
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

On the applicability of software
attestation techniques to embedded

systems.

Supervisors
Prof. Cataldo Basile
Prof. Antonio Lioy
Alessio Vittichiè, Ph.D

Candidate

Marco Zudettich

Academic year 2018-2019

Contents

List of Tables 5

List of Figures 6

1 Introduction 8

1.1 Thesis organization . 9

2 Background 10

2.1 The ASPIRE remote attestator . 10

2.2 Attestator requirements . 13

2.3 Related work on software attestation . 16

2.4 Open issues . 17

3 ELF file specification and tools of the trade 19

3.1 The ELF file format . 19

3.2 Dynamic linking . 28

3.3 Address space layout randomization . 31

3.4 Tools of the trade . 32

4 Attestator custom build 37

4.1 Design and architecture . 37

4.2 Testing . 41

4.3 Conclusions . 43

5 Obfuscation 45

5.1 Obfuscation purposes and tecniques . 45

5.2 Obfuscator-LLVM . 46

5.3 Tigress . 50

5.4 ADVobfuscator . 54

3

6 An analysis on the portability of the attestator 55

6.1 Extend the portability . 55

6.2 Embedded OSes cryptographic support . 57

6.3 Executable file format . 57

6.4 Conclusions . 59

7 Conclusions 62

A User manual 64

A.1 Requirements . 64

A.2 Creation Process . 65

B Developer manual 68

C Examples 69

Bibliography 74

4

List of Tables

6.1 Cryptographic library support for embedded operating systems 60

6.2 ELF file format support for the top 10 embedded operating systems 60

A.1 Configuration file fields’ description . 66

A.2 Errors description . 67

5

List of Figures

2.1 Remote attestator structure . 11

2.2 Remote attestator graph overview. 12

2.3 Listing of memory areas and memory blocks structures from ra memory.c. 14

3.1 ELF header. 20

3.2 ELF program header. 22

3.3 ELF segments listing with the readelf tool. 23

3.4 ELF section header. 24

3.5 Linking and Execution views. 26

3.6 ELF relocation entry without addend. 26

3.7 ELF relocation entry with addend. 27

3.8 ELF relocation entry example. 27

3.9 ELF patched relocation entry example. 28

3.10 GOT resolution for variables. 29

3.11 PLT-GOT resolution for functions. 30

3.12 Lazy binding. 31

3.13 Example program that prints the address of the main function. 31

3.14 Example program output with ASLR. 32

3.15 ASLR example program analysis. 32

3.16 Example program output without ASLR. 33

3.17 r2pipe example. 34

4.1 Attestator building process. 38

4.2 Example of JSON configuration. 39

4.3 Text segment offset without ASLR. 40

4.4 Text segment offset with ASLR. 40

4.5 Attestator patching process and test. 42

4.6 Binary patched with radare2. 43

4.7 Attestator tampering detection. 44

5.1 Instruction substitution example program. 46

5.2 Disassembled program without instructions substitution protection. 47

5.3 Disassembled program with instructions substitution protection. 47

5.4 Bogus control flow example program. 48

6

5.5 Program without bogus control flow protection. 48

5.6 Program with bogus control flow protection. 49

5.7 Program without control flow flattening protection. 50

5.8 Program with control flow flattening protection. 50

5.9 Control flow flattening . 51

5.10 Program without function merging protection. 52

5.11 Program with functions merging protection. 52

5.12 Function argument randomization . 53

5.13 Encoded literals example program. 54

6.1 Embedded operating systems usage in April 2017 58

6.2 Predicted embedded operating systems usage in April 2017 58

6.3 Cryptographic libraries support . 59

A.1 Example configuration file. 65

A.2 Example running the patching script . 66

C.1 Example of reading an ELF header using the readelf tool. 69

C.2 Example of reading ELF segments using the readelf tool. 70

C.3 Example of reading ELF sections using the readelf tool. 71

C.4 Example of ELF sections-segments overlapping using the readelf tool. 72

C.5 Example of the Tigress function splitting functionality. 73

7

Chapter 1

Introduction

There has been a vast diffusion of technology depending on software in the last few years. Not
only personal computers, tablets and smartphones, but also numerous different devices (so called
“embedded systems”) are used today to control almost anything, from vehicles to industrial
systems. Embedded systems have the advantage of being cheap and they can be deployed almost
everywhere in a massive amount. The problem in having so much software running everywhere
is that security breaches take place daily. The more the software is in charge of controlling
something, the more the consequences of a security failure will affect people and companies.

Different solutions are available to protect systems and the software running on them. Most
of them only works given assumptions that can’t always stand.

First of all, not all systems are under the physical control of the people who are trying to
protect them. It is common to have hardware owned by a business but under the physical control
of a potentially not reliable third party. Most mobile devices, sensors and remote controls, in
general, are placed in locations that are not under strict surveillance and control. This poses a
serious problem, since ensuring the trustworthiness of a system under adversary control can be
impractical. If a potential attacker owns the device itself, tampering cannot be prevented. The
adversary can open the device, attach a debugger and potentially modify the software present
on it in any way. The only possible defense is to detect these attacks and take the convenient
countermeasures.

Attestation is a process in which the device’s owner performs an integrity check of the software
running on the device itself. Checking the integrity of a program can be done in different ways.
Various papers about software attestation have been written. There are two approaches to this
problem. The first one requires the integration of an additional piece of hardware. This is the
solution proposed by the Trusted Computing Group [1]. A chip called TPM (Trusted Platform
Module) is combined in the system and it is used for cryptographic operations and key storage.
The problem with TPM is its cost. On large scale production devices, every single piece of
hardware can increase the cost by a considerable amount. Another thing to consider is the
integration with the software component, which makes the attestation code less portable. The
other possible solution is an attestator requiring only software components. It does not require
additional hardware, but it is by design less protected from tampering. In this research, only the
second type of attestation is considered.

Generally speaking, every protection system is bypassable given enough time. The goal of a
protection mechanism is to increase the time and the resources required for an attack to take
place. In the end, every system is vulnerable to a determined and persistent attacker. For this
reason, a device should never be trusted completely even if it is being attested. In the design
phase of every system, security failures should be considered, especially on devices controlled by
third parties. It is compulsory not to rely fully on information coming from an untrusted source,
but also have some checks on the trusted side.

Also, the fact that only the endpoint security is addressed by such an attestator mechanism
has to be analyzed. Attacks carried over the network are still possible, so the communication
protocols used should be secured as well.

8

Introduction

The idea of this thesis comes from a project called ASPIRE [2]. This project offers a frame-
work (ASPIRE Compiler Tool Chain or ACTC) capable of automating protection mechanisms
on software. Starting from an unprotected application’s source code, it is possible to create an
executable secured with various types of protections, both offline and online. These protections
comprehend also a remote attestator.

The general structure of the ASPIRE project and its dependencies create a problem in terms
of portability. This thesis will attempt to address two questions. The first one is about the
possibility of solving the ASPIRE remote attestator’s portability issues. The second one is about
to what extent the attestator can be ported to different platforms.

The ACTC also provides obfuscation for the program. Obfuscation does not only protect
the program from reversing, but also the attestator itself. If the attestator procedure is not
obfuscated, the security protection it offers might be easily bypassed. This problem will need to
be addressed as well.

1.1 Thesis organization

To address the problems described in the previous paragraphs, the narration will be developed in
the following sequence.

Chapter 2 contains an explanation about the ASPIRE attestator’s functionality, its depen-
dencies and an analysis of the previous literature in regards to software attestation. This initial
analysis is crucial to understand the basic concepts of remote attestation and it will serve as the
base for the examination of the ASPIRE attestator’s portability.

To extend the portability of the ASPIRE attestator, an attempt at separating it from the
entire ACTC will be made in Chapter 4.

The extraction of the attestator from the whole framework is not a trivial task. To mimic the
behavior of the ACTC an understanding of the inner functionality of ELF executable is needed.
In particular, an examination of ELF executable’s memory layout and relocations is required for
properly substitute the framework task. Chapter 3 includes a study about the ELF file format
and an evaluation of useful tools for analyzing and manipulating it. This chapter will not examine
the topic of attestation directly, but it is necessary to address some of the issues this thesis is
trying to resolve.

Once the attestator has been extracted from the ASPIRE framework, an examination of
some obfuscation options is done in Chapter 5. This chapter will contain a review of the most
common obfuscation techniques, and it will analyze some obfuscation alternatives to the ASPIRE
framework in this regard.

Chapter 6 holds a study about the portability of the mentioned attestator. In particular, this
chapter focuses on the possibility of porting the attestator to the most used operating systems
and architectures in the field of embedded devices.

Finally, Chapter 7 draws conclusions about the work.

Appendix A and Appendix B contain the user and the developer manual for the software
developed during this study.

9

Chapter 2

Background

This chapter presents the background regarding software attestation required for this research.
The first section is an analysis of the ASPIRE attestator functionality. The second section is an
examination of the attestator requirements. Then, a summary of the previous work related to
the topic of software attestation is presented. The last section exposes some security problems
related to the subject.

The ASPIRE project is a framework that offers a complete protection suite. Given the source
code for a program, it is possible to create a protected binary. During this work, only the
remote attestator functionality has been considered, but the framework also implements some
other interesting methods. The complete project can be found on GitHub1. A comprehensive
description of the protection techniques of ASPIRE can be found in its reference architecture
guide [3]

2.1 The ASPIRE remote attestator

As already mentioned, the ASPIRE project offers different protection mechanisms. The following
security analysis concerns only the remote attestator’s functionality. The idea behind a remote
attestator is to perform an integrity check of the code running on an untrusted device. The device
is considered untapered only if this control is passed. In the ASPIRE attestator, integrity is en-
sured by computing a checksum of the protected code’s memory areas. The checksum is computed
by code operating on the target device itself, but is checked by a trusted server. Figure 2.1 shows
the general structure of the ASPIRE attestator.

The attestation service can be split into multiple components.

The server component

The server is the part of the attestator that is executing on a platform considered trusted. It can
be divided into three subcomponents: the back-end database, the supervisor and the verifier.

❼ The back-end database component.

The database holds a list of coupled nonce-checksums. At each nonce corresponds the
correct computed checksum for the program the attestator has to check. The database has
to be filled continuously, to avoid re-using the same nonce-checksum more than once.

❼ The supervisor

1https://github.com/aspire-fp7/framework

10

https://github.com/aspire-fp7/framework

Background

Supervisor

Verifier

Nonce-Checksum
Database

Network

Monitored
Devices

Figure 2.1: Remote attestator structure

The supervisor is responsible for periodically sending requests to the monitored devices to
prove themselves. At each request, the supervisor sends to the device a different nonce,
taken from a backend database it shares with the verifier.

❼ The verifier

The verifier is in charge of receiving the computed checksum from the devices. To check if
the hash is correct the verifier queries the backend database. If the checksum is incorrect,
the verifier will mark the device as tampered. If the device is marked as compromised, its
data should be treated as not trustworthy. In that case, the best option is to stop using
it until the problem is resolved. In general, it is better not to stop the application on the
device itself. That would be a clear signal to any potential attacker showing the compromise
has been detected. Showing a security mechanism is activated might be beneficial for an
attacker to understand the purpose of the attestation code.

The client component

The client component is the attestator code in execution on the device to monitor. The client
receives a nonce from the supervisor. Based on the nonce, it computes a checksum of the memory
areas it has to protect. Finally, it sends it to the verifier part of the server.

Since the client component is computing a checksum, the only controllable areas are the ones
remaining constant. In particular, the attestator is designed to include areas inside the text
segment, which is read-only.

The Figure 2.2 is a graph showing an overview of the whole system functionality:

Communication

For simplicity, the communication part of the attestator is not described. There are two reasons.
First, not every device might offer the same protocols for communication. Second, the attestator
uses a protocol called WebSocket Protocol. It is designed just for the project itself. If the protocol
needs to be changed, it needs to be changed at both the endpoints, which is not a trivial task.
Since the objective is an analysis of the attestator portability, the communication part is not
going to be considered. It is assumed that it might be different based on the requisites and the
support the used system offers.

11

Background

The server requests the target device
proof of integrity by sending a nonce.

The attestation code on the device
receives the nonce.

A checksum is computed over the
designated areas of memory.

The device sends the checksum back to
the server.

The server checks if the checksum was
computed correctly.

If it is, the device is considered
trustworthy.

If it isn't the device is marked as
tampered.

No
nc

e

Checksum

Server ComponentMonitored Device

Figure 2.2: Remote attestator graph overview.

Creating a different hash at every request

The purpose behind the attestator is to verify if certain areas of memory have been tampered
with. To achieve this task, the attestator on the device itself computes a hash over these areas of
memory.

Using a checksum to ensure an area of memory is unmodified leads to a problem. If the
application is always performing the identical computation on a certain area of memory, the
checksum is always going to be the same. This exposes the attestator to replay attacks.

To overcome this weakness, the data taken from the monitored areas of memory is not extracted
always in the same order. The order is decided based on the nonce the attestator is retrieving from
the server. At each nonce corresponds a different order. For each different nonce, the checksum

12

Background

is going to be different and not trivial to compute, even if the areas of memory being checked are
the same.

The method for getting a different order of bytes extraction from each different nonce is called
random walk. The source code for this method can be found in the ra data preparation.c file (the
full source of the project can be found on GitHub2).

The attestator is going to read the data based on the random walk order. Then it is going
to compute a hash of it using a method specified in the configuration. The supported methods
in the ASPIRE source are blake2, md5, ripemd160, sha1, and sha256. The objective is not to
use the hash with most strength but to use an algorithm that can be supported even by not so
powerful devices.

Memory areas

The nonce is provided by the server at each computation. The client component also needs
information about the areas of memory it has to monitor. This information is memorized inside
the data segment in a structure called blob. At startup, the attestator will parse and load the
information it needs from the blob and it will wait for the server’s nonce.

This data is stored in a table of memory regions. This table is composed of a linked list of
struct memory_area_t.

Each memory area contains a linked list of an arbitrary number of memory blocks (memory_block_t).
A memory block is a single continuous portion of memory.

Snippet 2.3 is taken from ra memory.c source file. It shows the definition of memory areas
and memory blocks.

Every memory block has an offset and a size, designating where the area of memory is lo-
cated. The address of the single memory block is computed summing the offset of the block
with a fixed value. This value matches to the .text segment offset and it is contained in the
base_address_NAYjDD3l2s symbol, as defined in ra memory.c.

baddress = boffset + Toffset

Where baddress is the address of the memory block, boffset is the offset of the memory block
and Toffset is the text segment offset.

In pseudocode:

memory_block_address = block->offset + base_address_NAYjDD3l2s

The reason for doing this computation instead of having the address of the block directly
memorized is ASLR. If ASLR is enabled and the executable supports it, the text segment’s
address will be different at each run. This would make impossible for the attestator to locate the
correct regions of memory to protect. An explanation of how ASLR functions can be found in
Section 3.3.

2.2 Attestator requirements

This section will focus on the ASPIRE framework’s attestator requirements. As already men-
tioned, the ACTC has some important dependencies. To potentially extend its usability, an
analysis of these specifications is necessary. In the following chapters, an attempt at loosening
these requirements is made. There are two factors this examination has to consider:

2https://github.com/aspire-fp7/framework

13

https://github.com/aspire-fp7/framework

Background

struct memory_area_t {

uint16_t label;

/* Total number of blocks */

uint32_t total_blocks;

/* Total memory area size */

uint32_t total_size;

/* Pointers to the head and the tail of the memory blocks’ linked list */

blocks_list_item_ptr blocks_head;

blocks_list_item_ptr blocks_tail;

};

struct memory_block_t {

/* Memory offset of the block from the text segment offset */

uint64_t offset;

/* Size of the block */

uint32_t size;

};

typedef struct bai *blocks_list_item_ptr;

typedef struct bai {

RA_memory_block block;

/* Pointers to the previous and the next item of the linked list */

blocks_list_item_ptr previous_item;

blocks_list_item_ptr next_item;

} blocks_list_item;

/* Uninitialized base address */

uint64_t base_address_NAYjDD3l2s = 1;

Figure 2.3: Listing of memory areas and memory blocks structures from ra memory.c.

❼ The hardware requirements.

The attestator cannot run on any device. There are some basic hardware specifications that,
if unsatisfied, will make portability impossible.

❼ The software requirements.

The attestator also depends on some third-party software. If that software is not portable
to a specific device or operating system, adapting the attestator will require some changes.

The following analysis concentrates mainly on software requirements. Hardware requisites are
discussed briefly, but, in general, the attestator should be adaptable to almost every not-low-end
embedded platform.

Hardware

The following is a list of the key hardware elements that have to be considered for the attestator
functionality.

❼ Processor architecture.

Some architectures might have only an 8-bit or 16-bit processor. In that case, adapting such
a complicate attestator can be a problem. On 32-bit processors, the attestator should be
easily portable.

14

Background

❼ Computing power.

The attestator requires a certain amount of computing power, based on the frequency of the
check and on the hash algorithm it uses. If the device is already under considerable load,
adding the attestation code can cause serious performance degradation.

It is important to notice that, since the attestator does not need to run continuously, its
computational requirement can be adapted by changing the frequency of the attestation
procedure.

❼ Memory size.

The memory usage can be an issue. The attestator requires some memory inside the appli-
cation it is protecting. The company using it has to consider this fact in the choice of the
hardware, especially on low-end devices.

❼ Networking functionality

The attestator needs to connect with the trusted server to function. This means support
for some kind of communication is required. Only a few embedded systems do not offer this
functionality.

❼ Multithreading support

Since the attestator is launched as a new thread by a program constructor, if threading is
not supported, the attestator will not work.

Software

The software dependencies of the attestator contribute more to create portability issues. As
already mentioned, the attestator has some third-party software dependency. Some components
are portable to almost any platform, some others are not. The study conducted in this thesis
attempts to remove some of those dependencies. The following sections outline the most important
ones.

Programming language

The ACTC is written in C. Some low-end devices, especially 8-bit architectures, might require
programming in assembly. If the architecture does not offer C programming capabilities, a com-
plete re-coding of the attestator would be needed. Only devices programmable in C should be
considered as a valuable candidate for porting the attestator easily.

Diablo toolchain

Diablo (Diablo Is A Better Link-time Optimizer) is a “retargetable link-time binary rewriting
framework”3. Diablo takes the part of the linker in the compilation process. It takes object files
and libraries as input and it outputs a statically linked program. It is necessary for the ASPIRE
project to easily customize the output binary. It is in charge of two important tasks concerning
the attestator. It is used by the framework to patch the blob with the correct information for the
attestation component. It is also responsible for the obfuscation of the program itself. To release
the attestator from this constraint a tool that substitutes Diablo’s job is required.

The blob patching is dealt with in Chapter 4. By using a custom script it is possible to insert
data into the blob after compilation.

Some alternatives regarding obfuscation are examined in Chapter 5.

3https://diablo.elis.ugent.be

15

https://diablo.elis.ugent.be

Background

Libwebsocket and Curl

Libwebsocket4 and Curl5 are two libraries used within the attestator for the communication with
the trusted server. The WebSocket Protocol, already mentioned in Section 2.1, is developed using
these two libraries. Some embedded devices support these two libraries, others offer their APIs
for the IP stack functionality and web communication.

In this study, the communication part is not taken into consideration. Potentially any device
with network capabilities is adaptable to the remote attestation scheme. If those two libraries are
not supported, some major changes will be required for the connection procedure.

OpenSSL library

From the OpenSSL homepage6:

OpenSSL is a robust, commercial-grade, and full-featured toolkit for the Transport
Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. It is also a general-
purpose cryptography library.

This library is comprehensive and it might not fit into some low-end devices with limited
memory resources. It is usable on some devices, but there are some alternatives.

The attestator uses OpenSSL to perform the cryptographic operations it needs. In particular:

❼ The cryptographic computation of the memory hash;

❼ The random walk logic.

2.3 Related work on software attestation

Several articles propose a mechanism of attestation based purely on software. This section is an
analysis of the most important ones.

Seshadri et al. proposed a technique called SWATT that performs software attestation in
embedded devices [4]. It uses a pseudo-random memory traversal to compute an ad-hoc checksum
function. It is designed for 8-bit architectures and it integrates time control to ensure the checksum
function has not been tampered with. Some flaws in SWATT were pointed out in an article
from Castelluccia et al. [5]. This article proposes two methods to bypass the attestator security
mechanism. The first one relies on moving malicious code between executable and not-executable
memory during the attestation procedure. To achieve such a goal, a technique based on Return-
Oriented Programming is used. The second one uses code compression to free enough space to
hide malicious code. This paper was then contraditicted by the creators of SWATT in another
article [6] by pointing out some wrong assumption in Castelluccia’s research.

Pioneer is another implementation of attestator [7] by Seshadri et al. As SWATT, it also
performs a time-based check over the code memory. It was implemented for the x86 architecture
and it is aimed to guarantee untampered code execution.

Mobile Guards is a proposition by Grimen et al. [8]. A mobile guard is an attestator down-
loaded directly into the program and with a restricted lifetime. Understanding the attestation
procedure is made difficult by creating each guard differently.

4https://libwebsockets.org/

5https://curl.haxx.se/libcurl/

6https://www.openssl.org

16

https://libwebsockets.org/
https://curl.haxx.se/libcurl/
https://www.openssl.org

Background

SBAP is a software-based attestation protocol designed for devices with limited resources [9]. It
fills all the available unused memory with pseudo-random values and then it computes a checksum
over the whole data and code memory.

SCUBA is a protocol based on ICE (Indisputable Code Execution) [10]. It is aimed at providing
a guarantee of untampered code execution and to provide stronger protection than SWATT. The
idea behind it is to create an untampered execution environment in which the protected code can
run without the possibility of interruption. The SAKE protocol is also designed based on ICE [11].
It uses the ICE primitive, to ensure the execution of the SAKE protocol itself is untampered.

An interesting literature review about software tampering detection can be found in an article
from Abdo Ali Abdullah Al-Wosabi [12]. Other articles of particular interest are “Principles of
Remote Attestation” [13], “A Large-Scale Analysis of the Security of Embedded Firmwares” [14],
“Attacking and Defending Networked Embedded Devices” [15] and “Remote Software-Based At-
testation for Wireless Sensors” [16].

Information regarding the ASPIRE project can be found in an article about reactive attestation
from Alessio Viticchié et al. [17].

2.4 Open issues

From the literature, it is possible to draw some interesting points concerning some open issues.

The first point regards the hash function. Some papers propose the use of not-standard
hashing algorithms. The main reason is that some devices might not have the computational
power required to perform complicated hashing algorithms. In general, it is not important to use
the most collision-resistant hash. In case a collision is found for a certain nonce, the next nonce
will lead to a different computation and will not match.

If the used hash algorithm is not strong enough though, an attacker might be able to find a
collision for every nonce the attestator is receiving. In that case, the attestator will fail to detect
the tampering. It is important to note that the attacker might have more computational power
than the one on the device itself. For this reason, the chosen hash algorithm should be selected
carefully to avoid this type of attack.

Another interesting point is the use of time-based checks. This seems like a solid technique
but it has some vulnerabilities. Computational time critically depends on the device performing
the calculation. As already mentioned, an attacker does not have this limitation. By using a more
powerful device, it is possible to execute tampered code in the same timelapse as the original.
The attestator might be modified to always perform the correct checksum, even if that alteration
slows the procedure down.

Multiple articles try to address the problem of integrity regarding the attestator itself. There
are different potential attack vectors against a memory attestator. A simple attack consists in
preventing the attestator from starting completely. If that is the case, the server attestation
component will not be able to communicate with the device. This type of tampering is easily
detectable since the server will not receive any checksum from the device.

A more stealthy attack is accomplished by creating a copy of the protected memory. The
attestator checks a confined area of memory inside the program it is protecting. This area of
memory is defined inside the attestator data. By tampering this data is possible to redirect the
attestation procedure to an uncorrupted copy of the real code. The checksum will then be always
computed on an untampered area of memory. Once the attestator is redirected to a copy, the
real code can be modified without occurring in detection. There are different ways to prevent
this attack. If the data regarding the verified memory areas is obfuscated, tampering it might be
impossible. Another prevention technique, as proposed in SBAP [9], is to fill the entire memory
with known values. If the check is performed on the entire memory, any modification will be
detected. It might still be possible to hide the copy inside a segment that is not controlled, as the
data segment.

The article by Castelluccia et al. [5] proposes some interesting attack vectors. Even if the
whole text segment is controlled by the attestator, it might still be possible to hide the attestator

17

Background

inside the not-executables segments during the attestation and then re-inserting it again once the
procedure is finished. To move the attestator the authors suggest a ROP based technique. There
are two ways to detect this type of attack. The simplest way is to ensure the memory at disposal
is filled by the protected program. In that scenario, the malicious code will not have enough space
to hide inside the memory. Another solution is to check control-flow integrity. This means that
also the return addresses on the stack have to be verified.

Some of these problems do not have a solution yet. Most of the protection offered by software
attestation is strictly dependent on the concept of security through obscurity. As long as the
attestation functionality is hidden and difficult to reverse, the time needed to perform a successful
attack might cause a potential adversary to give up. Obfuscation has an important role in this
regard. If the attestator is obfuscated, most of the attacks discussed above will require a more
significant effort.

18

Chapter 3

ELF file specification and tools of
the trade

To understand how to manipulate the standard executable file format for Unix-like systems re-
search on the matter is required. This chapter wil be an insight into the ELF file format, its
major structures and mechanism, and its inner working. This whole chapter is based on a study
that has been made to learn how executables are being run in a Unix-like environment and what
is the information needed by the attestator to work. After this analysis, it will be possible to
extract the ASPIRE attestator from the framework itself.

3.1 The ELF file format

ELF stands for Executable and Linkable Format. Thanks to its design and portability, it is a
common standard file format in Unix environments. The ELF standard defines a set of binary
interface definitions that works across different operating environments.

By standardizing it is possible to reduce the need for recoding and recompiling the code [18].
The ELF format supports different address sizes and endianness. In this way, it can be easily
adapted to different architectures and operating systems. It is so used in Linuxes and BSD
variants, that the kernel boot image itself is of ELF type.

In the following paragraphs, the ELF file format specifications are examined. The book “Learn-
ing Linux Binary Analysis” from Ryan O’Neil [19] gives a really useful insight into the ELF format.
The Linux ELF manual page will be used as a reference1.

Every ELF file is made up by the following structures:

1. The ELF header;

2. Program header table, which is a table of the program headers;

3. The ELF file data itself;

4. Section header table, which is a table of the section headers.

ELF header

The ELF header contains general information about the file itself. It can be in 2 forms: Elf32_Ehdr
or Elf64_Ehdr. Figure 3.1 shows the ELF header definition.

1https://linux.die.net/man/5/elf

19

https://linux.die.net/man/5/elf

ELF file specification and tools of the trade

#define EI_NIDENT 16

typedef struct {

unsigned char e_ident[EI_NIDENT];

uint16_t e_type;

uint16_t e_machine;

uint32_t e_version;

Elf[32/64]_Addr e_entry;

Elf[32/64]_Off e_phoff;

Elf[32/64]_Off e_shoff;

uint32_t e_flags;

uint16_t e_ehsize;

uint16_t e_phentsize;

uint16_t e_phnum;

uint16_t e_shentsize;

uint16_t e_shnum;

uint16_t e_shstrndx;

} Elf[32/64]_Ehdr;

Figure 3.1: ELF header.

e indent This field contains the ELF header magic, which provides some information about the
file. It always starts with 0x7f, 0x45, 0x4c, 0x46 (0x7f,E,L,F) which identifies the file as of
ELF type. It also contains some other information such as the architecture (32 or 64 bits),
the endiannes, the version, the operating system and the ABI version.

e type This field describes what type of ELF the current file is. There are different possible ELF
file type:

ET NONE Type not known or not defined yet.

ET REL This is a relocatable file or generally called an object file. Relocatable files usually
contain position independent code(PIC). Multiple object files can be linked together
to generate an executable file.

ET EXEC This is an executable file. This kind of files can be loaded into memory and
executed.

ET DYN This is a shared object file. These are libraries that can be loaded and linked to
a program at runtime.

ET CORE This is a core dump file. These files are generated when a program crashed
or when a SIGSEGV is delivered. They can be used to reconstruct the crash and
determine what went wrong during the program execution.

This thesis mainly concentrates on files with type ET DYN or ET EXEC.

e machine This field specifies the required architecture for this file.

e version This field specifies the object file version. For now, only the value 1 is accepted.

e entry This field gives the virtual address of the entry point of the program. If the file is not
an executable it holds a value of 0.

e phoff This field holds the program headers table offset in the file.

e shoff This field holds the section headers table offset in the file.

e flags This field holds processor-specific flag associated with the file.

e ehsize This field contains the ELF header’s size in bytes.

20

ELF file specification and tools of the trade

e phentsize This field contains the size of one program header entry. All the program headers
are of the same size.

e phnum This field contains the number of program header entries.

e shentsize This field contains the size of one section header entry. All the section headers are
of the same size.

e shnum This filed contains the number of section header entries.

The readelf2 tool can be used to analyze the header of an ELF file. An example usage of
readelf to analyze the ELF header of an executable compiled as not position-independent can
be found in the Listing C.1 in the Appendix C. The values of the various fields analyzed in this
section can be seen in that snippet.

As the name itself says the ELF format provides 2 interfaces through which the file can be
looked at: the executable interface and the linking interface. The first is defined in the program
headers and the second one is defined in the section headers. This means the ELF executable
can be inspected through two different views. These two views describe the same data, but they
provide different pieces of information. In general, program headers offer information about how
the file should be loaded in memory at runtime. Section headers contain data for linking and
relocation purposes.

The following two sections present the structure of both program and section headers.

Program header table

The program headers table contains a list of program headers. Every program header describes a
piece of data called segment. Each segment is a block of data that might be loaded in memory at
runtime. Program headers describe the layout of the program on disk and how this data should
be translated to memory. They also contain information about what permissions every segment
should be loaded with and at which address. The kernel parses the program header table when a
program is launched. To locate the program headers table, it uses the information contained in
the ELF header.

Listing 3.2 shows the program headers for a 32 or 64 bit ELF file. The two variants are very
similar.

p type This field contains the segment type.

p offset This field contains the segment offset in bytes inside the file.

p vaddr This field contains the segment virtual address at runtime.

p paddr This field contains the segment physical address.

p filesz This field contains the size of the segment in the file.

p memsz This field contains the size of the segment when loaded in memory.

p flags This field contains the segments flags such as executable, readable and writable.

p align This field contains the segment alignment in memory.

The p_type field can be of various different types, but the most commons are:

2https://linux.die.net/man/1/readelf

21

https://linux.die.net/man/1/readelf

ELF file specification and tools of the trade

typedef struct {

uint32_t p_type;

Elf32_Off p_offset;

Elf32_Addr p_vaddr;

Elf32_Addr p_paddr;

uint32_t p_filesz;

uint32_t p_memsz;

uint32_t p_flags;

uint32_t p_align;

} Elf32_Phdr;

typedef struct {

uint32_t p_type;

uint32_t p_flags;

Elf64_Off p_offset;

Elf64_Addr p_vaddr;

Elf64_Addr p_paddr;

uint64_t p_filesz;

uint64_t p_memsz;

uint64_t p_align;

} Elf64_Phdr;

Figure 3.2: ELF program header.

PT LOAD This means that the segment is loadable and it is going to be mapped into memory at
runtime. Every executable (ET EXEC) will always contain at least one PT LOAD segment.
A compiled executable, in general, will have two loadable segments: the text segment and
the data segment. The text segment contains the program code and it is usually mapped in
memory with permission read + execute (PF X | PF R). The reason is that typically code
is not modified at runtime, so it is better to protect this segment from writing. The data
segment contains the program data and the dynamic linking information (if the program is
dynamically linked). Normally the program data has to change during execution, so this
segment is marked as read + write (PF R | PF W).
In general, if an executable has a segment with unusual permission such as read + write +
execute, it might have been tampered with, except for particular cases.

PT DYNAMIC Dynamic segments contain information useful for the dynamic linker. The
dynamic linker is responsible for the load and the binds of all the shared libraries needed
for the program to execute. This type of segment holds information as a series of structures
of type Elf[32/64]_Dyn.

PT NOTE The note segment may contain information about the system or the vendor. This
segment is not useful for the executable to run and it can be removed without affecting the
program behavior.

PT INTERP This type of segment contains the location and size of a null-terminated pathname
to be invoked as an interpreter. This segment type is useful only for executable files.

PT PHDR The program header segment contains the program header table itself.

GNU STACK This header is used to store informations about the stack.

GNU EH FRAME This header is used to store the exception handlers.

GNU RELRO This segment is part of an exploit mitigation technique called Relocation Read-
Only (RELRO). It maps the Global Offset Table as read-only, preventing a GOT overwrite
at runtime. An explanation about the functionality of the GOT can be found in Section 3.2.

22

ELF file specification and tools of the trade

To take a look at the segments of an ELF file, the readelf tool with the -l flag can be used.
Listing 3.3 shows the readelf output (see Listing C.2 in the Appendix C for the full output).

✩ readelf -l hello_world

Elf file type is EXEC (Executable file)

Entry point 0x401040

There are 11 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align

INTERP 0x00000000000002a8 0x00000000004002a8 0x00000000004002a8

0x000000000000001c 0x000000000000001c R 0x1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x0000000000001000 0x0000000000401000 0x0000000000401000

0x00000000000001ad 0x00000000000001ad R E 0x1000

LOAD 0x0000000000002e10 0x0000000000403e10 0x0000000000403e10

0x0000000000000220 0x0000000000000228 RW 0x1000

[...]

Figure 3.3: ELF segments listing with the readelf tool.

In the example, it is possible to observe the INTERP segment containing the name of the
standard interpreter /lib64/ld-linux-x86-64.so.2. There are two loadable segments as already
explained. The first one (RE) is the text segment and the second one (RW) is the data segment.
Another thing to note is the alignment of the two loadable segments, which corresponds to a
memory page size. In 32 bit architectures, the page size is typically 4096 bytes (0x1000), whereas
in 64 bits architectures it is 2 MB (0x200000 bytes).

The section header table

The section headers table contains an array of section headers. Every section header represents
a section in the file. The section headers offer a view of the file used for linking and relocation.
Since it is not necessary at runtime, it can be ”stripped” away from the binary and the program
will still work. A section header can have two formats, based on the system architecture. The
Listing 3.4 shows the section headers for 32 and 64 bits systems.

Taken from the man elf(5) page3 and from “Executable and Linkable Format (ELF)”4:

sh name This field specifies the name of the section as an index into the string table section.

sh type This field categorizes the section’s contents and semantics.

sh flags This field specifies flags related to the section.

sh addr This field holds the address in memory of the section. If the section is not loaded in
memory at runtime this field holds 0.

sh offset This field holds the offset in bytes from the beginning of the file of where the section
is.

3https://linux.die.net/man/5/elf

4http://www.skyfree.org/linux/references/ELF_Format.pdf

23

https://linux.die.net/man/5/elf
http://www.skyfree.org/linux/references/ELF_Format.pdf

ELF file specification and tools of the trade

typedef struct {

uint32_t sh_name;

uint32_t sh_type;

uint32_t sh_flags;

Elf32_Addr sh_addr;

Elf32_Off sh_offset;

uint32_t sh_size;

uint32_t sh_link;

uint32_t sh_info;

uint32_t sh_addralign;

uint32_t sh_entsize;

} Elf32_Shdr;

typedef struct {

uint32_t sh_name;

uint32_t sh_type;

uint64_t sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

uint64_t sh_size;

uint32_t sh_link;

uint32_t sh_info;

uint64_t sh_addralign;

uint64_t sh_entsize;

} Elf64_Shdr;

Figure 3.4: ELF section header.

sh size This field holds the section’s size in bytes.

sh link This field holds a section header table index link, whose interpretation depends on the
section type.

sh info This field contains extra information, whose interpretation depends on the section type

A list of the sections present in an ELF file using can be retrieved using the readelf tool with
the -S flag. An example can be found in Listing C.3 in the Appendix C.

Section header types

There are a lot of different section types. The following is an explanation of the most important
ones extracted from the man elf(5) page5.

.text This is the code section. It holds executable instructions of a program. It is marked as
SHT PROGBITS.

.data This section contains writable data, such as initialized global variables. It is of type
SHT PROGBITS

.rodata This section contains read-only data. String literals are stored in this area. It is marked
as SHT PROGBITS.

5https://linux.die.net/man/5/elf

24

https://linux.die.net/man/5/elf

ELF file specification and tools of the trade

.bss This section contains uninitialized data of the program memory image. Since this data is
not initialized, only information about how much space this data takes is needed. When the
program is loaded, such space is reserved for these variables and it is initialized to zeros. It
is marked as SHT NOBITS.

.plt This section is the procedure linkage table (PLT). The PLT is described in Section 3.2. It is
marked as SHT PROGBITS.

.got This section contains the global offset table (GOT). The GOT works together with the PLT
to provide dynamic resolution of libraries at runtime. It is marked as SHT PROGBITS.

.dynsym This section holds the dynamic symbol table. It is marked as SHT DYNSYM.

.dynstr This section contains the strings needed for dynamic linking, typically associated with
symbol table entries. All the sections marked with ’str’ hold a series of null-terminated
strings. It is of type SHT STRTAB.

.rel.* These sections contain information on how to perform relocations. They are used at
runtime to fix or modify the program in memory based on its memory position. Relocation
sections are marked at SHT REL.

.hash These section contains a symbol hash table.

.symtab This section contains a symbol table. It is marked as SHT SYMTAB.

.strtab This section contains the string table (as the .dynstr section) referred by the .symtab. It
is marked as SHT STRTAB.

.shstrtab This section, like all the other sections marked with ”str”, contains a list of strings.
In this case, those strings are the name of each section (for example .text, .data...). This
section is marked with SHT STRTAB as well.

.ctors and .dtors These sections contain function pointers to the initialization and the finaliza-
tion code respectively.

An explanation is needed about symbols. A symbol is a symbolic reference to some type of data
or code such as a global variable or function [19]. A function as printf is going to have a symbol
in the dynamic symbol table. As already mentioned, there are two symbol tables: the .dynsym
and the .symtab. The first one contains references to external objects, such as libc. So functions
imported from external libraries (as printf) will be contained by .dynsym. The second one holds
references to every object, such as local functions or global variables plus the one contained in
the .dynsym.

This seems redundant, but only the .dynsym table is loaded in memory at runtime. The
.symtab can be removed from the binary without affecting its functionality. It is only needed for
debugging and linking purposes. To distinguish between what sections are going to be loaded in
memory at runtime, it is possible to check the presence of the ALLOC (A) flag.

Having seen both the program header table and the section header table, it is time to look
at the two views they offer of the ELF file itself. Figure 3.56 shows the program as seen by the
linking view (through the section header table) and by the execution view (through the program
header table). Sections and segments can clearly overlap one another. Typically a segment can
contain one or more sections and not vice-versa. It is possible to view this overlap on any ELF
file by using the readelf tool with the -l option. An example output can be found in Listing C.4,
Appendix C.

6https://wiki.aalto.fi/download/attachments/55374575/elf.jpg?version=1&modificationDate=

1296509659000&api=v2

25

https://wiki.aalto.fi/download/attachments/55374575/elf.jpg?version=1&modificationDate=1296509659000&api=v2
https://wiki.aalto.fi/download/attachments/55374575/elf.jpg?version=1&modificationDate=1296509659000&api=v2

ELF file specification and tools of the trade

Figure 3.5: Linking and Execution views.

Relocations

From the elf(5) man page7:

Relocation is the process of connecting symbolic references with symbolic defini-
tions. Relocatable files must have information that describes how to modify their
section contents, thus allowing executable and shared object files to hold the right
information for a process’s program image. Relocation entries are these data.

Relocations are entries in binaries that are left to be filled later [20], either at linking time by
the linker or at runtime by the dynamic linker. A relocation entry looks like the Listing 3.6.

typedef struct {

Elf[32-64]_Addr r_offset;

uint[32-64]_t r_info;

} Elf[32-64]_Rel;

Figure 3.6: ELF relocation entry without addend.

Or it can also require an addend, as in Listing 3.7.

A good example of relocation is contained in the book by Ryan O’Neil [19]. Snippet 3.8 shows
the example in action.

In the example, the program listed at line 2 is compiled. The call to the function foo is not
resolved yet, as the linker does not know at what address this function is going to be inside the
program. The objdump output at line 18 shows indeed that the call to foo is filled with zeros. In
the linking process, the call is patched by GCC, based on the relocation entry seen in the output
from readelf on line 27. Listing 3.9 presents the disassembled program after the linking process.

The linker patched the relocation at offset 0x40110b to point to the correct location of the
function foo. To compute the value of 0x00000003 (displayed at line 8 in little-endian), the
following formula is applied:

7https://linux.die.net/man/5/elf

26

https://linux.die.net/man/5/elf

ELF file specification and tools of the trade

typedef struct {

Elf[32-64]_Addr r_offset;

uint[32-64]_t r_info;

int[32-64]_t r_addend;

} Elf[32-64]_Rela;

Figure 3.7: ELF relocation entry with addend.

1 ✩ cat main.c

2 #include "foo.h"

3
4 void main()

5 {

6 foo();

7 }

8
9 ✩ gcc -c main. # Compile the program

10 ✩ objdump -d main.o # Disassemble the object file

11 main.o: file format elf64-x86-64

12 Disassembly of section .text:

13
14 0000000000000000 <main>:

15 0: 55 push %rbp

16 1: 48 89 e5 mov %rsp,%rbp

17 4: b8 00 00 00 00 mov ✩0x0,%eax

18 9: e8 00 00 00 00 callq e <main+0xe>

19 e: 90 nop

20 f: 5d pop %rbp

21 10: c3 retq

22
23 ✩ readelf -r main.o # Show information about relocations

24
25 Relocation section ’.rela.text’ at offset 0x1d8 contains 1 entry:

26 Offset Info Type Sym. Value Sym. Name + Addend

27 00000000000a 000a00000004 R_X86_64_PLT32 0000000000000000 foo - 4

28
29 Relocation section ’.rela.eh_frame’ at offset 0x1f0 contains 1 entry:

30 Offset Info Type Sym. Value Sym. Name + Addend

31 000000000020 000200000002 R_X86_64_PC32 0000000000000000 .text + 0

Figure 3.8: ELF relocation entry example.

svalue + saddend − Soffset = soffset (3.1)

Where svalue is the symbol value, saddend is the addend field of the symbol, Soffset is the section
offset and soffset is the computed offset value.

For example in this case:

0x401113− 0x4− 0x40110c = 0x3 (3.2)

27

ELF file specification and tools of the trade

1 ✩ gcc main.o foo.o -o a.out -fno-pic # Link the program with the object

file containing foo()

2 ✩ objdump -d a.out # Disassemble the executable

3 [...]

4 0000000000401102 <main>:

5 401102: 55 push %rbp

6 401103: 48 89 e5 mov %rsp,%rbp

7 401106: b8 00 00 00 00 mov ✩0x0,%eax

8 40110b: e8 03 00 00 00 callq 401113 <foo>

9 401110: 90 nop

10 401111: 5d pop %rbp

11 401112: c3 retq

12
13 0000000000401113 <foo>:

14 401113: 55 push %rbp

15 [...]

Figure 3.9: ELF patched relocation entry example.

3.2 Dynamic linking

By default, GCC compiles dynamically linked binaries, unless otherwise specified. Dynamically
linked means that the binary itself does not contain all the functions it needs, but those functions
have to be loaded and resolved at runtime. For example, if the program calls a function like
printf, this function does not reside inside the program itself, but it is provided by some system
library. Typically in GNU/Linux systems, this library is libc.so.6.

Libraries are loaded in memory only once if required and are used by every program which
needs them. If two programs have to call a function such as printf, they will both refer to the
same memory where libc.so.6 is loaded. There are two advantages to this approach:

1. The library is only loaded in memory once. This means that once the library is loaded,
every program can use its functionality without having to load the whole library again, thus
reducing memory usage.

2. The library is one for all the systems, so if for example, a new patch is released for a
particular library, it is substituted without having to recompile every binary in the system.

When a program is loaded into memory, it does not know the location of the libraries it needs.
To resolve these addresses a method for dynamic relocation is needed.

One possible solution could be to have each library loaded at a known memory offset every
time, just like ET EXEC binaries. This might be fine for an executable because when a new
executable is loaded in memory, it gets its own address space. For shared libraries, this approach
might be not suitable. If every library has to be loaded in a certain address space, in the event this
space is already taken, the library wouldn not be able to be loaded at all. This would make the
creation of new libraries very difficult to maintain and prone to errors [20] (every library would
need its different address space assigned).

The other solution, which is the one typically used, is to have shared libraries compiled as
position independent code (ET DYN). Position independent code (PIC) is code that can be loaded
anywhere in memory and it will still work. To achieve such thing, the offsets in the assembly are
calculated relative to the instruction pointer, not to the instruction addresses. In this way, every
shared library can be loaded at an arbitrary address. If shared libraries are loaded at unknown
address each time, binaries need a way to resolve their positions at runtime.

GOT/PLT is the method used to resolve these types of relocations.

28

ELF file specification and tools of the trade

The GOT and the PLT

The global offset table is used to resolve data offset not known until runtime. The procedure
linkage table is used to resolve external functions. An example found in an article from Ian
Wienand [20] can be used to explain how the global offset table (GOT) and the procedure linkage
table (PLT) work.

Listing 3.10 shows the GOT functionality. The GOT is basically a table containing a series of
addresses.

1 ✩ cat shared.c

2 extern int foo;

3
4 int function() {

5 return foo;

6 }

7
8 ✩ gcc -shared -fPIC -o libtest.so shared. # Compile the program as a shared

library

9
10 ✩ file libtest.so

11 libtest.so: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV),

dynamically linked,

BuildID[sha1]=9d5c5b313f399173b4774353edbe8af02cefec60, not stripped

12
13 ✩ objdump -d libtest.so # Disassemble the executable

14 [...]

15 00000000000010f5 <function>:

16 10f5: 55 push %rbp

17 10f6: 48 89 e5 mov %rsp,%rbp

18 10f9: 48 8b 05 e8 2e 00 00 mov 0x2ee8(%rip),%rax # 3fe8 <foo>

19 1100: 8b 00 mov (%rax),%eax

20 1102: 5d pop %rbp

21 1103: c3 retq

22 [...]

23
24 ✩ readelf --sections libtest.so --wide # Show information about sections

25 [...]

26 Section Headers:

27 [Nr] Name Type Address Off Size ES Flg Lk Inf Al

28 [...]

29 [18] .got PROGBITS 0000000000003fd8 002fd8 000028 08 WA 0 0 8

30 [...]

31
32 ✩ readelf --relocs libtest.so # Show information about relocations

33
34 Relocation section ’.rela.dyn’ at offset 0x3d8 contains 8 entries:

35 Offset Info Type Sym. Value Sym. Name + Addend

36 [...]

37 000000003fe8 000300000006 R_X86_64_GLOB_DAT 0000000000000000 foo + 0

Figure 3.10: GOT resolution for variables.

In this example, the program listed at line 2 is compiled as a shared library (line 8). The
variable foo is supposed to be external to the program. The objdump output of the compiled
executable shows that the returned value is taken from the location pointed by the content of

29

ELF file specification and tools of the trade

0x3fe8 (line 18). This is an offset in the .got section (line 29). When the program is loaded in
memory, the dynamic linker will patch this GOT offset, to make it pointed to the correct location
of the integer foo. To do so, the linker will extract the information it needs from the relocation
entry in the ’.rela.dyn’ section (line 37)

The GOT is used to resolve variables. To resolve functions binaries use the PLT indirection
mechanism. The example in Listing 3.11 is very similar to the last one, except the external symbol
is a function and not an integer.

1 ✩ cat shared.c

2 int foo();

3
4 int function() {

5 return foo();

6 }

7
8 ✩ gcc -shared -fPIC -o libtest.so shared.c # Compile as a share library

9
10 ✩ objdump -d libtest.so # Disassemble the library

11 [...]

12 0000000000001020 <.plt>:

13 1020: ff 35 e2 2f 00 00 pushq 0x2fe2(%rip) # 4008

<_GLOBAL_OFFSET_TABLE_+0x8>

14 1026: ff 25 e4 2f 00 00 jmpq *0x2fe4(%rip) # 4010

<_GLOBAL_OFFSET_TABLE_+0x10>

15 102c: 0f 1f 40 00 nopl 0x0(%rax)

16
17 0000000000001030 <foo@plt>:

18 1030: ff 25 e2 2f 00 00 jmpq *0x2fe2(%rip) # 4018 <foo>

19 1036: 68 00 00 00 00 pushq ✩0x0

20 103b: e9 e0 ff ff ff jmpq 1020 <.plt>

21 [...]

22
23 0000000000001105 <function>:

24 1105: 55 push %rbp

25 1106: 48 89 e5 mov %rsp,%rbp

26 1109: b8 00 00 00 00 mov ✩0x0,%eax

27 110e: e8 1d ff ff ff callq 1030 <foo@plt>

28 1113: 5d pop %rbp

29 1114: c3 retq

30 [...]

31
32 ✩ readelf --relocs libtest.so # Show information about relocations

33 [...]

34 Relocation section ’.rela.plt’ at offset 0x480 contains 1 entry:

35 Offset Info Type Sym. Value Sym. Name + Addend

36 000000004018 000300000007 R_X86_64_JUMP_SLO 0000000000000000 foo + 0

Figure 3.11: PLT-GOT resolution for functions.

In this example, the function is not calling foo directly, because it does not know where it
is. Instead, the call will jump to an address in the .plt section. From there a jump to an address
contained in the .rela.dyn is taken, as it is possible to observe at line 27. The analysis with radare2
in Listing 3.12 shows that the jump at 0x1030 points to 0x1036, which is the next instruction.
The next instruction will push the value of 0 on the stack and it will jump to another location in
the .plt section (line 20 of Listing 3.11). This process is called lazy binding.

30

ELF file specification and tools of the trade

When the function foo is called for the first time, its relocation entry will point to the next
instruction. The next instruction will set up a call to the dynamic linker. The dynamic linker will
resolve the location of that function searching in the libraries the program requires. If it finds it,
it will patch the relocation entry to point to the function foo itself, not to the next instruction.
In this way, only the first call to foo is going to require the dynamic linker resolution. The next
call will have the address already resolved.

[...]

[0x00001030]> pdf # Prints the disassembly of the function at the current

offset

/ (fcn) loc.imp.foo 6

| loc.imp.foo ();

| ; CALL XREF from sym.function (0x110e)

\ 0x00001030 ff25e22f0000 jmp qword reloc.foo ; [0x4018:8]=0x1036 ; "6\x10"

[0x00001030]> pxq @reloc.foo # prints the value at the specified offset

0x00004018 0x0000000000001036 0x0000000000004020 6....... @......

[...]

Figure 3.12: Lazy binding.

3.3 Address space layout randomization

Address Space Layout Randomization or ASLR is a method used to limit the exploitability of
memory vulnerabilities. ASLR randomly assigns the memory address space of every running
process, by randomizing the base address of the executable and the positions of the stack and
the heap. This can help preventing a vulnerability to be exploitable. Even if an attacker can
overwrite the instruction pointer, ASLR will make direct jumps unreliable, because the addresses
used by the program will be unpredictable.

It is important to note that ASLR does not resolve vulnerabilities. It is just a layer of protection
that can be circumvented. An interesting article about ASLR security mechanism and some
techniques to bypass it can be found on the Corelan Team website8. This article concerns about
Windows operating systems, but the methods are applicable to Linux systems too.

To support ASLR the executable has to be compiled as Position Independent Executable
(PIE). By default, GCC compiles as ET DYN which support ASLR. ET EXEC ELF files do not
support it and so they will be loaded in the same address space each time.

The following is an example of how ASLR works.

#include <stdio.h>

void main() {

printf("%p\n", main);

}

Figure 3.13: Example program that prints the address of the main function.

8Exploit writing tutorial part 6 : Bypassing Stack Cookies, SafeSeh, SE-
HOP, HW DEP and ASLR, https://www.corelan.be/index.php/2009/09/21/

exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/

31

https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/

ELF file specification and tools of the trade

The program in Listing 3.13 prints the address of the main function. First, the program is
compiled as PIE, which is the default for GCC. Then the program is launched multiple times.
The output in Listing 3.14 shows how ASLR changes the function position in memory.

✩ gcc aslr.c -o a.out # Compile the program

✩ file a.out

a.out: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically

linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,

BuildID[sha1]=f828cc2468c65e0fb799b410cb9b6f0960e767a0, not stripped

✩ ./a.out # Execute the program multiple times

0x55a28b92d135

✩ ./a.out

0x5621c1e1f135

✩ ./a.out

0x55bb9c8c3135

Figure 3.14: Example program output with ASLR.

On each different run, the address of the main function is different. ASLR randomizes the
address space of the whole text segment each time the program is loaded into memory. Using
radare2 is possible to analyze the address of the main function on disk. This address only resembles
the last part of the program’s output. Listing 3.15 presents the analysis made with radare2. First
the binary is open in line 1. Then it is analyzed in line 2 with the aaa command. Finally the
functions are listed with the command afl at line 4. The offset 0x1135 at line 6 is not the real
address at which the main function is loaded at runtime. ASLR will add a random value to this
offset every time the program is executed.

1 ✩ r2 a.out # Open the executable with radare2

2 [0x00001050]> aaa # Analyze the binary

3 [...]

4 [0x00001050]> afl # List all the functions

5 [...]

6 0x00001135 1 31 sym.main

7 [...]

Figure 3.15: ASLR example program analysis.

If the code is compiled without PIE, ASLR does not work anymore. An application compiled
without position independent capabilities cannot be loaded at any memory address. Its references
are absolute addresses, and not addresses relative to the instruction pointer.

Listing 3.16 shows the analysis done on a program compiled without PIE. The output shows
the position of the main function does not change anymore. By analyzing the binary with radare2,
it’s possible to extract information about the real position of that function (line 15). The function
will always be loaded in that position.

3.4 Tools of the trade

This section presents some of the tools that were tested during the entire research. Some of them
are widely used in the examples of this thesis. Others were just tested, but are worth mentioning.

32

ELF file specification and tools of the trade

1 ✩ gcc aslr.c -o a.out -fno-pie -no-pie # Compile the program

2 ✩ file a.out

3 a.out: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically

linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,

BuildID[sha1]=a57dc058a0d4891856844ad52e958cb06f21f54b, not stripped

4 ✩ ./a.out # Execute the program multiple times

5 0x401122

6 ✩ ./a.out

7 0x401122

8 ✩ ./a.out

9 0x401122

10 ✩ r2 a.out # Open the executable with radare2

11 [0x00401040]> aaa # Analyze the binary

12 [...]

13 [0x00401040]> afl # List all the functions

14 [...]

15 0x00401122 1 27 sym.main

16 [...]

Figure 3.16: Example program output without ASLR.

readelf

readelf9 is a Linux command-line program. It displays information about ELF format object
files. It is capable of extracting almost any information regarding ELF files’ structure. In this
thesis, readelf was mostly used to list information about program headers (–segments flag), section
headers (–sections flag) and relocations (–relocs flag). Symbols can be listed with the –syms flag.

objdump

objdump10 is a standard Linux command-line program. It is useful for displaying information
about generic object-files. In this research, objdump is used mainly as a disassembler (-d option).
Since it is designed to analyze object-files it can also be used as readelf. For example the -p option
lists information about the program headers and the dynamic sections.

radare2

radare2 is a framework which contains a set of command lines utilities. It can be used to do
almost anything with binaries. From the radare2 GitHub page [21]:

Radare project started as a forensics tool, a scriptable command-line hexadecimal edi-
tor able to open disk files, but later added support for analyzing binaries, disassembling
code, debugging programs, attaching to remote gdb servers...

The framework is composed of multiple tools. Each tool can be used independently, but
combined they provide almost every functionality needed for binary analysis and manipulation.
The strength of radare2 is its support for almost any format of binary (not only of ELF type).
It is also still under development and it is highly recommended to always download the latest
version from GitHub, even if there are binary releases.

9https://linux.die.net/man/1/readelf

10https://linux.die.net/man/1/objdump

33

https://linux.die.net/man/1/readelf
https://linux.die.net/man/1/objdump

ELF file specification and tools of the trade

A book explaining the basic functionalities of the radare2 framework can be found online [22].
It is also possible to find videos regarding r2con, the annual radare2 congress, and radare2 in
general on youtube.com. There are two recordings worth mentioning. “radare demystified (33c3)”
explains the basic commands of radare2. “SUE 2017 - Reverse Engineering Embedded ARM
Devices - by pancake” is an introduction to firmware reversing.

The project is by default a command-line tool, but it is possible to use it with a graphical user
interface by installing Cutter11.

This tool was used extensively during the research, mainly for reversing purposes. Just the
basic functionalities were used, but it has proved itself to be one of the most useful and compre-
hensive tool.

r2pipe

R2pipe is an API to interact with r2 instances with various methods [22]. It is possible to use
radare2 functionality through pipes, HTTP queries and TCP sockets.

This API allows the creation of programs that exploit the framework functionality. It is
possible to execute radare2 commands directly from the program. This makes automating tasks
easier.

The supported languages are Python, NodeJS, Go, Rust, Ruby, Perl, Erlang, Haskell, Dotnet
languages, Java, Swift, Vala, NewLisp and Dlang.

Listing 3.17 is an example taken from the radare2 book [22] of a simple analysis of the /bin/ls
binary performed in python using r2pipe. The example shows how it is possible to execute r2
command directly from the script.

import r2pipe

r2 = r2pipe.open("/bin/ls")

r2.cmd(’aa’)

print(r2.cmd("afl"))

print(r2.cmdj("aflj")) # evaluates JSONs and returns an object

Figure 3.17: r2pipe example.

GDB

GDB, or GNU Project debugger is the default debugger for Linux-like systems12. It is a terminal
tool and, as radare2, it does not offer an intuitive interface to the user.

During this study, GDB was used mostly in the process of understanding ELF internal func-
tionalities.

There are two interesting plug-ins for GDB focused on software security. They are both python
modules loaded into the debugger. The first one is called pwndbg13 and the second one peda14

(Python exploit Assistance for GDB). Both were tested during the initial study on the ELF file
format.

11Cutter, a graphical user interface for radare2, https://github.com/radareorg/cutter

12https://linux.die.net/man/1/gdb

13https://github.com/pwndbg/pwndbg

14https://github.com/longld/peda

34

https://github.com/radareorg/cutter
https://linux.die.net/man/1/gdb
https://github.com/pwndbg/pwndbg
https://github.com/longld/peda

ELF file specification and tools of the trade

Python

Python offers a lot of libraries for binary analysis and manipulation. The following are the ones
that were tested during this research.

angr

From the angr website15:

angr is a multi-architecture binary analysis toolkit, with the capability to perform
dynamic symbolic execution (like Mayhem, KLEE, etc.) and various static analyses
on binaries.

It offers an analysis suite for binaries. The analysis is performed not at the assembly level,
but the intermediate representation(IR) is used.

It is possible to use angr to conduct program emulation. The strength of this suite is the
possibility to execute an emulation on symbol variables. As the angr guide explains, in symbolic
emulation, every variable does not hold a certain value, but a range of possible value. Each
operation the program executes is used to construct an abstract syntax tree or AST of the program.
The AST can be used to create a set of constraints for every variable. Such constraints can be
solved by an SMT solver.

For example, it might be possible to guess a required input password without brute-forcing,
by letting angr solve the require input a certain branch of the control flowgraph has. Examples
of this functionality can be found in the angr GitHub page16.

The angr suite was tested but not used during this research. It is worth mentioning, because
of its application in binary analysis. An interesting article regarding angr is “The Art of War:
Offensive Techniques in Binary Analysis” [23].

pwntools

“pwntools is a CTF framework and exploit development library” written in Python17. It is
designed for exploit development, so it offers methods to connect remotly to a target, to manipulate
assembly, pack integers and in general abuse vulnerabilities.

As for angr, during the course of this research most pwntools functionality were tested for
learning purposes.

There is one useful library for manipulating ELF objects called pwnlib.elf. This library was
considered during the design of the script needed by the attestator in Chapter 4. It offers a simple
API for extracting information from object files and patching values.

pyelftools

“pyelftools is a pure-Python library for parsing and analyzing ELF files and DWARF debugging
information.” 18

It is a really useful library in terms of extracting information, but it has a downside. It does
not offer writing functionality. If the task requires some manipulation on the file, it has to be
implemented by hand or by using another library.

15https://docs.angr.io/

16https://github.com/angr

17http://docs.pwntools.com/en/stable/

18https://github.com/eliben/pyelftools

35

https://docs.angr.io/
https://github.com/angr
http://docs.pwntools.com/en/stable/
https://github.com/eliben/pyelftools

ELF file specification and tools of the trade

Ruby

Ruby also offers different libraries to analyze binaries. Two libraries, in particular, offer interesting
functionality in terms of ELF manipulation.

Metasm

Metasm is an assembly manipulation suite. It can assemble, disassemble, compile and link code.
It can also be used as a debugger. It is remarkably comprehensive and it supports various
architectures and file formats [24].

The metasm suite GitHub page19 contains illustrative examples of its functionality and metasm
APIs are documented at rubydoc.info20.

For what concerns binary manipulation the Metasm::ELF is the most interesting module. It
permits to easily access any information related to an ELF object.

The downside to metasm is the fact that is very extensive. Learning how to use it properly
requires time.

rbelftools

rbelftools21 is a more lightweight ELF parser inspired by pyelftools. Unlike its Python variant,
it offers a set of more complete functionality, not only for parsing but also for manipulating ELF
objects.

The documentation for rbelftools can be found on rubydoc.com.

Its functionalities and its simplicity make it a highly compelling option when looking for a
library for manipulating ELF files.

19https://github.com/jjyg/metasm

20https://www.rubydoc.info/github/brainsucker/metasm/Metasm

21https://github.com/david942j/rbelftools

36

 https://github.com/jjyg/metasm
https://www.rubydoc.info/github/brainsucker/metasm/Metasm
 https://github.com/david942j/rbelftools

Chapter 4

Attestator custom build

To solve some of the ASPIRE attestator’s portability issues, the first thing to do is separating it
from the whole framework. Once the attestator is removed from the framework, it will be possible
to analyze its other dependencies. In this chapter, an attempt to create a custom build of the
attestator is described. Most of the code was taken from the ASPIRE project GitHub page [2].

As explained in chapter 2 one of the major dependency of the attestator is the Diablo toolchain.
Extracting the attestator from the framework implies the creation of a substitute. A custom script
was used to replace it.

The second strict dependency of the attestator is the ASPIRE communication protocol. As
already mentioned in chapter 2, the connection part was overlooked during the research. To avoid
using the protocol already in place, a hard-coded nonce was inserted inside the program. It is
important to note that this custom attestator is just a proof of concept. Its purpose is to prove
it is possible to run the attestator alone. In chapter 6, an analysis of its potentially extendible
portability is done.

4.1 Design and architecture

Extracting the attestator from the ASPIRE framework and removing its network functionality
is a trivial process. Replacing the Diablo functionality is a more difficult task. As described in
Section 2.1, the attestator extracts the information it needs from a structure called blob. The
blob is not initialized in the source code. This means it has to be filled after compilation. In
general, the process that has to happen is the following:

1. The user specifies the functions the attestator has to protect. This is possible by using a
configuration file.

2. The user compiles together the program he wants to protect and the attestator. The at-
testator’s blob is still empty, so another step is required to have a completely functional
binary.

3. The user executes the script specifying the target binary and the configuration file. The
script reads the configuration file and patches the blob with the correct information required
by the attestator.

4. The user can now execute the protected program.

Figure 4.1 shows a diagram of the building process.

37

Attestator custom build

Application Source
Code

Attestator Source
Code

Configuration File

Ruby Script

Protected executable

Compiled executable

Patch

User

Compilation

Figure 4.1: Attestator building process.

Configuration file

For what concerns the configuration, the user has to be able to specify a list of functions he
wants to protect. Only the specified function are secured by the attestator. To quickly parse this
information, a JSON format custom configuration file is used. There are good JSON parsers for
almost every scripting language. The functions need to be specified by name. Listing 4.2 is an
example of configuration file. The attestator number is customizable. The other information will
be needed by the script to locate the symbols it has to patch. The protect field is an array of
function names. It contains the names of all the target functions of the attestation.

Preparing the binary

The compilation is a trivial step, although there is one important thing to note. The binary has to
be prepared for the adjustments of the patching script. This means the script is strictly correlated
to the attestator source code. Some options have to be evaluated before writing the script.

Patching the blob with offsets relative to the text segment might not be the simpler solution.
Potentially a list of pointers to the target functions can be inserted in the attestator’s source
code. The program itself will compute the correct offsets in each run, even with ASLR enabled.
In that scenario, the script will only be in charge of patching the functions’ sizes. This approach
was discarded because it has an important security downside. The blob would contain exactly

38

Attestator custom build

{

"attestator_number" : 255,

"aid_size" : 16,

"blob_structure_name" : "ra_data_structure_blob",

"base_sym" : "text_seg_offset",

"protect": [

"function-name-1",

"function-name-2",

...

]

}

Figure 4.2: Example of JSON configuration.

the pointers to the functions it is protecting. It would be simple for an average reverse engineer
to understand what their purpose is. Chapter 5 analyzes different obfuscation options, but it is
better to consider this issue already.

Having discarded the pointers’ solution, there are also different choices regarding the blob
declaration. Declaring the blob inside the source code is a valuable option, but there is one thing
to take into consideration. If the blob structure is initialized with zeroes, the compilation process
will insert it in the .bss section. In that case, only the information about its memory size will
be present in the binary. To prevent this, the blob has to be initialized with some bogus values
in the attestator source code. The script will overwrite this portion of the binary on disk. The
following is a snippet taken from the blob declaration source.

uint8_t ra_data_structure_blob[RA_DATA_STRUCTURE_BLOB_SIZE] = { 0x90, 0x90,

0x90, 0x90 };

Another option is to not declare the blob in the program source code and inject it entirely
after the compilation step. Since the injection process would add some complications, the easier
solution was adopted. Injection in the data segment is not a minor task because it might require
to fix data references in the code.

The last thing to examine is the base address. Using offsets relative to the text segment
implies the need for a pointer to the text segment itself. In C, it is possible to construct a pointer
to a function, but the function’s position in memory is determined by the linker. To solve this
issue, a custom pointer has to be created after the linking process, by modifying the binary. The
easiest way to construct it is by altering an already existing function pointer. To do so, the base
address has to be declared as a pointer to any function present in the text segment. The script
will be in charge of patching it. There are two possible scenarios. In case ASLR is enabled, a
dynamic relocation entry will be created inside the .rela.dyn section. Its functionality is similar
to the one described in Section 3.1, with the exception it has to be resolved by the dynamic linker
at runtime. The addend field of the relocation has to be corrected with the text segment offset
value. If ASLR is not enabled, the text segment is always loaded at a constant memory address.
In that case, the base symbol is a constant value the script has to patch.

ASLR analysis

This section shows an example of the relocation entry for the base symbol, both for ASLR enabled
and disabled. In this example, the pointer to the text segment is initialized as the following.

uint64_t text_seg_offset = (uint64_t) dummy_function;

If the binary is of type ET EXEC (no ASLR), the pointer to the text segment is a constant
value. As shown in Listing 4.3, by analyzing the binary with radare2, it is possible to check that
the text_seg_offset (line 9) variables holds indeed the address of the dummy_function (line 11).

39

Attestator custom build

After the blob is patched it will hold the address of the text segment, instead of the one pointing
to dummy_function. is is the command for listing symbols and ˜ is the internal grep command.
pxw prints the hexadecimal word dump at the current address.

1 ✩ gcc src/*.c -o a.out -lpthread -lcrypto -DDEBUG -DDEBUG_ADS_PARSE

-DHARD_DEBUG -no-pie -fno-pie # Compile the program

2 ✩ r2 a.out # Open the binary with radare2

3 [0x004012c0]> aaa # Analyze the binary

4 [...]

5 [0x004012c0]> is~text_seg_offset # Search for the text_seg_offset symbol

6 097 0x000071c0 0x004081c0 GLOBAL OBJ 8 text_seg_offset

7 [0x004012c0]> s 0x004081c0 # Seek to the text_seg_offset location

8 [0x004081c0]> pxw # Print the value

9 0x004081c0 0x00401f62

10 [0x004081c0]> afl~dummy_function # Print information about the

dummy_function function

11 0x00401f62 1 11 sym.dummy_function

Figure 4.3: Text segment offset without ASLR.

Listing 4.4 shows the same example but with ASLR enabled. If ASLR is enabled, the address of
the dummy_function is going to be different every run. The loader will be in charge of patching the
text_seg_offset variable with the correct value pointing to that function. The loader extracts
the information it needs from the relocation entry in the .rela.dyn section. Relocations can be
listed using the readelf tool (line 3). The output from radare2 at line 13 shows that the function
at offset 0x2fe3 (the value of the relocation entry) is indeed dummy_function.

1 ✩ gcc src/*.c -o a.out -lpthread -lcrypto -DDEBUG -DDEBUG_ADS_PARSE

-DHARD_DEBUG # Compile the program

2 ✩ readelf --symbols a.out | grep text_seg_offset # Print information about

the text_seg_offset symbol

3 100: 000000000000a1c0 8 OBJECT GLOBAL DEFAULT 24 text_seg_offset

4 ✩ readelf --relocs a.out | grep a1c0 # Print information about its

relocation

5 00000000a1c0 000000000008 R_X86_64_RELATIVE 2fe3

6 ✩ r2 a.out # Open the binary with radare2

7 [0x000022d0]> aaa # Analyze the binary

8 [...]

9 [0x000022d0]> is~text_seg_offset # Search for the text_seg_offset symbol

10 100 0x000091c0 0x0000a1c0 GLOBAL OBJ 8 text_seg_offset

11 [0x000022d0]> s 0x2fe3 # Seek to the text_seg_offset value

12 [0x00002fe3]> pdf # Print what is present at that value

13 / (fcn) sym.dummy_function 11

14 | sym.dummy_function ();

15 | 0x00002fe3 55 push rbp

16 | 0x00002fe4 4889e5 mov rbp, rsp

17 | 0x00002fe7 b800000000 mov eax, 0

18 | 0x00002fec 5d pop rbp

19 \ 0x00002fed c3 ret

Figure 4.4: Text segment offset with ASLR.

The dynamic loader will patch the content of the text segment offset variable with the address
at which the offset 0x2fe3 is loaded. The script will have to modify this value to the offset of the

40

Attestator custom build

text segment itself. This offset can be listed with the readelf tool as well.

✩ readelf --segments a.out --wide

[...]

LOAD 0x002000 0x0000000000002000 0x0000000000002000 0x003e99 0x003e99 R E

0x1000

[...]

Based on the above output, the patching script will have to overwrite the relocation entry
value from 0x2fe3 to 0x2000.

Patching the blob

Since the blob is already present in the binary, the script task is to patch it. The following is the
procedure the script has to execute.

1. Open the configuration file;

2. Parse the information it contains. A JSON parser is required for this operation;

3. Open the target executable file;

4. Find the position of the blob in the data segment;

5. Find the position of the base symbol;

6. Find the position of every function the attestator has to protect and retrieve information
about their sizes;

7. If ASLR is enabled, patch the base symbol present in the .rela.dyn section so that it points
at the beginning of the text segment. If ASLR is disabled, patch the base symbol in the
data segment with the constant memory address of the text segment;

8. Patch the blob with the information retrieved in step 5.

Considering the script has to retrieve information from an ELF executable file, some libraries
for parsing and manipulating executable files have been evaluated. Two scripting languages, in
particular, best fit these needs: Python and Ruby. They both offer some libraries for manipulating
ELF files. In Section 3.4 is possible to find a description of some of the libraries. After some tests,
Ruby was chosen as the designated language. Porting it to Python should not be too difficult.

With the script written and executed on the target, it is possible to run the protected program.
The attestator will be spawned in a thread and it will start computing checksums of the functions
it is configured to protect.

4.2 Testing

Listing 4.5 is a test of the custom attestator on a simple program. The attestator target is
the main function. The program is compiled together with the attestator on line 1. In this
example, the application is compiled using GCC with ASLR enabled. To test it without ASLR
the ‘-no-pie -fno-pie’ flags have to be specified.

Then the Ruby script is launched with the compiled binary as the target and with the file
config.json as the configuration file (line 2). From the output it is possible to see the script in
action on the executables file. Once the binary has been patched, it is ready to run.

The program is launched at line 19.

The output shows the attestator performing a security check by computing the checksum over
the main function. Since the nonce is constant, the calculated hash is always the same, because

41

Attestator custom build

1 ✩ gcc src/*.c -o a.out -lpthread -lcrypto -DDEBUG -DDEBUG_ADS_PARSE

-DHARD_DEBUG # Compile the program

2 ✩ ./patch_ra_data_blob.rb -e a.out -c config.json # Execute the patching

script

3 Reading the config file...

4 Check if the binary is of type ET_EXEC or ET_DYN...

5 Check Address Space Layout Randomization...

6 ASLR => true

7 Check if the binary has a symtab...

8 Symbol table found

9 Searching for text_seg_offset...

10 Searching for ra_data_structure_blob...

11 Base symbol found at offset 0x91c0

12 Blob found at offset 0x9180

13 Searching for symbol main...

14 Symbol main found: {:memory_offset=>3974, :size=>43}

15 Patching the base symbol...

16 Aslr is enabled => Searching for the relocation entry...

17 Patching the blob...

18 Blob patched correctly!

19 ✩ ./a.out # Run the protected binary

20 (Attestator) An attestator is being started

21 [...]

22 (Attestator 255) Prepared data size 43

23 550000C00048FF00E8000000FF89E0C300003DB800F25A00000AB8F[...]

24 (Attestator 255) Attestation data hashed, 16B buffer

25 (Attestator 255) Hashed data size 16

26 5D920360A17BFCD40F1D0EE6B87FA5EF

27 [...]

28 (Attestator 255) Request processed in = 0.001681 s

29 [...]

30 (Attestator 255) Prepared data size 43

31 550000C00048FF00E8000000FF89E0C300003DB800F25A00000AB8F[...]

32 (Attestator 255) Attestation data hashed, 16B buffer

33 (Attestator 255) Hashed data size 16

34 5D920360A17BFCD40F1D0EE6B87FA5EF

35 [...]

36 (Attestator 255) Request processed in = 0.002100 s

37 [...]

38 (Attestator 255) Prepared data size 43

39 550000C00048FF00E8000000FF89E0C300003DB800F25A00000AB8F[...]

40 (Attestator 255) Attestation data hashed, 16B buffer

41 (Attestator 255) Hashed data size 16

42 5D920360A17BFCD40F1D0EE6B87FA5EF

43 [...]

44 (Attestator 255) Request processed in = 0.001629 s

Figure 4.5: Attestator patching process and test.

the data is extracted from the protected function in the same order every time. With a different
nonce, the checksum would be different.

In Section 4.1 the relocation’s patch was discussed. It is possible to check that indeed the
relocation was modified by the script as predicted.

✩ readelf --relocs a.out | grep a1c0

42

Attestator custom build

00000000a1c0 000000000008 R_X86_64_RELATIVE 2000

An interesting test is to modify the main function disassembly after compilation. This resem-
bles a potential adversary trying to modify bytecodes of the program to gain an advantage. It is
possible to patch the code both at runtime or on disk. Listing 4.6 is an example of how to use
radare2 [21] to patch the binary on disk.

1 ✩ r2 -w a.out

2 [0x000022d0]> aaa

3 [...]

4 [0x000022d0]> s main

5 [0x00002f86]> pdf

6 [...]

7 | 0x00002f94 488d3dc03700. lea rdi, qword str.Hello_World ; 0x675b ; "Hello

World!" ; const char *s

8 | 0x00002f9b e8e0f0ffff call sym.imp.puts ; int puts(const char *s)

9 | 0x00002fa0 bf0a000000 mov edi, 0xa ; int s

10 | 0x00002fa5 e806f2ffff call sym.imp.sleep ; int sleep(int s)

11 [...]

12 [0x00002f86]> s 0x00002fa0

13 [0x00002fa0]> wa mov edi,0xf

14 [0x00002fa0]> pdf

15 [...]

16 | 0x00002f94 488d3dc03700. lea rdi, qword str.Hello_World ; 0x675b ; "Hello

World!" ; const char *s

17 | 0x00002f9b e8e0f0ffff call sym.imp.puts ; int puts(const char *s)

18 | 0x00002fa0 bf0f000000 mov edi, 0xf ; int s

19 | 0x00002fa5 e806f2ffff call sym.imp.sleep ; int sleep(int s)

20 [...]

21 [0x00002f86]> exit

Figure 4.6: Binary patched with radare2.

The binary is open with radare2 in writing mode (-w option). From the disassembled output
at line 7 it is possible to understand that the main function prints “Hello World!” and then calls
sleep with a parameter of 10 (lines 9-10). The number 10 is patched to be 16 (0xf hexadecimal).
The instruction is modified by using the wa command (line 13).

After the modification, the program is launched again. The attestator should compute a
different checksum, as the main function has been tampered with.

This is just an illustrative modification, an attacker is likely to attempt modifying important
calls such as a check for a license key, or a logic functionality of a game. Ideally, vulnerable code
should be obfuscated. This is just a test to show the attestator can detect single-byte modification.

The output of the modified program is shown in Listing 4.7. The computed hash is indeed
different. This shows the attestator was able to detect the change.

4.3 Conclusions

In this chapter, a successful attempt at creating a custom separate version of the ASPIRE at-
testator was made. The communication part was not taken into consideration in this build. To
have a properly functional attestator, the networking component should be developed, based on
the platform and the libraries at disposal.

The ASPIRE project provides a complete set of protections for binaries, which comprehends
more than just the attestator. In particular, the obfuscation part was not examined in this section.

43

Attestator custom build

✩/a.out

(Attestator) An attestator is being started

[...]

Hello World!

[...]

(Attestator 255) Prepared data size 43

550000C00048FF00E8000000FF89E0C300003DB800F25A00000FB8F[...]

(Attestator 255) Attestation data hashed, 16B buffer

(Attestator 255) Hashed data size 16

DFAAD6E421E4FE8C8347D13E43ADCF3C

[...]

(Attestator 255) Prepared data size 43

550000C00048FF00E8000000FF89E0C300003DB800F25A00000FB8F[...]

(Attestator 255) Attestation data hashed, 16B buffer

(Attestator 255) Hashed data size 16

DFAAD6E421E4FE8C8347D13E43ADCF3C

[...]

(Attestator 255) Prepared data size 43

550000C00048FF00E8000000FF89E0C300003DB800F25A00000FB8F[...]

(Attestator 255) Attestation data hashed, 16B buffer

(Attestator 255) Hashed data size 16

DFAAD6E421E4FE8C8347D13E43ADCF3C

[...]

Figure 4.7: Attestator tampering detection.

Obfuscation is not only helpful in protecting the attestator itself from reversing (the source code
of the ACTC is readable online), but it can protect parts of the software which are proprietary
and which should not be revealed. Obfuscation is essentially security through obscurity, so to say,
but the time and the resources it can take might slow and deter an attacker enough to make it
give up.

The next chapter contains an evaluation of some obfuscation methods and their strengths and
weaknesses.

44

Chapter 5

Obfuscation

This chapter contains an analysis of some tools that can be used as a replacement for the ob-
fuscation protection offered by the ASPIRE framework. The tools are evaluated based on the
protection mechanisms they employ. The chapter includes a lot of examples and it can be used
as a reference for the most common obfuscation techniques.

5.1 Obfuscation purposes and tecniques

Obfuscation, in regard to software, is a mechanism through which the original functionality of
the program is hidden. To accomplish this goal various techniques can be used. By definition,
the protection offered by obfuscation is “security through obscurity”. Obfuscation can only slow
a persistent attacker because the program functionality has to be contained in the binary in some
form. In general, obfuscation is used:

❼ To protect intellectual property.

If the program contains proprietary algorithms, disclosure of the procedures can cause finan-
cial damage to their owner. By obfuscating the code, the company that owns the algorithm
makes harder for any competitor to reverse it.

❼ To protect a crucial piece of code.

For example, some programs require a serial key to function. If the code in charge of checking
the serial key can be easily reversed, a potential attacker might be able to bypass the check
and obtain a free working product.

❼ To make the general functionality of the program difficult to understand.

There are some software products that, if modified, can cause financial damage to the
company that had developed them. The more the code is understandable, the easier it is to
recognize what to modify to get an advantage

Cheats for games typically require a basic understanding of the program functionality. A
program difficult to understand can prevent the creation of cheats based on the modification
of the software.

Obfuscating the code has lots of advantages, but it also has a downside. Typically obfuscation
techniques are based on inserting additional code or by modifying the control flow graph of the
program. In general, the more the code is obfuscated, the more the execution time increases. To
avoid performance issues obfuscation should be used just on the parts of code crucial to protect.

Typically the strength of obfuscation is given by the sum of multiple strategies combined. If
just one obfuscation technique is used, a good reverse engineer might be able to automate the
process of de-obfuscating the code, which makes this security measure pointless.

There are different techniques through which the code can be obfuscated. In the following
sections, some of the tools to obfuscate a program and their mechanisms are tested and analyzed.

45

Obfuscation

5.2 Obfuscator-LLVM

LLVM is a project containing a “collection of modular and reusable compiler and toolchain tech-
nologies” [25]. Thanks to a subproject of LLVM called Clang, it is possible to compile C code, as
with GCC.

An obfuscator for the LLVM suite can be found on GitHub1. There is also a commercial
version with enhanced capabilities, but only the free version is analyzed in this section. Since
this obfuscator works for the LLVM compilation suite, it offers a version of the Clang compiler
capable of obfuscating the generated code. This compiler takes the source code as input and it
produces an obfuscated ELF binary as output.

There are 3 main features it offers in terms of obfuscation. In the following paragraphs, they
are analyzed one by one.

❼ Instructions substitution;

❼ Bogus control flow;

❼ Control flow flattening.

Instruction substitution

This technique is based on the concept that, by substituting binary operations with functionally
equivalent but more complicated ones, the program will have the same functionality, but it will
be more difficult to reverse.

Since it is possible to remove this kind of obfuscation by re-optimizing the code, this mechanism
does not add a lot of security. Combined with other strategies it renders the code complicated and
hard to read. An example of this technique at source code level can be found in the Obfuscator-
LLVM GitHub page wiki.

Listing 5.1 contains the example program source code. Listing 5.2 and Listing 5.3 show the
assembly code of a compiled example program, with and without this obfuscation technique
applied.

#include <stdlib.h>

int main(int argc, char** argv) {

int a = atoi(argv[1]);

a = a * 2;

return a;

}

Figure 5.1: Instruction substitution example program.

Even if the disassembly output is more verbose than the C source, it is possible to clearly
distinguish what the code is doing in both snippets by analyzing the assembly code.

In the obfuscated disassembly there are two more instructions at lines 12 and 14. In this
particular case, they are extremely easy to spot and ignore in an attempt to reverse the program.

The level at which this instruction insertion is done can be selected in the configuration. Having
more and more of these useless instructions can make enough noise to cover what the program
is doing. As already said though, since it is possible to revert the process, this mechanism is not
really that effective and it should be combined with other strategies.

1https://github.com/obfuscator-llvm/obfuscator/wiki

46

https://github.com/obfuscator-llvm/obfuscator/wiki

Obfuscation

1 push rbp

2 mov rbp, rsp

3 sub rsp, 0x20

4 mov dword [local_4h], 0

5 mov dword [local_8h], edi ; argc

6 mov qword [local_10h], rsi ; argv

7 mov rsi, qword [local_10h]

8 mov rdi, qword [rsi + 8] ; [0x8:8]=-1 ; 8 ; const char *str

9 call sym.imp.atoi ; int atoi(const char *str)

10 mov dword [local_14h], eax

11 mov eax, dword [local_14h]

12 add eax, 2

13 mov dword [local_14h], eax

14 mov eax, dword [local_14h]

15 add rsp, 0x20

16 pop rbp

17 ret

Figure 5.2: Disassembled program without instructions substitution protection.

1 push rbp

2 mov rbp, rsp

3 sub rsp, 0x20

4 mov dword [local_4h], 0

5 mov dword [local_8h], edi ; argc

6 mov qword [local_10h], rsi ; argv

7 mov rsi, qword [local_10h]

8 mov rdi, qword [rsi + 8] ; [0x8:8]=-1 ; 8 ; const char *str

9 call sym.imp.atoi ; int atoi(const char *str)

10 mov dword [local_14h], eax

11 mov eax, dword [local_14h]

12 add eax, 0x6abc334a

13 add eax, 2

14 sub eax, 0x6abc334a

15 mov dword [local_14h], eax

16 mov eax, dword [local_14h]

17 add rsp, 0x20

18 pop rbp

19 ret

Figure 5.3: Disassembled program with instructions substitution protection.

Bogus control flow

The control flow graph is a useful way to determine the logic of a program. Modifying this graph
can make a lot harder, for a potential reverse engineer, to understand what the logic flow of the
program is.

This technique creates a new block inside the functions call graph. From this block the program
jumps back to the original block through an opaque predicate. Opaque predicates are conditional
jumps whose result is known in advance, but cannot be evaluated statically. The result of an
opaque predicate is always going to be the same, but it might be difficult to guess what it is
without dynamic analysis.

47

Obfuscation

Listing 5.4 provides an example source for the bogus control flow protection mechanism. The
control flow graph of this program compiled without obfuscation looks like Figure 5.5. It clearly
resembles the flow graph of the C source. Compiling it with the bogus control flow protection
leads to a different result, as observable in Figure 5.6. The flowgraph looks considerably more
complicated, even though the functionality of the program is preserved.

#include <stdlib.h>

int main(int argc, char** argv) {

int a = atoi(argv[1]);

if(a == 0)

return 1;

else

return 10;

return 0;

}

Figure 5.4: Bogus control flow example program.

The weakness of this type of protection is that some tools might be able to spot opaque
predicates by using statical or even dynamical analysis. If an opaque predicate is found, its whole
branch in the flow graph can be cut out and considered as not reachable code, thus simplifying
the reversing process

Figure 5.5: Program without bogus control flow protection.

Control-flow flattening

As the name itself says, this technique causes the control flow graph to flatten completely. There
is an interesting article about this tecnique by László et al. [26]. As this article explains:

In the case of most real life programs, branches and their targets are easily identi-
fiable due to high level programming language constructs and coding guidelines. [...]
The idea behind control flow flattening is to transform the structure of the source
code in such a way that the targets of branches cannot be easily determined by static
analysis, thus hindering the comprehension of the program.

48

Obfuscation

Figure 5.6: Program with bogus control flow protection.

The GitHub page of the LLVM-Obfuscator2 shows an example of what this process is doing
at the code.

The applied protection will convert the code in Listing 5.7 into something like Listing 5.8:

The branches in the protected program are converted into a while statement with a switch
selector inside. The result is a flow graph that looks like a complex switch construct. Figure 5.9
from the Tigress website3 shows how this transformation looks like in the flow graph. After that
transformation, it is complicated to understand what the execution order of all the blocks is since
they are all on the same level.

2https://github.com/obfuscator-llvm/obfuscator/wiki/Control-Flow-Flattening

3http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

49

https://github.com/obfuscator-llvm/obfuscator/wiki/Control-Flow-Flattening
http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

Obfuscation

#include <stdlib.h>

int main(int argc, char** argv) {

int a = atoi(argv[1]);

if(a == 0)

return 1;

else

return 10;

return 0;

}

Figure 5.7: Program without control flow flattening protection.

#include <stdlib.h>

int main(int argc, char** argv) {

int a = atoi(argv[1]);

int b = 0;

while(1) {

switch(b) {

case 0:

if(a == 0)

b = 1;

else

b = 2;

break;

case 1:

return 1;

case 2:

return 10;

default:

break;

}

}

return 0;

}

Figure 5.8: Program with control flow flattening protection.

Review

Combining all of the above techniques, a decent protection level in terms of obfuscation can be
achieved. As the FAQ page of the project on GitHub says though4, this obfuscator should not be
used in production. It is still being tested and therefore it is potentially easily reversible.

5.3 Tigress

Tigress is another tool interesting obfuscation tool. From the Tigress home page [27].

Tigress is a diversifying virtualizer/obfuscator for the C language that supports

4https://github.com/obfuscator-llvm/obfuscator/wiki/FAQi

50

https://github.com/obfuscator-llvm/obfuscator/wiki/FAQi

Obfuscation

Figure 5.9: Control flow flattening

many novel defenses against both static and dynamic reverse engineering and de-
virtualization attacks.

Tigress works directly on the C source code and it offers more protection techniques than the
one described in the previous section. The output of this tool is still in the form of C source
files, so a compiler is needed to get a fully functional executable. It is possible to analyze the
transformation Tigress is doing on the source code itself.

The following is an evaluation of the most promising transformations Tigress offers.

Function virtualization

This transformation is based on the concept of virtualized code. The idea is to transform the
original bytecode into a custom instruction set. This instruction set can be emulated inside a
custom interpreter. When this transformation is activated on a function, Tigress transforms the
function itself in an interpreter whose purpose is to execute the bytecode which corresponds to
the original function.

Virtualization is regarded as a strong defense against reverse engineering. There is a paper by
Jonathan Salwan et al. about the security of this protection technique [28], which also talks about
the Tigress obfuscator. This article analyzes ways through which the process of virtualization can
be reverted almost back to the original source code. The recovery process has some limits and
the article even discussed techniques thanks to which this analysis could be made impossible.

Function jitting

Jit stands for just-in-time compilation. When using this protection on a function, Tigress will
convert the function itself into another function which, when executed, will dynamically compile
the original function and run it. The jitting mechanism makes static analysis extremely difficult
because the code being run is not present in the binary on disk. Instead, it is created at runtime
and it is only present in memory.

Dynamic function jitting

This protection is very similar to the function jitting transformation. The difference is that
the jitted code is continuously modified and updated at runtime [27]. This makes even more

51

Obfuscation

difficult to dump the original code from the binary, since even during dynamic analysis, the code
is continuously modified.

Control-flow flattening and opaque predicates

Both of these techniques were already discussed in Section 5.2.

Function merging and splitting

These two mechanisms are complementary to each other. The first one consists in merging multiple
functions into a single one. The second splits a single function into multiple ones. Based on the
original function, both methods can have their benefits and downsides. Usually, functions are
used to separate tasks related to different areas of concern inside the program. Having functions
which do not follow this logic will make the process of understanding the purpose of the analyzed
software harder.

Both of these techniques were tested. Listing 5.10 shows the unprotected source code. In
Listing 5.11 the functions f1 and f2 are merged into a single function called _1_f1_f2.

void f1() { /* Execute f1 */... }

void f2() { /* Execute f2 */... }

int main() {

f1();

f2();

}

Figure 5.10: Program without function merging protection.

int main(...)

{

[...]

_1_f1_f2(0, 0);

_1_f1_f2(0, 1);

}

void _1_f1_f2(void *tigressRetVal , int whichBlock__0)

{

if (whichBlock__0 == 0) {

/* Execute f1 */

[...]

} else

if (whichBlock__0 == 1) {

/* Execute f2 */

[...]

} else {

}

}

Figure 5.11: Program with functions merging protection.

The splitting technique is similar to the one above and can be found in Listing C.5 in the
Appendix C.

52

Obfuscation

Both of these approaches offer a good increase in terms of security protection, without dete-
riorating the performance as other mentioned mechanisms.

Function argument randomization

This transformation changes the order of function arguments randomly and optionally adds extra
bogus arguments. Arguments passed to a function can be used to understand its functionality.
The advantage of doing such a thing is the enhanced difficulty in understanding what the purpose
of a function is, based on the argument passed to it.

Figure 5.125 shows what this transformation looks like.

Figure 5.12: Function argument randomization

As the previous protection, applying this technique does not add a lot of performance issues.
Combined with functions merging or splitting, the output will be a code designed in an extremely
counter-intuitive way and very difficult to reverse.

Encoded literals, data and arithmetic

Encoding is the process of hiding what the real value of an expression is until it is necessary.
Literals and initialized variables can be a goldmine for a reverse engineer. If this type of data is
contained inside the program as plaintext, a potential reverser can use it to trace back what the
various parts of the program are used for. This is why encoding literals and data, in general, is
extremely important.

Literals are constant values. To encode a literal Tigress either replace it with an opaque
expression (if it is an integer for example) or creates a function that generates it at runtime (if it
is a string).

To encode variable data Tigress can use a non-standard representation. Listing 5.13, taken
from the Tigress website6, is an example showing how this functionality can encode variable data.

The mentioned code can be translated into the following:

a = 1789355803 * arg1 + 1391591831;

b = 1789355803 * arg2 + 1391591831;

x = ((3537017619 * (a * b) - 3670706997 * a) - 3670706997 * b) + 3171898074;

printf("x=%i\n", -757949677 * x - 3670706997);

The example shows it becomes not so trivial to understand what the value of x is.

Arithmetic procedures can also give away information about what the program is supposed
to do. Even more, if the program contains a proprietary algorithm, it is better to encode it in a
way difficult to reverse.

5http://tigress.cs.arizona.edu/transformPage/docs/randomizeArguments/index.html

6http://tigress.cs.arizona.edu/transformPage/docs/encodeData/index.html

53

http://tigress.cs.arizona.edu/transformPage/docs/randomizeArguments/index.html
http://tigress.cs.arizona.edu/transformPage/docs/encodeData/index.html

Obfuscation

int main () {

int arg1 = ...

int arg2 = ...

int a = arg1;

int b = arg2;

int x = a*b;

printf("x=%i\n",x);

}

Figure 5.13: Encoded literals example program.

To encode arithmetic Tigress uses an approach similar to the one in section 5.2. A simple
arithmetic expression can be translated into a more complicated one. For example:

z = x + y + w

Can be converted into:

z = (((x ^ y) + ((x & y) << 1)) | w) +

(((x ^ y) + ((x & y) << 1)) & w);

Review

Tigress can potentially offer a more complete set of security protections than the Obfuscator-
LLVM analyzed in the preceding section. It is a more valuable choice to add this protection
layer to our program. There is something to consider though. If the software is running on a
less powerful device in terms of computation, having so many protection mechanisms stacked one
upon another might cause serious performance problems. The attestator itself is run as a thread
inside the program and it will continuously consume computation resources.

Using Tigress is a choice that has to be made based on the computational power at disposal
and based on the resources the program alone requires. Since it can be highly customizable, it is
possible to select the protection strength that best suits both the security and the performance
level required.

5.4 ADVobfuscator

ADVobfuscator is another promising project in regarding obfuscations7. This obfuscator works
only for C++11/14 and it is based on metaprogramming. This analysis mainly focuses on the
C language, so the functionality of the ADVobfuscator is not described here. There is an article
from Black Hat Europe 2014 that explains how it works [29]. This method is interesting enough
to mention and it might be an option if using C++ is a possibility.

7https://github.com/andrivet/ADVobfuscator

54

https://github.com/andrivet/ADVobfuscator

Chapter 6

An analysis on the portability of
the attestator

This chapter is an analysis of the portability of the attestator for the most common architectures
and operating systems. In Chapter 4, a proof of concept working on a 64 bit x86 architecture
and a standard Linux box (Debian) was built. This paragraphs will mainly focus on embedded
platforms for the Internet of Things.

There are two topics this chapter will address regarding the custom attestator’s build. In the
first part, a list of potential changes for the requirements analyzed in Section 2.2 is presented.
These changes are aimed at extending the portability of the attestator. The second part is a
study concerning the support offered by the most used embedded operating systems.

6.1 Extend the portability

This section proposes, for each requirement analyzed in Section 2.2, some potential solution to
extend the attestator portability. Similarly to the requirements analysis, this section is divided
into two parts.

Hardware

Most of the hardware requisites analyzed in Chapter 2 are not circumventable.

The portability to 8-bit and 16-bit processors might require some complicate modifications.
This holds especially because low-end processors might require programming in assembler. The
computing power and the memory size requisites suffer from this same problem. It is definitely
possible to create an attestator that works on less powerful devices, as already seen in Section 2.3.
The ASPIRE attestator is not portable to such devices.

The networking functionality is a prerequisite of the attestation component. Without it,
remote attestation is not possible. The communication method can be decided based on the
platform at disposal, but there must be a means to interact with the trusted server.

Regarding the multi-threading support, there is no bypass to this problem, except implement-
ing some sort of multi-threading logic by hand.

It might be possible to alternate code executed by the program itself and code executed by
the attestator, even if implementing this kind of solution would lead to a serious performance
worsening. It is worth considering that the attestator does not need to run continuously. The
frequency at which the memory integrity is checked can be adjusted to the device capabilities. This
holds even when considering a device that supports multi-threading. If the device is under a heavy
workload, it is possible to reduce the number of checks considerably, leaving more computational
resources to the main program.

55

An analysis on the portability of the attestator

Most embedded devices support multiple threads and this problem should be easily solvable.
The API offered to code the logic of the thread might differ, but in general, it should be possible
to port that part of the attestator to almost any device.

Software

Diablo

In Chapter 4, a custom build of the ASPIRE framework’s attestator was created as a proof of
concept. The custom attestator is not dependent on the Diablo toolchain. This proves Diablo
dependencies can be resolved by using other tools for performing its task. One of the tools
discussed in Chapter 5 can be used to substitute the obfuscation functionality

Libwebsocket and Curl

Since the communication protocols are highly dependent on what the platforms offer, the com-
munication part of the attestation protocol was overlooked in this section as well.

Different devices can have various methods to link with each other. A remote attestation
can happen only on devices able to communicate over a network. The module needed for that
functionality should be constructed and adapted based on the protocols and the APIs the device
supports.

OpenSSL

As already introduced in Section 2.2 the downside about using OpenSSL library is its size. There
are various alternatives to this library.

One option to replace it is to write a custom implementation of the hash and the random walk
function. This is the solution adopted by some of the proposed applications cited in Section 2.3.
Writing a custom solution ensures the code is designed at its best for the hardware it runs on.
The problem with that is that custom solutions are typically not portable. With the target of
extending the portability of the attestator, it is better to employ something more flexible. The
best way to guarantee portability is to use a library.

In this study, two libraries were considered. Both of them support embedded systems.

❼ wolfSSL1;

❼ Mbed TLS2.

These two libraries were chosen based on the support they offer and the fact they are used
extensively. Both of them contain APIs for cryptographic operation and hashing. Those can be
used to substitute OpenSSL in the attestator. They also offer SSL/TLS capabilities which can
be utilized for securing the communications. As already discussed, the communication part is
not examined in this study, but their support should be considered as a valuable option in the
implementation of the networking aspect.

1https://www.wolfssl.com/

2https://tls.mbed.org/

56

https://www.wolfssl.com/
https://tls.mbed.org/

An analysis on the portability of the attestator

6.2 Embedded OSes cryptographic support

These two libraries are not supported by every operating system. The following paragraphs are
an analysis of their portability across the most used ones. Apart from hardware issues, if the
OS supports the use of one of these libraries, the attestator should be portable to that system.
Without the support for any cryptographic library, the hashing and the random walk algorithms
will have to be implemented by hand. This would be inconvenient. To analyze the problem, a list
of potential operating systems is needed.

A list for the most used operating system can be found in an Embedded Markets Study
from April 2017 [30]. This study is not up to date, but no more recent versions were found.
Figure 6.1 and Figure 6.2 are extracted from the study’s presentation. Figure 6.1 shows the
usage of embedded operating systems in April 2017. Figure 6.2 shows the usage predicted in the
following 12 months. Clearly, the percentages might be outdated, but the list can be used for the
analysis.

With a list of the most used operating systems, it is possible to check their support for any
of the three cryptographic libraries mentioned before. Table 6.1 shows what libraries those OSes
offer. An empty field means the library is not supported. The question mark means that no
reference was found to the specific operating system, but the similarity with others suggests the
library might be usable.

The results of the analysis are the following:

❼ 25 operating systems were researched;

❼ Only 5 of them support the OpenSSL library.

❼ 15 OSes support the WolfSSL libraries;

❼ 9 OSes support Mbed TLS library;

❼ 2 OSes support all the libraries taken into consideration;

The collected data can be represented as in Figure 6.3. With these results at hand, it is
possible to draw some conclusions.

For the OSes with OpenSSL support, the attestator should be easily adaptable since all of
them are Linux-based systems.

Of the three libraries, WolfSSL is the one which gives more support. An interesting thing to
notice is that every platform supporting Mbed TLS also supports the WolfSSL library and not
vice-versa. This is another point in favor of WolfSSL.

This leads to the conclusion that WolfSSL is a better choice since it offers more extensive
support, covering also the systems Mbed TLS can be run on.

It is also important to note that only 8 out of 25 systems do not have support for any of these
libraries, or at least the compatibility is unknown. This means the attestator should be extensively
adaptable to all sorts of different operating systems, as long as the hardware requirements are
satisfied.

6.3 Executable file format

One more aspect has to be taken into consideration. The study and the modification made on
the attestator were done with the ELF file format in mind. The ELF format is the standard for
almost any Unix-like operating system, but other embedded OSes do not utilize it. It would be
easier to port the attestator to a platform where the environment is the most similar to a Linux,
but it is possible, with extensive modification, to adapt the attestator even to a different platform.
To achieve such a goal, the inner functionality of the different file format should be studied and
analyzed, to understand how the attestator requires to be adjusted.

57

An analysis on the portability of the attestator

Figure 6.1: Embedded operating systems usage in April 2017

Figure 6.2: Predicted embedded operating systems usage in April 2017

58

An analysis on the portability of the attestator

Figure 6.3: Cryptographic libraries support

Taking into consideration only the top ten used operating systems, 8 out of 10 use the ELF file
format as the executable standard. Custom operating systems might use it as well. This means
that potentially only 1 out of 10 top operating systems do not use the ELF file format (Microsoft
Windows). This data is shown in Table 6.2.

Considering the broad usage of this file format, any attestation solution for embedded systems
should be focused on it. This is also the reason behind the study in Chapter 3. It is important to
note that, even if the executable format is the same, the portability is not guaranteed. Different
operating systems might offer diverse APIs for low-level logic, like threads and network function-
alities. Linux OSes like Debian or Ubuntu should provide the same system calls. This makes
adapting the attestator source to these systems more straightforward.

6.4 Conclusions

In this chapter, the attestator portability was discussed. Based on the consideration in Section 6.1,
the hardware requisites should not be a problem, except for particularly low-end devices.

The more significant obstacle regards the software requirements. Section 6.2 shows the extent
to which it might be possible to adapt the attestator’s cryptographic functionality. Even if
the study considers outdated information it is possible to conclude that most operating systems
support at least one library with cryptographic APIs. What this analysis does not show is
the required effort to adapt the attestator. The more similar the system calls offered by the
system are to Linux-like environment, the simpler it should be to readjust it. This also holds for
network functionalities. This part was ignored during the study, but its implementation should
be considered in the portability.

Ideally, the used OSes should be selected based upon the portability issue, but that is not
always possible. Interesting to note, the software running on the device might also have this
problem. Selecting the platform based on the portability of the software will result in an advantage
in the portability of the attestator itself.

59

An analysis on the portability of the attestator

Operating system WolfSSL Mbed TLS OpenSSL
FreeRTOS X X

Embedded Linux X X
In-house/custom ? ? ?

Android X X X
Debian (Linux) X

Ubuntu X X X
Micrium (uC/OS-III) X

Texas Instruments RTOS X
Micrium (uC/OS-II)

Microsoft Windows Embedded 7/Standard X X
Express Logic (ThreadX) X X

Keil (RTX) X X
Texas Instruments (DSP/BIOS)

Freescale MQX X
Wind River (Linux) X

Microsoft (Windows 7 Compact or earlier) ? ?
Wind River (VxWorks) X X

Red Hat (IX Lunix)
AnalogDevices (VDK) ? ?

Green Hills (INTEGRITY) X
QNX (QNX) X

Segger (embOS) X X
Mentor Graphics Linux ?

Wittenstein HIS(OpenRTOS/SAFERTOS X
Angstrom (Linux) ? ? X

Overall 15 9 4

Table 6.1: Cryptographic library support for embedded operating systems

Operating system ELF as standard for executable
FreeRTOS X

Embedded Linux X
In-house/custom ?

Android X
Debian (Linux) X

Ubuntu X
Micrium (uC/OS-III) X

Texas Instruments RTOS X
Micrium (uC/OS-II) X

Microsoft Windows Embedded 7/Standard

Table 6.2: ELF file format support for the top 10 embedded operating systems

If the supported executable format is not of ELF type, it is reasonable to think that also the
supported system calls will be different from a standard Linux environment. The script developed
in Chapter 4 is also targeted to the ELF format. This means adapting the attestator for not-ELF
executables file format will require a lot more effort.

By intersecting the data about the cryptographic libraries’ support and the executable file
format, it is possible to extract some information.

If the operating systems not supporting ELF executable are excluded from the potential porta-
bility, about 8 out of the top 10 operating systems use that format. Out of these 8:

❼ 6 of them support WolfSSL;

60

An analysis on the portability of the attestator

❼ 4 support Mbed TLS;

❼ 3 support OpenSSL.

Overall, only 1 out of 8 does not support any cryptographic library. So, out of the top 10
operating systems, 7 of them offer both cryptographic support and use ELF as the standard
executable format. The attestator should be reasonably portable to those systems.

It is also possible to extract some percentages, but the data is outdated and it might not be
reliable.

61

Chapter 7

Conclusions

This chapter describes the conclusions of the analysis that has been made in this thesis. As
described in Chapter 1, this analysis was aimed at answering two questions.

The first one regards the ASPIRE attestator’s portability problems. Chapter 4 shows creating
a standalone version of the attestator is possible. Separating the attestator from the entire
ASPIRE project resolves some critical dependencies, such as Diablo1. Some dependencies, such
as the OpenSSL2 library, are not solved in that build. Chapter 6 proposes some alternatives to the
significant requisites the attestator has. In general, relaxing most of the attestator’s requirements
is achievable by replacing its major dependencies.

The second point regards to what extend the attestator is portable, with a particular focus
on embedded platforms. Chapter 6 analyzes this issue and shows the potential portability is
extensive. As explained in Section 6.4, Chapter 6, out of the top ten operating systems, 7 of them
offer the needed functionalities. This means the attestator’s requirements are solvable for most of
the environments and the attestator should be extensively portable.

Two problems were not considered during this analysis. Ignoring them might lead to the
wrong conclusion.

The first one is the network functionality. It was mentioned multiple times during this thesis
but it was never addressed. Remote attestation is by definition a remote procedure. Without
network communication, verification by a trusted server cannot occur. Communication is a critical
part of the attestator’s security scheme. Even if the attestation procedure is protected from
tampering, the network element might become the weak spot. If the communication is done in
plaintext, an attacker can intercept and alter the communication to always result in a positive
verification. For this reason, the connection side of the attestator must be secured as well. It is
important to note that this might also restrict some requirements and it might limit the portability
to some systems.

Also, a security flaw in the communication component of the attestator has to be considered.
The attestation procedure is completely separate from the functionality of the software it is
protecting. An attacker will be able to distinguish between the traffic sent by the device for
its normal functionality and the one related to the attestator’s procedure. There is no trivial
solution to this problem. An option is to merge the attestator’s communication with the one of
the protected software. The problem with this solution is its implementation. Mixing the two
parts has the downside of strictly coupling the attestator and the protected software’s code. This
holds both for the client and the server endpoint. If the attestator has to be strictly incorporate
inside the device’s code, inserting it as protection will require more effort and modifications of the
protected software. It will not be possible to have a separate component easily configurable and
deployable, like the one offered by the ASPIRE framework. It is also necessary to consider the fact

1https://diablo.elis.ugent.be

2https://www.openssl.org

62

https://diablo.elis.ugent.be
https://www.openssl.org

Conclusions

that the server component of the application will have to be combined with the attestator as well.
Ideally a component server-side will be in charge of identifying application and attestation portions
of traffic. Once the two are separated, it will deliver them to the correct service. This component,
which is basically a reverse-proxy, is not trivial to develop, but would partially separate the
security mechanism and the application logic on the server endpoint. On the client side doing this
de-coupling might be more complicated. The difficulty in implementing integrated communication
is the main reason why that component is kept separated in the ASPIRE project.

The other problem which was not addressed is the complete obfuscation of the attestator
component. Chapter 5 shows some potential tools for obfuscating the software. Tigress is probably
the best option, as it offers more functionalities and it has more configuration capabilities. It is
possible to obfuscate most of the attestator’s code by using this tool. The problem regards the
blob used by the attestator to retrieve information about the protected memory areas.It is not
possible to obfuscate the blob itself with standard Tigress techniques. Only the variables holding
the information extracted from the blob can be protected with the encoded data and arithmetic
methods mentioned in Section 5.3 Chapter 5.

The blob itself cannot be obfuscated for two reasons.

❼ The blob is inserted after the executable is compiled, while Tigress works at the source-code
level.

❼ The blob is declared as a single chunk of memory. Only the attestator’s code can extract the
information contained in it. The Tigress tool does not know how to encode the information
contained in the blob, since only the attestator knows the meaning of it.

This might lead to a serious security issue. If an attacker can figure out the meaning of the
information inside the blob, a memory-copy attack to the attestator becomes trivial. The attacker
can create a valid copy of the protected code somewhere in memory. By modifying the blob, it
is possible to redirect the attestator to that area. At this point, the attacker can modify the
real code without occurring in detection. There are two potential fixes to this problem. The
first one is implementing some variety of obfuscation mechanism inside the attestator itself. The
patching script should be modified to insert the properly obfuscated information inside the blob.
The information present in the blob will then be de-obfuscated during the extraction. The other
solution is to declare the blob data directly inside the source code. Tigress will then obfuscate
this data with its mechanisms. As explained in Section 4.1 Chapter 4, this solution was discarded
for anti-reverse reasons, but it might be valuable if the blob is obfuscated. In general, the solution
to this problem should not affect the attestator’s portability in any way.

Overall, considering these two issues, the portability of the attestator itself should not be
affected critically. The attestator still has some security problems, but it is important to note
that such security method cannot be unbreakable. Since the software running on a third-party
device can always be altered, particularly without using dedicated hardware, tampering attacks
are always possible.

63

Appendix A

User manual

This chapter contains the user manual of the software developed during this thesis. It outlines
the configuration and the usage of the script that can be utilized to patch the protected binary.

It is important to note that this version of the attestator is a proof of concept. The protection
mechanism is incomplete without a check performed server-side. Since the communication part
is not included in this version, this attestator is usable for nothing but tests.

A.1 Requirements

Operating Systems

The attestator can be tested on a Linux-like system with x86-64 bits platform. It was tested on
the following operating systems:

❼ Ubuntu server 18.04.3 LTS Bionic Beaver with gcc version 7.4.0;

❼ Kali GNU/Linux Rolling 2019.1 with gcc version 8.3.0.

In general, the build should work on any Linux-like platform with 64 bits Intel architecture.

Other dependencies

There are also some mandatory dependencies:

❼ OpenSSL library versions 1.1.1 or 1.1.1b;

❼ ruby version 2.5.5p157.

Some ruby gems are required for the patching script to execute. Those are the following:

❼ metasm;

❼ elftools;

❼ optparse;

❼ json.

GCC and OpenSSL are required to successfully compile the POC of the attestator. Ruby and
its libraries are used by the patching the script.

64

User manual

A.2 Creation Process

Compiling the binary

There are two phases in creating a binary with a functional test attestator, as outlined in Sec-
tion 4.1.

The first step is compiling a binary by merging the project source code and the attestator
source code. GCC was used to compile the code. It is important to avoid the use of -s flag
when compiling with GCC. The patching script requires relocation information to execute. If the
binary is stripped, this information is unavailable and the script will fail.

To compile the project with GCC:

✩ gcc ✩source_directory/*.c -o ✩test_filename -lpthread -lcrypto -DDEBUG

-DDEBUG_ADS_PARSE -DHARD_DEBUG

✩source_directory is the directory containing all the C source code files and ✩test_filename

is the output filename.

The above command compiles the program with ASLR enabled. Two more flags are needed
to test it without layout randomization: -no-pie and -fno-pie.

Configuring the attestator

The next step is the configuration. An example configuration can be found in the config.json file
(see Listing A.1). Table A.1 shows the usage of each configuration file’s field. In general, only the
protect field should be modified. The other parameters require modifications in the source code
of the attestator itself.

{

"attestator_number" : 255,

"aid_size" : 16,

"blob_structure_name" : "ra_data_structure_blob",

"protect": [

"main"

],

"base_sym" : "text_seg_offset"

}

Figure A.1: Example configuration file.

Patching the binary

Once the configuration file is filled, it is possible to run the patching script. The script can be
executed with the commands shown in Listing A.2 The first command ensures the patching script
has executable privileges. To list how to use the script, just run it without any arguments, as
shown at line 2. The script requires two parameters:

❼ -e or --elf parameter specifies the target elf file to patch.

❼ -c or --config-file parameter specifies the configuration file name.

Line 6 of Listing A.2 shows an example of how to run it on an executable file. If there is an error
in the configuration file or the binary does not contain the required information, the script will
output an error to the console. A list of common errors is explained in Table A.2.

65

User manual

Field Description

attestator number
The attestator identifier. It might be possible to have multiple
attestators in future versions.

aid size The attestator id size in bytes. Default should be 16 bytes.

blob structure name
The name of the blob structure inside the executable. Change this
parameter only to match the one in the source code files. The name
has to be enclosed in double quotes.

protect
This field contains the list of functions the attestator has to protect.
Functions should be specified by name, enclosed in double quotes and
separated by comma.

base sym
This field contains the name of the text segment offset. It should be
changed only to match the one declared in the source code files. The
name has to be enclosed in double quotes.

Table A.1: Configuration file fields’ description

1 ✩ chmod +x patch_ra_data_blob.rb

2 ✩ ./patch_ra_data_blob.rb

3 Usage: patch_ra_data_blob [options]

4 -e, --elf ELF_FILE The elf file to patch

5 -c, --config-file CONFIG_FILE The json configuration file

6 ✩ ./patch_ra_data_blob.rb -e ✩test_filename -c config.json

7 Reading the config file...

8 Check if the binary is of type ET_EXEC or ET_DYN...

9 Check Address Space Layout Randomization...

10 ASLR => true

11 Check if the binary has a symtab...

12 Symbol table found

13 Searching for text_seg_offset...

14 Searching for ra_data_structure_blob...

15 Base symbol found at offset 0x91c0

16 Blob found at offset 0x9180

17 Searching for symbol main...

18 Symbol main found: {:memory_offset=>3974, :size=>43}

19 Patching the base symbol...

20 Aslr is enabled => Searching for the relocation entry...

21 Patching the blob...

22 Blob patched correctly!

Figure A.2: Example running the patching script

Running the test executable

Once the script successfully patched the binary, it is possible to test it by running the executable
itself, as shown in the test (Section 4.2).

✩ ./a.out

[...]

The output will show the attestation procedure and the computed hash for the hardcoded
nonce. The attestator.c file has to be modified to test the attestator with a different nonce. The
default nonce is set as the following. Both the value and the size of the nonce can be modified.

uint8_t nonce[8] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8};

66

User manual

Error Description

Unable to parse the config file
The script was unable to parse the
configuration file.

aid size field not set
The aid size field is not correctly set in the
configuration file.

blob structure name field not set
The blob structure name field is not
correctly set in the configuration file.

protect field not set
The protect field is not correctly set in the
configuration file.

protect field empty
The protect field is empty in the
configuration file.

attestator number not set
The attestator number field is not correctly
set in the configuration file.

Function names must be of type String
The protect field is not declared as an array
of strings. Each string should be declared
within double quotes.

Duplicate function names There are duplicates in the protect field list.

base sym field not set
The base sym field is not correctly set in the
configuration file.

There are too many memory areas to fit in 2
bytes

The maximum number of protected
functions has been reached.

File is not of type ET EXEC or ET DYN
The file specified in the --elf parameter is
not an executable.

Looks like the binary is stripped!
The file specified in the --elf parameter
appears to be stripped. The script does not
work on stripped executables.

Cannot find the symbol for the base address

The script could not find the base address’
symbol in the executable. The base sym field
should be set accordingly to the project
source code.

Cannot find the symbol for the blob data
structure

The script could not find the blob structure’s
symbol in the executable. The
blob structure name field should be set
accordingly to the project source code.

Cannot find the segment where the blob and
the base symbol are

The script was unable to locate the segment
containing the blob and the base address
symbols.

Cannot find the symbol for the [function-
name] function

The script was unable to locate the symbol
for the [function-name] function. That
function might not exist.

Cannot find the relocation entry
The script was unable to find the relocation
entry in the executable.

Error patching the target file!
There was an error during the patching of
the executable. The user’s permission might
be insufficient.

Table A.2: Errors description

67

Appendix B

Developer manual

TODO This chapter will contain the developer manual for the extracted attestator developed in
Chapter 4.

68

Appendix C

Examples

✩ file hello_world

hello_world: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically

linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,

BuildID[sha1]=adde3daa1937aa688874049761d709961b005a1a, not stripped

✩ readelf -h hello_world

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2’s complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x401040

Start of program headers: 64 (bytes into file)

Start of section headers: 14560 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 11

Size of section headers: 64 (bytes)

Number of section headers: 29

Section header string table index: 28

Figure C.1: Example of reading an ELF header using the readelf tool.

69

Examples

✩ readelf -l hello_world

Elf file type is EXEC (Executable file)

Entry point 0x401040

There are 11 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align

PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

0x0000000000000268 0x0000000000000268 R 0x8

INTERP 0x00000000000002a8 0x00000000004002a8 0x00000000004002a8

0x000000000000001c 0x000000000000001c R 0x1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

0x0000000000000438 0x0000000000000438 R 0x1000

LOAD 0x0000000000001000 0x0000000000401000 0x0000000000401000

0x00000000000001ad 0x00000000000001ad R E 0x1000

LOAD 0x0000000000002000 0x0000000000402000 0x0000000000402000

0x0000000000000150 0x0000000000000150 R 0x1000

LOAD 0x0000000000002e10 0x0000000000403e10 0x0000000000403e10

0x0000000000000220 0x0000000000000228 RW 0x1000

DYNAMIC 0x0000000000002e20 0x0000000000403e20 0x0000000000403e20

0x00000000000001d0 0x00000000000001d0 RW 0x8

NOTE 0x00000000000002c4 0x00000000004002c4 0x00000000004002c4

0x0000000000000044 0x0000000000000044 R 0x4

GNU_EH_FRAME 0x0000000000002014 0x0000000000402014 0x0000000000402014

0x000000000000003c 0x000000000000003c R 0x4

GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000000 RW 0x10

GNU_RELRO 0x0000000000002e10 0x0000000000403e10 0x0000000000403e10

0x00000000000001f0 0x00000000000001f0 R 0x1

[...]

Figure C.2: Example of reading ELF segments using the readelf tool.

70

Examples

There are 29 section headers, starting at offset 0x38e0:

Section Headers:

[Nr] Name Type Address Off Size ES Flg Lk Inf Al

[0] NULL 0000000000000000 000000 000000 00 0 0 0

[1] .interp PROGBITS 00000000004002a8 0002a8 00001c 00 A 0 0 1

[2] .note.ABI-tag NOTE 00000000004002c4 0002c4 000020 00 A 0 0 4

[3] .note.gnu.build-id NOTE 00000000004002e4 0002e4 000024 00 A 0 0 4

[4] .gnu.hash GNU_HASH 0000000000400308 000308 00001c 00 A 5 0 8

[5] .dynsym DYNSYM 0000000000400328 000328 000060 18 A 6 1 8

[6] .dynstr STRTAB 0000000000400388 000388 00003d 00 A 0 0 1

[7] .gnu.version VERSYM 00000000004003c6 0003c6 000008 02 A 5 0 2

[8] .gnu.version_r VERNEED 00000000004003d0 0003d0 000020 00 A 6 1 8

[9] .rela.dyn RELA 00000000004003f0 0003f0 000030 18 A 5 0 8

[10] .rela.plt RELA 0000000000400420 000420 000018 18 AI 5 22 8

[11] .init PROGBITS 0000000000401000 001000 000017 00 AX 0 0 4

[12] .plt PROGBITS 0000000000401020 001020 000020 10 AX 0 0 16

[13] .text PROGBITS 0000000000401040 001040 000161 00 AX 0 0 16

[14] .fini PROGBITS 00000000004011a4 0011a4 000009 00 AX 0 0 4

[15] .rodata PROGBITS 0000000000402000 002000 000011 00 A 0 0 4

[16] .eh_frame_hdr PROGBITS 0000000000402014 002014 00003c 00 A 0 0 4

[17] .eh_frame PROGBITS 0000000000402050 002050 000100 00 A 0 0 8

[18] .init_array INIT_ARRAY 0000000000403e10 002e10 000008 08 WA 0 0 8

[19] .fini_array FINI_ARRAY 0000000000403e18 002e18 000008 08 WA 0 0 8

[20] .dynamic DYNAMIC 0000000000403e20 002e20 0001d0 10 WA 6 0 8

[21] .got PROGBITS 0000000000403ff0 002ff0 000010 08 WA 0 0 8

[22] .got.plt PROGBITS 0000000000404000 003000 000020 08 WA 0 0 8

[23] .data PROGBITS 0000000000404020 003020 000010 00 WA 0 0 8

[24] .bss NOBITS 0000000000404030 003030 000008 00 WA 0 0 1

[25] .comment PROGBITS 0000000000000000 003030 00001c 01 MS 0 0 1

[26] .symtab SYMTAB 0000000000000000 003050 0005b8 18 27 43 8

[27] .strtab STRTAB 0000000000000000 003608 0001cf 00 0 0 1

[28] .shstrtab STRTAB 0000000000000000 0037d7 000103 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), I (info),

L (link order), O (extra OS processing required), G (group), T (TLS),

C (compressed), x (unknown), o (OS specific), E (exclude),

l (large), p (processor specific)

Figure C.3: Example of reading ELF sections using the readelf tool.

71

Examples

✩ readelf -l hello_world --wide

[...]

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr

.gnu.version .gnu.version_r .rela.dyn .rela.plt

03 .init .plt .text .fini

04 .rodata .eh_frame_hdr .eh_frame

05 .init_array .fini_array .dynamic .got .got.plt .data .bss

06 .dynamic

07 .note.ABI-tag .note.gnu.build-id

08 .eh_frame_hdr

09

10 .init_array .fini_array .dynamic .got

Figure C.4: Example of ELF sections-segments overlapping using the readelf tool.

72

Examples

int f1() {

int a = 0;

int b = 3;

a += 4 * 4 * b;

a -= b / 3;

return a;

}

int main() {

f1();

return 0;

}

The above code is transformed as the following:

int main(int _formal_argc , char **_formal_argv , char **_formal_envp)

{

[...]

f1();

}

void _1_f1_f1_split_2(int *a , int *b)

{

*a -= *b / 3;

}

void _1_f1_f1_split_1(int *a , int *b)

{

*a = 0;

*b = 3;

*a += 16 * *b;

}

int f1(void)

{

int a ;

int b ;

_1_f1_f1_split_1(& a, & b);

_1_f1_f1_split_2(& a, & b);

return (a);

}

Figure C.5: Example of the Tigress function splitting functionality.

73

Bibliography

[1] Trusted Computing Group, “Trusted Computing Group Homepage.” https:

//trustedcomputinggroup.org/, Accessed: 2019-07-13
[2] Aspire-fp7 Project, “The central ASPIRE framework repository.” https://github.com/

aspire-fp7/framework, Accessed: 2019-08-17
[3] Aspire-fp7 Project, “ASPIRE Reference Architecture v2.1.” https://aspire-fp7.

eu/sites/default/files/D1.04-ASPIRE-Reference-Architecture-v2.1.pdf, Accessed:
2019-08-17

[4] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “SWATT: SoftWare-based ATTestation
for embedded devices”, May 2004, pp. 272–282, DOI 10.1109/SECPRI.2004.1301329

[5] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente, “On the Difficulty of Software-
based Attestation of Embedded Devices”, 2009, pp. 400–409, DOI 10.1145/1653662.1653711

[6] L. van Doorn, “Refutation of “On the Difficulty of Software-Based Attestation of Embedded
Devices” Adrian Perrig CyLab / CMU”, 2010

[7] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla, “Pioneer: verifying
code integrity and enforcing untampered code execution on legacy systems”, ACM SIGOPS
Operating Systems Review, vol. 39, 2005 2005, pp. 1 – 16

[8] G. Grimen, C. Mönch, and R. Midtstraum, “Tamper Protection of Online Clients through
Random Checksum Algorithms.”, 01 2006, pp. 67–79

[9] Y. Li, J. M. McCune, and A. Perrig, “SBAP: Software-Based Attestation for Peripherals”,
vol. 6101, 07 2010, pp. 16–29, DOI 10.1007/978-3-642-13869-0 2

[10] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “SCUBA: Secure Code Update
by Attestation in sensor networks”, WiSE 2006 - Proceedings of the 5th ACM Workshop on
Wireless Security, vol. 2006, 01 2006, pp. 85–94, DOI 10.1145/1161289.1161306

[11] A. Seshadri, M. Luk, and A. Perrig, “SAKE: Software Attestation for Key Establishment in
Sensor Networks”, Ad Hoc Networks, vol. 9, 06 2008, pp. 372–385, DOI 10.1007/978-3-540-
69170-9 25

[12] A. Al-Wosabi and Z. Shukur, “Software tampering detection in embedded systems - a system-
atic literature review”, Journal of Theoretical and Applied Information Technology, vol. 76,
no. 2, 2015, pp. 211–221

[13] G. Coker, J. Guttman, P. Loscocco, A. L. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell,
A. Segall, J. Sheehy, and B. T. Sniffen, “Principles of remote attestation”, Int. J. Inf. Sec.,
vol. 10, 06 2011, pp. 63–81, DOI 10.1007/s10207-011-0124-7

[14] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A Large-Scale Analysis of the
Security of Embedded Firmwares”, 08 2014

[15] K.-H. Baek, S. Bratus, S. Sinclair, and S. Smith, “Attacking and Defending Networked
Embedded Devices”, 01 2007

[16] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim, “Remote Software-Based Attestation for
Wireless Sensors”, 07 2005, pp. 27–41, DOI 10.1007/11601494 3

[17] A. Viticchié, C. Basile, A. Avancini, M. Ceccato, B. Abrath, and B. Coppens, “Reactive At-
testation: Automatic Detection and Reaction to Software Tampering Attacks”, 2016, pp. 73–
84, DOI 10.1145/2995306.2995315

[18] Tool Interface Standard (TIS), “Executable and Linkable Format (ELF).” http://www.

skyfree.org/linux/references/ELF_Format.pdf, Accessed: 2019-07-12
[19] R. E. O’Neill, “Learning linux binary analysis”, Packt Publishing, 2016, ISBN: 1782167102,

9781782167105

74

https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/
https://github.com/aspire-fp7/framework
https://github.com/aspire-fp7/framework
https://aspire-fp7.eu/sites/default/files/D1.04-ASPIRE-Reference-Architecture-v2.1.pdf
https://aspire-fp7.eu/sites/default/files/D1.04-ASPIRE-Reference-Architecture-v2.1.pdf
https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.1007/978-3-642-13869-0_2
https://doi.org/10.1145/1161289.1161306
https://doi.org/10.1007/978-3-540-69170-9_25
https://doi.org/10.1007/978-3-540-69170-9_25
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1007/11601494_3
https://doi.org/10.1145/2995306.2995315
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf

Bibliography

[20] Ian Wienand, “PLT and GOT: the key to code shar-
ing and dynamic libraries.” https://www.technovelty.org/linux/

plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html, 2014, Ac-
cessed: 2019-08-14

[21] Radare2 Team, “Radare2 github repository.” https://github.com/radare/radare2, 2017
[22] R. Team, “Radare2 book.” https://radare.gitbooks.io/radare2book/content/, 2017
[23] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng,

C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis”, 2016

[24] Metasm, “A cross-architecture assembler, disassembler, compiler, linker and debugger.”
https://www.cr0.org/progs/metasm/, Accessed: 2019-08-17

[25] The LLVM Compiler Infrastructure, “LLVM Project Homepage.” https://llvm.org/, Ac-
cessed: 2019-08-20

[26] T. László and k. Kiss, “Obfuscating C++ programs via control flow flattening”, Annales
Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Computa-
torica, vol. 30, 08 2009, pp. 3–19

[27] The Tigress C Diversifier/Obfuscator, “Tigress, a diversifying virtualizer/obfuscator for the
C language.” http://tigress.cs.arizona.edu/index.html, Accessed: 2019-08-20

[28] M.-L. P. Jonathan Salwan, Sébastien Bardin, “Symbolic Deobfuscation: From Virtualized
Code Back to the Original”, 06 2018, pp. 372–392, DOI 10.1007/978-3-319-93411-2 17

[29] S. Andrivet, “C++11 metaprogramming applied to software obfuscation”, 2014
[30] AspenCore Media Group, “Embedded Market Study 2017.” https://m.eet.com/media/

1246048/2017-embedded-market-study.pdfl, 2017, Accessed: 2019-08-23

75

https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://github.com/radare/radare2
https://radare.gitbooks.io/radare2book/content/
 https://www.cr0.org/progs/metasm/
https://llvm.org/
http://tigress.cs.arizona.edu/index.html
https://doi.org/10.1007/978-3-319-93411-2_17
https://m.eet.com/media/1246048/2017-embedded-market-study.pdfl
https://m.eet.com/media/1246048/2017-embedded-market-study.pdfl

	List of Tables
	List of Figures
	Introduction
	Thesis organization

	Background
	The ASPIRE remote attestator
	Attestator requirements
	Related work on software attestation
	Open issues

	ELF file specification and tools of the trade
	The ELF file format
	Dynamic linking
	Address space layout randomization
	Tools of the trade

	Attestator custom build
	Design and architecture
	Testing
	Conclusions

	Obfuscation
	Obfuscation purposes and tecniques
	Obfuscator-LLVM
	Tigress
	ADVobfuscator

	An analysis on the portability of the attestator
	Extend the portability
	Embedded OSes cryptographic support
	Executable file format
	Conclusions

	Conclusions
	User manual
	Requirements
	Creation Process

	Developer manual
	Examples
	Bibliography

