom, allowing only the two rotations 

described above. 

At this point the number of degrees of freedom of the constrained system can be computed as: 

 

𝐹𝐹 = 𝐵𝐵 · 𝑙𝑙 − 4 · 𝑛𝑛𝐽𝐽 − 2 · 𝑛𝑛𝑇𝑇  

B = number of bodies 

l = number of DoF for each body (6 for a system in 3 dimensions) 

𝑛𝑛𝐽𝐽  = number of joints of type J 

(53) 
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𝑛𝑛𝑇𝑇  = number of joints of type T 

Given that for the system showed above we have: 

 

B = 5 

l = 6 

𝑛𝑛𝐽𝐽  = 4 

𝑛𝑛𝑇𝑇  = 4 

(54) 

The constrained system has F = 6, thus its motion is completely described by means of six generalised 

coordinates. The purpose of this model is that of describing the suspended mass dynamic, and for these 

reasons the 3 translations and the 3 rotations of the body centre of gravity have been chosen as generalised 

coordinates to describe the motion of the system. The systems which represent the anti-roll bars in Figure 

8 have not been taken into account for the computation of the degrees of freedom because all the links 

that compose these system are completely constrained, so they don’t add or remove any degree of freedom 

to the system. 

3.3 Lagrange equations in terms of quasi-static coordinates 

In this section the analytical method presented to obtain the equation of motion has been taken from the 

book The automotive chassis: volume 2: system design (G. Genta and L. Morello, 2008). 

The equations of motion of the vehicle can be written by using the Lagrangian approach, writing the 

kinetic energy, 𝑇𝑇 , and the potential energy, 𝑉𝑉, of the system using an arbitrary set of n generalised 

coordinates, thus obtaining the Lagrangian of the system: 

 𝐿𝐿∗(𝑞𝑞�̇�𝑖, 𝑞𝑞𝑖𝑖, 𝑡𝑡 = 𝑇𝑇 ∗(𝑞𝑞�̇�𝑖, 𝑞𝑞𝑖𝑖, 𝑡𝑡 − 𝑚𝑚 (𝑞𝑞𝑖𝑖, 𝑡𝑡       𝑖𝑖 = 1,… , 𝑛𝑛 (55) 

Where 𝑞𝑞𝑖𝑖 is the i-th generalised coordinate and 𝑞𝑞�̇�𝑖 is the i-th generalised velocity, computed as the first 

derivative of the respective generalised coordinate. 

Thus, the equations of motion are obtained by means of the following formulation: 
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𝑑𝑑
𝑑𝑑𝑡𝑡

𝜕𝜕𝐿𝐿∗

𝜕𝜕𝑞𝑞�̇�𝑖
− 𝜕𝜕𝐿𝐿∗

𝜕𝜕𝑞𝑞𝑖𝑖
+ 𝜕𝜕𝐷𝐷∗

𝜕𝜕𝑞𝑞�̇�𝑖
= 𝑄𝑄𝑖𝑖      𝑖𝑖 = 1,… , 𝑛𝑛 (56) 

Where 𝐷𝐷∗ is the Rayleigh dissipation function and 𝑄𝑄𝑖𝑖 are the generalised forces. 

When dealing with Euler equation for the motion of a rigid body, it is usual to use a linear combination 

of the first derivatives of the generalised coordinates in order to define the generalised velocities: 

 {𝑤𝑤} = 𝐴𝐴𝑇𝑇 · {𝑞𝑞}̇ (57) 

Where 𝐴𝐴𝑇𝑇  is a transformation matrix whose elements in general are function of the generalised coordinates. 

By computing the inverse of 𝐴𝐴𝑇𝑇  is it possible to write the inverse transformation: 

 {𝑞𝑞}̇ = 𝐵𝐵 · {𝑤𝑤} (58) 

Where 𝐵𝐵 = 𝐴𝐴−𝑇𝑇 , and unless 𝐴𝐴 is a rotation matrix, in general 𝐵𝐵 ≠ 𝐴𝐴. 

The Lagrangian of the system is therefore written in terms of the “quasi-coordinates” {𝑤𝑤𝑖𝑖}: 

 𝐿𝐿(𝑤𝑤𝑖𝑖, 𝑞𝑞𝑖𝑖, 𝑡𝑡 = 𝑇𝑇 (𝑤𝑤𝑖𝑖, 𝑞𝑞𝑖𝑖, 𝑡𝑡 − 𝑚𝑚 (𝑞𝑞𝑖𝑖, 𝑡𝑡       𝑖𝑖 = 1, … , 𝑛𝑛 (59) 

The derivatives in (56) are thus rewritten in order to obtain the equations of motion in terms of quasi-

coordinates: 

 
𝜕𝜕𝑇𝑇 ∗

𝜕𝜕𝑥𝑥�̇�𝑘
= � 𝜕𝜕𝑇𝑇

𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥�̇�𝑘

𝑙𝑙

𝑖𝑖=1
       𝑘𝑘 = 1, … ,𝑛𝑛 (60) 

Which in matrix form becomes: 

 �
𝜕𝜕𝑇𝑇 ∗

𝜕𝜕𝑥𝑥̇ �
= 𝐴𝐴�

𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤� (61) 

And by differentiating it respect to the time, the first term of Equation (56) is obtained: 

 𝜕𝜕
𝜕𝜕𝑡𝑡

��
𝜕𝜕𝑇𝑇 ∗

𝜕𝜕𝑥𝑥̇ �
� = 𝐴𝐴 𝜕𝜕

𝜕𝜕𝑡𝑡
��

𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤�� + 𝐴𝐴̇�

𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤� (62) 

The component 𝑎𝑎�̇�𝑗𝑘𝑘 of the matrix 𝐴𝐴 ̇can be computed as: 



30 

 

 𝑎𝑎�̇�𝑗𝑘𝑘 = �𝑤𝑤𝑇𝑇 𝐵𝐵𝑇𝑇 �
𝜕𝜕𝑎𝑎𝑗𝑗𝑘𝑘

𝜕𝜕𝑥𝑥 �� (63) 

where the term 𝑎𝑎𝑗𝑗𝑘𝑘 is the corresponding component of the matrix 𝐴𝐴. 

The second term of Equation (56) is obtained by means of the following equation: 

 
𝜕𝜕𝑇𝑇 ∗

𝜕𝜕𝑥𝑥𝑘𝑘
= 𝜕𝜕𝑇𝑇

𝜕𝜕𝑥𝑥𝑘𝑘
+ � 𝜕𝜕𝑇𝑇

𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

𝑙𝑙

𝑖𝑖=1
       𝑘𝑘 = 1, … ,𝑛𝑛 (64) 

Which can be written in matrix form as: 

 �
𝜕𝜕𝑇𝑇 ∗

𝜕𝜕𝑥𝑥 � = �
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥� + �𝑤𝑤𝑇𝑇 𝐵𝐵𝑇𝑇 𝜕𝜕𝐴𝐴

𝜕𝜕𝑥𝑥��
𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤� (65) 

The potential energy, 𝑚𝑚 , does not depend on the generalised velocities, so it is not influenced by the 

definitions of the latter.  

 

Instead, the derivatives of the dissipation function are computed as: 

 �
𝜕𝜕𝐷𝐷∗

𝜕𝜕𝑥𝑥̇ �
= 𝐴𝐴�

𝜕𝜕𝐷𝐷
𝜕𝜕𝑤𝑤� (66) 

The equation of motion for the system are thus written in terms of quasi-coordinates by substituting 

(62),(65) and (66) in (56): 

 
�𝐴𝐴 𝜕𝜕

𝜕𝜕𝑡𝑡
��

𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤�� + �𝑤𝑤𝑇𝑇 𝐵𝐵𝑇𝑇 �

𝜕𝜕𝑎𝑎𝑗𝑗𝑘𝑘

𝜕𝜕𝑥𝑥 ���
𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤�� − ��

𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥� + �𝑤𝑤𝑇𝑇 𝐵𝐵𝑇𝑇 𝜕𝜕𝐴𝐴

𝜕𝜕𝑥𝑥��
𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤�� + �

𝜕𝜕𝑚𝑚
𝜕𝜕𝑥𝑥�

+ 𝐴𝐴�
𝜕𝜕𝐷𝐷
𝜕𝜕𝑤𝑤� = {𝑄𝑄} 

(67) 

Which, by collecting the term �𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤�, becomes: 

 𝐴𝐴 𝜕𝜕
𝜕𝜕𝑡𝑡

��
𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤�� + Γ �

𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤� − �

𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥� + �

𝜕𝜕𝑚𝑚
𝜕𝜕𝑥𝑥� + 𝐴𝐴�

𝜕𝜕𝐷𝐷
𝜕𝜕𝑤𝑤� = {𝑄𝑄} (68) 

where: 
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 Γ = �𝑤𝑤𝑇𝑇 𝐵𝐵𝑇𝑇 �
𝜕𝜕𝑎𝑎𝑗𝑗𝑘𝑘

𝜕𝜕𝑥𝑥 �� − �𝑤𝑤𝑇𝑇 𝐵𝐵𝑇𝑇 𝜕𝜕𝐴𝐴
𝜕𝜕𝑥𝑥� (69) 

and {𝑄𝑄} is the vector of generalised forces written in terms of the generalised coordinates {𝑞𝑞}. 

The final system is obtained by premultiplying by 𝐵𝐵𝑇𝑇 = 𝐴𝐴−1 and by adding the six kinematic equation 

to pass from the quasi-coordinates {𝑤𝑤} to the real generalised velocities {𝑞𝑞}̇: 

 
⎩�
⎨
�⎧

𝜕𝜕
𝜕𝜕𝑡𝑡

��
𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤�� + 𝐵𝐵𝑇𝑇 Γ�

𝜕𝜕𝑇𝑇
𝜕𝜕𝑤𝑤� − 𝐵𝐵𝑇𝑇 �

𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥� + 𝐵𝐵𝑇𝑇 �

𝜕𝜕𝑚𝑚
𝜕𝜕𝑥𝑥� + �

𝜕𝜕𝐷𝐷
𝜕𝜕𝑤𝑤� = 𝐵𝐵𝑇𝑇 {𝑄𝑄∗}

{𝑞𝑞}̇ = 𝐵𝐵{𝑤𝑤}
 (70) 

3.3.1 Application to the vehicle model 

In the field of vehicle dynamics, in order to obtain the equation of motion it is very convenient to use the 

generalised coordinates defined respect to the body reference frame, which being a principal frame of 

inertia leads to a simplified equation for the kinetic energy. 

However, the body reference frame is a non-inertial reference frame that rotates constantly so is not 

possible to compute the displacement of the system in this frame by integrating the velocities in the same 

frame. To solve this problem, it is common to define the displacement and the velocities separately, thus 

maintaining the simplified equation for the kinetic energy and therefore simplified equation of motion.  

For this purpose, the generalised coordinates for the displacement are defined respect to the intermediate 

reference frame, while the generalised velocities are defined respect to the body reference frame. 

The choice to use the intermediate frame, instead of the inertial reference, leads to a simplified formulation 

for the lateral and longitudinal displacements because the yaw rotation is not considered during the 

computation of the latter. However, by using this procedure the vertical displacement is not influenced (is 

the same in both the fixed and intermediate reference frame), but in the computation of the lateral virtual 

displacement also the contribution due to the yaw rotation has to be taken into account. In order to do 

this, the generalised velocities (expressed in the body frame) have to be expressed as a linear combination 

of the velocities in the intermediate frame, thus the transformation matrix to pass from one frame to the 

other has to be known. 
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In such a case, the vector of the generalised coordinates (in the intermediate reference frame) is: 

 {𝑞𝑞} = {𝑥𝑥∗, 𝑦𝑦∗, 𝑂𝑂, 𝜑𝜑, 𝜃𝜃, 𝜓𝜓}𝑇𝑇  (71) 

 

While the vector of the generalised velocities, respect to the body reference frame, is: 

 {𝑤𝑤} = �𝑣𝑣𝐸𝐸, 𝑣𝑣𝑦𝑦, 𝑣𝑣𝑧𝑧, Ω𝐸𝐸,Ω𝑦𝑦, Ω𝑧𝑧�𝑇𝑇  (72) 

 

 
Figure 9: generalised coordinates and velocities 

Where 𝑣𝑣𝐸𝐸, 𝑣𝑣𝑦𝑦 and 𝑣𝑣𝑧𝑧 are the velocities at the origin of the moving reference frame, thus of the vehicle 

centre of gravity.  

This way the velocities vector can’t be computed as first derivative of the generalised coordinates vector, 

but it is linked to the latter by means of the 6 kinematic equation from (39) and (51): 

 �
𝑣𝑣𝐸𝐸
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧

� = 𝑅𝑅𝑦𝑦𝐸𝐸
𝑇𝑇 ·

⎩�
⎨
�⎧�̇�𝑂

𝑂𝑂̇
𝑂𝑂̇⎭�

⎬
�⎫ (73) 
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⎩�
⎨
�⎧

Ω𝐸𝐸
Ω𝑦𝑦

Ω𝑧𝑧⎭�
⎬
�⎫

= 𝐸𝐸 ·
⎩�
⎨
�⎧

�̇�𝜑
𝜃𝜃 ̇
𝜓𝜓⎭̇�
⎬
�⎫

 

 

And in matrix form: 

 {𝑤𝑤} = 𝐴𝐴𝑇𝑇 · {𝑞𝑞}̇ (74) 

Where: 

 𝐴𝐴𝑇𝑇 = �𝑅𝑅𝑦𝑦𝐸𝐸
𝑇𝑇 0
0 𝐸𝐸

� (75) 

Thus, writing the inverse transformation we get: 

 {𝑞𝑞}̇ = 𝐵𝐵 · {𝑤𝑤} (76) 

Where 𝐵𝐵 = 𝐴𝐴−𝑇𝑇 ,  and given that 𝐸𝐸 is not a rotation matrix 𝐴𝐴−1 ≠ 𝐴𝐴𝑇𝑇 , thus 𝐵𝐵 ≠ 𝐴𝐴. 

By using this set of generalised coordinates, given that the body reference frame is a principal frame of 

inertia, the kinetic energy of the system is: 

 𝑇𝑇 = 1
2

𝑚𝑚�𝑣𝑣𝐸𝐸
2 + 𝑣𝑣𝑦𝑦

2 + 𝑣𝑣𝑧𝑧
2� + 1

2
�𝐼𝐼𝐸𝐸Ω𝐸𝐸

2 + 𝐼𝐼𝑦𝑦Ω𝑦𝑦
2 + 𝐼𝐼𝑧𝑧Ω𝑧𝑧

2� (77) 

where 𝑚𝑚 is the mass of the vehicle body and 𝐼𝐼𝐸𝐸, 𝐼𝐼𝑦𝑦 and 𝐼𝐼𝑧𝑧 are the moment of inertia of the vehicle along 

the three principal axis of inertia 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧, respectively. 

The equation of motion of the system are thus obtained by means of the equation system in (70), and the 

matrix 𝐵𝐵𝑇𝑇 Γ in this case becomes: 

 𝐵𝐵𝑇𝑇 Γ = �Ω� 0
𝑚𝑚 ̃ Ω�

� (78) 

Ω� and 𝑚𝑚 ̃  are skew-symmetric matrices which, according to [15], contain the components of the quasi-

velocities: 
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 Ω� =
⎣
⎢
⎡

0 −Ω𝑧𝑧 Ω𝑦𝑦

Ω𝑧𝑧 0 −Ω𝐸𝐸
−Ω𝑦𝑦 Ω𝐸𝐸 0 ⎦

⎥
⎤     𝑚𝑚 ̃ =

⎣
⎢⎡

0 −𝑣𝑣𝑧𝑧 𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧 0 −𝑣𝑣𝐸𝐸

−𝑣𝑣𝑦𝑦 𝑣𝑣𝐸𝐸 0 ⎦
⎥⎤ (79) 

At this point the equation of motion of the system can be written by means of (70). 

3.3.2 Potential energy and dissipation function 

The potential energy of the system is due to the gravity force acting on it and the energy stored in the 

springs reported in Figure 10. The system presents four linear springs, one for each suspension, and two 

torsional springs to model the effect of passive anti-roll bars. 

The dissipation function, instead, is linked to the elements in which the dissipation of energy occurs as a 

result of viscous forces, thus it is linked with the four dampers present in the system. 

Assuming that each of the four the subsystems composed by spring, damper and actuator remains vertical 

respect to the ground, in order to write the potential energy and the dissipation function of the system, it 

is sufficient to write the vertical displacement of the four point 𝐴𝐴𝑖𝑖 in which the i-th subsystem transmit 

the forces to the vehicle body.  

By knowing the position of 𝐴𝐴𝑖𝑖 with respect to the centre of gravity of the vehicle it possible to write the 

vertical displacement and velocity of the respective point as a function of the generalised coordinates by 

means of (46) and (48), which provide the following relations: 

 
⎩�
⎨
�⎧

𝑥𝑥𝐴𝐴𝑖𝑖
∗

𝑦𝑦𝐴𝐴𝑖𝑖
∗

𝑂𝑂𝐴𝐴𝑖𝑖

 
⎭�
⎬
�⎫

=
⎩�
⎨
�⎧

𝑥𝑥𝐶𝐶
∗

𝑦𝑦𝐶𝐶
∗

𝑂𝑂𝐶𝐶⎭�
⎬
�⎫ + 𝑅𝑅𝑦𝑦𝐸𝐸 · {𝐴𝐴𝑖𝑖

′} 

⎩�
⎨
�⎧

𝑥𝑥�̇�𝐴𝑖𝑖
∗

𝑦𝑦�̇�𝐴𝑖𝑖
∗

�̇�𝑍𝐴𝐴𝑖𝑖⎭
�⎬
�⎫

=
⎩�
⎨
�⎧

𝑥𝑥�̇�𝐶
∗

𝑦𝑦�̇�𝐶
∗

�̇�𝑍𝐶𝐶⎭�
⎬
�⎫

+ 𝑂𝑂𝑅𝑅𝑦𝑦𝐸𝐸 · {𝐴𝐴𝑖𝑖
′} 

(80) 
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Figure 10: Front axle schematic during cornering 

where the matrix 𝑂𝑂 contains the variation ratios of the Euler angle: 

 𝑂𝑂=
⎣
⎢
⎡

  0 −𝜓𝜓̇   𝜃𝜃 ̇ 
  𝜓𝜓 ̇   0 −�̇�𝜑  
−𝜃𝜃 ̇   �̇�𝜑   0  ⎦

⎥
⎤ (81) 

 and positions of the four points 𝐴𝐴𝑖𝑖 respect to the CoG are: 

 𝐴𝐴1
′ =

⎩�
⎨
�⎧

𝑎𝑎
−𝑙𝑙𝑃𝑃,𝐹𝐹
ℎ𝑃𝑃,𝐹𝐹 ⎭�

⎬
�⎫    𝐴𝐴2

′ =
⎩�
⎨
�⎧

𝑎𝑎
𝑙𝑙𝑃𝑃,𝐹𝐹
ℎ𝑃𝑃,𝐹𝐹 ⎭�

⎬
�⎫    𝐴𝐴3

′ =
⎩�
⎨
�⎧

−𝑏𝑏
𝑙𝑙𝑃𝑃,𝑅𝑅

ℎ𝑃𝑃,𝑅𝑅⎭�
⎬
�⎫

    𝐴𝐴4
′ =

⎩�
⎨
�⎧

−𝑏𝑏
−𝑙𝑙𝑃𝑃,𝑅𝑅

ℎ𝑃𝑃,𝑅𝑅 ⎭�
⎬
�⎫

 (82) 

in which 𝑎𝑎 and 𝑏𝑏 are, respectively, the front and rear semi-wheelbase. 

By using these relations it is possible to write the potential energy, 𝑚𝑚 , and the dissipation function, 𝐷𝐷, of 

the system: 

 𝑚𝑚 = 1
2
�𝐾𝐾𝑖𝑖�𝑂𝑂𝐴𝐴𝑖𝑖

− 𝑂𝑂𝑃𝑃𝐸𝐸𝑃𝑃𝐸𝐸𝑖𝑖𝐴𝐴,𝐴𝐴𝑖𝑖
�2

4

𝑖𝑖=1
+ 1

2
�𝐾𝐾𝐸𝐸,𝐹𝐹 + 𝐾𝐾𝐸𝐸,𝑅𝑅�𝜑𝜑2 + 𝑚𝑚𝑚𝑚𝑂𝑂𝐶𝐶 (83) 
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𝐷𝐷 = 1
2
�𝑅𝑅𝑖𝑖�𝑂𝑂�̇�𝐴𝑖𝑖

�2
4

𝑖𝑖=1
 

 where: 𝐾𝐾𝑖𝑖 is the stiffness of the i-th spring, 𝐾𝐾𝐸𝐸,𝐹𝐹  and 𝐾𝐾𝐸𝐸,𝑅𝑅 are the front and rear anti-roll bars stiffness, 

and 𝑅𝑅𝑖𝑖 is the damping coefficient of the i-th damper, and 𝑂𝑂𝑃𝑃𝐸𝐸𝑃𝑃𝐸𝐸𝑖𝑖𝐴𝐴,𝐴𝐴𝑖𝑖
 is the static value of 𝑂𝑂𝐴𝐴𝑖𝑖

. 

As discussed before, instead of using the velocities in the fixed reference frame, it is convenient to use the 

quasi-coordinates respect to the moving reference frame. 

The equation for the potential energy does not depend on the velocities of the system in the fixed reference 

frame, however the dissipation function depends on the latter so it needs to be rewritten in terms of quasi-

velocities in the moving reference frame. In order to do that it is possible to pass from one system to the 

other by using (76), thus obtaining 𝑂𝑂�̇�𝐴𝑖𝑖
 as a function of the quasi-velocities: 

 𝑂𝑂�̇�𝐴𝑖𝑖
= 𝑓𝑓(𝑞𝑞 ̇ = 𝑚𝑚(𝑤𝑤  (84) 

And by replacing the equation above in (83) the dissipation function becomes a function of the quasi-

velocities 𝑤𝑤. 

3.3.3 Generalised forces 

The generalised force vector can be obtained starting from the virtual work, 𝛿𝛿𝑊𝑊 , of the applied forces: 

 𝛿𝛿𝑊𝑊 = �𝐹𝐹𝑗𝑗 · 𝛿𝛿𝑟𝑟𝑗𝑗

𝑚𝑚

𝑗𝑗=1
 (85) 

 where 𝛿𝛿𝑟𝑟𝑗𝑗 is the virtual displacement of the point in which the j-th of the m force is applied. 

Given that the position of a generic point can be written as a function of the generalised coordinates as 

𝑟𝑟𝑗𝑗 = 𝑟𝑟𝑗𝑗(𝑞𝑞1,… , 𝑞𝑞𝑙𝑙, 𝑡𝑡 , the virtual displacement can be written as: 

 𝛿𝛿𝑟𝑟𝑗𝑗 = 𝑟𝑟𝑗𝑗(𝑞𝑞1,… , 𝑞𝑞𝑙𝑙, 𝑡𝑡 =
𝜕𝜕𝑟𝑟𝑗𝑗

𝜕𝜕𝑞𝑞1
𝛿𝛿𝑞𝑞1 + ⋯+

𝜕𝜕𝑟𝑟𝑗𝑗

𝜕𝜕𝑞𝑞𝑙𝑙
𝛿𝛿𝑞𝑞𝑙𝑙 = �

𝜕𝜕𝑟𝑟𝑗𝑗

𝜕𝜕𝑞𝑞𝑖𝑖
𝛿𝛿𝑞𝑞𝑖𝑖

𝑙𝑙

𝑖𝑖=1
 (86) 

 Thus, the virtual work becomes: 
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 𝛿𝛿𝑊𝑊 = �𝐹𝐹𝑗𝑗 · �
𝜕𝜕𝑟𝑟𝑗𝑗

𝜕𝜕𝑞𝑞𝑖𝑖
𝛿𝛿𝑞𝑞𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑚𝑚

𝑗𝑗=1
= ���𝐹𝐹𝑗𝑗

𝜕𝜕𝑟𝑟𝑗𝑗

𝜕𝜕𝑞𝑞𝑖𝑖

𝑚𝑚

𝑗𝑗=1
� 𝛿𝛿𝑞𝑞𝑖𝑖

𝑙𝑙

𝑖𝑖=1
= �𝑄𝑄𝑖𝑖𝛿𝛿𝑞𝑞𝑖𝑖

𝑙𝑙

𝑖𝑖=1
 (87) 

 

 

The generalised 𝑄𝑄𝑖𝑖 represent the equivalent forces acting on the virtual displacements of the generalised 

coordinate 𝑞𝑞𝑖𝑖, and they are computed as: 

 𝑄𝑄𝑖𝑖 = �𝐹𝐹𝑗𝑗
𝜕𝜕𝑟𝑟𝑗𝑗

𝜕𝜕𝑞𝑞𝑖𝑖

𝑚𝑚

𝑗𝑗=1
 (88) 

where m is the number of external forces acting on the system, and with this definition it can be proved 

that (70) is valid. In order to write the generalised forces, the virtual displacement have to be defined for 

each of the force applied to the system. The external forces in this case are: the four reaction forces of the 

tires and the force generated by the actuators; the latter, 𝐹𝐹𝐴𝐴𝐴𝐴𝐸𝐸,𝑖𝑖, act only in vertical direction in the 𝐴𝐴𝑖𝑖 

points, so the only virtual displacement needed is provided by the equation (80), and the virtual work 

related to the actuators is given by: 

 𝛿𝛿𝑊𝑊𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴
= �𝐹𝐹𝐴𝐴𝐴𝐴𝐸𝐸,𝑖𝑖 · 𝛿𝛿𝑂𝑂𝐴𝐴𝑖𝑖

4

𝑖𝑖=1
 (89) 

The tires transmit their forces with the bodies in the four 𝐽𝐽𝑖𝑖 points through the suspensions links, which 

can transmit only tensile or compression forces. Because of this, the forces acting on the 𝐽𝐽𝑖𝑖 points have 

both lateral and a vertical component, thus requiring the computation of the vertical al lateral virtual 

displacement for these points. Under the assumption that the position vectors of the four joints are 

constant respect to the body reference frame during small oscillation around the linearisation point, 

according to Figure 10, they are defined as it follows: 

 𝐽𝐽1
′ =

⎩�
⎨
�⎧

𝑎𝑎
𝑙𝑙𝐽𝐽,1
ℎ𝐽𝐽,1⎭�

⎬
�⎫    𝐽𝐽2

′ =
⎩�
⎨
�⎧

𝑎𝑎
−𝑙𝑙𝐽𝐽,2
ℎ𝐽𝐽,2 ⎭�

⎬
�⎫    𝐽𝐽3

′ =
⎩�
⎨
�⎧

−𝑏𝑏
−𝑙𝑙𝐽𝐽,3

ℎ𝐽𝐽,3 ⎭�
⎬
�⎫

    𝐽𝐽4
′ =

⎩�
⎨
�⎧

−𝑏𝑏
𝑙𝑙𝐽𝐽,4

ℎ𝐽𝐽,4⎭�
⎬
�⎫

 (90) 
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Therefore, the virtual displacements are calculated by means of (46), similarly to what has been done for 

the 𝐴𝐴𝑖𝑖 points. The lateral tire forces act along the direction of the 𝑦𝑦∗ axis of the intermediate reference 

frame, while the vertical components transmitted to the body act along the Z axis. As said before in order 

to properly define the lateral virtual displacement also the contribution given by the yaw rotation has to 

be taken into account. To do that it is possible to use the rotation matrix 𝑅𝑅𝑧𝑧 but, due to the fact that it 

will be used to compute infinitesimal displacement, in this case it is possible to use the small angle 

assumption also for the yaw angle, thus obtaining: 

 𝛿𝛿𝑅𝑅𝑧𝑧 = �𝛿𝛿
1 −𝛿𝛿𝜓𝜓 0
𝜓𝜓 1 0
0 0 1

� (91) 

The virtual displacement related to the 𝐽𝐽𝑖𝑖 points are then computed by means of the following relation:  

 
⎩�
⎨
�⎧

𝛿𝛿𝑥𝑥𝐽𝐽𝑖𝑖
∗

𝛿𝛿𝑦𝑦𝐽𝐽𝑖𝑖
∗

𝛿𝛿𝑂𝑂𝐽𝐽𝑖𝑖⎭
�⎬
�⎫

=
⎩�
⎨
�⎧

𝑥𝑥𝐶𝐶
∗

𝑦𝑦𝐶𝐶
∗

𝑍𝑍𝐺𝐺⎭�
⎬
�⎫ + 𝛿𝛿𝑅𝑅𝑧𝑧𝑅𝑅𝑦𝑦𝐸𝐸{𝐽𝐽𝑖𝑖

′} (92) 

Thus the virtual work exerted by the lateral forces of the tires is: 

 𝛿𝛿𝑊𝑊𝐹𝐹𝑦𝑦
= �𝐹𝐹𝑦𝑦,𝑖𝑖 · 𝛿𝛿𝑦𝑦𝐽𝐽𝑖𝑖

∗
4

𝑖𝑖=1
 (93) 

While the virtual work of the vertical component of tire forces is: 

 𝛿𝛿𝑊𝑊𝐹𝐹𝐽𝐽
= �𝐹𝐹𝐽𝐽,𝑖𝑖 · 𝛿𝛿𝑂𝑂𝐽𝐽𝑖𝑖

4

𝑖𝑖=1
 (94) 

Once the virtual displacements have been obtained, for each one of the 𝐹𝐹𝑗𝑗 forces, the generalised forces 

𝑄𝑄𝑖𝑖 are computed by using (88). 
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3.4 Tire forces 

In this section, the equations used to compute the forces exerted by the tires are reported. In our case, 

the forces generated by the contact between the tires and the ground are the lateral forces and the vertical 

forces only because we are not taking into account the longitudinal dynamic of the vehicle. 

Moreover with this model it is possible to introduce the effect of the Jacking forces, which will be discussed 

in detail later. 

3.4.1 Lateral forces 

The force exerted by the tire is computed by means of the Pacejka formula in [8]. 

It’s general form, that holds for given values of vertical load and camber angle, reads: 

 𝑦𝑦 = 𝐷𝐷 sin[𝑅𝑅 tan−1{(1 − 𝐸𝐸 𝐵𝐵𝑥𝑥 − 𝐸𝐸 tan−1(𝐵𝐵𝑥𝑥 }] (95) 

 

with 

 
𝑂𝑂 (𝑂𝑂 = 𝑦𝑦(𝑥𝑥 + 𝑂𝑂𝑉𝑉  

𝑥𝑥 = 𝑂𝑂 + 𝑂𝑂𝐻𝐻 
(96) 

where Y is the output variable and is defined as the longitudinal force 𝐹𝐹𝐸𝐸 = 𝑦𝑦(𝑘𝑘  or the lateral force 𝐹𝐹𝑦𝑦 =

𝑦𝑦(𝛼𝛼  or the aligning torque 𝑀𝑀𝑧𝑧. X is defined as the input variable and as input the longitudinal slip κ and 

side slip angle α can be used. The remaining variables of the Magic Formula describe the following 

coefficients:  

• B stiffness factor  

• C shape factor  

• D peak value  

• E curvature factor  

• 𝑆𝑆𝐻𝐻 horizontal shift  

• 𝑆𝑆𝑉𝑉 vertical shift  
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The Magic Formula y(x) typically produces a curve that passes through the origin x = y = 0, reaches a 

maximum and subsequently tends to a horizontal asymptote. To allow the curve to have an offset with 

respect to the origin, two shifts 𝑂𝑂𝐻𝐻 and 𝑂𝑂𝑉𝑉  have been introduced. A new set of coordinates Y(X) arises 

as shown in Figure 11. 

The formula Equation (95) is capable of producing characteristics that closely match measured curves for 

the lateral force 𝐹𝐹𝑦𝑦  (and if desired also for the aligning torque 𝑀𝑀𝑧𝑧) as a function of the slip angle 𝛼𝛼 and 

for the longitudinal force 𝐹𝐹𝐸𝐸 as a function of the longitudinal slip 𝑘𝑘. Both characteristics consider the 

effect of the vertical load 𝐹𝐹𝑧𝑧 and a camber angle 𝛾𝛾 included in the parameters.  

 
Figure 11. Curve produced by the original sine version of the Magic Formula 

Coefficient D represents the peak value (for C ≥ 1) and the product BCD corresponds to the slope at the 

origin (x = y = 0). The shape factor C controls the limits of the range of the sine function appearing in 

(68) and thereby determines the shape of the resulting curve. The factor B is left to determine the slope 

at the origin and is called the stiffness factor. The factor E is introduced to control the curvature at the 

peak and at the same time the horizontal position of the peak 𝑥𝑥𝑚𝑚. The offsets 𝑆𝑆𝐻𝐻 and 𝑆𝑆𝑉𝑉 appear to occur 

when ply-steer (describes the lateral force a tire generates due to asymmetries in its carcass as is rolls 

forward with zero slip angle and may be called pseudo side slip)and conicity effects and possibly the rolling 

resistance cause the longitudinal and lateral curves not to pass to the origin. Wheel camber may give rise 

to a considerable offset of the 𝐹𝐹𝑦𝑦 vs 𝛼𝛼 curves.  
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The aligning torque 𝑀𝑀𝑧𝑧 can now be obtained by multiplying the side force 𝐹𝐹𝑦𝑦  with the pneumatic trail t 

(it is the distance that the resultant force of side-slip occurs behind the geometric centre of the contact 

patch)and adding the usually small (except with camber) residual torque 𝑀𝑀𝑧𝑧𝑟𝑟. 

 𝑀𝑀𝑧𝑧 = −𝑡𝑡 ∗ 𝐹𝐹𝑦𝑦 + 𝑀𝑀𝑧𝑧𝑟𝑟 (97) 

The pneumatic trail decreases with increasing side slip and is described as: 

 𝑡𝑡(𝛼𝛼𝐸𝐸 = 𝐷𝐷𝐸𝐸 cos[𝑅𝑅𝐸𝐸 tan−1{𝐵𝐵𝐸𝐸𝛼𝛼𝐸𝐸 − 𝐸𝐸𝐸𝐸(𝐵𝐵𝐸𝐸𝛼𝛼𝐸𝐸 − tan−1(𝐵𝐵𝐸𝐸𝛼𝛼𝐸𝐸 }] (98) 

where 

 𝛼𝛼𝐸𝐸 = tan𝛼𝛼 + 𝑂𝑂𝐻𝐻𝐸𝐸 (99) 

The residual torque shows a similar decrease: 

𝑀𝑀𝑧𝑧𝑟𝑟(𝛼𝛼𝑟𝑟 = 𝐷𝐷𝑟𝑟 cos[tan−1(𝐵𝐵𝑟𝑟𝛼𝛼𝑟𝑟 ] (100) 

with 

𝛼𝛼𝑟𝑟 = tan𝛼𝛼 + 𝑂𝑂𝐻𝐻𝑅𝑅 (101) 

Both the aligning and residual torque are modelled using the Magic Formula, but instead of the sine 

function, the cosine function is applied to produce a hill-shaped curve. 

The residual torque is assumed to attain its maximum 𝐷𝐷𝑟𝑟 at the slip angle where the side force becomes 

equal to zero. This is accomplished through the horizontal shift 𝑂𝑂𝐻𝐻𝑅𝑅 . The peak of the pneumatic trail 

occurs at tan𝛼𝛼 = −𝑂𝑂𝐻𝐻𝐸𝐸. The advantage with respect to the earlier versions, where formula (68) is used 

for the aligning torque as well, is that we have now directly assessed the function for the pneumatic trail 

which is needed to handle the combined slip situation.  

The measured tire characteristics may be not entirely symmetric, for example 𝐹𝐹𝑦𝑦(𝛼𝛼, 𝛾𝛾 ≠ −𝐹𝐹𝑦𝑦(−𝛼𝛼,−𝛾𝛾 . 

This can be caused the tire characteristics conicity and ply steer or inaccuracies in the measurements. In 

this case, it is preferable to eliminate these offsets and asymmetry and have a completely symmetric tire 

in the simulation environment. In that case the following parameters should be set zero and kept zero in 
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the identification process: rHx1, qsx1, pEy3, pHy1, pHy2, pVy1, pVy2, rBy3, rVy1, rVy2, qBz4, qDz6, 

qDz7, qEz4, qHz1, qHz2, ssz1, and qDz3. 

The effect of having a tire with a different nominal load may be roughly approximated by using the scaling 

factor 𝜆𝜆𝐹𝐹𝑧𝑧0
: 

𝐹𝐹′𝑧𝑧0 = 𝜆𝜆𝐹𝐹𝑧𝑧𝑇𝑇𝐹𝐹𝑧𝑧0 (102) 

Further, we introduce the normalized change in vertical load 

𝑑𝑑𝑓𝑓𝑧𝑧 = 𝐹𝐹𝑧𝑧 − 𝐹𝐹′𝑧𝑧0
𝐹𝐹′𝑧𝑧0

 (103) 

In the Simulink environment, by using the Magic Formula and a set of scaling factors 𝜆𝜆 (where the default 

value of these factors is set equal to 1), the lateral forces 𝐹𝐹𝑦𝑦 are so computed as a function of: 

• slip angle 𝛼𝛼 

• vertical forces 𝐹𝐹𝑧𝑧 

• longitudinal slip of the tire (set equal to zero, since we are not considering the longitudinal dynamic 

of the vehicle) 

• camber angle (set equal to zero) 

• friction coefficient 𝜇𝜇 (equal in x and y direction) 

3.4.2 Jacking forces 

During cornering, the lateral forces exerted by the tires are transmitted to the body through the suspension 

links in order to guarantee the lateral force balance of the latter. As mentioned before, the suspension 

system can only transmit forces to the body along the vector passing through the tire contact patch, 𝐴𝐴𝑖𝑖, 

and the instantaneous centre of rotation of the suspension, 𝐽𝐽𝑖𝑖. 

Figure 10 shows that during cornering, in order to generate a lateral force 𝐹𝐹𝑦𝑦,𝑖𝑖, each suspension link have 

to generate a total force of modulus 𝐹𝐹𝐸𝐸𝑖𝑖𝑟𝑟𝑅𝑅,𝑖𝑖 = 𝐹𝐹𝑦𝑦,𝑖𝑖
cos(𝜃𝜃𝑖𝑖

 with the same direction of the link itself. 

As a consequence, the suspension system generates a vertical force 𝐹𝐹𝐽𝐽𝑃𝑃𝐴𝐴𝑘𝑘,𝑖𝑖 = 𝐹𝐹𝐸𝐸𝑖𝑖𝑟𝑟𝑅𝑅,𝑖𝑖 sin(𝜃𝜃𝑖𝑖 = 𝐹𝐹𝑦𝑦,𝑖𝑖𝑡𝑡𝑚𝑚(𝜃𝜃𝑖𝑖 , 

which are known as Jacking forces. 



43 

 

Thus, in order to compute the forces transmitted through the suspensions to the body it is necessary to 

have: 1) a tire model to describe the lateral reaction of the tires as a function of the state variables of the 

system; 2) the values of the angles 𝜃𝜃𝑖𝑖 to compute the values of the Jacking forces. 

Assuming that the length of suspension links in Figure 10 remains constant during small oscillation around 

the linearisation point, it is possible to compute the inclination of the link as it follows: 

 𝑡𝑡𝑚𝑚(𝜃𝜃𝑖𝑖 =
𝑂𝑂𝐽𝐽,𝑖𝑖

�𝑙𝑙𝑟𝑟𝑖𝑖𝑙𝑙𝑘𝑘,𝑖𝑖
2 − 𝑂𝑂𝐽𝐽,𝑖𝑖

2
 (104) 

where 𝑂𝑂𝐽𝐽,𝑖𝑖 is the height of the point 𝐽𝐽𝑖𝑖, which can be computed following the procedure described in 

section 0; 𝑙𝑙𝑟𝑟𝑖𝑖𝑙𝑙𝑘𝑘,𝑖𝑖 is the length 𝑇𝑇𝐽𝐽�������
𝑖𝑖 of the i-th link relative to the i-th tire in the linearisation point. 

It is possible to compute also the front and rear track width with trivial geometrical consideration: 

 
𝑡𝑡𝐹𝐹 = ��𝑙𝑙𝑟𝑟𝑖𝑖𝑙𝑙𝑘𝑘,1

2 − 𝑂𝑂𝐽𝐽,1
2 + 𝑂𝑂𝐽𝐽,1� + ��𝑙𝑙𝑟𝑟𝑖𝑖𝑙𝑙𝑘𝑘,2

2 − 𝑂𝑂𝐽𝐽,2
2 − 𝑂𝑂𝐽𝐽,2� 

𝑡𝑡𝑅𝑅 = ��𝑙𝑙𝑟𝑟𝑖𝑖𝑙𝑙𝑘𝑘,4
2 − 𝑂𝑂𝐽𝐽,4

2 + 𝑂𝑂𝐽𝐽,4� + ��𝑙𝑙𝑟𝑟𝑖𝑖𝑙𝑙𝑘𝑘,3
2 − 𝑂𝑂𝐽𝐽,3

2 − 𝑂𝑂𝐽𝐽,3� 
(105) 

3.4.3 Vertical forces 

The vertical load exerted on the tire is given by: the static load, the force generated by suspension, anti-

roll bars and actuator, and the Jacking forces: 

 

𝐹𝐹𝑧𝑧,1 = 𝑚𝑚𝑚𝑚
2

𝑏𝑏
𝐿𝐿

− �𝐾𝐾1∆𝑂𝑂𝐴𝐴,1 + 𝑅𝑅1𝑂𝑂�̇�𝐴,1�𝑃𝑃𝛿𝛿𝑃𝑃𝑝𝑝 +
𝐾𝐾𝐸𝐸,𝐹𝐹

𝑡𝑡𝐹𝐹
𝜑𝜑 + 𝐹𝐹𝑦𝑦,1𝑡𝑡𝑚𝑚(𝜃𝜃1 + 𝐹𝐹𝐴𝐴𝐴𝐴𝐸𝐸,1 

𝐹𝐹𝑧𝑧,2 = 𝑚𝑚𝑚𝑚
2

𝑏𝑏
𝐿𝐿

− �𝐾𝐾2∆𝑂𝑂𝐴𝐴,2 + 𝑅𝑅2𝑂𝑂�̇�𝐴,2�𝑃𝑃𝛿𝛿𝑃𝑃𝑝𝑝 −
𝐾𝐾𝐸𝐸,𝐹𝐹

𝑡𝑡𝐹𝐹
𝜑𝜑 − 𝐹𝐹𝑦𝑦,2𝑡𝑡𝑚𝑚(𝜃𝜃2 + 𝐹𝐹𝐴𝐴𝐴𝐴𝐸𝐸,2 

𝐹𝐹𝑧𝑧,3 = 𝑚𝑚𝑚𝑚
2

𝑎𝑎
𝐿𝐿

− �𝐾𝐾3∆𝑂𝑂𝐴𝐴,3 + 𝑅𝑅3𝑂𝑂�̇�𝐴,3�𝑃𝑃𝛿𝛿𝑃𝑃𝑝𝑝 −
𝐾𝐾𝐸𝐸,𝑅𝑅

𝑡𝑡𝑅𝑅
𝜑𝜑 − 𝐹𝐹𝑦𝑦,3𝑡𝑡𝑚𝑚(𝜃𝜃3 + 𝐹𝐹𝐴𝐴𝐴𝐴𝐸𝐸,3 

𝐹𝐹𝑧𝑧,4 = 𝑚𝑚𝑚𝑚
2

𝑎𝑎
𝐿𝐿

− �𝐾𝐾4∆𝑂𝑂𝐴𝐴,4 + 𝑅𝑅4𝑂𝑂�̇�𝐴,4�𝑃𝑃𝛿𝛿𝑃𝑃𝑝𝑝 +
𝐾𝐾𝐸𝐸,𝑅𝑅

𝑡𝑡𝑅𝑅
𝜑𝜑 + 𝐹𝐹𝑦𝑦,4𝑡𝑡𝑚𝑚(𝜃𝜃4 + 𝐹𝐹𝐴𝐴𝐴𝐴𝐸𝐸,4 

(106) 
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Where ∆𝑂𝑂𝐴𝐴𝑖𝑖
= 𝑂𝑂𝐴𝐴𝑖𝑖

− 𝑂𝑂𝑃𝑃𝐸𝐸𝑃𝑃𝐸𝐸𝑖𝑖𝐴𝐴,𝐴𝐴𝑖𝑖
 in which 𝑂𝑂𝐴𝐴,𝑖𝑖, as for 𝑂𝑂�̇�𝐴,𝑖𝑖, is computed with (80); 𝐹𝐹𝑦𝑦,𝑖𝑖𝑡𝑡𝑚𝑚(𝜃𝜃𝑖𝑖  are the Jacking 

forces and 𝐹𝐹𝐴𝐴𝐴𝐴𝐸𝐸,𝑖𝑖 are the forces exerted by the actuators; 𝐾𝐾𝐸𝐸,𝐹𝐹  and 𝐾𝐾𝐸𝐸,𝑅𝑅 are the front and rear anti-roll 

bars stiffness; 𝑡𝑡𝐹𝐹  and 𝑡𝑡𝑅𝑅 are the front and rear track width expressed by (105); and 𝜑𝜑 is the roll angle. 

3.4.4 Slip angles 

The slip angles at the wheels can be computed as it follows: 

 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 − 𝛿𝛿𝑖𝑖 (107) 

Where 𝛽𝛽𝑖𝑖 and 𝛿𝛿𝑖𝑖 are, respectively, the side slip angle and the steering angle of the i-th wheel. 

The steering angle in this case is considered to be equal for the front wheels, while is zero for the rear 

ones.  

 

 

The side slip angle 𝛽𝛽𝑖𝑖 is computed by dividing the lateral speed of the tire for its longitudinal speed, thus 

obtaining: 

 𝛼𝛼𝑖𝑖 =
𝑦𝑦�̇�𝑇𝑖𝑖

∗

𝑥𝑥�̇�𝑇𝑖𝑖
∗ − 𝛿𝛿𝑖𝑖 (108) 

The lateral and longitudinal speeds of the i-th tire have to be obtained in the intermediate frame and as 

function of the generalised coordinates, so we start by computing the position of the i-th tire expressed in 

the intermediate reference frame as a function of the generalised coordinates: 

 {𝑇𝑇1
′} =

⎩
��
⎨
��
⎧ 𝑎𝑎

𝑦𝑦𝐽𝐽1
∗ −

𝑂𝑂𝐽𝐽1

𝑡𝑡𝑚𝑚(𝜃𝜃1

0 ⎭
��
⎬
��
⎫

    {𝑇𝑇2
′} =

⎩
��
⎨
��
⎧ 𝑎𝑎

𝑦𝑦𝐽𝐽2
∗ +

𝑂𝑂𝐽𝐽2

𝑡𝑡𝑚𝑚(𝜃𝜃2

0 ⎭
��
⎬
��
⎫

 (109) 
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{𝑇𝑇3
′} =

⎩
��
⎨
��
⎧ −𝑏𝑏

𝑦𝑦𝐽𝐽3
∗ +

𝑂𝑂𝐽𝐽3

𝑡𝑡𝑚𝑚(𝜃𝜃3

0 ⎭
��
⎬
��
⎫

    {𝑇𝑇4
′} =

⎩
��
⎨
��
⎧ −𝑏𝑏

𝑦𝑦𝐽𝐽4
∗ −

𝑂𝑂𝐽𝐽4

𝑡𝑡𝑚𝑚(𝜃𝜃4

0 ⎭
��
⎬
��
⎫

 

Where: 

 
⎩�
⎨
�⎧

𝑥𝑥𝐽𝐽𝑖𝑖
∗

𝑦𝑦𝐽𝐽𝑖𝑖
∗

𝑂𝑂𝐽𝐽𝑖𝑖⎭
�⎬
�⎫

𝐽𝐽𝑖𝑖

= 𝑅𝑅𝑦𝑦𝐸𝐸 ∙ {𝐽𝐽𝑖𝑖} (110) 

At this point the speed vector for each tire is computed as following: 

 �𝑇𝑇̇�𝑖𝑖 = 𝑅𝑅𝑦𝑦𝐸𝐸 ∙ �
𝑣𝑣𝐸𝐸
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧

� + 𝑂𝑂𝑧𝑧 ∙ {𝑇𝑇𝑖𝑖
′} + �𝑇𝑇𝑖𝑖

′̇� (111) 

Where the speed along z in then assumed to be zero, the vector �𝑣𝑣𝐸𝐸 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧�𝑇𝑇  contains the speeds of the 

vehicle centre of mass respect to the body reference frame. 

 

𝑂𝑂𝑧𝑧 can be written as: 

 𝑂𝑂𝑧𝑧 =
⎣
⎢⎡

0 −𝜓𝜓̇ 0
𝜓𝜓̇ 0 0
0 0 0⎦

⎥⎤ (112) 

The yaw rate 𝜓𝜓 ̇is finally rewritten as a function of the quasi-velocities by means of (52), thus obtaining: 

  𝜓𝜓 ̇ = Ω𝑦𝑦 · 𝜑𝜑 + Ω𝑧𝑧 (113) 

3.5 Simulink implementation 

After all the dynamic equation of the system have been obtained following the previous analytical 

procedure, they need to be implemented in Matlab/Simulink environment in order to simulate the time 

response of the vehicle when subject to certain inputs. To do so it’s possible to export the equations 

computed in Maple as Matlab file, and then use them to create the Simulink model.  
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In this first implementation of the model the longitudinal dynamics have been completely neglected and 

the longitudinal speed of the vehicle is fixed. By doing this we introduce some approximations, but at the 

same time the model is easier to implement and enough reliable for our purpose. 

Given that the longitudinal dynamics are neglected, we do not consider the motor/braking torque at the 

wheels and the only inputs of our system are the steering angle and the front-to-total anti-roll moment 

distribution 𝑓𝑓 . Inside the equations of motion, the position of the 𝐽𝐽𝑖𝑖 point is considered as a known variable 

of the system, so we need to know the position of those points in order to properly define the system. The 

definition of the 𝐽𝐽𝑖𝑖 point position is crucial to properly model the kinematic of the suspensions as it 

depends from the particular suspension system of the vehicle, and it can heavily affect the behaviour of 

the latter. 

3.5.1 Computation of the J-points position 

It is possible, knowing the particular geometry of the suspension used in the vehicle, to compute 

geometrically the position of the instantaneous centre of rotation of the suspension, that correspond to 

our 𝐽𝐽𝑖𝑖. Thus, after the suspension geometry is defined is possible to generate one look-up table for each 

suspension which, depending from the position of the vehicle, return the instantaneous position of the  

i-th J point. In this study the position of the J-points is computed by using 2D lookup tables, and the 

inputs of those are: 

• roll angle 𝜑𝜑  

• vertical displacement of the front 𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 and the rear 𝑍𝑍𝑓𝑓𝑒𝑒𝑟𝑟𝑓𝑓 of the vehicle as a function of the pitch 

angle 𝜃𝜃 and the semi-wheelbase a (front), b(rear) as it follows: 

𝑂𝑂𝑅𝑅𝑟𝑟𝑇𝑇𝑙𝑙𝐸𝐸 = 𝑂𝑂 − 𝑎𝑎 · tan 𝜃𝜃 (114) 

𝑂𝑂𝑟𝑟𝑅𝑅𝑃𝑃𝑟𝑟 = 𝑂𝑂 + 𝑏𝑏 · tan 𝜃𝜃 (115) 

Two lookup tables are so implemented for each suspension, one for the definition of the lateral 

displacement along the y-axis (𝑙𝑙𝐽𝐽) and one for the vertical displacement along the z-axis (ℎ𝐽𝐽). This set of 

coordinates identify the position of the J-points in the intermediate reference frame.  
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Thus, following the above procedure the position of the T-point along y-axis (𝑇𝑇𝐽𝐽) is computed then in the 

intermediate reference frame. 

The length of the four links are thus computed with the following formulation: 

𝑙𝑙𝑟𝑟𝑖𝑖𝑙𝑙𝑘𝑘 = �(𝑇𝑇 _𝑦𝑦 − 𝑙𝑙_𝐽𝐽 2 + ℎ_𝐽𝐽2 (116) 

3.5.2 Non-linear model 

The non-linear equations of motion of the system are thus implemented in Simulink by means of Matlab 

function in which the inputs are the variables on the right side of the equation while the output is the 

variable on the left side of the equation (if the block contains a system of equation we can have multiple 

outputs). The Simulink model is divided in five different subsystem: four of them contain the equation of 

motion computed previously and the equations to compute the forces acting on the body of the vehicle, 

the fifth instead presents a simple controller to compute the active forces generated by the actuators on 

each suspension as function of the lateral acceleration of the vehicle (Figure 12). 

 
Figure 12. Simulink non-linear model: subsystems 

More specifically, the model is divided in the following subsystems: 

• Sprung-mass dynamics (yellow): it contains the equation of motion of the vehicle; the inputs are 

the forces acting on the body and the positions of the J points. 
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• Forces computation (green): it contains the equation to compute the vertical, lateral and jacking 

forces generated by the contact between the tires and the ground; the inputs are the states of the 

vehicle, the steering angle, the value of 𝑓𝑓 , and the positions of the J points. 

• Suspension dynamics (turquoise): it contains the lookup-tables that give us the position of the J 

points; the inputs are the states of the vehicle. 

• RC position (blue): it computes the position of the two roll centres (front and rear) knowing the 

position of the J points and the contact patches of the tires. 

• ARC (grey): it computes the force of the actuators; the inputs are the states of the system, the 

positions of the RCs and the lateral acceleration of the vehicle. 

 

 

Figure 13. Simulink non-linear model: main system 

All the subsystems are then grouped in a single system (Figure 13) in which the only inputs are the steering 

angle and the value 𝑓𝑓 , while the outputs are: the lateral acceleration 𝑎𝑎𝑌𝑌 , the yaw rate 𝑟𝑟, the RCs positions, 

the side slip angle 𝛽𝛽, the height of the centre of gravity 𝑂𝑂, the roll angle 𝜑𝜑, the pitch angle 𝜃𝜃. Using this 

model is possible to perform simulation in the time domain of all kind of manoeuvres by generating the 

desired steering input (ramp, step, sine, sine with dwell). 
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3.5.3 Model linearisation 

In order to obtain a linear model, it is possible to use the linear analysis tool built in Simulink, which 

allows to linearize a single block of the model, in a specific linearization point, obtaining the state space 

formulation in which the inputs and outputs correspond to the ones of the linearized block.  

In this case the subsystem Vehicle simulate (Figure 13) the vehicle dynamics and the inputs are the 

steering angle and the front-to-total anti-roll moment ratio. 

In order to linearise the system we need to properly define the linearisation point which has to be an 

equilibrium point of the system of differential equations. For this reason, the system has been linearised 

for 𝑡𝑡 = 25 s when subject to the steering input in Figure 14a and a value of anti-roll moment 𝑓𝑓 = 0.5. 

 

a) 

 

b) 

Figure 14. a) steering angle during linearisation versus time b) lateral acceleration during linearisation versus time 

At this point the vehicle model is in static conditions (Figure 14b shows that the value of lateral 

acceleration remains stable at 9 m/s2), subject to a lateral acceleration of 9 m/s2 and a longitudinal speed 

of 100 km/h, which in this case are defining our linearisation point. 

At this point, by means of the linear analysis tool, the linearised system is obtained in state space form. 

3.6 Results 

In the following sections two types of analysis are carried out in order to verify the response of the newly 

developed model. In the first part the time response of the passive vehicle (i.e. when the active part of the 
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suspensions is deactivated) will be analysed, while in the second one the effect of the active suspension 

system will be analysed looking at the frequency response of the active vehicle. 

In both cases the simulation will be carried out in two cases:  

• With fixed RCs positions: The Roll Centres lie on the ground and they are fixed respect to the 

vehicle body and the intermediate reference frame, thus the suspensions kinematic are neglected. 

By doing this we introduce the same simplifications used in the previous model, so we expect 

similar results from the two models and this can be used to verify if the new model works properly. 

• With moving RCs: The positions of the roll centres depend on the suspension kinematics, thus 

they vary according to the movements of the vehicle body. These simulations can be carried out 

only with the newly developed model, and these will be used to analyse the effect of the Roll 

Centres migration on the forces acting on the vehicle and its frequency response (for the active 

case) 

In the following sections these analyses will be carried out, and they can be summarised as it follows: 

1. Passive case with fixed RCs (time domain comparison: old model vs. new model) 

2. Passive case with moving RCs (time domain analysis: effects of Roll Centre migration) 

3. Active case with fixed RCs (frequency domain comparison: old model vs. new model) 

4. Active case with moving RCs (frequency domain analysis: effects of Roll Centre migration) 

3.6.1 Passive case with fixed RCs: ramp steer manoeuvre simulation (passive vehicle) 

In order to compare the new model with the validated model, a ramp steer manoeuvre has been simulated. 

The simulation is carried out at a constant speed 𝑚𝑚0 = 100 km/h with the steering inputs shown in Figure 

15. In the validated vehicle model, the roll centre is considered as a fixed point which lies on the ground 

for both axles, thus we need to impose the same simplification also to the new one in order to properly 

compare the two models. For this reason, at this stage, the 𝐽𝐽  points are considered as fixed points that 

are lying on the ground, therefore the roll centre is fixed and lies on the ground as well. Under this 
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assumption, the results obtained by performing the same manoeuvre with both models are reported in 

Figure 16. The results obtained by performing a ramp steer manoeuvre show that the two models  

 
Figure 15. Steering angle during ramp steer 

behaviour is very similar, whit some difference only for high values of lateral acceleration Both models 

show a discontinuity in the lateral acceleration and the yaw rate for 𝑡𝑡 ≅ 50 s, which corresponds to the 

instant in which the vertical load on the inner front tire of the vehicle goes to zero. 

Given the good match between the two simulations, the newly developed model can be considered a 

reliable model for vehicle dynamics simulations. 
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a) 

 

b) 

 

c) 

 

d) 

Figure 16. Passive vehicle results: a) steering angle vs. lateral acceleration b) roll angle vs. lateral acceleration c) lateral 

acceleration vs. time d) yaw rate vs. time 

3.6.2 Passive case with moving RCs: effect of Roll Centre migration on the Jacking forces 

In this section presents an analysis on the effect of the roll centre migration on the Jacking forces, the 

heave and the roll gain of the vehicle. By using the new model, it is possible to modify the suspension 

kinematics (by modifying the lookup-tables of the J-points), thus obtaining different behaviour of the roll 

centre simulating the same manoeuvre. In this case the analysis is carried out by simulating a step steer 

manoeuvre with a slope of 1 deg/s and a maximum value of 𝛿𝛿 = 2.0 deg, and by considering four different 

cases of roll centre migration. This has been done to reproduce the results reported in [16] by the author 
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Gerrard M.B., and then to compare them to the ones obtained in the real case by considering the lateral 

load transfer. In Figure 17 reports the results of the simulations. 

Figure 17a shows the four cases of roll centre migration for which the analysis has been carried out: the 

axis reported in the figure correspond to the ones of the intermediate reference frame of the vehicle, and 

the inner side of the corner in this case correspond to the one with positive values of Y.  

The dashed lines have been obtained by disabling the lateral load transfer in the model, and thus they 

should reproduce the results discussed in [16]. When the lateral forces generated by the two wheels of the 

same axle are the same, according to Gerrard M.B., we should expect the following results: 

• RC above the ground level and toward the inner side of the corner (1𝑃𝑃𝐸𝐸 quadrant): 

The total Jacking force of the axles are negative, thus the body of the vehicle falls during cornering. 

• RC above the ground level and toward the outer side of the corner (2𝑙𝑙𝑑𝑑 quadrant): 

The total Jacking force of the axles are positive, thus the body of the vehicle rises during cornering. 

• RC under the ground level and toward the inner side of the corner (3𝑟𝑟𝑑𝑑 quadrant): 

The total Jacking force of the axles are negative, thus the body of the vehicle falls during cornering. 

• RC under the ground level and toward the outer side of the corner (4𝐸𝐸ℎ quadrant): 

The total Jacking force of the axles are positive, thus the body of the vehicle rises during cornering. 

Looking at the dashed lines in Figure 17 it is possible to see that the results obtained through simulations 

confirm what said in [16], but under real conditions the lateral forces generated by the wheels of the same 

axle can be quite different, thus this results are no more valid. In fact, looking at the solid lines, the results 

obtained considering the lateral load transfer can be significantly different, and in some cases even opposite 

such in the case where the Roll Centre moves toward the inner side of the corner above the ground (blue 

line, 1𝑃𝑃𝐸𝐸 quadrant).  
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a) 

 

b) 

 

c) 

 

d) 

Figure 17. Roll Centre migration comparison: a) Locus of the front roll centre b) front axle Jacking forces vs. time c) Height of 

the centre of gravity of the vehicle vs. time d) Roll angle vs. lateral acceleration. The figure reports two cases: the dashed lines 

have been obtained without lateral load transfer, while the solid lines have been obtained considering the lateral load transfer 

In that case, according to [16], we should have negative Jacking forces and the body of the vehicle that 

falls during cornering, while if we consider the lateral load transfer the Jacking force of the front axle 

becomes negligible and therefore also the vertical movement of the vehicle body. This means that it is not 

possible to predict the direction and the amplitude of the Jacking forces, and consequently of the vertical 

motion of the vehicle, without knowing the specific parameters and tires of the vehicle, because these 

forces are strongly influenced by the latter and the results can differ significantly. 
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Finally, Figure 17d shows that the lateral migration of the roll centre do not have a big impact on the roll gain of 

the vehicle, while the vertical movement of the roll centre can heavily affect the roll characteristic of the vehicle. 

3.6.3 Active case with fixed RCs: frequency response comparison 

 
Figure 18. Bode plot of 𝛿𝛿𝑟𝑟/𝛿𝛿𝑓𝑓 at 100 km/h under a lateral acceleration 𝑎𝑎𝑌𝑌 = 9 𝑚𝑚/𝑠𝑠2 and 𝑓𝑓0 = 0.5 

By using the state space form of the system, it is possible to carry out different analysis, one of which is 

the analysis in the frequency domain of the yaw rate (𝛿𝛿𝑟𝑟) response to a variation of front-to-total          anti-

roll moment variation (𝛿𝛿𝑓𝑓). Figure 18 reports the bode plot of the transfer function 𝛿𝛿𝑟𝑟/𝛿𝛿𝑓𝑓 of the system, 

which shows a resonance around a frequency of 1.2 Hz. Except some difference in the magnitude of the 

resonance peak, the two bode plots show very similar magnitude and phase, and thus also for the active 

case we can consider the new model a reliable model also for frequency analysis purpose. 

The new model is therefore suitable for a model-base design approach to develop controller for different 

kind of active systems as anti-roll moment distribution control, dynamic lift, pitch control and so on. 
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3.6.4 Active case with moving RCs: frequency response analysis for different RC positions 

Figure 19 and Figure 20 report the result of the frequency response analysis carried out with the active 

suspension enabled and considering the roll centre migration. The plots show the results obtained with 

five different position of the roll centre: the four coloured lines have been obtained considering the roll 

centre migration in the four quadrants (as in Figure 17a), while the black line has been obtained with the 

new model considering the roll centre fixed on the ground (as in the previous section). 

Looking at Figure 19 it is clear that the lateral migration of the roll centre do not have a big influence on 

the yaw rate frequency response, while the vertical displacement of RC has a strong impact on the 

magnitude of latter. In fact, the two lines obtained with the RC above the ground (blue and red) are 

really similar and the same applies to the results obtained the RC is under the ground level (violet and 

yellow), but the farther away the RC gets from the vehicle centre of gravity, the bigger the magnitude of 

the frequency response becomes. In this case the centre of gravity of the vehicle is around               𝑂𝑂𝐶𝐶𝐶𝐶 ≅

0.68 m, thus we obtain the higher magnitude of the frequency response when the RC is under the ground, 

while we the smallest one is obtained when the latter is above the ground level. The reason why this 

happens is to be found in the variation of the arm of the inertia forces, and therefore in the roll moment 

generated by the latter.  
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Figure 19. Frequency response of the yaw rate of the vehicle to a variation of the anti-roll moment distribution, 𝛿𝛿𝑟𝑟/𝛿𝛿𝑓𝑓, when 

linearised for a longitudinal speed 𝑚𝑚0 = 100 𝑘𝑘𝑚𝑚/ℎ, a lateral acceleration of 𝑎𝑎𝑦𝑦 = 9 𝑚𝑚/𝑠𝑠2 and 𝑓𝑓0 = 0.5. 

By increasing this quantity, we increase also the active anti-roll moment generated by the actuators 

(because the anti-roll controller tries to maintain the same roll angle), and thus the same variation of 𝑓𝑓 

will generate a bigger variation of anti-roll moment transferred from one axle to the other. 

This leads to a strong variation of lateral forces generated by the axles, and consequently to the behaviour 

described above. In this case the phase of the frequency response is almost equal in all five cases. 

Differently from the previous case, the frequency response 𝛿𝛿𝑂𝑂𝐶𝐶𝐶𝐶/𝛿𝛿𝑓𝑓 show some sensibility also to the 

lateral migration of the roll centre. This is due to the fact that the main responsible for the variation of 

the height of the centre of gravity are the Jacking forces. As seen in Figure 17b, these forces are heavily 

affected by the movement of the roll centre, and this translates to the results obtained in Figure 20. 
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Figure 20. Frequency response of the height of the vehicle centre of gravity to a variation of the anti-roll moment distribution, 

𝛿𝛿𝑂𝑂𝐶𝐶𝐶𝐶/𝛿𝛿𝑓𝑓, when linearised for a longitudinal speed 𝑚𝑚0 = 100 𝑘𝑘𝑚𝑚/ℎ, a lateral acceleration of 𝑎𝑎𝑦𝑦 = 9 𝑚𝑚/𝑠𝑠2 and 𝑓𝑓0 = 0.5. 

The black line, representing the case in which the Roll centre lies to the ground, shows almost zero 

magnitude because in this condition the forces generated by the tires are parallel to the ground, thus the 

Jacking forces are equal to zero. Opposite to the previous case, when the roll centre is above the ground 

we obtain higher magnitude in the frequency response of 𝑂𝑂𝐶𝐶𝐶𝐶 to 𝑓𝑓 . Moreover, the frequency response 

shows other two differences: 

1. The magnitude of the frequency response results higher when the roll centre moves towards the 

outside of the corner. 

2. The static phase of the response is 360 degrees when the roll centre is below the ground while is 

180 degrees when the roll centre is above the ground. 

In order to properly explain this behaviour, it is convenient to look at the Jacking forces generated when 

the vehicle is subject to the same acceleration in which the system has been linearised. Figure 21 show 
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the results obtained by simulating a step steer manoeuvre with a slope of 1 deg/s and a maximum steering 

angle 𝛿𝛿 = 2.51 deg, to which correspond a lateral acceleration 𝑎𝑎𝑦𝑦 = 9 m/s. 

 
Figure 21. Front axle Jacking force for a lateral acceleration 𝑎𝑎𝑦𝑦 = 9 𝑚𝑚/𝑠𝑠2 

The first difference can be explained by looking at Figure 21, which shows that when the roll centre moves 

toward the outside of the corner the Jacking forces generated are much higher than those obtained with 

the roll centre moving towards the inside of the corner. This means that the same variation of 𝑓𝑓 has more 

influence in the first case because it involves a bigger variation of Jacking forces. 

The phase difference, instead, is due to the sign of the Jacking forces, which is positive when the RC is 

above the ground (blue and red lines) and negative in the other cases. This means that an increase of the 

magnitude of the Jacking force has the opposite effect on the vertical movement of the vehicle body, and 

thus we obtain opposite phases in the frequency response. 
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4 Conclusions 

In this thesis a model-based design procedure for the synthesis of an active suspension controller has been 

discussed, and the controller thus obtained has been tested in simulation by means of a validated vehicle 

model in MATLAB/Simulink environment. The results of this analysis show that: by using an active 

suspension system to actively control the yaw rate of the vehicle it is possible to increase the both 

performance and safety when the vehicle is under limit conditions. Then, a novel vehicle model, which 

can be used in a model-base design approach, has been developed. The new model takes into account 6 

degrees of freedom for the body of the vehicle, the suspension kinematics and an actuator for each one of 

the four suspensions, in order to simulate different active systems. The equation of motion of the vehicle 

have been computed analytically and then they have been implemented in MATLAB/Simulink. Once 

created, it has been linearised by means of the linear analysis tool built in Simulink and thus the linearised 

model has been obtained in state space form. 

Therefore, different analyses have been carried out, in the first place to verify that the new model was 

behaving correctly, and then to study the influence of the roll centre migration on the vehicle behaviour. 

The results showed that the model was reliable for both simulation and linearisation purpose, and that 

the migration of the roll centre can have a strong influence mainly on the vertical and roll dynamics of 

the vehicle. Therefore, the roll centre migration has to be taken into account to have a better 

representation of the vehicle behaviour, and this is especially true when we are interested in the study of 

vertical and roll dynamics.          
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