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Abstract 
 

 The thesis aims at studying the rendez-vous and docking operations between two 6U Cubesats, 
Missions of RVD between cubesats are expected in the next future, enabling these small satellites 
for a large set of missions both in Earth Orbit and for interplanetary explorations. The challenge 
of these missions stays in the accurate knowledge of the attitude and relative position of the 
spacecraft and the accuracy of the manoeuvres control, taking into account safety margins. 

In particular, the thesis deals with an innovative control system of the rotational and linear motion 
of the chaser spacecraft, based on the Artificial Neural Network (ANN).These networks act like 
the human neurons and learn how to reacts to specific inputs thanks to a process of learning. In 
this case, this training session has been conducted with a Linear Quadratic Regulator (LQR) 
controller. This solution confers versatility to the control and the capability to adapt the control, 
strategy to sudden disturbances, uncertainties and misbehaviours. 

 The first part of dissertation describes the objective and the high level requirements of the 
proximity operations mission and the constrains towards the subsystems. Then, the spacecraft 
GNC and ADCS architecture are presented with focus on their components. The second part of 
the first chapter deals with the design of the controllers, reporting the theoretical aspects related 
to the control techniques traditionally adopted, with great interest posed on Linear Quadratic 
Regulator (LQR) and the proposed innovative solution based on the Artificial Neural Network 
(ANN).  

In the second part of this thesis, the controller is then designed thank to the development of a 
mathematical models in Matlab/Simulink environment that represents the models: in particular, 
the relative dynamics of the satellites and their attitude are described, by adding all the forces and 
torques applied to the satellites and then the controllers are added . The last chapter presents the 
simulations results, conducted before with LQR controller and then with the controlled based on 
neural network. 

 Finally, the results in both the configurations are compared highlighting the cases for which these 
two control techniques can be an efficient to manoeuvre a satellite involved in a Rendez-Vous 
and Docking (RVD) manoeuvre. 
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1. Introduction 
 

  As the title of this dissertation may suggests, the objective is to design a control system whom 
is able to perform a successful operation of autonomous rendez-vous and docking between two 
small satellites. This type of mission is becoming increasingly used to complete various tasks like 
removal of space debris, on-orbit servicing and spatial repairing. 

  When it comes to rendez-vous and docking (RVD) missions, it means a procedure where one 
object named the chaser, usually a satellite, comes more closer to another one of its kind until, 
through some certain type of manoeuvre, they attached together and became a single body (fig.1). 
In this paper, it is studied a RVD mission between two 12U satellites, or rather a 120 x 120 x 120-
cm cubes. Every moves that the chaser (or the target) makes comes from one specific system: the 
Attitude Determination and Control System (ADCS). The objective of this system is to determine 
the attitude through the use of on-board sensors (gyroscopes, magnetometers, sun/earth sensors), 
while the control of the attitude is performed using actuators (reaction wheels, thrusters and 
magnetorquers) combined with a non-linear control system in order to steady the satellite along 
the three axis. 

   

 

1.1 Mission description 

 

  The mission took in exam in this dissertation will consider the Target a cooperative target, i.e. 
that its attitude and position are known and it stands still in space. The starting manoeuvre is the 

Figure 1: Rendez-vous and docking phases. 



deployment one: the two CubeSats are attached to the ISS and with this operation can set them 
free. After that, there is the separation between the Chaser and the Target: the first one moves 
away until it reaches a distance of 10 km. The third and the last phase is the approach one: the 
Chaser moves towards the Target and come to a relative distance of about 2 km on one of the 
main axis of LVLH frame (R-bar, V-bar or H-bar). The study starts during this last phase of the 
mission, the RVD one: this implies that the distance s0 between the Chaser and the Target is 
approximately around 200 m or below. With the aim of simplify the mathematical equation, the 
orbit will be considered circular and the proximity operations will be performed on an orbit close 
to the one of the ISS. In this case, the orbit has a radius of 400 km and an inclination of 51.64 
degrees. Nevertheless, the developed model can work both for any LEOs and without involving 
the ISS. 

 

1.2 Attitude and orbit control system 
 In order to control the movement and the position of the spacecraft during the developing of the 
mission, there are two subsystems in charge: the Attitude Determination and Control System 
(ADCS) and the Guidance, Navigation and Control System (GN&C). Their duties, for example, 
can comprehend the alignment of the solar panels toward the Sun or pointing the antenna correctly 
for data transmission.  

1.2.1 GN&C 

 This subsystem has to function to maintain and change both the position and the velocity of a 
spacecraft. This is allowed by exploiting three functions: 

1. Navigation: this function regulates the position and the velocity of the vehicle, so it 
involves the on-board sensors; 

2. Guidance: it is the controller function; 
3. Control: using the actuators, it can change the position and the velocity thanks to 

information coming from navigation and guidance. 

The three function works together: the guidance function compares the actual velocity, provided 
from the sensors of the navigation system, to the desired one. So, it sends command to the 
actuators, which apply a force to the spacecraft. It is necessary to have a brief discussion on the 
actual sensors and actuators used in todays CubeSats. 

 

1.2.1.1 Attitude sensors 
 The sensors listed below are used both for target as chaser satellites in order to acquire attitude 
information. 

 Sun sensor: Sun Sensor on a Chip (SSOC) is a two-axis and low-cost sun sensor for high 
accurate sun-tracking, pointing and attitude determination (Fig.2). The device measures 
the incident angle of a sun ray in two orthogonal axes, providing a high sensitivity based 
on the geometrical dimensions of the design. 



 

Its performances are Tab.1: “Technical specifications of nanoSSOC-D60” 

(https://www.cubesatshop.com/product/nanossoc-d60-digital-sun-sensor/): 

nanoSSOC-D60 

Parameter Value Comments 

Sensor type 2 axes Orthogonal 

Field of view (FOV) ± 60° Angular size of the view 
cone 

Accuracy < 0.5° 3σ error 

Precision < 0.1°  

Supply voltage 3.3 V 5V under request 

Average consumption < 21 mA 
< 23 mA 

Dark 
Light 

Temperature range -30 to + 85 °C  

Weight 6.2 g  
Table 1: Technical specifications of nanoSSOC-D60. 

 
Another useful component is the one fed by the New Space System company. The top of 
the gamma is the NSS CubeSat Sun Sensor (Fig.3). The device produces four analogue 
voltages that are dependant on the incident angle of sunlight in the horizontal and vertical 
directions. Each sensor is supplied with a calibration algorithm that calculates the sun 
vector from these four voltages to an accuracy of +/-0.5 degrees. Its performances are 
listed in Tab.2: “Technical performances of NSS CubeSat Sun Sensor” 

(https://www.cubesatshop.com/product/nss-cubesat-sun-sensor/). 

  

Figure 2: nanoSSOC-D60 digital sun sensor. 

https://www.cubesatshop.com/product/nanossoc-d60-digital-sun-sensor/
https://www.cubesatshop.com/product/nss-cubesat-sun-sensor/


 

NSS CubeSat Sun Sensor. 

 Parameter  Value Comments 

Sensor type 2 axes Orthogonal 

Field of view (FOV)  114°  

Accuracy < 0.5° 3σ error 

Precision < 0.1°  

Supply voltage 5 V  

Average consumption < 10 mA  

Temperature range -25 to + 50 °C  

Weight < 5 g  
Table 2: Technical performances of NSS CubeSat Sun Sensor. 

 

 

 Magnetometer: A magnetometer is a crucial part of a satellite attitude determination and 
control system, both for detumbling and attitude determination. It was picked the NSS 
Magnetometer (Fig.4). The sensor provides x-, y- and z-axes magnetic field component 
measurements, as well as a sensor temperature measurement which is used for the 
temperature compensation of the magnetic field measurement. Ideally mounted outside 
the spacecraft at the end of a rigid boom the NewSpace Systems magnetometer includes 
low noise, precision processing and analogue-to-digital conversion circuitry; all of which 
improves the linearity and reduces the drift sensitivity of the sensor head. The integrated 
processing circuitry and sensor head provide the mission an accurate and stable magnetic 
field measurement at low power consumption. 
 

Figure 3: NSS CubeSat Sun Sensor. 



 

 
Technical specifications are listed in Tab.3: “Performances of NSS Magnetometer” 

(https://www.cubesatshop.com/product/nss-magnetometer/) 

NSS Magnetometer 

Number of axis Three, orthogonal 

Axial alignment < ±1° 

Field measurement range -60000 nT to +60000 nT 

Noise density < 8 nT rms/Hz at 1 Hz 

Resolution < 8 nT 

Update rate < 18 Hz 

Power < 550 mW 

Power supply 5 VDC 

Thermal -25 to +70 °C 

Dimensions 96 mm x 45 mm x 20 mm 

Mass < 65 g 
Table 3: Performances of NSS Magnetometer. 

 
  Alternatively, it can be used the NanoSense M315 Magnetometer, or simply M315, 
designed by GOMspace company (Fig.5). It is a reliable and fast magnetometer, 
perfectly suited for nano-satellites that require high performance from ADCS. Thanks to 
its compact design, it can be mounted everywhere, especially in parts far away from 
magnetic disturbance sources. The M315 is a highly accurate and low noise sensor with 
a very low temperature dependency. However, it is important to note that it can be 

Figure 4: NSS Magnetometer. 

https://www.cubesatshop.com/product/nss-magnetometer/


difficult to achieve the lowest noise due to magnetic noise in near field environment. Its 
performances are listed in Tab.4: “NanoSense M315 Magnetometer” 

(https://satsearch.co/products/gomspace-nano-sense-m315-magnetometer). 

 

M315 

Number of axis Three, orthogonal 

Linearity (at ±200 µT) 0.5 % 

Field measurement range -800 µT to +800 µT 

Noise (1-sigma) 15 nT 

Frequency 100 Hz typical; 400 Hz max 

Sample frequency 140 Hz 

Thermal -40 to +85 °C 

Mass < 8 g 

Size 23 x 20 x 8 mm 

Supply voltage 3.3 V typical; 5 V max 
Table 4: NanoSense M315 Magnetometer. 

 
 Star tracker: the first Star tracker took in consideration was the MAI-SS Space Sextant 

(Fig.6). The MAI-SS Star Tracker is low in cost and intended for CubeSat and NanoSat 
missions. The unit is completely self-contained and features lost in space star 
identification. Moreover, the system contains algorithms to provide sun avoidance for 
baffle-less operations. 
 
 

Figure 5: NanoSense M315 Magnetometer. 



 

Performances Tab.5: “MAI-SS Star Tracker specifications” 

(https://satsearch.co/products/gomspace-nano-sense-m315-magnetometer) 

MAI-SS Star Tracker 

Accuracy (Cross Axis / Boresight) 4 arcsec / 27 arcsec 

Acquisition time 130 ms Acq; 105 ms Track 

Update rate 4 Hz 

Sun exclusion w/wo buffle 45° / 90° 

Operating temperature -40 to 80 °C 

Weight 170 g 

DC Voltage 5 V 

Average power consumption 1.5 W 
Table 5: MAI-SS Star Tracker specifications. 

 
 
Another strong candidate was the KU Leuven Star Tracker (Fig.7). The custom algorithms 
are optimized for accuracy, robustness and low computational cost. The star tracker has a 
built-in baffle to reduce the effect of stray light. 

Figure 6: MAI-SS Star Tracker. 



 
Technical specifications are reassumed in “Star Tracker Features” (Tab.6). 

KU Leuven Star Tracker 

Accuracy (Cross Axis / Boresight) 2 arcsec / 10 arcsec 

Acquisition time 130 ms Acq; 105 ms Track 

Update rate 10 Hz 

Sun exclusion w/wo buffle 40° / 90° 

Operating temperature -40 to 80 °C 

Weight 250 g 

DC Voltage 5 V 

Average power consumption < 1 W (nominal) 
Table 6: Star Tracker Features (https://satsearch.co/products/new-space-systems-nsgy-001). 

 

Figure 7: KU Leuven Star Tracker. 

Figure 8: STIM300. 



 Gyroscope: the gyroscopes, three for each satellite’s axis, have the purpose to maintain 
the spacecraft aligned in a pre-determined position. In this case, it was chosen the STIM-
300 from Sensonor (Fig.8). STIM300 is a small, tactical grade, low weight, high 
performance non-GPS aided Inertial Measurement Unit (IMU). It contains 3 highly 
accurate MEMS gyros, 3 high stability accelerometers and 3 inclinometers. The IMU is 
factory calibrated and compensated over its entire operating temperature range. 

              Its performances are provided in the following table “STIM300 data” (Tab.7): 

 
STIM-300 Gyroscope 

Angular rate ±400 °/s 

Power supply 5 V 

Operating temperature -40 to +85 °C 

Power consumption 1.5 W, max: 2 W 

Bias Range -250 to +250 °/h 

Resolution 24 bits 

Bandwidth (-3 dB) 262 Hz 

Weight < 55 g 
Table 7: STIM300 data (https://www.cubesatshop.com/product/mai-400-reaction-wheel/). 

 
  In alternative, it can be used the NSGY-001 by NewSpace System (Fig.9). It is a stella 
gyro that uses a COTS sensor and optics resulting in a very low cost attitude determination 
system that maintains accuracy during the eclipse phase. The NewSpace stellar gyroscope 
can be used to propagate a spacecraft’s attitude from a known initial condition, without 

drift, while sufficient stars are common across frames. It can achieve this by using 
algorithms that tolerate noise and does not require a star database. It is thus far more robust 
against radiation damage than a standard star mapper solution would be if based on the 
same components. 

Figure 9: NSGY-001. 

https://www.cubesatshop.com/product/mai-400-reaction-wheel/


Its performances are listed in Tab.8: “NSGY-001 characteristics” 

(https://www.cubesatshop.com/wp-content/uploads/2016/06/CubeWheel-large.png) 
 

NSGY-001 

Power supply 5 V 

Operating temperature -40 to +85 °C 

Power supply 5 VDC 

Power consumption < 200 Mw (average) 

Thermal (operational) -25 to +50 °C 

Rate estimation accuracy ≤ 0.20 degrees/s (boresight) 
≤ 0.05 degrees/s (cross-boresight) 

Maximum slew rate ≥ 1.00 degrees/s 

Standard update rate  > 1 Hz 
Table 8: NSGY-001 characteristics. 

 
 GPS Receiver: the spacecraft needs the presence of a GPS receiver in order to give 

information about its position during its path toward the target. Because of that, the final 
choice is the NSS GPS Receiver (Fig.10). It is a 12-channel hardware-based receiver which 
utilizes a well-established GPS chipset. Targeted towards low-cost SmallSat 
constellations, it has been adapted for space altitude and velocity through the use of 
custom software modifications. The NSS GPS includes an unregulated, isolated 28 V 
power input and differential interfaces. It employs latch-up detection/ protection and a 
watchdog timer for increased reliability and robustness. 
Its characteristics are summarized in “NSS GPS Receiver performances” (Tab.9). 

 
 
 

Figure 10: NSS GPS Receiver. 

https://www.cubesatshop.com/wp-content/uploads/2016/06/CubeWheel-large.png


NSS GPS Receiver 

Position accuracy < 10 m 

Velocity accuracy < 25 cm/s 

Update rate 1 Hz 

Operating frequency L1 (1575.42 MHz) 

Mass 110 g 

Power 1 W 

Thermal (operational) -10 up to +50 °C 

Power supply 3.3 VDC nominal; 5 VDC max 
Table 9: NSS GPS Receiver performances (https://www.cubesatshop.com/product/nss-gps-receiver/). 

 

 

  Another choice can be the GPS receiver piNAV-L1 (Fig.11) designed by NanoAvionics. 
It was designed with the aim to provide accurate position data with limited power and 
mass budget. In fact, it requires only 10% of power in comparison with conventional 
space-grade GPS (“piNAV-L1 features “, Tab.10). 

 

 
NSS GPS Receiver 

Altitude Up to 3600 km 

Velocity accuracy Up to 0.5 km/s 

Update rate 1 Hz 

Operating frequency L1 (1575.42 MHz) 

Figure 11: GPS receiver “piNAV-L1”. 

 

https://www.cubesatshop.com/product/nss-gps-receiver/


Mass 47 g 

Power consumption 120 mW (typical) 

Thermal (operational) -10 to +50 °C 

Power supply 2.7 V to 3.6 V 
Table 10: piNAV-L1 features (https://n-avionics.com/wp-content/uploads/2018/07/piNAV-L1-new.jpg). 

 

 Cameras: one of the possible choice is the Chameleon Imager by SAC (Fig.12). It is a 
compact CubeSat imager that takes advantage of the space-qualified electronics of the 
Gecko imager and combines this with high-performance optics to maximize imaging 
capability in small satellite. One of the biggest advantages is that the images are captured 
directly to the integrated mass stored; so, it means that there is no need of a additional 
payload storage capacity on the vehicle. Nevertheless it was thought for 3U CubeSat, it is 
available for larger satellite too. 

 
Its performances are shortened in the table below (“Chameleon imager performances.”, 

Tab.11): 
 

Chameleon imager 

Spatial resolution @ 500 km 9.6 m PAN; 19 m MS; 29 m HS 

Swath @ 500 km Up to 32 km 

Data format 10-bit or 20-bit 

Integrated mass data storage Up to 160 Gigabytes 

Power usage < 3.5 W (imaging mode) 
< 2.5 W (readout mode) 

Mass (incl. electronics) 1.35 kg 

Figure 14: Chameleon imager. 

https://n-avionics.com/wp-content/uploads/2018/07/piNAV-L1-new.jpg


Thermal +10 to +30°C (operative) 
-20 to +70 °C (survival) 

Spectral bands Bayer RGB 
or PAN + 8 Multispectral bands 

or 150 band Hyperspectral 
Table 11: Chameleon imager performances (https://www.cubesatshop.com/product/chameleon-imager/). 

A strong competitor of the camera developed by SAC is the C3D Cubesat Camera 
designed by XCAM company (Fig.13). Originally developed in partnership with The 
Open University, C3D has successfully flown and transmitted images on CubeSat 
missions such as the UK Space Agency’s UKube-1 and AlSat Nano. The C3D CubeSat 
camera system is an imaging payload which can be used for a variety of applications 
including Earth observation or, for the mission inquired in this thesis, RV&D missions. 

Its characteristics are shown in “C3D Specifications (Tab.12)” 

(http://www.xcam.co.uk/sites/default/files/styles/product_image/public/C3D%20board_
3.jpg?itok=ih-jeKY3) : 

  C3D CubeSat Camera 

Spatial resolution @ 500 km 360 m GDS 

Image Sensor 1.3 MP CMOS, 5/4 aspect ratio, RGB 
or B&W 

Data format 8-bit raw and thumbnail (1:10) 

Integrated mass data storage 16 MB SDRAM / 8 MB Flash 

Peak power consumption 845 mW 

Mass 85 g 

Thermal -25 to +65 °C (operating) 
-35 to +75 °C (survival) 

Pixels 5.3 µm (1280 x 1024) 

Figure 15: C3D CubeSat Camera. 

https://www.cubesatshop.com/product/chameleon-imager/
http://www.xcam.co.uk/sites/default/files/styles/product_image/public/C3D%20board_3.jpg?itok=ih-jeKY3
http://www.xcam.co.uk/sites/default/files/styles/product_image/public/C3D%20board_3.jpg?itok=ih-jeKY3


Wavelength range 400 – 650 nm (RGB, extended with 
B&W) 

Table 12: C3D Specifications. 

 

 

1.2.1.2 Attitude actuators 
  

  Being powerful enough to change the attitude and for other reasons like the lightness, it was 
chosen to take on-board only the reaction wheels, with the aim of actuators. However, in case the 
speed is very high, due to the conservation of the angular momentum, the amount of momentum 
they have to do with sometimes exceed the construction limit. So, they need to be desaturate 
through a process named “momentum damping” which includes the help of other actuators. These 

may be magnetorquers or thrusthers. In this case, it was picked the magnetorquer. 

 

 Reaction Wheels; it was chosen to get on-board the MAI-400 Reaction Wheel (Fig.14). 
It is offered as a complete, standalone reaction wheel assembly unit for CubeSats and 
NanoSat missions.  
 

In the following table “MAI-400 specifications” (Tab.13), there are listed its performances 
(https://www.cubesatshop.com/product/mai-400-reaction-wheel/): 
 

MAI-400 Reaction Wheel 
Maximum Torque 0.635 mNm 

Momentum Storage @ 10000 rpm 11076 mNms 

Mass 110 g 

Operating temperature -40 to 85 °C 

Figure 16: MAI-400 Reaction Wheel.. 



Rotor dynamic balance      < 40 mg-mm 

Maximum current 0.44 A 

Steady state (500 RPM) 0.17 A 

Idle 0.09 A 

DC Voltage 5 V 
Table 13: MAI-400 specifications . 

 

Another choice can be using the CubeWheel reaction/momentum wheel from the 
CubaSpace company (Fig.15). Used to control the attitude of nanosatellites, the compact 
module includes a brushless DC motor with vacuum-rated bearings, as well as the require 
drive electronics and speed control algorithms. 
 
 

 
In “CubeWheel specifications“(Tab.14) are scheduled the specifications of this type of 
reaction wheel (“https://www.cubesatshop.com/wpcontent/uploads/2016/06/CubeWheel)  

CubeWheel Small Medium Large 

Maximum Torque 0.23 mNm 1.0 mNm 2.3 mNm 

Momentum Storage @ 
max rpm 

1.7 mNms 10 mNms 30 mNms 

Mass 60 g 140 g 220 g 

Operating temperature -10 to 70 °C -10 to 70 °C -10 to 70 °C 

Peak power 0.72 W < 1.5 W < 2.2 W 

Average power 0.12 W < 0.24 W < 0.27 W 

DC Voltage 3.3 V 3.3 V 3.3 V 
Table 14: CubeWheel specifications. 

Figure 17: CubeWheel ( Large). 



 

 Magnetorquer: this type of actuators, besides the duty of desaturate the reaction wheels, 
magnetorquers are largely used in CubeSats mission because they offer a method of 
controlling the attitude of a spacecraft. This can be achieved either directly, by interacting 
with the local Earth’s magnetic field can provide coarse attitude pointing. One of the top 

choices is the NCTR-M012 Magnetorquer Rod by NewSpace (Fig.16). The use of a 
magnetic alloy rod produces an amplification effect over an air cored magnetorquer. This 
allows a system that uses less power, which is critical for CubeSat missions. The rods can 
enable a mission with increased manoeuvrability and reduced detumble rates. 
 

 
Its performances are reassumed in “NCTR-M012 performances” (Tab.15) 
(“https://www.cubesatshop.com/wp-content/uploads/2018/05/NCTR-M012-
Magnetorquer-Rod.png”): 
 
 

NCTR-M012 

Magnetic moment 1.19 Am2 

Linearity < ±5% 

Residual moment < 0.005 Am2 

Mass < 50 g 

Thermal (operational) -20 to +60 °C 

Power supply 5 V (DC) 

Power < 800 mW (nominal) 
Table 15: NCTR-M012 performances. 

Figure 18: NCTR-M012 Magnetorquer Rod. 

 

https://www.cubesatshop.com/wp-content/uploads/2018/05/NCTR-M012-Magnetorquer-Rod.png
https://www.cubesatshop.com/wp-content/uploads/2018/05/NCTR-M012-Magnetorquer-Rod.png


 
  NewSpace company provides another type of magnetorquer: the NCTR-M002 (Fig.17). 
Differences between the M002 magnetorquer and the precedent one can be seen in Tab.16: 
“NCTR-M002 specifications”: 
 

NCTR-M002 

Magnetic moment 0.2 Am2 

Linearity < ±5% 

Residual moment < 0.005 Am2 

Mass < 30 g 

Thermal (operational) -20 to +60 °C 

Power supply 5 V (DC) 

Power < 200 mW (nominal) 
Table 16: NCTR-M002 specifications (“https://www.cubesatshop.com/product/nctr-m002-magnetorquer-rod/”). 

 

 

 Thruster(s): in order to allow the vehicle to move through the space, it needs to be 
endowed with a propulsion system, in particular with some thrusters, besides the solar 
panels. The first thruster selected is the PM400 designed by Hyperion Technologies B.V. 
(Fig. 18). It is an high trust propulsion capability to 6-12U CubeSats and similar platforms. 
Low system complexity and zero propellant toxicity allow for simple and robust 
operations, both on the ground and when in orbit. The medium tank pressure and high 
storage density of liquid propellants enable high safety factor tanks to be used with little 
mass penalty. Its specification are reunited in “PM400 Specifications” (Tab.17)  
 

Figure 21: NCTR-M002 Magnetorquer Rod. 

https://www.cubesatshop.com/product/nctr-m002-magnetorquer-rod/


 
PM400 

Total impulse > 1750 Ns 

Thrust 1 N 

Isp > 285 s 

ΔV > 230 m/s 

Operating temperature -5 to +53 °C 

Supply voltage 5 V 

Power requiring < 6 W (during firing) 
< 0.1 W (sleep) 

Outer dimensions 200 x 100 x 100 mm 

Nom. Propellant storage pressures 45 (Ox) / 7.5 (fuel) bar 

Dry mass < 1400 g 

Propellant mass 625 g 
Table 17: PM400 Specifications (https://satsearch.co/products/hyperion-technologies-pm400). 

 
  If thrust is expendable compared to weight, a great solution is to utilize the relative of 
PM400 from the same company: PM200 (Fig.19). Its performances are reunited in Tab.18: 
“PM200 specifications” (https://satsearch.co/products/hyperion-technologies-pm200). 
 
 

Figure 22: PM400. 

https://satsearch.co/products/hyperion-technologies-pm400


 
PM200 

Total impulse > 850 Ns 

Thrust 0.5 N 

Isp > 285 s 

ΔV > 230 m/s 

Operating temperature -5 to +35 °C 

Supply voltage 5 V 

Power requiring < 6 W 

Outer dimensions < 0.1 W 

Nom. Propellant storage pressures 45 (Ox) / 9 (Fuel) bar 

Dry mass 1100 g 

Propellant mass 310 g 
Table 18: PM200 specifications. 

 
  Obviously, this last type of thruster can not be utilized in case of precision manoeuvre. 
For fulfil this type of task, the vehicle needs to rely on other kind of propeller. One of this 
genre is IFM Nano Thruster designed by Enpulsion (Fig.20). Used in many precedent 
missions like Rosetta, it is based on the Field Emission Electric Propulsion (FEEP) 
principle. It means that there is a field ionization from the tips of a porous tungsten crown 
at positive potential and consequent electrostatic acceleration of the Indium ions. One of 
the advantages is the much smaller size respect to similar thruster thanks to the use of 
solid propellant, which involves absence of a propellant management system. Its 
performances are listed in Tab.19: “IFM Nano Thruster specifications” 

Figure 23: PM200. 



 
 

IFM Nano Thruster 

Total impulse More than 5000 Ns 

Thrust 350 µN (nominal) 

Isp 2000 to 5000 s 

Dynamic thrust range 10 µN to 0.5 mN 

ΔV 1038 m/s 

Operating temperature -20 to 50 °C 

Supply voltage 12 V or 28 V 

Power requiring 35 W 

Outer dimensions 94 x 90 x 78 mm 

Dry mass 640 g 

Wet mass 870 g 
Table 19: IFM Nano Thruster specifications (https://www.enpulsion.com/order/ifm-nano-thruster/). 

 
 
  A compromise between this type of propeller is CubeSat Propulsion “EPSS” developed 
by NanoAvionics (Fig.21). Suitable for satellites below 150 kg, it is based on “green” 

ADN mono-propellant. This type of thruster ensures a 6% higher specific impulse and 
24% higher energy density compared to hydrazine employed system. Choosing this 
propeller can be the best fit in order to joining ESA’s and NASA’s new clean space 

initiatives. The performances of EPSS are specified in “EPSS performances “ (Tab.20). 

Figure 24: IFM Nano Thruster. 



 
EPSS 

Propellant AND Blend 

Thrust 100 mN (nominal) 

Isp Vacuum 225 s 

Min. Impulse Bit 0.002 Ns 

Propellant throughput 1 kg 

System pressure 10 bar 

Chamber temperature < 1600 °C 

Power Consumption 0.05 W (Idle) 
5-7.5 W (Peak) 

4.5 W (Operational) 
Table 20: EPSS performances (https://n-avionics.com/wp-content/uploads/2018/07/EPSS). 

  

Figure 25: EPSS. 



2. Control Theory 
 

2.1 Dynamic system control 

2.1.1. Dynamical system 

 

  In order to describe a dynamical system, it results necessary to find some functions which, 
changing in time, are useful to describe the evolution of the system. These functions are called 
signals and there two principal of them: the input signal u(t) and the output signal y(t). With the 
aim of describe the model of the system, it is necessary to create a mathematical model, formed 
by an indefinite number of differential equations, which are useful to perform the control the 
system.  Because the mathematical model is an approximation of the real one, there will be always 
two types of uncertainties: a dynamic and a parametric ones. 

  Like said before, in control theory the dynamic system is governed by a series of differential 
equations.  If this system has definite dimension and it is continuous in time, it is necessary only 
a first order differential equations system in order to define the behave of the system. This 
description is named state equation and it is constituted by three fundamental variables:  

1. The input signal 𝑢(𝑡) ∈ ℝ𝑛; 
2. The output signal 𝑦(𝑡) ∈ ℝ𝑛; 
3. The system state 𝑥(𝑡) ∈ ℝ𝑛. 

These three functions formed the late called first order differential equations system 

 
{
�̇�(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡); 𝑡]

𝑦(𝑡) = ℎ[𝑥(𝑡), 𝑢(𝑡); 𝑡]
 (39) 

  Analysing the system, the first differential equation is the dynamic one because the development 
of the system is described through the presence both of the input time t and its evolution t+dt:  

 �̇�(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡); 𝑡] ⟹ 𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + 𝑓[𝑥(𝑡), 𝑢(𝑡); 𝑡]𝑑𝑡 (40) 

The second equation is obviously the static one, because the output signal is not derived in time. 

  With the aim of have an easier and better analyse of the system, it results crucial for practical 
reason to manipulate the state equation through the Laplace transform, in order to obtain the 
transfer functions. The first order differential equations system can be written in the following 
way: 

 
{
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
 (41) 

The first operation was to operate the Laplace transform to the first equation: 

 𝑠𝑋(𝑠) − 𝑥(0) = 𝐴𝑋(𝑠) + 𝐵𝑈(𝑠) 
(𝑠𝐼 − 𝐴)𝑋(𝑠) − 𝑥(0) = 𝐵𝑈(𝑠) 

𝑋(𝑠) = (𝑠𝐼 − 𝐴)−1𝑥(0) + (𝑠𝐼 − 𝐴)−1𝐵𝑈(𝑠) 
 

(42) 

Differently, the second equation was transformed in the following way: 

 𝑌(𝑠) = 𝐶𝑋(𝑠) + 𝐷𝑈(𝑠) (43) 

 



Combining (42) with (43), the second equation became: 

 𝑌(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝑥(0) + [𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷]𝑈(𝑠) (44) 

It was assumed that x(0) = 0 in order to find a fundamental function: the transfer one G(s). 

 𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) 
𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 

(45) 

The transfer function can be written in a rational representation (?), defining: 

1. KG as the gain; 
2. z1…zm as G(s) zeros; 
3. p1…pm as G(s) poles. 
 

𝐺(𝑠) =
𝑏𝑚𝑠

𝑚 + 𝑏𝑚−1𝑠
𝑚−1+. . +𝑏1𝑠 + 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1+. . +𝑎1𝑠 + 𝑎0
= 𝐾𝐺

∏ (𝑠 − 𝑧𝑖)
𝑚
𝑖=1

∏ (𝑠 − 𝑝𝑖)
𝑚
𝑖=1

 
(46) 

 

 

2.1.1.1 Dynamical system control 

 

  The control of a dynamic system expect to make the output signal y(t) to be similar to a reference 
signal, named desired signal r(t). In order to do that, it is necessary to impose a command signal 
u(t) to the system. Like said in the previous chapter, it is possible to distinguish two type of control 
system: the open-loop control and the closed-loop one. The first one, named “non-feedback 
controller” too, has the particularity that the control action is independent from the output and 

does not modifies its values using a disturbance signal (fig.52). 

 

The closed-loop control introduce, instead, a feedback signal that comes from the output and 
adjusts directly the input signal (fig.53) and, consequently, the performance of the system. 
Obviously, the closed-loop control has a better impact in terms of precision and attenuation of the 
disturbances, if present. 

Figure 26: Open-loop controller. 



 

2.2. ADCS 

 

  The Attitude Determination and Control System has the duty to orients toward a certain direction 
the vehicle during the developing of the mission. Due to external interferences, this system need 
to be linked to the sensors in order to measure the actual attitude of the spacecraft. Dynamics 
analysis of the spacecraft is very complex for many motives, in particular because it involves non-
inertial frames. Consequently, this system is very important to develop during the design phase 
both for its importance as for other reasons like its power consuming or the demand for specific 
orientation. 

  In space, a vehicle, or generally a body, is subject to many, although small, and permanently 
disturbance torques. The aim of the ADCS is to struggle versus this torques and allow the 
spacecraft to fulfil its mission. This system can be classified in passive and active control system 
and in open-loop and closed loop control system. The principal difference between this last two 
type of control resides in the presence of a feedback line. In fact, in the closed loop case, the actual 
attitude data is compared with the desired one and they generate an error value. This one, in a 
continuous process, is used by actuators in order to generate control torques with the aim of restore 
or acquire the desired attitude. Regarding passive/active control, they differ from each other in 
that the former uses, depending on the singular value, one or other disturbance torques to control 
the vehicle. Differently, the active stabilization technique benefits of the comparison with a 
desired value. Like said before, the generated error value is utilized for stabilize a corrective action 
and generate an appropriate manoeuvre by the onboard actuators. 

 

2.2.1 Control Algorithms 

 

  Over the years, there have been developed many control algorithms in order to command the 
orientation of a satellite body, obviously each of them presents advantages or shortcomings. The 
most utilized are (Yadava, Hosangadi, Krishna, Paliwal, & Jain, 2018): 

1. H∞ controller: it consists in a feedback control law able to stabilize the system achieving 
guaranteed performance. Given an execution time, the controller operates on minimizing 
the H∞ norm of the closed loop, which represents the maximum energy gain, coming from 
an external disturbance to the error signal (Stoorvogel, 2000) (Fig.22) . In case of the 

Figure 27: Closed-loop control. 



worst-case disturbance, the system operates in order to regulate the state going to 
minimize the output energy. The shortcomings of using H∞ controller are the very low 
velocity response and the restriction of apply this method only to linear control problems. 

 

2. PID controller: despite being very sensitive to noisy, which imply the using of filters, 
this type of controller is one of the most popular in aerospace field. It consists in three 
principal actors (Astrom, 2002): a proportional component, an integral term and a 
derivative term (Fig.23). The first one is necessary in order to have a right amount of gain 
to the system; the integral term provide stability to the system; in the end, the third element 
is useful in order to reduce the overshoot in the system. 

 

 
 
3. Fuzzy logic controller: based on fuzzy logic, it differs in that the other control strategy 

its logical variables assumes any values between 0 and 1 (Singhala, Shah, & Bhavikkumar, 
2014). It allows to convert a strategy based on experience into automatic control. Many 
studies have shown how this type of control have high efficiency than PID controller, but 
it is very complex to create and implement and, subsequently, requires high costs (Fig.24). 
 

Figure 28: Typical H∞ controller Closed-Loop Performance. 

 

Figure 31: Structure of parallel PID control system. 

 



 

 
 

4. MP controller: the model predictive control (MPC) instead of positional current values, 
it is based on the incremental values both of manipulated variables over the control horizon 
and the controlled variables at the end of the prediction horizon (Wojsznis, Mehta, 
Wojsznis, Thiele, & Blevins, 2007). In particular, using the prediction horizon allows a 
self-regulating process where the future steady state is guaranteed (Fig.25). 

 
5. Linear Quadratic Regulator (LQR): these type of controller is the one effectively used 

during the simulation. Its characteristics are widely explained in the next paragraph.  

 

Figure 34: Fuzzy logic controller architecture. 

Figure 35: Block diagram for model predictive control.. 



2.2.2.1 Linear Quadratic Regulator (LQR) 

 

 

 

  The first step in order to train the artificial neural network is to create an LQR controller (Fig.26). 
The principal goal of this type of controller is to reach the desired position (and velocity) going 
to create a gain matrix KLQR. This matrix is used in order to calculate the control acceleration aLQR 

with the following formula: 

 𝑎𝐿𝑄𝑅 = 𝐾𝐿𝑄𝑅𝑥𝑒 (1) 

 

Where xe is the tracking error, which is defined as the difference between the desired vector and 
the actual state. Through the computation of aLQR, it is possible to find the value that minimized 
the cost function J: 

 
𝐽 =  

1

2
∫ (𝑥𝑒

𝑇𝑄𝑥𝑒 + 𝑢
𝑇𝑅𝑢 + 2𝑢𝑇𝑁𝑥𝑒)𝑑𝑡

∞

0

 
(2) 

Q is the state gain matrix, R is the control effort gain and N is a gain matrix. In this case, the N 
matrix is set to zero, while the Q and the R matrices are build in this way (Bevilacqua, Lehmann, 
& Romano, 2011): 

 

𝑄 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
𝛼𝑄1
𝑥𝑚𝑎𝑥2

0 0

0
𝛼𝑄2
𝑦𝑚𝑎𝑥2

0

0 0
𝛼𝑄3
𝑧𝑚𝑎𝑥2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝛼𝑄4
�̇�𝑚𝑎𝑥2

0 0

0
𝛼𝑄5
�̇�𝑚𝑎𝑥2

0

0 0
𝛼𝑄6
�̇�𝑚𝑎𝑥2 ]

 
 
 
 
 
 
 
 
 
 
 
 

 

(3) 

  

Figure 36: Example of an LQR controller. 



𝑅 =  

[
 
 
 
 
 
 
𝛽𝑅1
𝑢𝑥,𝑚𝑎𝑥2

0 0

0
𝛽𝑅2
𝑢𝑦,𝑚𝑎𝑥2

0

0 0
𝛽𝑅3
𝑢𝑧,𝑚𝑎𝑥2 ]

 
 
 
 
 
 

 

 

  Thanks to its structure, these two types of matrices are able to find an equilibrium between 
control effort and performance. In the first matrix, the relative positions of the Chaser respect to 
the desired position are equal to the Chaser’s current distance to goal, i.e rg. So: 

 𝑥𝑔 = 𝑦𝑔 = 𝑧𝑔  = 𝑟𝑔 (4) 

The same thing has been done with the numerator of each diagonal component: 

 𝛼𝑄1 = 𝛼𝑄2 = 𝛼𝑄3 = 𝛼𝑄4 = 𝛼𝑄5 = 𝛼𝑄6  = 𝑟𝑔 (5) 

Differently, the weight on the relative error velocity it is calculated as: 

 �̇�𝑚𝑎𝑥 = �̇�𝑚𝑎𝑥 = �̇�𝑚𝑎𝑥  =
𝑟𝑖𝑛𝑖𝑡
𝑟𝑚

𝑟𝑔 (6) 

Where 𝑟𝑖𝑛𝑖𝑡 is the chaser initial distance to the target and 𝑟𝑚 is the maximum allowed distance 
from the goal.  

  Switching to the R matrix, the denominators of the diagonal has been set equal to the maximum 
control umax that can be reached by the thrusters mounted on the spacecraft. This parameter can 
be computed considering the thrust force Ft and the mass of the satellite ms. So: 

 
𝑢𝑚 = 

𝐹𝑡
𝑚𝑠

 

𝑢𝑥𝑚𝑎𝑥 = 𝑢𝑦𝑚𝑎𝑥 = 𝑢𝑧𝑚𝑎𝑥  = 𝑎𝑧𝑚𝑎𝑥 = 𝑢𝑚 

(7) 

While the numerator terms are set equal to rg too. 

  The principal advantage of using this type of controller is the using of relative dynamics which 
is each step computed and improved with little adjustment (McCamish, Romano, & Yun, 2009). 
On the other hand, the LQR technique can not be a fast method in order of collision avoidance. 
Infact, there are necessary numerous sequences of computations in order to avoid an impact 
with an object present in the operating environment.  For these reasons, using an LQR for this 
purpose involves high cost in terms of implementations and time of calculations. 

  With the aim of calculating the control torques, it has been decided to choose a different path. 
In particular, it has been followed the example of Yaguang Yang to create a quaternion-based 
LQR spacecraft control design (Yang, 2004). The first thing to do is to stabilize a fast settling 
time. In this case, it has been taken a value of 𝑇𝑠 = 10 𝑠. Its rate can be also calculated using the 
following formula: 

 
𝑇𝑠 = 

4

𝛽3𝜔𝑧
 

(8) 

Assuming a value of 𝛽3 = 0.8, it is possible to obtain 𝜔𝑧 = 0.5. In order to have a system globally 
stable, it has be calculated an another parameter: 



 
𝛼 =  

1

𝐽33𝜔𝑧2
=

1

𝐽11𝜔𝑥2
=

1

𝐽22𝜔𝑦2
= 0.0840 

(9) 

Consequently, it has been possible to define the other two components of the angular velocity 
vector: 

 
𝜔𝑦 = 

1

√𝐽22𝛼
= 0.4629 

𝜔𝑥 = 
1

√𝐽11𝛼
= 0.4082 

(10) 

Setting 𝛽1 = 𝛽2 = 1, the components of the feedback matrices D and Krot are automatically given 
by the following formulas: 

 
𝑑1 = 

2𝛽1√𝐽11

√𝛼
= 51.4344 

𝑑2 = 
2𝛽2√𝐽22

√𝛼
= 58.3212 

𝑑3 = 
2𝛽3√𝐽33

√𝛼
= 11.9048 

(11) 

Moreover: 

𝑘1 = 𝑘2 = 𝑘3 = 
2

𝛼
= 23.8095 

So, the final forms of D and Krot are: 

 
𝐷 = [

𝑑1 0 0
0 𝑑2 0
0 0 𝑑3

] 

𝐾𝑟𝑜𝑡 =  [

𝑘1 0 0
0 𝑘2 0
0 0 𝑘3

] 

 

(13) 

The gain utilize to obtain the target values during the rotational motion of the spacecraft is: 

 𝐺 = [𝐷 𝐾𝑟𝑜𝑡] 
𝑢 =  −𝐺𝑥 

 

(14) 

 

 

2.3 Artificial Neural Networks (ANNs). 
 

  How many times it has been heard that the brain is capable to perform computations many times 
more powerful than the fastest existing computer. This particular ability is due to the fact that it 
is organized into structural components, named neurons, which are highly specialized for the 
processing and transmission of cellular signals. An explanatory example is the human vision: 



besides representing the surrounding space, it gives to the brain the necessary information that it 
needs to interact with the environment in very short period of time (about 100-200 nms) (Sabatini 
& Regehr, 1996).   

  Inspired by neural circuit, artificial neural networks (ANN), also known as “neural networks”, 

are an useful mathematic/computational tool for the resolution of problems regarding control, 
data analysis and pattern recognition. In aerospace field, they are a strong candidate for attitude 
control thanks to its inherent nonlinear behaviour, which makes them a natural choice in order to 
control nonlinear system. In order to achieve a good performance, ANN are formed by individual 
processing units named neurons, or processing units, grouped in layers. Accordingly, it can be 
written the following definition of neural network as an adaptive machine (Haykin, 2011): 

“A neural network is a massively parallel distributed processor made up of simple processing 
units that has a natural propensity for storing experiential knowledge and making it available for 
use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a learning process; 
2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired 

knowledge.” 

To achieve a desired design objective, the first step is to train neurons to respond to certain stimuli 
in the desired way. Thus, it results necessary to perform a learning process, called learning 
algorithm, in order to modify the synaptic weights of network. 

  The aim of this paper is to show the benefits and disadvantages of neural networks involved in 
control of small satellites that have to perform a rendez-vous and docking missions, compared to 
other type of control methods, like the LQR controller. 

 

2.3.1 Artificial Neural Networks 
 

  Like said before, ANNs are computational models which, providing certain input data, are able 
to process information and learning from them. The neural network is formed by a circuit of 
information-processing unit, the neurons, represented in Fig.27. In input, there are m input signals, 
whom is made a weighed summation on the values of the connections that lead the inputs to 
neuron, resulting: 

 𝑥1𝑤1
+ 𝑥2𝑤2+. . . . +𝑥𝑚𝑤𝑚 

(15) 

Figure 37: Nonlinear model of a neuron. 



The results of this equation (15) is passed to an activation function ϕ which generates the real 
input of the neuron.  Obviously, there can be more than one layer combining one or more neurons. 
Normally, the basic level of a neural network are three (Fig.28). 

    

To every layer, various basic elements can be identified: 

1. The first layer, the input one, contains the connecting links, or a set of synapses, each of which 
is characterized by a weight or strength of its own. In particular, the synapse j that receives a 
signal xj, amplified by the synaptic weight wkj, and which is connected to neuron k. It is 
necessary to state that the first subscript of the synaptic weight indicates the neuron in 
question, while the second one refers to the input end of the synapse to which the weight 
refers; 

2. The second layer, the hidden level, is formed by N unit, called linear combiner or adder, that 
operate a sum of the different input signals, multiplied by the various synaptic weights; 

3. The output of a neuron, which its amplitude is limited to some finite value (typically [0,1] or 
[-1,1]) by the activation function ϕ, is the third level. 

    

It can be written a pair of equations that describes in mathematical terms the neuron k: 

And 

 𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘)  (17) 

where uk is the linear combiner output, not showed in Fig.29, and bk is the bias.  The effect of bk 
is to apply an affine transformation to the output uk through the formula: 

 𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘 (18) 

 
𝑢𝑘 =∑𝑤𝑘𝑗𝑥𝑗

𝑛

𝑗=1

   
(16) 

Figure 40: Structure of a single layer neural network. 



Based on the value of the bias, the relation between uk and the induced local field vk is changed. 
If bk is positive or negative, the formula is modified like the Fig.3 shows: 

  Specifying and adding the effect of the bias sign, it is possible to modify the structure of the 
network (Fig.30). Indeed, it needs to be added a new synapse, where its input is 

 𝑥0 = +1  (19) 

and which corresponds a weight of 

 𝑤𝑘0 = 𝑏𝑘  (20) 

 

2.3.1.1 Activation function ϕ 

  There are many types of activation function that can be identified, but the most important one 
are: 

Figure 43: Effect of the bias bk on the affine transformation. 

Figure 44: Nonlinear model of NN where wk0 replace the effect of the bias. 



1 Threshold function: better known as unit step function (Fig.31), it is a function described by the 
following relationship 

 
𝜑(𝑣) = {

1     𝑖𝑓 𝑣 ≥ 0
0    𝑖𝑓 𝑣 < 0

 (21) 

The output of neuron k will be modified too 

 
𝑦𝑘 = {

1     𝑖𝑓 𝑣 ≥ 0
0    𝑖𝑓 𝑣 < 0

 (22) 

In the end, the induced local field can be calculated as 

 
𝑣𝑘 =∑𝑤𝑘𝑗𝑥𝑗 + 𝑏𝑘

𝑛

𝑗=1

 
(23) 

 

Sigmoid function: this is the most used activation function during the creation of ANN, having the 
shape of an “S” (Fig.32). A classic example of this type of function is the hyperbolic tangent 
function, defined by 

 𝜑(𝑣) = tanh (𝑣)  (24) 

Figure 47: Threshold function. 



 

 

2.3.2 Architectures of ANNs. 
  There are many ways in order to organize a neural network. For example, it can be decided to 
add more hidden layers of neurons, having in input the output of previous one level. The choice 
of the architecture it is fundamental because it directly influences the learning algorithm utilised 
to train the network. 

  It can be identified three different classes of network: 

 

1. Single-layer Feedforward Networks 
 
 
This is the simplest structure of layered network (Fig.33). It is organized in three areas: on the 
left side, there is the input layer of source nodes, augmented of respective weights, which goes 
directly into the activation function, which is the second area; at least, there is the output layer 
that can be formed by one or more neurons. The defect of this network is that, differently from 
more complex architectures, there are no feedback from the output area, so the input it is 

influenced by it. 
 

Figure 50: Sigmoid function with a variable slope parameter a. 

Figure 53: Single-layer Feedforward Networks. 



 
 

2. Multilayer Feedforward Networks 
 
As it can be seen from the Fig.33, this type of network differences itself by the presence of 
more than one layer of neurons, called hidden layers or hidden units. The purpose of those 
levels is to create a separation from the input and output layer, in order to effect more 

calculations and extract statistics that are more specific.  
 
 
  The principal characteristic of this type of architecture is that the inputs of the one layer will 
be the output from the previous one level. So, the overall response of the network will be 
composed from the sum, or in generally by a combination, of the inputs of every layer. A 
network as shown in the previous image is called “fully connected”, because every 

nodes/neurons of every layer is called with the node of the next layer; vice versa, it will be 
said to be “partially connected”. 
 
 

3. Recurrent Networks 
 

Figure 56: Multilayer Feedforward Networks. 

Figure 59: Recurrent network. 



 
 

 
  Utilizing this architecture, there is a new function that can be used to improve the 
performance of the network: the feedback loop. As illustrated in Fig.9, a recurrent network 
can be formed by a number of hidden layers, where the output of the last hidden layer is used 
as input of first level too. This type of network can be divided in two subgroups: if the output 
of a neuron is fed back into its own input, this is called a self-feedback loop; vice versa, it is 
referred as recurrent network (Fig.35 & 36). 
 

2.3.3 Training and learning process 
 

  Artificial neural networks are such a good and useful tool if they are training well. Indeed, such 
as an infant who starts to speak hearing his parents, so the NNs understand and are influenced by 
the environments where they are immersed. Before speaking of the training process, it is necessary 
to expand the concept of knowledge. 

 

2.3.3.1 Knowledge  

 

  For a neural network, knowledge refers to the way the circuit interpret, predict and how it 
responds to the impulse coming from the extern environment. In order to achieve some specified 
goals, the network has to learn a model of the world around itself. The interpretation of the world 
has to contain two major information: 

1. Prior information: information about what the environment is and what has been known; 
2. Measurements: through sensors and other instruments, the neural network has to be able to 

observe and understands how it is supposed to operate. Collecting this measurements, it can 
be formed a pool of information, called training data, useful to train the neural network. 

In order to achieve a good knowledge representation, is a general common sense to respect four 
rules: 

Figure 62: Recurrent network with no self-feedback and no hidden layers (on the left); recurrent 
network with hidden neurons (on the right). 



I. Similar inputs have to be classified into the same class, because they produce similar 
representations inside the circuit; 

II. Inputs of separate classes have to produce diverse representations (this rule is dual of 
the precedent one); 

III. If a characteristic is particular important, the network should use a big amount of nodes 
for portraying that detail. 
It is useful to introduce two parameters: the probability of detection and the probability of 
false alarm. The first indicates to the network the probability that, the object that it is 
considering, is a target; vice versa, the probability of false alarm defines the chances of 
misunderstanding a mark. Applying Rule 3, it ensures the high degree of accuracy in decision 
making process; 

IV. The network must to be structured in such a way that invariances and prior information 
are not to be learned by the system; this allow a simpler design of the circuit. 
As results of this last rule, there are born neural networks with specialized structure. 
Differently from a fully connected network, their rate of information transmission is very 
high, deriving from peculiarity of having a smaller number of free parameters. In this way, 
they learn faster because they necessitate a smaller data set for training. Consequently, the use 
of specialized network allows to lowering the costs because they are smaller. 
 

2.3.3.2 Prior information 

 

  In order to put prior information into the structure, there are no defined rules. Instead, there are 
utilized two techniques: using local connections, in order to restrict the ANN architecture, and 
limiting the pick of synaptic weights. 

  To satisfy the first constraint, every receptive field of the various hidden neurons are constituted 
by an equal number of input source. In this way, the network have a smaller size. The receptive 
field is defined as “the region of the input field over which where the incoming stimuli can 

influence the output signal produced by a neuron” (Haykin, 2011) (Fig.37).  

Figure 65: Combined use of receptive field and weight sharing. 



2.3.3.2 Invariances 

 

  There are some types of signals that have not to be influenced by transformations of the observed 
signals. Some techniques can be used in order to achieve this goal: 

1. Invariance by structure: designing the structure in a certain way, it is possible to create the same 
output although the input is transformed. For example, a way it is to imposing the weight of two 
different neuros, having the same input, equal; 

2. Invariance by training: during a period of training, the network understands how to discriminate 
between diverse aspects of the same problem/example. There are two problems with this method. 
This first one is the computational demand imposed to the network, which is very high; the 
second one is that is not obvious that this training will also enable the network to recognize other 
objects of different classes invariantly;  

3. Invariant feature space: this technique consists of create an invariant classifier-type neural 
network. It rests on the premise that it may be possible to extract features that characterize the 
essential information content of an input data set and that are invariant to transformations of the 
input. If such features are used, then the network as a classifier is relieved of the burden of having 
to delineate the range of transformations of an object with complicated decision boundaries.. The 
use of an invariant feature space offers three distinct advantages. First, the number of features 
applied to the network may be reduced to realistic levels. Second, the requirements imposed on 
network design are relaxed. Third, invariance for all objects with respect to known 
transformations is assured. 

 

2.3.3.4 Learning process 

 

  When an human being wants to learn something from the surrounding environment, he can chose 
between two ways of learning process: with or without the help of someone, normally named as 
“teacher”. In particular, the latter form can be divided into two subcategories: unsupervised 
learning and reinforcement learning. 

 

2.3.3.4.1 Learning with a teacher 

 

  Known as supervised learning too (Chaturvedi, 2008), this type of method is shown is Fig.38. 
This closed-loop feedback system is characterized by three principal blocks: the environment, the 
teacher and the learner.  

 The environment, as already said before, is where the neural network operates and which 
receives input data; 

 The teacher is the one who possess the necessary knowledge, in form of input-output 
examples, of the stimuli which came from the environment. Indeed, it is able to produce a 
desired response, that represents the “perfect” action that the network may perform; 

 The learner, or rather the ANN, does not know the operative context (i.e. the environment). 
The goal is to emulate the response of the teacher. In order to do that, the actual response is 



correct with an error signal, formed by the difference between the response from the teacher 
and the one coming from the network.  

  In this way, thanks to the training, the teacher transfers his knowledge of the environment to the 
learner, who stores these information in form of synaptic weights. These parameters are useful to 
understand how well the system perform. In order to that, it can be utilized the mean-square error 
function, defined by some free parameters (i.e. the weights). It will be create a multidimensional 
error surface, where the coordinates are the free parameters and every operation is visualized as 
a point on the surface. The performance of the system can be improved moving down the point 
in discuss toward a specific minimum point: it may be a global or a local minimum. Through the 
gradient of the error surface, defined as a vector which points in the direction of steepest descent, 
the learner can understand the actual behaviour of the system. The algorithm starts from a generic 
point x0 and calculates the gradient ∇𝑓(x0), giving the possibility to define the moving direction. 
After a specific step, a new point x1 with the relative gradient can be estimated. This iterative 
process continues until the gradient goes down to zero. 

 

2.3.3.4.2 Learning without a teacher 

 

  As the name suggest, this technique plan to not use a teacher during the learning process. 
Accordingly, there are no examples that the network can use to understand the environment 
around itself. As said in the precedent paragraph, there are two paths that can be followed: 

 

1) Reinforcement learning 

 

  The block diagram pictured in Fig.39 shows one type of reinforcement-learning system. It is 
based on two principal actors: the environment and the learning system. The latter is projected to 
learn through a method called delayed reinforcement. It consists of a generation of a 
reinforcement signal which, added to state signal coming from the environment, will generate the 
signal of action. Thanks to the continued interaction with the environment, the learning is operated 
going to minimize a scalar index of performance (Modi & Jethva, 2016).  

Figure 66: Supervised learning. 



In this case, the performance are represented by a cost-to-go function, defined as the expectation 
of the cumulative cost of actions taken over a sequence of steps instead of simply the immediate 
cost. The goal of the learning system is to find the actions that best approximate the general 
behaviour of the system and sends a feedback signal to the environment.  

  The advantage of utilizing this type of learning process is represented by the fact that it is 
independent from a teacher, so the network learn to approach with the surrounding environment 
on the basis of its experience only. Nevertheless, there are two major drawbacks: 

1. Due to the absence of the teacher, there is no supervising system that is charge to control the 
learning process of the system and his response to extern stimuli; 

2. A generation of reinforcement signal implies that the ANN has to individually understand the 
sequence of actions that lead to that final outcome, assigning a credit for each steps; the 
outcome is only evaluated by the reinforcement signal instead. 

2) Unsupervised learning 

 

Figure 67:Reinforcement learning. 

 

Figure 70: Block diagram of unsupervised learning. 



  In this case, besides the absence of a teacher, there is no reinforcement signal neither. The 
structure of the system is shown in Fig.40 and it is very simple. There is a vector describing the 
state of the environment which is the input data of the learning system; the network, thanks to 
regularity of the statistical stimuli from the extern, stars to develop the ability to create new classes 
able to approximate the features of the input (Atiya, 1990).  

 

  This type of learning is performed using a strategy of challenge between the neurons. The 
network can be divided, for example, in two or more layers. In the first one, the available data are 
received from the input layer. The feature contained in the initial stimuli are provided to the 
second layer, the one with the neurons. Here, it is applied a competitive strategy: the “winner-
takes-all” one. The neuron which offer the greatest total input wins the game and will be the one 

to be turned on; the others will be switched off. 

 

2.3.3.5 Learning tasks 

 

  Utilizing a certain type of learning task, which represent the universality of the NN, influences 
the way the network learn to interact with the environment. 

 

2.3.3.5.1 Associative memory 

 

  Like the human brain acquire information by association and stored them in a distributed 
memory, the same is done for neural network. Association can be of two types: autoassociation e 
heteroassociation (Borders, et al., 2017). The first one, which use the unsupervised learning, 
consists of memorizing a set of input patterns by presenting them cyclically to the network; after, 
a distorted version of the original vector is presented to the network, which must be able to recall 
the right pattern. Heteroassociation is based on coupling a set of input pattern with a specific set 
of output vectors. Hence, it involves the supervised learning process. 

  For example, let define the key pattern xj and the memorized pattern yj (Fig.41). Defining the 
number of patterns stored in the network n, the associative memory permits to combine these two 
vectors by the relation 

 𝑥𝑗 → 𝑦𝑗 ,   𝑘 = 1,2, … , 𝑛  (24) 

Consequently, the parameter n gives a measure of the storage capacity of the network; hence, it 
must be as large as possible. A big difference between the two types of association relies on the 
dimensions of the last two vectors. Infact, if the network storing utilizing the autoassociation 
memory, xj will be the equal to yj; whereas, in heteroassociation memory, the dimension of the 

Figure 71: Pattern relation between the input vector x and the output vector j. 



output vector can be different from the input one. This can be a problem when the network has to 
recall a specific pattern, because xj contains the key for its retrieval too. 

  In associative memory, there are two phases includes in the operation: 

1. Storage phase: following the path marked by the Eq.24, this phase consists in training the 
network; 

2. Recall phase: giving in input to the network a distorted version of xj, this phase involves the 
retrieval of the right yj. 

Especially in the second phase, the training results fundamental in order to recall the right 
memorized pattern. If this does not happen, it is said that an “error in recall” has occurred. 

 

2.3.3.5.2 Pattern recognition 

 

  This second type of learning tasks is described as “the process whereby a received pattern/signal 
is assigned to one of a prescribed number of classes” (Haykin, 2011). The pattern recognition is 
a process formed by various phases. The first step is recurrently present to the network a set of 
input patterns of diverse category or classes. After that, a never seen before pattern, which relies 
to the same population of the previous ones, will be presented to the network. His duty is to 
identify the new input and classifying it and its information correctly. In order to do that, the 
patterns are divided in some representative points and placed in a multidimensional decision 
space, which is created internally to the network. This space is divided into regions, each one is 
associated with a class. 

  Pattern recognition can be exploited using one of this two approach: 

Figure 72: First approach of pattern classification. 

 



 The first one consists in combining an unsupervised network with a supervised one 
respectively for feature extraction and for classification (Fig. 42a). As shown in the picture, 
results necessary to define some parameter. The first one is m, the observables: it consists in 
a representation of a pattern. So, it may be viewed as a point x in the m-dimensional 
observation (data) space. The extraction of the feature and its classification going through a 
middle phase, where the point x became a new point y in a q-dimensional feature space. 
This operations needs to be done in order to minimize the dimension of the feature. 
Subsequently, it is classified into one of the classes of the r-dimensional decision space 
(Fig.43b); 

 The second method involves the use of a feedforward network which exploits a supervised 
learning process. The extraction and the classification of the process is explicated thanks to 
some hidden layers in the network formed by various computational units. 

 
2.3.3.5.3 Function approximation 

 

  Function approximation is another learning task required to the neural network. It is based on a 
relationship between an input s and its related output z, which is 

 𝑧 = 𝑓(𝑠) (25) 

The problem is the vector-valued f which is unknown. In order to solve this problem, it is common 
use to utilize a set of labeled examples: 

 Γ = {(𝑠𝑖, 𝑧𝑖)}𝑖=1
𝑁  (26) 

  It is mandatory for the network to produce a function F that describes a certain input-output 
mapping that respect the disequation 

 ‖𝐹(𝑠) −  𝑓(𝑠)‖
< 𝜀    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 

(27) 

where ε must be a positive number as small as possible. This can be done having a right number 
of free parameters and a big size of initial examples Γ. 

  This type of approach is perfect for a supervised learning. Hence, it results necessary to explore 
in which ways this kind of network can approximate a not known input-output mapping. There 
are basically two possible passable roads: 

1. System identification: assuming to provide to the entire system an input vector s, the network 
will be guided in the learning process by an unknown system, which will act as a teacher. This 
one can be, for example, a system formed by labeled examples where the time is invariant. 
The scheme of the block diagram is shown in Fig.42. Both the network and the system will 
produce an output, yi and zi respectively. The difference between these two signals will create 
the error signal vector ei. This one will be feedback to the neural network in order to adjust its 
free parameters, in order to stay below the tolerance ε; 

2.  Inverse modelling: the goal of this structure is to calculate the input signal s through the 
equation 

 s =  𝑓−1(𝑧) (28) 

The difficult of this system is to calculate the inverse function of f, because there can be more 
than one solution. Anyway, the scheme of this type of system is pictured in Fig.43. Differently 
from the previous case, this time the vector zi is used as input vector, si is the desired response 



and ei reports the difference between si and the output of the network yi. Like before, the error 
signal vector is useful in order to adjust the free parameters of the system and be within the 
required tolerance range 

 

 

 

 

 

 

 

 

Figure 78: System identification of a supervised system. 

 

Figure 75: Block diagram of inverse system modelling. 

 



2.4 Final notes 
 

  In this introductive part, it was presented a general summary about the neural networks and its 
properties. The most important one is for sure the process of learning, that can be obtained in 
three ways: 

1. Supervised learning: with the goal of minimizing a cost function, this procedure requires to 
define a preferred response in order to accomplish a particular mapping of input-output; 

2. Unsupervised learning: the network has to learn by itself how to respond to the input coming 
from the external environment; 

3. Reinforcement learning: the network and its environment are continuously in contact, with 
the intention of create an input-output mapping minimizing the scalar index of performance. 

   Choosing the supervised learning implies using a set of labeled examples, where each example 
contains an input signal and its relative desired response. The problem of this type of learning is 
linked to the massive cost, in terms of time too, of collecting a set of labeled examples. The second 
learning process, the unsupervised one, relies only on the capacity of the network to respond to a 
set of stimuli. In this way, there’s no more the necessity of a training output sample, but, on the 

other hand, to an input data can corresponds more than one response. In order to try to solve this 
problem, it is evolving a new type of learning process: the semisupervised learning (Kingma, 
Rezend, Mohamed, & Welling, 2015). It consists of using both labeled and unbranded examples, 
with the aim of creating a network that approximates efficiently a large-scale pattern-
classification problem.   

  Finally, the reinforcement learning is the compromise between supervised and unsupervised 
learning, with the learning system and the environment that constantly cooperates between them. 
The leaning system reacts to a certain stimuli and learns from the response of the environment to 
that action 

  



3. Model & Simulation 
 

3.1 Reference frames 
 

  When a study is conducted on a moving satellite, it is necessary to establish several reference 
frames. They are: 

1. Earth Centered Earth Fixed (ECEF): shown in Fig.45, this frame has the following 
characteristics: 

 Origin O in the centre of the Earth; 
 The x-axis xE is located on the equatorial plane, defined at the vernal equinox and 

with the positive direction in the direction of the constellation of Aries; 
 zE is perpendicular to the last axis and points toward the Polar star, i.e. the North; 
 yE is automatically defined because it completes the right-handed set. 

 

 

2. Local Orbit frame: this time, the origin is in the Centre of Mass (CoM) of the vehicle. 
The z-axis, zorb, is radial from the CoM of the spacecraft to the centre of the Earth; yorb is 
in the opposite direction of the angular momentum vector of the orbit; finally, the x-axis 
xorb is in the direction of the orbital velocity, but it is automatically defined because xorb = 
yorb x zorb. This frame is displayed in Fig.46. 
 
 
 
 
 

Figure 81: ECEF reference frame. 



 
 

3. Body Fixed Reference frame: liked shown in Fig.47, this is a non-inertial coordinate 
system, because it is fixed on the spacecraft. It has for origin the CoM of the vehicle, the 
main inertia axis of the spacecraft represents the direction axis, with zb = xb x yb thanks to 
the right-hand rule. 
 

 
 

Figure 82: Spacecraft Local Orbital frame. 

Figure 83: Spacecraft Body Fixed Reference frame. 



3.2 Operative environment 
 

  In order to make precise calculations while the spacecraft is in orbit, it is mandatory to consider 
the disturbances forces and torques due to space environment. The main disturbance elements 
which can modify orbit parameters are summarized in this subchapter. 

3.2.1 Aerodynamic Drag 

If a satellite moves towards a low orbit, it has affected by the Earth’s atmosphere. It makes its 

presence felt by a small drag, which decrease the velocity of the vehicle e modifies its path too. 
The atmosphere can be identified as a force in opposite direction of the velocity vector and can 
be calculated thanks to the following formula: 

 
𝐹𝑑𝑟𝑎𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −

1

2
𝐶𝐷𝜌𝑉

2 cos(𝛼) 𝐴 
(28) 

Where: 

 ρ is the atmospheric density. At an attitude of 400 km, its value is equal to 2.803∙
10−12𝑘𝑔 ∙ 𝑚−3; 

 V is the spacecraft velocity; 
 Acos(α) is the projected area perpendicular to V; 
 𝐶𝐷 stands for the commonly known drag coefficient. It is normally taken as 2.2. 

  In case the aerodynamic centre of pressure of the spacecraft and its centre of mass are not in the 
same position, this drag force will generate a disturbance torque Ta: 

 𝑇𝑎⃗⃗⃗⃗ = 𝑟𝑐𝑝⃗⃗⃗⃗  ⃗  ×  𝐹𝑎⃗⃗  ⃗ (29) 

rcp is the centre-of-pressure vector in a body coordinates frame and it is measured starting from 
the centre of mass. 

3.2.2 Solar radiation pressure 

Another element that can create a change of the orbital elements can be the flux of photons emitted 
by the Sun. This particles generate a pressure on the surface of the spacecraft which they hit. 
Obviously, this is a periodical effect due to both the period the vehicle faces the Sun and moreover 
the attitude. This force can be expressed as: 

 𝐹𝑠𝑢𝑛⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −𝜆𝐶𝑅𝑃0𝐴�⃗�  (30) 

In this case, these coefficients represent: 

 The shadow function 𝜆. When the satellite is in the Earth’s window, its value is of 0; 
  𝐶𝑅 is the radiation pressure coefficient. It relies between an interval of 1 and 2. For 

example, if it is made an assumption of 1.5, it means that the photons whom meet the 
spacecraft’s surface are half absorbed and half rejected; 

  𝑃0 is the solar pressure. It is considered constant at a value of 4.644∙ 10−6𝑁𝑚−2; 
 A symbolizes the projected vehicles’ area which is normal to the Sun vector; 
 �⃗�  is the vector pointing from the Earth to the Sun. 

  Like the precedent one, this disturb can produce a torque: 

 𝑇𝑠𝑢𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑟𝑠𝑝⃗⃗ ⃗⃗   ×  𝐹𝑠𝑢𝑛⃗⃗ ⃗⃗ ⃗⃗  ⃗ (31) 

rsp is the vector from the spacecraft optical centre of pressure to body centre of mass. 



 

3.2.3 Gravity gradient 

  Being an object which rotates around a planet, every spacecraft is subject to a gravitational 
gradient. Obviously, this attraction, varying trough an inverse-square law, is greater to the side 
more close to the planet. Consequently, this differential attraction will generate a torque which 
makes the spacecraft rotates in order to align the local vertical with its minimum inertia axis. This 
results in an periodic oscillation of the vehicle’s path. For a satellite in a near-circular orbit, this 
particular torque can be expressed as: 

 
𝑇𝑔𝑟𝑎𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  

3𝜇

𝑅3
𝑢𝑒 × [𝐼] ∙ 𝑢𝑒 

(32) 

 

 

Where: 

 R stands for the distance between the Earth’s centre and the spacecraft; 
 ue is the unit vector from vehicle to planet; 
 I is the spacecraft inertia matrix; 
 µ represents the Earth’s gravitational coefficient. It is equal to 3.986 ∙ 1012𝑚3/𝑠2. 

 

3.2.4 Earth magnetic field 

  As well known, the Earth is surrounded by a strong magnetic field: it is known as the 
magnetosphere (fig.48).  

 

When the spacecraft is immersed in this field, it is subject to a torque calculated with the following 
formula: 

Figure 84: Earth's magnetosphere. 



 𝑇𝑚𝑎𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  �⃗⃗� × �⃗�  (33) 

�⃗�  stands for the Earth magnetic field vector and it is expressed is Tesla; �⃗⃗�  is the spacecraft dipole 
movement, so it is measured in Am2.  

 

3.3 Rotational and kinematics dynamics 
 

3.3.1 Orbital parameters 

  An object orbiting around a planet has to respect the Kepler’s law of planetary motion: this 
means that the satellite can follows only curves paths denominated conic sections. This family of 
conics comprehend circular, elliptical, parabolic and hyperbolic paths (Fig.49). 

 

In order to identify a specific orbit, it results necessary to define six orbital parameters. First, it is 
needed to introduce some coefficients. The first one is periapsis: it represents the distance between 
the origin of the orbit and its closer point on the satellite’s path. Its opposite is the apopasis. The 

orbital elements are (Fig.50): 

 Semi-major axis a: it is the half sum of apoapsis and periapsis distances. It allows to 
comprehend the dimension of the orbit; 

 Eccentricity e: on the basis of its value, it is possible to understand the form of the path. 
- e = 0: circular orbit; 
- 0 < e < 1: elliptical orbit; 
- e = 1: parabolic orbit; 
- e > 1: hyperbolic orbit; 

 Longitude of ascending node Ω: the position in the orbit where the path of the spacecraft 
passes through the ecliptic plane, i.e. the ascending nodes. It is measured from the vernal 
equinox; 

Figure 87: Conic sections. 



 Inclination i: inclination between the orbit of the spacecraft and the reference plane. It is 
measured starting from the ascending node; 

 Argument of periapsis ω: it defines the angle between the periapsis and the ascending 
node; 

 True anomaly ν: it represents the position of the spacecraft at a specific time. 

 

 

3.3.2 Euler-Hill equations 

 
  When the problem under consideration is the proximity manoeuvres of rendez-vous and docking, 
it results necessary to define a non-inertial coordinate system in order to measure the relative 
distance and velocity between the Target and the Chaser. This moving system is fixed in the 
Centre of Mass of the Target satellite and the Chaser moves with it. The motion of this two 
spacecraft are described, respect to the mating point, thanks to the Euler-Hill equations, which 
derives from the linearization of the equation of motion in orbit. The homogenous Euler-Hill 
equations are: 

 
{
𝛿�̈� − 3𝑛2𝛿𝑥 − 2𝛿𝑛�̇� = 0

𝛿�̈� + 2𝛿𝑛�̇� = 0

𝛿�̈� + 𝑛2𝛿𝑧 = 0

 
(32) 

 

The previous equations can change if are considered both the disturbances and the control 
accelerations: 

Figure 88: Orbital elements. 

 



 
{

𝛿�̈� − 3𝑛2 − 2𝑛�̇� = 𝑎𝑥
�̈� + 2𝑛�̇� = 𝑎𝑦

�̈� + 𝑛2𝑧 = 𝑎𝑧

 
(33) 

 

It needs to define: 

1. x,y,z: distance beetwen the two satellites along the three directions; 
2. n: mean motion. It is defined as: 

 
𝑛 =  √

𝜇

𝑟0
3 

(34) 

3. The ai terms takes into the account the disturbance and the control acceleration. 

 
3.3.4 Rotational kinetics 

   

  Approximating the spacecraft as a rigid body, it is possible to define a method that allows to tie up 
the attitude of the satellite with its angular velocity ω. This is possible thanks to the Direction Cosine 
Matrix (or quaternions), which uses the Euler angles (φ, θ, ψ) (Fig.51), useful to represent the attitude 
in the model too.  

 

  In order to obtain the quaternion, it is necessary to integrate the following equation: 

 
�̇� =

1

2
𝑄𝜔 

(35) 

Where: 

 Q represents the following matrix: 
 

𝑄 =  [

−𝑞1 −𝑞2 −𝑞3
𝑞0 𝑞3 𝑞2
𝑞3
−𝑞2

𝑞0
𝑞1

−𝑞1
𝑞0

] 
(36) 

 ω is the rotation vector expressed in the body frame. 
 

Figure 91: Euler angles. 

 



  Using the second law of dynamics for rotating bodies, it is possible to relate the torque applied on 
the spacecraft to the angular momentum: 

 �̇� = 𝑇 (37) 

From this formula, is easy to obtain the Euler moment equation: 

 𝐽�̇� + 𝜔 × 𝐽𝜔 = 𝑇 (38) 

where J is the inertia matrix. 

 

3.4 Control design 
 

  In this chapter it is described the simulation model, in Matlab/Simulink, that allows to represent 
the motion of the Chaser and respect to the Target. The architecture of the model in Simulink 
environment is showed Fig.55: there are the dynamics blocks, which comprehend the rotational 
and translational dynamics of the spacecraft; the control blocks, both for translational and 
rotational motion and, finally, the block that contains the disturbance forces. 

  The model’s process starts with an input signal for the dynamics block by Guidance, Navigation 
and Control (GNC) system, which is exploited thanks to the presence of thrusters and reaction 
wheels. The output signal from this last block are the forces and the torques needed to change the 
trajectory of the satellite. This commands are taken by the chaser dynamic blocks, which includes 
the Hill equations, the Euler equations and the kinematic equations too. This signal is modified 
by the disturbance torques and forces generated from solar radiation pressure, aerodynamic drag, 
ecc. Finally, it will be generated the output signals, which consists in satellite attitude, its relative 
velocity and position and the control forces and torques (Fig.54). 

Figure 94: Dynamics block scheme. 

 



 

 

3.4.1 Translational dynamics model 

 

  Both the translational and rotational dynamics are taking into account in order to model as best 
as possible the motion of the Chaser approaching the Target. The first motion, described in the 
local orbit frame LVLH, used the later called Euler-Hill equations and its Simulink representation 
is pictured in Fig.56: 

 

{
  
 

  
 �̈� =

1

𝑚𝑐
𝐹𝑥 + 2𝜔�̇�

�̈� =
1

𝑚𝑐
𝐹𝑦 − 𝜔

2𝑦

�̈� =
1

𝑚𝑐
𝐹𝑧 + 3𝜔

2𝑧 − 2𝜔2�̇�

 

(47) 

 

Where: 

 mc is the mass of the Chaser satellite; 
 ω is the satellite’s angular velocity, expressed in rad/s, while it is orbiting around the 

Earth; 
 Fx, Fy, Fz are the amount of control and disturbance forces towards three direction, 

measured in N. 

The translational velocity in x, y and z are acquired integrating one time the equation in (47). 
Repeating this operation, it was possible to find the relative positions. As done in the precedent 
chapter, it is possible to linearize the Euler-Hill equations. The first one was: 

 �̇�(𝑘) = 𝐴(𝑘)𝑥 + 𝐵(𝑘)𝑢 (48) 

Where: 

 A and B are two matrix empirically defined as: 

Figure 97: Simulink model. 

 



 

𝐴 =

[
 
 
 
 
 

0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 2𝜔2

0 −𝜔 0 0 0 0
0 3𝜔2 0 −2𝜔2 0 0]

 
 
 
 
 

 

 

𝐵 =  

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0

1/𝑚𝑐 0 0
0 1/𝑚𝑐 0

0 0 1/𝑚𝑐]
 
 
 
 
 

 

(49) 

 

 

 The state vector x(k) which ties up the position and the velocity of the Chaser to the centre 
of mass of the Target: 

 𝑥(𝑘) = [𝑥 𝑦 𝑧 �̇� �̇� �̇�] (50) 

 The vector which contains the value of three forces along each direction u(k): 
 𝑢(𝑘) = [𝐹𝑥 , 𝐹𝑦, 𝐹𝑧] (51) 

 

  In order to find the control output u it is necessary to utilize both the error vector e(k), generated 
by the difference between the desired reference r and the state vector, and the proportional gain 
Kp. The control output was found thanks to the following formula: 

 𝑢 = 𝐾𝑝𝑒(𝑘) (52) 

 

In the end, it was possible to substitute these equations into the (48) formula and obtain the 
following structure of the state-space equation for translational dynamics: 

 

�̇� =

[
 
 
 
 
 

0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 2𝜔2

0 −𝜔 0 0 0 0
0 3𝜔2 0 −2𝜔2 0 0]

 
 
 
 
 

𝑥 +
1

𝑚𝑐

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1]

 
 
 
 
 

 

 

(53) 



 

3.4.2 Rotational dynamics model 

 

  For take into account the rotational dynamics it is mandatory to consider the contribution from 
the disturbance forces and the control torques. For that reasons, it was used the Euler equation 
into the block of the Simulink model (fig.57): 

 

The equation utilised to describe the rotational dynamics contains both angular velocity and 
acceleration, respectively ω and �̇�, the inertia matrix I and the totality of disturbance and control 
torques T: 

 I�̇� + 𝜔 × (𝐼𝜔) = 𝑇 (54) 

Isolating the angular acceleration respect to the inertial reference frame and integrating it one 
time, it was possible to obtain the angular velocity of the Chaser: 

Figure 103: Translational model. 

Figure 100: Rotational dynamics Simulink 
model. 

 



 �̇� + 𝜔 × (𝐼𝜔) = 𝑇 → �̇� = 𝐼−1[𝑇 − 𝜔 × 𝐼𝜔] 
→ 𝜔𝐵𝑂 = 𝜔𝐵𝐼 − 𝑅𝑂𝐵

𝑇 𝜔𝑂𝐼 
 

(55) 

Both the angular velocities are referred to the inertial frame, as well as the orbit velocity 𝜔𝑂𝐼; in 
the end, there is the rotation matrix ROB. For practical reasons, it is easier to state the attitude 
kinematics equations using quaternions instead of Euler angles: 

 𝑞𝑂𝐵̇ = [𝑄𝑂𝐵]𝜔𝐵𝑂 
 

(56) 

In these formulation compare: 

 QOB which is deriving from the quaternions and it interpreted as a Matlab functions: 
 

𝑄 =  [

−𝑞𝑂𝐵1 −𝑞𝑂𝐵2 −𝑞𝑂𝐵3
𝑞𝑂𝐵0 𝑞𝑂𝐵3 −𝑞𝑂𝐵2
−𝑞𝑂𝐵3
𝑞𝑂𝐵2

𝑞𝑂𝐵0
−𝑞𝑂𝐵1

−𝑞𝑂𝐵1
𝑞𝑂𝐵0

] 
(57) 

 The quaternion vector qOB which is written the orbital frame  
 

3.4.3 LQR-controller 

 

  Like anticipated in the previous chapter, this controller is used in order to control both the 
velocity and the position of the Chaser with respect to the Target spacecraft. As reference for the 
controller, it has been taken the vector [0 0 0] both for the reference position and velocity, 
considering the Target like a cooperative spacecraft, i.e. it does not move during the manoeuvre.  

  As it can be seen in the figure pictured below, the LQR controller calculates at each iteration the 
actual trajectory of the Chaser comparing it with the reference. The error vector generated from 
the difference between this two vectors is multiplied with the gain K of the LQR system, 
calculated thanks to a specified MatLab function. As output it is obtained the control signal values, 
which generates the control forces, that has been specifically limited between a minimum and a 
maximum. This functionality field is stabilized from the thrusters chosen for the CubeSat in exam: 

 −𝐹𝑡ℎ,𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝐹𝑡ℎ,𝑚𝑎𝑥 (58) 

  Speaking of the rotational dynamics instead (Fig. ?), it has been followed the same path. The 
quaternions vector combined with the angular velocity vector, they were compared to the 
reference vector, which was again [0 0 0], because the Target is not moving or spinning. 
Consequently, the error was tuned with the LQR gain and it generates the control torques, which 
it is again limited in a certain range gave this time by the Reaction wheels: 

 −𝑇𝑅𝑊,𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝑇𝑅𝑊,𝑚𝑎𝑥 (59) 



 

 

 

 

 

Figure 106: LQR controller for traslational motion. 

Figure 109: LQR controller for rotational motion. 

 



3.4.4 Neural Network Controller 

 

  In order to generate a neural network that can be implemented in the Simulink model, it has been 
used the Mathworks Neural Network Toolbox, which allowed to create the Neural Network 
controller both for the rotational and translational motion. The two blocks are shown in Fig.60 
and Fig. 61. 

Figure 113: Neural network controller for translational motion. 

 

Figure 112: Neural network rotational motion. 



    When the command “nnstart” is launched in Matlab’s command window, the toolbox offers 

four types of the design methods: 

1. Fitting app: using the supervised learning technique, it adapts the network to unknown 
data sets. Starting from the sample inputs, it trains the networks in order to generate the 
desired outputs. This type of technique is consequently particularly suited for modelling 
and controlling dynamic system; 

2. Pattern recognition: starting from the supervised or unsupervised classification, it is based 
on finding some equal characteristics between a class of objects. This learning technique 
is useful, for example, in text classification or radar processing; 

3. Clustering: it creates a neural network finding similarity hidden patterns or groupings in 
data, using the unsupervised methodology. For this reasons, it is used in object 
recognition; 

4. Regression: the input and output are linked in a relationship recognized by the algorithms. 
 

  In this paper, it has been used the first design method. This technique foresees of solving a certain 
kind of problem using a two-layer feed-forward neural network. In particular, it draws from the 
Matlab workspace the necessary data (the input and output vector) in order to train efficiently the 
net. For defining the network, it is necessary to indicate the number of hidden layers, which are 
constituted by a not specified numbers of sigmoid hidden neurons, followed by linear output 
neurons. The hidden neurons are activated by a sigmoid function, which has the following 
formula: 

 
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 

(60) 

 

  The performance of the NN is evaluated looking at the mean squared error (MSE) and regression 
analysis. If the MSE has a near-zero value, it means that there is no error. Regarding the regression 
R instead, a value of 1 means a close relationship between outputs and targets. The obtained 
results can be recalculated if they are not quite right, going to retraining the net using a modified 
data set.  

 

3.4.4.1 Training of the NN 

3.4.4.1.1 Translational motion 

 

  The first step in order to obtain the NN block in Simulink environment is to obtain both the 
trajectory and the commands vectors from the LQR control. Generating the error vector and the 
LQR output vector, it has been possible to utilize this twos respectively for constituting the input 
data to present to the network and the target data that defines the desiring network output. Initially, 
it has been chosen a number of six hidden layers. Training the network, it has been possible to 
generate the regression plots. If the fit is perfect, the data are placed along a 45 degree line: this 
means that the output are equal to the targets. The figure pictured below (Fig. 62) shows how, 
after every training, the R value is changing. With the aim of approaching the unit value, it has 
been chosen to decrease the number of hidden layers: it this way, the network has not the 
necessary power to overfit the data. Retraining the net with this new number of hidden layers, it 
has been found very quickly the desired R rate and it has been possible to generate the Simulink 
control block. 



 

 

3.4.4.1.2 Rotational motion 

 

  It is the same process of the translational motion. As input data it has been again used the error 
vector and as target the LQR output vector. The net has followed the same step of translational 
motion network, but, in this case, the number of hidden layers has been lowered to 5. After a 
certain amount of training session, the regression plot has been the following: 

 

 

 

 

Figure 116: Final training session of translational motion. 

 



4. Results 
 

  As reported in the initial paragraph of this dissertation, the aim was to confronting the control of 
the spacecraft with one standard controller and with the neural network. In order to do so, through 
a Matlab code, there were stabilized the nominal properties of the Chaser and its initial condition. 
The physical characteristics were: 

 Mass: 10 kg; 
 Lx : 0.2 m; 
 Ly. 0.1 m; 
 Lz: 0.3 m; 
 Ix : 0.0833 kgm2; 
 Iy: 0.10833 kgm2; 
 Iz: 0.04166 kgm2. 

  The orbit parameters have to respect the boundary region gave by the LEO. The orbital elements 
chosen to be set are the orbit altitude h and the orbit inclination i. In particular: 

 h: 400 km; 
 i: 98°. 

  With the aim of obtain a desired response for the trajectory and attitude, it has been also 
calculated the gain of the LQR-controller, which is a 3x6 matrix. For having a full picture of the 
problem, it was necessary to take into account the disturbance forces. The type of force and its 
relative values are listed below: 

 Aerodynamic Drag: Fa ~ -10-6 N; 
 Solar radiation pressure: Fsun ~ 10-5 N; 
 Aerodynamic Torque: Ta ~ 0.2124e-7 Nm; 
 Solar radiation torque: Tsun ~ 10-8 Nm; 
 Gravity gradient torque: Tg ~ 10-8 Nm; 
 Magnetic torque: Tm ~ 10-7 Nm. 

  Like anticipated in the previous subchapter, both the thrusters and the reaction wheel gave a 
boundary region which the control forces and torques must have retuned. In particular: 

 −0.4𝑁 ≤ 𝐹𝑡ℎ ≤ 0.4𝑁 (61) 

 

 −0.01𝑁𝑚 ≤ 𝑇𝑅𝑊 ≤ 0.01𝑁𝑚 (62) 

4.1 Nominal condition: translation motion 
 

  The nominal condition of the Chaser were: 

 x: 50 m; 
 vx: 0.15 m/s; 
 y: 2 m; 
 vy: 0 m/s; 
 z: 0 m; 
 vz: 0 m/s. 



These inputs were taking into account by the LQR-controller which utilized them in order to 
generate the control vectors. After that, it has been possible to train the NN controller, shows in 
in Fig.63, more than one time. In this way, it has been done an initial comparison between the 
behaviour of the spacecraft under the control of the LQR and of the Neural Network. Like pictured  

 

 

in Fig.64, with the LQR, the Chaser reaches the Target after almost 1000 seconds in x, while the 
y target is accomplished after only 200 s. Of course, the z position stays equal to 0. 

Figure 119: Chaser-Target relative position, LQR control. 



From the graphics presented below, it is possible to make a first comparison between the control 
made with the LQR and the control with the ANN. In this second case, it is possible to observe: 

1. The desired x position is reached in an equal time both using LQR or the NN controller; 
2. The y position computed with the neural network is different respect to the first case: now, 

the target it is reached after about 800 s; 

Figure 122: Chaser-Target relative position, NN  control. 

 



3. Finally, it can be observed a fluctuation in the graphics of the z position. It is important to 
underline that this oscillation stays in a range of 10-3 m. So it is almost the same both for LQR 
and NN. 
 
Plotting the relative velocities, it has been possible to create the following graphics (Fig.65 & 
66): 

 

 

 

 

 

 

 

Figure 125: Chaser-Target relative velocity, LQR control. 



 

1. The curves of the two vx velocities are practically the same; 
2. The velocity in y direction reaches the desired goal below 200s in the first case, while it 

takes over 500 s to the ANN to give the same results; 

Figure 126:Chaser-Target relative velocity, NN  control. 

 



3. Both the vz present an initial overshoot, followed by a quickly achievement of the desired 
target  

  Finally, the last comparison has been made between the forces for each axis. The two figures 
(Fig.67 & 68) are pictured right below: 

It is possible to notices that, in the first case, the three forces reach the zero line after about 600 
second. On the other hand, the forces controlled with the artificial network reaches the desired 
spot after 750 seconds. 

Figure 130: Chaser-Target relative forces, LQR control. 

 

Figure 127: Chaser-Target relative forces, NN control. 

 



  After all this confrontations, it is already possible to note that, despite the fact that in most cases 
the neural network needs more time to reach the desired target, it responds generally very 
efficiently to the extern conditions. In the next chapter are therefore presented some simulations 
with different output for each of them.  

 

4.2 Different conditions: translational motion 

4.2.1 Simulation 1 

  After have studied the nominal conditions, the necessary next step has been to prove the Neural 
network changing the nominal conditions, setting new values to the position and velocity 
parameters, and adding a disturbance force too. In the first simulation, it has been chosen the 
following conditions: 

 x: 60 m; 
 vx: 0.15 m/s; 
 y: 2 m; 
 vy: 0.012 m/s; 
 z: 0 m; 
 vz: 0 m/s; 
 Disturbance force: -2e-6 N; 

Figure 133: Chaser-Target relative position, NN  control. 



  The simulation shows how the desired position has been reached, even though the conditions 
have been change. It is interesting to note that the disturbance force induce a noise which turns 
into an oscillation both in the velocity and force graphs. Despite of it and the change of initial 
conditions, the Chaser makes the manoeuvre in the right way. The results of this simulation are 
shown in Fig. 69, 70 and 71: 

Figure 136: Chaser-Target relative velocity, NN control. 



 

The final values of position and the velocity along three axis are: 

 Xf,nn = 4.144e-02 m; 
 Yf,nn = -7.926e-03 m; 
 Zf,nn = -3.560e-5 m; 
 Vxf,nn = -1.968e-04 m/s; 
 Vyf,nn = -1.785e-05 m/s; 
 Vyf,nn = -1.758e-08 m/s; 

 

4.2.2 Simulation 2 

 

  Differently from the first simulation, during the second one it has been decided to increase the y 
position and the disturbance force, at the expanse of the x position. The precise values are: 

 x: 55 m; 
 vx: 0.15 m/s; 
 y: 4 m; 
 vy: 0.012 m/s; 
 z: 0 m; 
 vz: 0 m/s; 
 Disturbance force: -2e-5 N; 

  Setting a simulation time of 1500 seconds, the obtained results are similar to the precedent 
simulation, the Chaser reaches again the Target, in spite of the changed parameters, in particular 
despite of the augmented disturbance force. The graphs of position, velocity and force are pictured 
below (Fig. 72,73 & 74): 

Figure 139: Chaser-Target relative forces, NN control. 

 



 

 

 

Figure 142: Chaser-Target relative position, NN control. 



 

 

   

Figure 145: Chaser-Target relative velocity, NN control. 

 



 

  In this case, the final values for each calculated parameters is: 

 Xf,nn = 3.793e-02 m; 
 Yf,nn = -8.09e-03 m; 
 Zf,nn = -3.593e-05 m; 
 Vxf,nn = -1.768e-04 m/s; 
 Vyf,nn = -1.783e-05 m/s; 
 Vzf,nn = -1.524e-08 m/s; 

 

4.2.3 Simulation 3 

 

  In the final simulation, once again the position along the x axis is decreased, while the 
disturbance force value is further increased like the velocity in y. The orbital parameters, the 
Chaser physical characteristics and the simulation time remain all the same. For this third 
simulation, the input parameters are: 

 x: 30 m; 
 vx: 0.15 m/s; 
 y: 4 m; 
 vy: 0.015 m/s; 
 z: 0 m; 
 vz: 0 m/s; 
 Disturbance force: -2e-4 N; 

  Running the simulation, the following graphs (Fig. 75,76 & 77) are obtained: 

Figure 148: Chaser-Target relative forces, NN  control. 

 



 

 

 

Figure 151: Chaser-Target relative position, NN  control. 



   

 

 

 

Figure 154: Chaser-Target relative velocity, NN control. 

 



It is possible to see that the desired response is reached once again, nevertheless the system takes 
longer time to “fight” with the disturbance force and shut down the noise. The final values of 

position and velocity are: 

 Xf,nn = 2.172-02 m; 
 Yf,nn = -9.368e-03 m; 
 Zf,nn = -3.750e-05 m; 
 Vxf,nn = -9.686e-05 m/s; 
 Vyf,nn = -1.395e-05 m/s; 
 Vzf,nn = -7.612e-09 m/s; 

 

4.3 Rotational motion: nominal conditions 
 

  After studied the translational motion, it is the moment to relate with the rotational motion of 
the spacecraft. Like done before, it has been made a confront between the control obtained with 
the LQR technique and the one generated by the Artificial Neural Network outputs. In this case, 
the network has been trained like did for the translational motion, but it is now formed by 5 hidden 
layers. The simulation time remain the same, while the new nominal conditions are: 

 φ = 10°; 
 θ = 10°; 
 ψ = 10°; 
 ωx = 0.5 rad/s; 
 ωy = 0.5 rad/s; 
 ωz = 0.5 rad/s; 

Figure 157: Chaser-Target relative forces, NN control. 

 



  In the figure pictured below, there are shown the Chaser attitude angles and the Chaser angular 
velocities when it has been controlled with the LQR technique (fig.78,79 & 81). Right after that, 
there are pictured the same parameters, but for the control with the Artificial Neural Network 
(fig.80,82 and 83). 

Figure 160: Chaser attitude angles, LQR control. 

 
Figure 161: Chaser torques, LQR control.Figure 162: Chaser attitude angles, LQR control. 

Figure 163: Chaser angular velocities, LQR control. 



 
 

Figure 165: Chaser torques, LQR control. 

 

Figure 164: Chaser attitude rates, NN control. 



 

4.4 Attitude control: new conditions 

4.4.1 Simulation 1 

 

  Like did before, the Neural Network has been tested to several inputs coming from the Matlab 
environment. For the first simulation, the input vector was formed by this following 
characteristics: 

 φ = 20°; 
 θ = 15°; 
 ψ = -6°; 
 ωx = 0.5 rad/s; 
 ωy = 0.5 rad/s; 
 ωz = 0.5 rad/s; 
 Disturbance torque: 10-6 Nm. 

Figure 168: Chaser control torques, NN control. 



Using this input vector in Simulink, and remaining fixed the simulation time, the obtained graphics 
have been pictured right below (Fig.83, 84 & 85): 

Figure 172: Chaser attitude rates, NN control. 

 

Figure 169: Chaser attitude angles, NN control. 

 



  It is possible to notice that, despite the presence of a disturbance torque, the NN control can still 
control in an efficient way both the angular velocities and the attitude angles. The simulation time 
has been of 1500 seconds, but in the graphics has been shown only until 50 seconds circa. 

 

4.4.2 Simulation 2 

 

  The initial conditions have been again changed respect to the precedent simulation. In particular, 
in this case, it has been chosen the following input: 

 φ = -2°; 
 θ = 15°; 
 ψ = 11°; 
 ωx = 0.06 rad/s; 
 ωy = 0.06 rad/s; 
 ωz = 0.06 rad/s; 
 Disturbance torque: 10-5 Nm. 

 

  In this case, all the data have been changed respect to the precedent simulation. In particular, the 
roll angle has been set negative and the disturbance torque has been increased of an order of 
magnitude. The graphics of the angular velocities, angles and control torques using the NN control 
are respectively shown in the fig.87, fig.88 and fig.89:  

Figure 175: Chaser control torques, NN control. 



 

Figure 179: Chaser attitude angles, NN control. 

 
Figure 180: Chaser attitude rates, NN control.Figure 181: Chaser attitude angles, NN control. 

Figure 176: Chaser attitude rates, NN control. 

 



   

It is possible to notice that the target values are obtained in a very small interval, but the time of 
operations is increased until 250 seconds circa. This augmentation can be seen as a positive factor 
because it corresponds to a slower response of the system to the external output. Consequently, 
since the dynamics of the body is less relevant, the inertial forces acting on the structure will be 
minor with respect to the other case. In this way also the stress associated to the loading condition 
will be lower, resulting in a decrease of the possible vibrations during the motion too. 

 

4.4.3. Simulation 3 

 

  Finally, it has been a last test on the Artificial Neural Network. Its efficiency has been submitted 
to this following conditions, but with adding a sun sensor: 

 

 φ = -2°; 
 θ = 15°; 
 ψ = 11°; 
 ωx = 0.06 rad/s; 
 ωy = 0.06 rad/s; 
 ωz = 0.06 rad/s; 
 Disturbance torque: 10-5 Nm; 
 Sensor error: 10-4. 

Figure 182: Chaser control torques, NN control. 



 

Figure 184: Chaser attitude angles, NN control. 

 
Figure 185: Chaser attitude rates, NN control.Figure 186: Chaser attitude angles, NN control. 

Figure 183: Chaser attitude rates, NN control. 



 

  The error of this sensor plays a major role in the Chaser attitude rate plot and the one of the 
control torques (Fig. 89 & 91), while it does not effect in a consistent way the other parameter 
(Fig. 90). In fact, because of the presence of the sensor, these graphics have both shown some 
oscillations. Luckily, these fluctuations are small, so they did not effect very significantly on the 
proximity operation of the satellite, allowing the spacecraft to complete the docking manoeuvre. 

 

4.5 Discussion 
  In the precedent chapters, there have been presented various scenarios that the satellite may be 
facing. So, it has been proven that the NN trained with an LQR controller has an equivalent 
capacity of control the spacecraft, both for the translation and the rotational motion. From the 
precedent simulations, it is important to underline two aspects: 

1) Despite the adding of a disturbance force and/or torque (and a sun sensor too), the network 
has efficiently learned how to fight them and still control the spacecraft in order to 
complete the docking operation. The only presence of a sun error is linked to a fluctuation 
of  

2) For particular parameters, like the attitude angles, the NN controller has the capability of 
working as fast as the LQR and reach the right values in less than 30 seconds. 
 

 

 

  

Figure 187: Chaser control torques, NN control. 



5. Conclusion 
 

  Like said from the beginning, the principal of this dissertation was to develop a new control 
strategy in order to fulfil a rendez-vous and docking manoeuvre between two 6U CubeSats, 
respectively a Chaser and a cooperative Target, whom operate in a LEO. The description of this 
phase has been entrusted to the initial chapter, where it is possible to find some useful information 
about the components that can be used in the design of ADCS and GN&C of a small satellite. 
This sorting of instruments has been useful in order to stabilize the boundaries and the limits 
which the Chaser could achieve. 

  The principal problem has been to carry the Chaser from one point in the space to a desired one, 
with a determined value of velocity too. In order to achieve this goal, it have been utilized two 
techniques. The first one based the control of the spacecraft on a LQR controller; conversely, the 
second one take advantage of a new technology; the Artificial Neural Networks. This ANN have 
been trained in a Matlab/Simulink environment with the LQR controller itselves. 

  Using the toolbox provided by Mathworks, it has been possible to train the network as desired, 
and follow the entire process, selecting each parameter at will, like the number of hidden layers 
that constitute the network. The input and the output data utilized to teach the nets came from the 
Matlab workspace. During this phase, it has been important not to overtrain the network, i.e. the 
NN loses the capacity to generalize the problem which lead to a poor performance, or undertrain, 
that it has been possible to avoid training the network a reasonable number of time. Moreover, it 
has been crucial to decide the right amount of hidden layers and the dimension of the training data 
set. For the case studied in this thesis, for the translational motion it has been necessary only one 
training of the network to obtain excellent results. Differently, the rotational motion required 
several training sets to achieve good performances. 

  As described in the simulation chapter, it is possible to notice that NN control are a good 
alternative to the most common utilized technique. In order to achieve a good results, it is 
important to: train the net efficiently and with large data set; avoid overtraining and/or 
undertraining; pick the right number of hidden layers, in order to optimize the performance. More 
complex is the network, better it can deal with external output, but with a higher computational 
time. If all this requests are fulfilled, the network can adapt to every kind of external outputs and 
work with and extremely precision and accuracy. 

  For future works, in order to increase performances, it can be useful to train the ANN with a 
different kind of controller and training it with a larger data set.  
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