polito.it
Politecnico di Torino (logo)

Maximum likelihood based clustering via parallel computing

Alessandro Barilli

Maximum likelihood based clustering via parallel computing.

Rel. Mauro Gasparini, Anna Paganoni. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Matematica, 2019

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (990kB) | Preview
Abstract:

The following pages contain a review of some recent and ongoing work on model-based clustering, in particular hard and soft assignment. It is analysed up to which point, with modern tools of optimization and parallel computing, it is possible to use basic methods such as maximum likelihood and hard assignment towards automatic identification of the classes and of the class labels of the sampled subjects. The standard soft classification approach using the EM (expectation maximization) algorithm will be compared to the hard assignment approach using maximum likelihood. The latter's limits will be analysed at a computational level, under and without the presence of hypotheses of local independence. Limits and applications of such algorithms to real datasets will be shown.

Relatori: Mauro Gasparini, Anna Paganoni
Anno accademico: 2019/20
Tipo di pubblicazione: Elettronica
Numero di pagine: 105
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Matematica
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA
Ente in cotutela: Aalto University (FINLANDIA)
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/12728
Modifica (riservato agli operatori) Modifica (riservato agli operatori)