
On the applicability of software attestation

techniques to embedded systems.

Politecnico di Torino
2019

December
Master’s degree in Computer Engineering

Candidate: Marco Zudettich
Supervisors: Prof. Cataldo Basile, Prof. Antonio Lioy, Alessio Viticchiè

Software has been developed around any aspect of technology in the last few
years. It has become a core part of every device, not only for personal use but
also in industrial and automotive environments. A direct raise in security issues
has come with its spread, particularly for programs executing in third-party
contexts. A company’s income might rely on software operating on devices it
does not own (take smartphones for example). If physical control is not an
option, controlling the device integrity might not be feasible. An attacker can
open the device, attach a debugger and potentially tamper its software. In this
case, the only possible defense is to detect these attacks and take the proper
countermeasures.

Software attestation is a technique which tries to solve this problem by moni-
toring the integrity of a program remotely. There are multiple methods to check
software integrity. One option is to have hardware dedicated to this function.
This solution, proposed by the Trusted Computing Group (TPM)1, relies on
special secure hardware dedicated to cryptographic operations and key storage.
Since additional components imply a higher cost and integration with the soft-
ware, this method was excluded from this analysis. The other option is to use
fully-software solutions. These solutions are less protected against tampering
but they do not require additional hardware. A valid example of software-only
attestation procedure is the ASPIRE2 project’s remote attestator. ASPIRE of-
fers a complete framework for binary protection. It includes obfuscation and
anti-tampering techniques. It is possible to create a completely functional and
protected binary starting from the source code. The project contains a module
that performs an integrity check over some areas of memory chosen by the user.
There are two components required to execute this attestation technique: the
client and the server. The client’s portion of the attestator is responsible for
performing a checksum over the protected memory areas. The only areas which
can be protected are the ones remaining constant. Typically only part of the

1https://trustedcomputinggroup.org/
2https://github.com/aspire-fp7/framework

https://trustedcomputinggroup.org/
https://github.com/aspire-fp7/framework


code present in the text segment is checked. The server side is responsible for
controlling the validity of the checksum computed by the client. In this schema,
only the server component can reside in a trusted environment, while clients are
assumed to be vulnerable to tampering.

This attestator has some problems in terms of portability. One reason is
the extensiveness of the ASPIRE framework. The project offers lots of different
protection techniques, but every protection comes with a cost in performance.
This is a problem especially for IoT devices, where computational resources are
limited. The other reason can be found in the dependencies the attestator has,
in particular, the use of the Diablo toolchain3 and the OpenSSL4 library.

This paper elaborates on two questions, both related to the feasibility of
using fully-software attestation techniques in less powerful platforms, such as
embedded systems. The first regards the possibility of solving the ASPIRE
remote attestator’s portability problems. A standalone test version of the re-
mote attestator was extracted from the project. This detachment isolates the
attestator from the whole framework and it also removes the Diablo toolchain’s
dependency. Thus, the portability increases. This extraction is not a trivial
task. The Diablo toolchain is responsible for some binary modifications ap-
plied after the linking process. Emulating the same procedure requires a good
understanding of the ELF file format’s inner structures. A custom script was
created to replace this functionality. The second point is an analysis of the
extent to which this attestation procedure can be ported to different platforms.
The attestator’s requirements were discussed and analyzed during this work.
In particular, some libraries to substitute OpenSSL were examined. WolfSSL5

and Mbed TLS6 were analyzed as two possible replacements. The results sug-
gest that the support for these two libraries is extensive. About 25 embedded
operating systems were investigated. Out of the top ten, eight of them po-
tentially support at least one of these libraries. By adapting the attestator to
them, porting it to most of the embedded operating systems on the market is
attainable.

There is one last factor that needs to be considered. The attestator alone
does not grant effectual protection of the binary. If there is no obfuscation, re-
versing its functionality and bypassing its checks might become a trivial process.
The Diablo toolchain was in charge of obfuscating the binary. By removing it,
the program is left unprotected. Some obfuscation mechanisms and tools were
analyzed during this work to overcome this issue. Tigress7 is reasonably one of
the best instruments available in this regard.

In conclusion, it is important to remind the intrinsic vulnerability in systems
not protected from physical tampering. Tampering can be made extremely dif-
ficult by using complicated techniques, such as the one analyzed during this
thesis, but, given enough time and resources, any protection mechanism is by-
passable. In general, this study shows the attestation procedure is portable to
most of the embedded systems. This factor contributes to make it a remarkably
valuable technique. If used correctly, it can cooperate with additional layers of
protection to deter an attacker long enough to make him give up.

3https://diablo.elis.ugent.be/
4https://www.openssl.org
5https://www.wolfssl.com/
6https://tls.mbed.org/
7http://tigress.cs.arizona.edu/

https://diablo.elis.ugent.be/
https://www.openssl.org
https://www.wolfssl.com/
https://tls.mbed.org/
http://tigress.cs.arizona.edu/

