
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master Thesis

Remote Attestation on light VM

Supervisor
prof. Antonio Lioy

Candidate

Fabio Vallone

Accademic Year 2016-2017

To my parents, who
helped me during this
journey

Summary

In the last decade Cloud Computing has massively entered the IT world, changing
the way services are offered to the final users. One important aspect of Cloud
Computing is the needs to provide greater scalability and flexibility and this can
be done by using a technique called Virtualization. This enables us to execute
different virtualized ambient on a single piece of hardware. Each virtualized ambient
can be seen as a node that offers some services to the final users by exchanging
information with other nodes. For this reason the ability to trust each other is
growing exponentially. This process is called Remote Attestation and it is from this
consideration that the thesis work start.

When we say that a node is trustworthy, we are saying that we are sure that all
the file that are loaded into memory are the ones that are supposed to be loaded. In
other word we need to be sure that the code, and in general the files loaded on that
node, have not been tampered by anyone in order to produce a different behaviour
of the node. It is important to note that we are not checking in anyway that the
behaviour of the machine is logically correct, but we are simply checking that no
one has modified it, so bug and logical error can still occurs in the code. In order to
prove its trustworthiness, a single node must be able to report his integrity status to
a third one. This can be done by using the techniques and technologies developed by
the Trusted Computing Group (hereafter TCG). The set of the solutions proposed
by the TCG constitute the Trusted Computing technology. They are all based on a
particular chip called Trusted Platform Module (TPM), which is now broadly avail-
able in most modern motherboard. Basically the TPM offers two type of operation:
Secure data storage and cryptography. In particular the data can be stored in a very
reduced set of registers, called PCRs. For the purpose of the Remote Attestation
process, it is possible to store every measure done by the TPM inside the PCRs by
simply extending the old value of the register with the new one by using an hash
function.

All the techniques developed by the TCG were initially developed in order to
work with physical machine. Since nowadays most of the node in the cloud are no
longer physical machine, all the concept introduced with the Trusted Computing
methodologies have been recently extended to cover also virtual nodes. However in
the last years a new virtualization technique, called Light Virtualization, is raising
fast. The main advantage of this new technique is that is generally faster and less
resource consuming on the host machine. This is done by avoiding to load a full copy
of the OS for each virtualized ambient, but instead, using layers and granting direct
access to the resource of the machine to the various virtual nodes. In particular, in
a standard virtualization mechanism, all the nodes are managed by a broker, called

iv

hypervisor, while with the light Virtualization, they are managed directly by the host
operating system. All the thesis work is focused on a particular light virtualization
engine called Docker.

Less isolation means also less security. For that reasons we need to extended
the work done by the TCG also to the light virtualization world. Some work in
that direction has already been done by the TORSEC research group inside the
Politecnico di Torino. They proposed a solution that makes use of a modified version
of the Open Attestation Framework (OAT) and the IMA modules, in order to create
an architecture that is able to attestate an host running on docker. This solution
exploit the IMA module of the kernel in order to create a list of measurements
associated with each container running inside an host. By exploiting the OAT
framework it is possible for an Appraiser, to send an Attestation Request to a node,
that respond with an Integrity Report (compiled using the list of measurement done
by IMA). The IR is than checked by controlling that all the hashes are available
also in a whitelist db. If some of the hashes into the IR are not contained into the
whitelist db, then the container is probably under attack.

However the solution is based on a functionality available inside the docker stor-
age driver DeviceMapper that has been extensively changed starting from v1.10.
The thesis work starts by adapting the existing architecture to the latest version
of docker. This is done by studying how DeviceMapper is changed after v1.10 and
how it maps each container to the underlying devicemapper folder. After a brief
analysis, a new logical mapping procedure has been developed. Though the solu-
tion is working, it also introduces a big overhead in terms of time when creating an
Integrity Report. This big overhead comes from the extensive use of I/O operations
in order to retrieve all the information necessary for the mapping. Since a big part
of them are already available in the docker CLI, and the GO programming language
is highly optimized for managing the Unix sys call, all the mapping logic is moved
to a new docker CLI command, called raInfo.

After resolving thie initial issue, the work moves on by identifying some flaws of
the architecture proposed and how it is possible to resolve them. In particular it was
necessary to study how IMA works in detail, since, by the default, a particular file
is measured only the first time it is actually loaded into memory. Since with docker
is possible to share a portion of the host filesystem between multiple container, it
is also possible that a particular file can be loaded multiple time inside different
containers. However this file can be allowed only in some container and not in all of
them, but since IMA measure that file only the first time, then we are not aware that
this file is in execution on multiple containers. In order to resolve that problem, the
IMA module has been changed by adding two kernel boot parameters that enables
the deactivation of his internal caching mechanism.

In conclusion, the proposed solution by this thesis enables the Remote Attesta-
tion process on Docker v1.10+, and resolves some issues found during the previous
development of the project. It also extends the IMA module by enabling to control
each cache system independently. The solution is then compared to similar solutions
available in the market.

v

Acknowledgements

A special thanks goes to Tao Su, PhD candidate inside the research group TORSEC
of the Politecnico di Torino, who helped me during the development of the thesis
work, and to Marco De Benedictis, researcher inside the TORSEC group of the
Politecnico di Torino, who helped me during the writing of the thesis. A general
thanks goes to all the members of the TORSEC research group, which were always
available to help me when needed.

vi

Contents

Summary iv

1 Introduction 1

2 Background 5

2.1 Trusted Computing . 5

2.1.1 Trusted Systems . 6

2.1.2 Trusted Platform Module . 6

2.1.3 Chain of trust . 7

2.1.4 Integrity Measurement Architecture 8

2.2 Remote Attestation . 9

2.2.1 OAT Framework . 10

2.2.2 Integrity Verification Proxy 11

2.2.3 Light Virtualization . 12

2.3 Docker . 13

2.3.1 Containers . 14

2.3.2 Images and repositories . 15

2.3.3 Storage Driver support . 16

3 Remote Attestation on Light VM 17

3.1 Security in Docker . 17

3.1.1 Kernel namespaces and control groups 17

3.1.2 Docker Kernel capabilities . 18

3.1.3 Docker Content Trust . 19

3.1.4 Attack surface . 20

3.2 SECURED project . 21

3.2.1 Introduction . 21

3.2.2 NED and NFV . 21

vii

3.2.3 Architecture . 23

3.3 OAT Framework for Docker . 24

3.3.1 HostAgent . 25

3.3.2 Appraiser . 26

4 Project changes 28

4.1 Introduction . 28

4.2 OAT for Docker . 29

4.2.1 Docker’s DeviceMapper indirection 29

4.3 Docker . 31

4.3.1 A new command for docker 31

4.4 Linux Kernel . 32

4.4.1 IMA caching policies . 32

5 User manual 35

5.1 Prerequisites . 35

5.2 Linux Kernel configuration . 36

5.2.1 Patching the kernel . 36

5.2.2 Compiling the kernel . 36

5.2.3 Activating an IMA custom policy 38

5.3 Docker Configuration . 38

5.3.1 Installation . 38

5.3.2 Enabling DeviceMapper . 39

5.3.3 Patching and Compiling the Docker CLI 40

5.4 OAT Appraiser configuration . 41

5.5 OAT HostAgent configuration . 44

5.5.1 vTPM . 45

6 Programmer manual 46

6.1 Docker changes . 46

6.2 IMA changes . 50

6.3 OAT HostAgent changes . 53

6.3.1 v1 changes . 53

6.3.2 v2 changes . 56

viii

7 Software alternatives 58

7.1 Intel CIT . 58

7.1.1 Architecture . 58

7.1.2 Intel TXT . 60

7.1.3 Image Integrity . 60

7.2 Core Os . 61

7.2.1 Container Linux . 61

7.2.2 Rocket . 62

7.2.3 Trusted Computing . 63

7.3 Comparisons . 64

7.3.1 Features . 64

7.3.2 Performance . 65

8 Results and conclusion 67

8.1 Results . 67

8.2 Where to go next . 69

8.3 Conclusions . 72

Bibliography 74

ix

Chapter 1

Introduction

In the last years we have assisted to the rapid grow of Cloud Computing. It has
changed the way IT services are offered and accessed from the users. Cloud Com-
puting can be seen as an agglomerate of physical server who work together in order
to provide greater flexibility, cost reduction and service availability. The pool of
hardware resources assigned to a particular service can be changed to the need.
With this infrastructure the user no longer needs to install a specific software in
order to access its services and also the services can be accessed anywhere, the only
requirements are an internet connection and a browser. However, with this new
technology, we need to put special attention to the problem of IT security since it
provides less control on the client connecting to the service.

With the grow of Cloud Computing we have seen also the grow of Virtualization
Technique that enable us to emulates physical hardware resources in order to easily
escalate our infrastructure when needed. This will lead us to the concept of Cloud
Computing of today and, as defined by the National Institute of Standards and
Technology (NIST): [1]

“Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction.”

Some key features which a Cloud Computing has to offer are:

� On-demand self-service: It is possible to acquire, when needed, all the
computation power necessary for the service to work, without the need of an
interaction with the service provider

� Broad network access: Services are available into the network and can be
accesses with standard mechanism and with different platform

� Resource pooling: Hardware resources are no longer dedicated to a single
user or service, instead they are shared with multiple services and they can be
dynamically reassigned at need

1

1 – Introduction

� Rapid elasticity: Resources can be dynamically acquired and released when
needed in order to rapidly escalate to the service demands. Often resources
are seen as unbounded to the service consumer

� Measured service: Hardware resources consumption can be monitored so
that both the service provider and the service user are aware of it

Cloud Computing was developed in order to work with physical hardware, so that
all the services runs directly on the Operating System of the server. With the grow
of Virtualization technique, services provider, start to understand the benefit of
using such technology. It enables them to run different services and application
on the same physical hardware granting, at the same time, all the isolation level
needed for security purposes. Also they are able to provide great scalability and
fast response to the service user needs. All this technology is based on the figure
of the Hypervisor, a special software controller that emulates and manages all the
hardware resources needed to the various virtual machines. However one aspect
that needs to be considered with the classical virtualization technique is the high
overhead introduced especially for the management operations of a virtual machine,
such as the startup process.

For resolving this issue, in the last years, a new virtualization technique is grow-
ing fast. This technique is called Light Virtualization [2] because it provides more
or less the same features provided by a classical virtual machine but without the
big overhead introduced by it. In fact the hypervisor is no longer used, instead
the hardware resources are managed directly by the kernel of the host Operating
System. In a light virtualized ambient a single Virtual Machine is called Container.
In order to reduce the overhead, more containers share the same underlying virtu-
alized Operating System so that it is not necessary to load all the virtual hardware
resources and OSs for each containers. The files of the virtual OS are shared with
a particular filesystem called layer fs (based on the linux Union FileSystem). Each
container is isolated from other by using the kernel capabilities of the underlying
host kernel.

In this context, IT Security, is assuming a very important role, no matter the
technique that is used. This is due to the fact that a machine, physical or virtual,
is always accessible by the external network and it is exposed to various type of
attacks. In particular it is possible to manipulate a node in order to produce different
behaviour. For this reason it is very important to have the ability to test the integrity
status of a remote node in order to trust him. All the technology developed in that
direction goes under the name of Trusted Computing.

This technology is developed by the Trusted Computing Group (TCG) [7] and
have at the core the ability to perform the Remote Attestation process. At the
beginning all the processes were developed in order to work with physical nodes.
However, since most modern cloud rely on virtualization technique, they were ex-
tended in order to work also with this type of infrastructure. In particular it is
possible to Remotely Attestate a classical Virtual Machine (so the one with the
hypervisor) by using a component called Integrity Verification Proxy (IVP) [11] by
simply putting trust in the host operating system and the IVP with the standard
Remote Attestation procedure and then ask the IVP to instantiate a connection

2

1 – Introduction

with a VM if and only if the machine meets the requirements given at connection
time by the client. However in order to resolve the bottleneck derived from the
utilization of the standard VMs a new virtualization technique is developed. This
technique is called Light Virtualization and remove the role of the hypervisor, since
all the VMs (now called containers) are now directly managed by a daemon running
directly on the host OS. This, in combination with a layered fs, enables to avoid
adding up too much overhead in the management process of the containers.

All the thesis work is done under the European funded project called SECURED
[3], that has the main aim to bring security to all device regardless its processing
power. In a classical infrastructure all the security software runs directly on the end
devices, like PCs, SmartPhone, Servers, etc. The problem of that infrastructure is
that most of the time devices with low computation power, like the IoT ones, will
not run any security application and in consequence they are highly vulnerable to
cyber attacks. In order to resolve this problem, the SECURED project, proposed a
new architecture where all the Security Applications runs inside a single node called
Network Edge Device (NED) [4]. As the name says, it is the device that stays at
the edge of the trusted network, like a router. The NED works with a technology
called Network Function Virtualization (NFV) [4], that uses a light virtualization
technique, and it needs to be trusted. The main aim of the thesis work is to introduce
the Remote Attestation procedure on the figure of NED.

At the time of writing of this thesis, some commercial solutions are available
but no one of them can introduce run-time Remote Attestation as needed by the
SECURED project. The thesis work start up in this condition and take up the
research work done by the TORSEC [5] group.

The remaining part of the thesis is structured as follow:

� Chapter 2: In this chapter we are going to introduce all the concept and
terms useful in order to better understand the thesis work presented in the
next chapters. In particular we will start by defining the Trusted Computing
and we will then focus to the Remote Attestation procedure. The chapter
finish with a brief introduction to the docker world, that is the platform used
to provide light virtualization in the development of the thesis

� Chapter 3: In this chapter we will discuss the state of the art regarding the
Remote Attestation process for a light virtualization technique. In particular
we will start by discussing on what docker already made us available in term
of security, and instead, what is its possible attack surface. We will then move
on by analyzing what is the SECURED project and what are its aim, finishing
up by discussing what already has been done inside the project in order to
resolve the problem of Remote Attestation on a light VM

� Chapter 4: In this chapter we will discuss what has been done during the
thesis work in order to achieve the Remote Attestation process. In particular
the attention is focused on the resolution of two main problems arised during
the thesis work. We will start by analyzing the solution proposed in order to
resolve the issue related to the new mapping mechanism introduce by docker
v1.10+ and we will finishing by analyzing what has been done in order to
resolve the caching mechanism of IMA

3

1 – Introduction

� Chapter 5: This chapter represent a User Manual that will introduce all the
concept and step necessaries in order to make the solution proposed work. In
particular it will start by patching and compiling a custom version of the linux
kernel, it will continue by installing and configuring the docker daemon while
patching, compiling and installing a custom version of the docker cli. Finally
are reported the step necessary in order to successfully patch and install the
custom version of the Open Attestation Toolkit needed by this project

� Chapter 6: In this chapter is available a quick programmer manual, where
all the modification done to the various project are available in a source code
format. All the source code is commented so that it is easier to understand
for future development on this topics

� Chapter 7: In this chapter we will analyze some alternative solutions like
Intel Cloud Integrity Technology and Core Os. After that we will make a brief
comparisons between them and the proposed solution

� Chapter 8: In the last chapter we will sum up all the thesis work and we will
make the conclusions

4

Chapter 2

Background

As the use of Cloud Computing [1] continues to increase significantly, more and more
importance is assuming the needs of a node to be able to trust other nodes. Cloud
nodes are connected directly each other and to the network so it is extremely im-
portant to be able to recognize if a node has been tampered in a way that the
original behaviour has been changed. From this preview is clear that computer se-
curity is increasingly assuming a central role in cloud computing. In this chapter we
will introduce all the topics needed in order to understand better the architecture
proposed in the next chapters. In particular in section 2.1 we will introduce the
concept of Trusted Computing and Trusted Platform, in section 2.2 we will intro-
duce the concept of Remote Attestation and in section 2.3 we will briefly discuss the
Docker platform and how it works.

2.1 Trusted Computing

The Trusted Computing is an idea introduced in the late ‘90s by the Trusted Com-
puting Group (TCG) [7] in order to define the concept of “trustworthiness” of an
IT platform. As described by IETF in the RFC 4949 [6], a system is trusted if:

“$ trusted system 1. (I) /information system/ A system that operates as
expected, according to design and policy, doing what is required – despite
environmental disruption, human user and operator errors, and attacks
by hostile parties – and not doing other things [NRC98]. (See: trust
level, trusted process. Compare: trustworthy.)”

Nowadays that all the nodes are connected each others inside and outside the
local network, it is not only important to protect the information exchanged by using
protected channels, but also to be able to verify the integrity status of each nodes.
This is extremely important because, no matter how we protect the exchanged data,
but if a node is compromised, it will act in a bad way, possibly compromising the
data received.

All the technologies developed toward this aim are done by the Trusted Comput-
ing Group (TCG) and are based on a chip called Trusted Platform Module (TPM).

5

2 – Background

This chip is used as the root of trust for all the Trusted Computing features devel-
oped by TCG. It is important to note that all the technology are not developed in
order to recognize a compromised machine in the hardware component, but only in
the software one.

2.1.1 Trusted Systems

The most important features that a trusted system [6] must implement are:

� Trusted Platform Module: The Trusted Platform Module (TPM) is a chip
that is designed in order to be able to be tamper resistant. In that chip is stored
an Endorsement Key, that is a 2048-bit RSA key, created by the manufacturer
at the chip creation time. This key pair is used in several encryption processes,
and can be used during the Remote Attestation process. The private key will
never leave the TPM chip (otherwise the chip has been compromised and
cannot be used anymore), while the public key is used for attestation and
encryption of data sent to the TPM chip

� Memory curtain: Memory Curtain is an extension of the Memory Protection
technique available on the OS. Curtained memory are areas of memory where
very sensitive data are stored, and also the OS cannot access this part of the
memory. The implementation details of Curtained Memory are not defined by
the TCG group but they are vendor specific

� Secure I/O: All the information that transit on the system bus must be
ciphered

� Sealed storage: Sealed Storage is a technique that bind private data stored
on the machine to the private key of the TPM chip. This will allow the access
to the data only to the correct hardware and software configuration

� Remote Attestation (RA): Remote Attestation is the process that let a
third party to be able to identify if a particular machine runs software that is
not authorized or supposed to run. We will expand further this concept in the
following chapters

In the basic Remote Attestation process, while requesting a proof of trust to another
machine, you are also identifying that machine. In most scenario this is good, such
as a banking site. But there are cases where want to act anonymously but still
be able to be trusted by someone. This can be done by using the Trusted Third
Party (TTP) that is an intermediary between the machine, and plays the role of the
Certification Authority (CA).

2.1.2 Trusted Platform Module

The Trusted Platform Module (TPM) [8] is a chip that is usually inserted into the
motherboard of a calculator, and it is used to support the solution proposed by the

6

2 – Background

Trusted Computing. It is possible to use the TPM via software by using a set of
predefined command. The basic structure of a TPM chip is the one represented
in figure 2.1. As we can see, the TPM contains a series of cryptographics copro-
cessor plus a series of register called Platform Configuration Register (PCR). The
basic operation that a TPM can offer are Cryptographics operation like RSA key
generation, Digital signature, hashing and so on.

Figure 2.1. Simplified architecture of a TPM chip

As previously said, every TPM has a minimum set of 24 PCR register, 20 bytes
each, that are considered a secure storage area. As described by the TCG, these
registers are initialized during boot time and then cannot be erased. The only
possible operation that can be done on the registers is the extension. In particular
the new value of the PCR can be obtained with this formula:

PCR new = SHA1(PCRold || new_measure)

Where SHA1 is the Secure Hash Algorithm applied to the concatenation of the old
PCR value and the new measure done. Because we are always extending the PCR,
all the value of the PCR depends on the history of the previous measure. This is
very important for the Remote Attestation process.

2.1.3 Chain of trust

In order to trust a virtualized node, we must trust also what is beyond the virtual
node down to the hardware. For doing that we must establish a so called Chain
of trust. This is done by validating each piece of hardware and software from the
bottom layer to the one that we are interested in. The validation process is done
by using a cryptographic signature. In particular each component will load only
components that have a valid signature. With this procedure we can trust the
last components because the previous component will not have been loaded it if

7

2 – Background

it’s signature was not valid, and we can trust the previous component because, in
turn, it will not be loaded if its signature check failed. However there is a special
component that is called the trust anchor or root of trust. This special components
is the first one that is loaded and it’s certificate is a self signed certificate called
root certificate. This certificate will not be checked by anyone so we need to trust
in faith the root anchor!

Figure 2.2. Root certificate used in the chain of trust procedure

2.1.4 Integrity Measurement Architecture

The Integrity Measurement Architecture (IMA) [9] is a linux kernel module that is
useful for obtaining integrity measure. IMA is developed following the rules specified
by the TCG (see section 2.1) and it is available into the linux kernel since version
2.6.30. The only requirements for using IMA is the availability of a TPM on the
machine that is nowaday widely available in most computers.

IMA is composed of several modules that made available different functions. In
particular some of them are:

� Collect: measure the file before it will be loaded into system memory

� Store: add the collected measure to a list at kernel level, and if a TPM is
available in the system, extend the PCR10 register with the new measure

� Attest: sign the value in the PCR10 register with the TPM private key, in
order to do a remote attestation procedure of the measure list

� Appraise: locally validate a measure with a good known value

� Protect: protect the security attribute in the file extension from attacks

8

2 – Background

The first three functionality are available since the first version of IMA, instead the
other two where added later and are now available under the Extended Verification
Module (EVM) [9] kernel module that is not a part of IMA itself.

During the execution IMA maintains a list of measure saved on a file inside
the securityfs of the kernel. The list is available into an ASCII encoded file called
ascii runtime measurements and in a binary format inside the
binary runtime measurements. IMA maintains also an aggregation of all the mea-
sure done inside the PCR10 register of the TPM.

In most linux distribution IMA is disabled by default, so in order to make it
works it is necessary to boot the kernel with the ima tcb flag enabled.

2.2 Remote Attestation

The Remote Attestation (RA) is a process in which a certain node request to a
remote system to report his integrity status. The purpose of this process is to be
sure that the remote system is a trusted one, so it has not been tampered in order
to misbehave.

When a RA request happens the requester sends a TPM Quote request to the
node to be attested and receives back the set of PCRs register of the TPM of the
platform to be attested. This data are digitally signed with an Attestation Identity
Key (AIK) key directly generated by the TPM and a nonce is added to them in order
to avoid attack of type replay. The data sent to the attester are often encrypted so
that only him can see the status of integrity of the machine.

Figure 2.3. Temporal flow of Remote Attestation interaction

Once the data are sent to the attester, they are analyzed as follow:

� Verify that the AIK key used to sign the response is signed by a valid Privacy
CA

� Verify the signature of the response

9

2 – Background

� Verify the measure list with the one available in the trust db and report the
integrity status.

An example of Remote Attestation can be seen in figure 2.3

2.2.1 OAT Framework

Open Attestation Toolkit (OAT) [10] is a framework developed by Intel in 2010
that provides an SDK that enables us to develop a Remote Attestation service for
the cloud infrastructure. In the SDK are also available a set of API that let us
communicate easily with the HostAgent and the Appraiser. A simplified version of
the OAT architecture is represented in figure 2.4. The only requirement of the OAT
framework is the presence of a TPM on the machines to be attested.

Figure 2.4. Basic interaction scheme using the OAT framework

It is compliant with the TCG methodology and implements all the functions
that needs to be available for RA service like:

� PrivacyCA: the one that generates the certificate for the AIK key used to
sign the measure associated with the platform to be attested

� HostAgent: a RA client that runs on the platform to be attested and that
listen for RA requests

� Appraiser: is a sort of broker that receives and manages all the RA request
of the cloud of interest

� WhiteList DB: it’s a db in which are saved all the measure that are consid-
ered valid for a certain remote entity

10

2 – Background

When a new RA request is presented all the HostAgent creates an Integrity Re-
port (IR) that is a valid XML file divided in two sections. In the first section are
reported the actual values of all the PCRs registers of the TPM, instead in the
second one are available all the measure done by the HostAgent. The IR is then
sent back to the Appraiser that validate the status of each HostAgent by means of
the VALIDATE PCR and COMPARE REPORT operations. With the first one the
appraiser is checking the PCR values of the current IR with the value available in
the last one. With the compare report operation the attester is checking the validity
of each measure with the ones available in the WhiteList db. This two operations
are completely separated since version 1.7 so it is possible to avoid the validate pcr
and use IMA instead. With IMA it is possible to check only the PCR10 for each
measure, since it contains an aggregation of all the measure done on the system.

As we seen OAT is developed in order to simplify the use of a RA process in
the cloud management operations. However it is designed to work with hardware
machines and not with Virtualized environment so some changes are needed to the
framework in order to support the latter ones.

2.2.2 Integrity Verification Proxy

One possible solution in order to achieve RA on a virtual machine is the use of
a special component inserted directly inside of the hypervisor of the vm, called
Integrity Verification Proxy (IVP) [11]. The IVP must be a trusted component
since it is the one that gave us the trusting information for each virtual machine.

With this solution the attester for the vms is directly the physical node on which
they runs, so we must perform the Remote Attestation process for the physical
hardware and for the proxy using the classical RA process described before.

An Integrity Monitor is the core of the system. It is a service with the role to
directly manage all the execution phases of all the virtual machines inside the host.
During the execution of the vm, the Integrity Monitor verifies the integrity status of
the vm by checking that the criteria defined during the boot process are respected.
During the boot of the vm some data are collected regarding the initialization pa-
rameters and the kernel image loaded. If a change in the configuration of the vm
is detected the vm is stopped and the new configuration is checked. If all the new
parameters meets the requirements given by the client then the vm is started again.
If something wrong is detected the vm remain stopped and all the communication
of the vm are interrupted in order to avoid the corruption of other nodes. When a
client needs to connect to a particular VM it will first establish trust in the host node
and then it will ask to the proxy service for a connection to the desired VM. This
connection will be open if and only if the VM is trusted following the rules given by
the client. A basic scheme for establishing a connection with IVP is represented in
fig 2.5

11

2 – Background

Figure 2.5. Connection mechanism using the Integration Verification
Proxy architecture

The only problem with that solution is that in order to support real time integrity
management the vm must be ran in debug mode and this creates a very strong
bottleneck for vm performance.

2.2.3 Light Virtualization

The introduction of Virtualized Machine brings greater flexibility and scalability to
cloud and now they are widely used in most of the cloud scenarios. With that type
of infrastructure it is possible to introduce the RA with the solution proposed in the
previous sections. However this technique introduce also a very high latency during
the creation and the management of a VM. This problem can be partially solved by
using a new technique called Light Virtualization.[2]

The difference between this two technique is that the light will no longer use a
component like the hypervisor in order to manage and isolate the various vm but
instead implements this functions by directly exploiting the kernel capabilities. This
reduce significantly the latency of the management operations. A basic architecture
can be seen in figure 2.6

As it is possible to see in the figure, the virtualization engine runs above the Host
OS like a normal application and manages every VM, that in the context of Light
Virtualization are called Containers. This is done by exploiting the library directly
available on the Host Operating System. On that engine then runs all the various
containers with all the application and necessary dependencies installed directly on
it.

12

2 – Background

Figure 2.6. High level scheme of a Light Virtualization architecture

One downfall from switching to the light Virtualization is that, since it is a very
new technique, no solutions are available for introducing the Remote Attestation
process on that infrastructure. This thesis work is focused on introducing a RA
process for a particular Light Virtualization engine, called Docker. This engine will
be described briefly in the following sections.

2.3 Docker

As we have said the main aim of the thesis is to introduce the Remote Attestation
process on a light virtualization scenario. For this purpose the chosen virtualization
engine is Docker [12]. It enables the virtualization mechanism without the needs of
an hypervisor. Each Virtual Machine is loaded inside of a container, that unlike a
standard VM, will not contains the full Operating System but only the application
and the dependencies that are needed.

Container management and isolation is done by exploiting some kernel function-
ality like namespaces and cgroups of the linux kernel. In particular the last one
allow to allocate and manage hardware resources for each container as well as man-
age his status. Instead namespace are used to guarantee the isolation between the
filesystem and processes of different containers.

Docker containers are very flexible since they are not hardware dependent and
can be easily transferred from one node to another. Also, since they not contains
the full Operating System, they do not introduce a big overhead on the hardware
and are also smaller than a standard vm. It is possible to run a docker client on

13

2 – Background

almost every host Operating System, however the docker server must be installed
on a Linux based system.

2.3.1 Containers

As we seen before in Docker a Virtual Machine is called Container. Each container
can be constructed by starting from an image and inside them one or more applica-
tions with all the dependencies can be started. Docker provides to each container
all the hardware resources and isolation that it needs.

Docker enable us to control each container with a set of standard instruction
available in the docker Command Line Interface (CLI) [13]. A set of useful ones
are:

� docker attach: attach the local I/O to the specified running container

� docker cp: copy files between a container and the local filesystem

� docker create: create a new container

� docker exec: run a command inside the specified container

� docker inspect: return low level information of one or more containers

� docker kill: kill one or more containers

� docker pause: pause all processes related to the specified container

� docker restart: restart the specified container

� docker run: run an image inside a new container

� docker unpause: unpause a previously paused container

For example when we run the command docker run, the following operations are
done by the docker daemon in order to load the new container:

� search for the specified image, locally or online

� create a new docker container and load the image in it

� add to the image a new fs layer with the writing privilege

� create a new network interface and assign to it a new IP address

� load the specified startup process

Each container is loaded by the docker daemon at the same ways, and this gave
Docker a great flexibility. Since all the dependencies for a particular application are
preloaded inside the container, this one can be easily transferred to a different node
without the need to be worried about the host environment.

14

2 – Background

2.3.2 Images and repositories

Every container is loaded starting from an image. A Docker image is a particular
layered filesystem structure in which different layer, with different access privileges,
are layered one on another [14]. All this level are bound together by using the Linux
Union filesystem, as it can be seen in figure 2.7.

Figure 2.7. Structure of the layerfs used by docker

At the bottom of the structure is available a filesystem called bootfs, that is used
to boot the container. On the bootfs there is another file system called the rootfs and
it represents a particular linux OS. The rootfs is in common with more containers
and it is the ground on which all the other layers are built. All this structure is
not available in writing mode to the containers. Instead, for each container, a new
writing layer is added on top of the framework, and it is used to maintain all the
modification that the container does to the base virtualized OS. Every time a file
of the virtualized OS needs to be changed by the container, the file is copied on the
top layer and it is saved here. When it needs to be loaded the daemon will look first
on the top layer for a modified version and then it will goes to the base one if it is
not found.

It is possible to build a docker image by using a DockerFile. This file is a script
that allow us to start from a base image and build on it our container. All the

15

2 – Background

docker images are saved inside registers or repository. Some of them are publicly
available, while other are private. In particular we can identify:

� Top-level repository: is managed by docker himself or by development
teams (like Fedora and Ubuntu) and represent the starting point for con-
structing the personal images. All the images posted here are secure, tested
and updated frequently

� User repository: it is the personal repository of a certain docker user. The
images posted here are public or private depending on the will of the user

2.3.3 Storage Driver support

Docker rely on the Union filesystem in order to launch and manage the containers.
Every layer inside this structure is identified by means of a Universally Unique
IDentifier (UUID). In Docker a UUID is a random hex number on 256 bit, however
it uses only 12 hex char (48 bit) to identify a particular image or container. More
than one container can share the same underlying image, and that allow docker to
quickly create new container without the need to copy all the layer stack for each new
container. However in order to keep all the modifications done by each container, a
new layer is created and the writing privileges are given to the container.

All the this layers are managed by a Storage Driver [15] and they can be accessed
through the host filesystem typically at the position /var/lib/docker. The Storage
Driver maintains all the layer structure and it execute the copy-on-write operation
when a file need to be changed by a container. With that operation a new copy
of the same file available in the base image is created in the upper level where the
container can access it and modify it. The copy available in the base system is never
modified and all the modification done by the container are saved and accessed only
on his upper layer.

The way in which the layer structure is managed largely depend on which storage
driver is in use on the docker daemon. In particular, Docker, supports a certain
number of storage driver and the default one change in base of the host OS that
is being used. However it is possible to configure the daemon in order to use one
particular storage driver. For the purpose of this thesis we will now focus on the
Device Mapper storage driver.

Device Mapper is the second storage driver for which Docker provides support for.
Basically it maps physical blocks with virtual blocks of higher level. Every virtual
device is created starting from a base pool that is created during the initialization
phase. It memorizes all the images and containers to virtual devices by using the
copy-on-write technique, so each file, even if available in the host system, can be
seen as it belongs to a different virtual device. Device Mapper works at block level
and doesn’t manage each single file, so when a file is required it will copy the entire
block the file belongs to.

16

Chapter 3

Remote Attestation on Light VM

This chapter will present the security features available in docker and the state
of the art for the Remote Attestation process on Light Virtualized Machine. In
particular in section 3.1 we will explore the security feature available in docker,
ranging from the kernel namespaces and cgroups to the Docker Content Trust and
finishing up analyzing its attack surface. Instead in section 3.2 it will be presented
the SECURED project and its aim, while in section 3.3 it will be presented the
modified version of the OAT framework for docker done by the TORSEC group.

3.1 Security in Docker

When using a software solution, one of the principal aspect that needs to be con-
sidered is the security one. This is especially true when considering a Light Virtu-
alization environment like Docker. In particular we must be aware of what are the
security feature already available in docker and which are the possible security fault
that needs to be considered and, possibly, corrected [16]. In the case of docker the
analysis can be divided into two macro areas:

� The attack surface provided by the docker daemon itself

� The attack surface and the security features available in docker and of the
technology on which is based, like the namespaces and cgroups

In the following sections we are going to discuss in detail this two macro areas in
order to assess and discuss the possible vulnerability and solutions.

3.1.1 Kernel namespaces and control groups

In order to work, docker exploit some linux kernel capabilities like the namespaces
and the control groups. Starting with the Namespaces, they are a feature of the
Linux Kernel that let the user to virtualize system resources to a group of processes.
In the latest kernel version (4.10 at the time of writing) it is possible to have seven
different kind of namespaces and they all works in the same way by assigning the

17

3 – Remote Attestation on Light VM

resources that they are carrying only to the group of processes they are targeting.
The target processes are able to see only the resources from the namespaces they
are assigned to.

Docker uses this functionality in order to create isolation between each contain-
ers. In particular, for each container, Docker create a set of different Namespaces.
The most important one for security purposes are the Process ID (PID) namespaces,
which have the ability to provides to a container an independent set of process IDs in
order to provide isolation at the process level. For providing isolation to the network
level, Docker creates also a namespace of type network. This type of namespace vir-
tualize all the network stack, and provide a private set of IP, routing table, socket
listing, firewall and other network related resources for each group of processes.
When a new network namespace is created it is available only a loopback interface.
For that reason docker will automatically creates a virtual network device for each
container. However if the containers are configured properly they can still be able
to reach each other via network interfaces.

Control Groups (cGroups) is a functionality available in the linux kernel since
version 2.6.24 that enables the user to limit the resources available to a group of
processes. Docker uses this functionality in order to equally distribute the available
resources to the various containers in a way that no one can take all the hardware
resources available. With this technique it is also possible to avoid attack of type
Denial of Service (DoS) since a particular container can at most take control of a
fraction of the hardware resources available in the host system.

To sum up, Docker uses namespaces and control groups kernel functionality in
order to provide containers isolation and to assign the physical resources to the
various containers. This solution provides a good level of security, but it cannot
reach the security level provided by an hypervisor in the classical virtualization
realm. For this reason it is necessary to rely on other features in order to provide a
stronger security layer.

3.1.2 Docker Kernel capabilities

Each container started from Docker has not access to all the feature available. This
means that they don’t have support for a full root access. It is possible to do that
since most of the critical feature (that normally requires a root access) are managed
directly by the daemon and therefore externally to the container. For this reason the
root inside a container is just a fraction of the real root on the host system. Docker
kernel capabilities works as a whitelist, so only the permission specified are granted
to the root user inside the kernel. This feature is very important for a security
standpoint, since even if someone manage to get a root access inside a container, it
is a very restricted operations that it can do, and it is very unlike that it manages
to harm the container or escalates to the host system.

Aside from the security features directly implement in docker, it is possible to
strengthen the docker installation by using other system-wide linux kernel security
feature. For example it is possible to access control policies by using one of the
many access control template available in linux or it is possible to use some docker

18

3 – Remote Attestation on Light VM

template for SELinux or AppArmor. From version 1.10 of docker user namespace
are directly supported in the daemon. This means that is possible to maps the root
user of a container to a non root user outside the container helping to mitigate the
risk of a breakout.

3.1.3 Docker Content Trust

We have seen in section 2.3.2 that it is possible to build a custom docker image
by downloading some base images using the docker registry. But how we can be
sure that this images are not corrupted? For solving this problem a new feature
called Docker Content Trust [17] was developed. This feature allows the final user
to verify both the image integrity and the publisher of the images downloaded from
a register. It works by enforcing a series of digital signatures to each image uploaded
to the repository. All the integrity checks are then done at client side.

However it is possible for a specified publisher to have both signed and unsigned
images. In particular this choice can be done when a new image is pushed to the
registry. By default Docker Content Trust is disabled on client side and can be
enabled by settings the environmental variable DOCKER CONTENT TRUST=1.
When this feature is enabled, the client is able to see, and therefore run, only the
signed images, making the unsigned ones invisible to it. Instead if this feature is
off the client is able to see and run both the signed and unsigned images. Docker
Content Trust is useful also to prevent attack of type replay, where an old version of
the same image is presented to the user in order to exploit some known vulnerabilities
available in it.

All this functionality are granted by using different keys. Some of them are stored
on the client, while other are stored directly online. All the keys are generated by the
root key that is created the first time a developer does a push of a signed image to
the repository. This are the available keys for the Docker Content Trust technology:

� root key: it is the root key that is used to generate all the other key necessaries
to use the Docker Content Trust mechanism. It is created once when the
publisher upload its first signed image. It is saved offline in the client of the
publisher and must be backupped frequently since if it is lost it will be very
hard to recover

� targets: it is used in order to sign image tags and to manage delegation. For
this reason is called also the repository key. It is stored in the client of the
publisher

� snapshot / tagging key: it is used to sign the current collection of image
tags, in order to prevent mix and match attacks. It is stored on the docker
authentication server

� timestamp: it is used to sign the timestamp on which a particular image is
created in order to guarantee freshness of the image to the client. It is stored
on the docker authentication server

19

3 – Remote Attestation on Light VM

� delegation: it is used to allow other publisher to sign your image without
the need to share the root key. Prior to version 1.11 they were stored in client
side. After that version they are stored directly on the docker authentication
server

In fig 3.1 it is available a graphical representation of all the keys available in order
to manage the Docker Content Trust mechanism.

Figure 3.1. The various keys available in Docker Content Trust and
how they are managed

3.1.4 Attack surface

As every piece of software available, also docker is not immune to security risk [16].
One of the main risks of docker is that the daemon needs the root privileges to
run. This requirement comes from the needs of the daemon to runs some high
privilege operations on the host system in order to provide some powerful features.
In particular it is possible to share a folder between the host system and one or more
containers. The problems is that, the container, by default has no limitation in the
access of that folder tree, this means that a container can modify this portion of the
host filesystem without restriction. Also no one prevents to share the root position
of the host filesystem with the containers, making this a very bad choice for security
purpose.

Another potential threat for security comes from the fact that docker daemon
exposes a set of API on a socket. Before version 0.5.2 the API were exposed to a
TCP socket binded on 127.0.0.1, but since this solution was prone to request forgery
attacks, the API are now exposed on a Unix socket so that it is possible to use the
standard UNIX permission checks to limit and control the access to the socket.

20

3 – Remote Attestation on Light VM

It is possible also to expose a set of REST API via HTTP. However it is highly
recommend to secure them by using HTTPS or some protected tunnelling method
such as a VPN.

We have seen that Docker provides an integrity service while using its repository
by means of the Docker Content Trust technology. However it is possible to load
some images directly from the disk of the machine by using the command docker load.
This exposes the docker daemon to some input vulnerabilities and for such reason
from version 1.3.2 all docker images are extracted in chrooted linux subprocess.
This is a first step towards privilege access separation but some more work in that
direction is needed.

As seen docker implements a lot of security features but lacks an integrity check
at runtime. For this reason in the next chapters we are going to analyze more in
deep the work done in order to implement this feature.

3.2 SECURED project

All the thesis work has been developed under the SECURED [3][4] project. It is
a three years project funded by the european union and it is entirely related to
cybersecurity. The thesis work is just a small part of the entire project, so in the
following subchapter we will introduce the aim and the general infrastructure of the
project.

3.2.1 Introduction

In the last decade we have started to access the network using different kind of
devices that range from PCs to Smartphone, from smartTV to the general IoT.
Since, until now, the security is done on the end device, this introduce a security
problem. Every device has different hardware, computation power and software and
since a full security suite requires some computational power, not all devices are well
protected from possible attacks. Moreover not always the devices are connected to
a secure network, i.e. not always are presented security related network hardware
such as a firewall or an IDS. For example when accessing the network from a cafè
network we are not protected from attacks.

In order to resolve this issues, the main aim of the SECURED project is to move
the security equipment form the end device to a trusted node in the network so that
all the end user device and application are completely unaware of the security issues
but they are equivalently safe. This is very important in applications such as IoT
where, due to the low power requirements, there is not enough power to secure the
device, so each device is vulnerable.

3.2.2 NED and NFV

The main idea on which is based the research work is to move all the security
components from the end user device to a trusted node inside the network. This

21

3 – Remote Attestation on Light VM

node is called Network Edge Device (NED) [4] and as the name says it is located at
the edge of the network (it can be easily the home gateway, a WiFi access point or
some other network equipment). Since it will run all the security applications and
protocols, it is very important to verify the integrity status of this node. This can
be done with the standard Remote Attestation technique introduced in chapter 2.

Figure 3.2. Standard connection vs connection made using SECURED

It is important to say that it is possible for the NED to have different security
profile for different users. NED, for each authenticated user, maintain a security
configuration that is used to run a series of Personal Security Applications (PSA)
inside the virtualization ambient related to that user. It is possible to ingoblate the
NED directly inside the Network Edge Device, for example a router, or to separate
the Network Device and the Security Device into two different devices connected
with a secure channel.

As said, when using the NED, there is the possibility to run all the Personal
Security Application inside a virtual machine, that in the case of a Network Device
it is based on the Network Function Virtualization (NFV) technology. Since the
network device doesn’t have a lot of power, it is possible to run all the Personal
Security Application using a Light Virtualization technique, such as docker, instead
of a more heavier standard Virtual Machine. Since the NED is a critical node in that
infrastructure it must be trusted, so it is important to be able to remotely attest it.

The benefit introduced by using a Network Function Virtualization technology
are the following:

� No more dedicated hardware: by using NFV we doesn’t have the need to
buy different hardware for each Network Device that we need. Instead it is
sufficient to have a general purpose hardware with a good network interface
and install all the network function that we need on it

22

3 – Remote Attestation on Light VM

� Greater scalability: if in a certain moment we need to have a particular
network device, it is sufficient to install it directly on the existing general
purpose one

� Personal services: since all the network devices are virtualized it is possible
to have several instances of them in order to personalize the level of services
and protection offered to each connected user

3.2.3 Architecture

The security architecture developed inside the SECURED project is constructed
around the presence of the NED. In particular all the security applications will now
not run on the end user devices but on a trusted node at the edge of the network.
Also there is no needs to have multiple physical hardware devices in order to cover
different network and security functions since they are all virtualized on a generic
hardware by using the NFV technique. In order to create a connection, each end
user device must follow this step:

� Trust the NED: the client needs to put trust in the NED figure, by using
a Remote Attestation procedure described in chapter 2 or, in case of Light
Virtualization machines, using the architecture developed with this thesis work

� Client authentication: once the client has put trust into the NED, it’s time
for it to authenticate itself

� Personal Security Application loading: the NED goes into its Application
and Policy Repository to fetch all the configuration for that particular client

� Personal Execution Environment: the NED, with the configuration fetched
in the previous step, creates a Personal Execution Environment (PEE) by us-
ing a NFV technique. From that moment onward, the client can securely
connect to the rest of the network by passing to its PEE

A graphical scheme of a connection made using the SECURED project is available
in fig 3.3

23

3 – Remote Attestation on Light VM

Figure 3.3. Connection procedure using the SECURED project

3.3 OAT Framework for Docker

We have seen that in order to made available the Remote Attestation process also
for a light virtualization technique some new features must be developed. Some
steps in that direction has already been taken by the TORSEC [5] group at Polito.
All the project is based on the Open Attestation Toolkit framework [10], that as we
have seen in chapter 2 is a framework developed by Intel in order to make easier
to implement the Remote Attestation process. However this framework, out of the
box, will work only with physical nodes so some modification must be put in place
in order to adapt it also to a light virtualization engine like docker.

The architecture chosen in order to make it works with docker is the one rep-
resented in fig 3.4. Basically the OAT framework is composed by three different
components that works together:

� HostAgent: A client application that runs on the node that needs to be
attested. It is interfaced with the node TPM by using the TCSD daemon.
When a new Attestation Request arrives, it produces an Integrity Report (IR)
that contains all the value of the PCRs of the TPM of the machine and a list
of all the measure done on the system

� Appraiser: It can be seen as the “server” of the application. Is the one that
has the role to actually verify the integrity status of each node by analyzing
in detail the IR produced by each one

� WhiteList database: It is a database in which are saved all the valid measure
of each node. It can run on the same machine of the Appraiser or in a different
one

24

3 – Remote Attestation on Light VM

Figure 3.4. OAT architecture for docker

In order to make the system work with docker some changes were needed. In particu-
lar all the system must be updated in order to make it works for different container
on the same host. This has been done by modifying the Host Agent in order to
identify for each measure the container of membership and extending the Integrity
Report in order to contain also a list of active container. The changes done to the
Integrity Report must be reflected also to the Appraiser in order to correctly analyze
it. It is important to note the in order to verify the integrity status of the report
the project will not use the standard OAT procedure described in chapter 2 but it
will use the extension method of the TPM.

The project described in this section is surely very interesting but it runs only
for docker version less then 1.10 (since from that version docker changed the way
containers are mapped to the virtual devices), and it has some security flaws that
needs to be solved. So the thesis work is based on the research work done by the
TORSEC group and its main aim is to make it works for docker version 1.10+ and to
identify and resolve security and functional issues. In the remaining section of this
chapter we are going to analyze in detail the major changes made to the HostAgent
and the Appraiser by the Polito research group before the thesis start.

3.3.1 HostAgent

The HostAgent is a client application that runs on every node that needs to be
attested. Once in execution it will remain listening for Attestation Request by the
appraiser. All the communication between this two components is done by a web
services exposed by the components. When a new Attestation Request comes it will

25

3 – Remote Attestation on Light VM

produce an Integrity Report that contains all the data needed in order to correctly
test the integrity status of the node.

An Integrity Report is a file in XML format that, as defined by the TCG, contains
the following fields:

� Quote: contains all the data returned by the Quote procedure done on the
host TPM. In particular it contains all the values of the various PCRs plus a
bunch of information useful to verify the TPM signature done on all the data
returned by the IR

� PcrValue: contains the value of the PCR specified by the PcrNumber at-
tribute at the moment of the IR request

� TpmSignature: it is the signature of the TPM done on the returned data
in the IR, plus a series of information useful to identify the type of signature
done by the TPM

� SnapshotCollection: is a list containing all the measure done by IMA into
the host that needs to be attested

� SimpleType: it is the single measure done by IMA. In particular it contains
the name of the template used, the digest value calculated by IMA and a
base64 encoded string with all the other fields of the measure

� ComponentID: It is an element that is inserted inside the SnapshotCollec-
tion, and it contains a series of information useful to analyze the measure list
reported after it

In order to make the project usable also with docker, some information has been
added to the ComponentId field of the IR, and they are:

� Container: it is a mapping between the virtual device id and the Docker
container id that is used by the appraiser to identify for each measure which
is the corresponding container

� Host: it contains some information of the host system to be attested. In
particular it makes available a list of all the device id associated to the host
system

However, in order to correctly compile the IR, some changes are done also to the
IMA module of the linux kernel. This one has the role to measure at runtime all
the file that have been loaded into memory. In particular a new template has been
defined in order to include also the deviceId of the file measured.

3.3.2 Appraiser

All the changes made to the HostAgent must be reflected also to the Appraiser. The
role of the Appraiser is to verify the integrity status of all the nodes registered to it.

26

3 – Remote Attestation on Light VM

This is done by executing a Remote Attestation request to the node to be attested
and analyze the Integrity Report that is sent back.

The parser has been changed in order to consider the new data inserted into the
Integrity Report and a new type of analysis, called cont-check, has been added to
the project. This new analysis work exactly like the standard load-time analysis
except that it will analyze only a subset of measure that are the one related to the
container ids passed as parameters. However the IR will contains all the measure
done on the host since the appraiser needs to replicate all the extension operations
done to the TPM in order to verify the integrity of the report. If the list of measure
were shrinked directly by the host agent, the integrity check on the report will fail.

27

Chapter 4

Project changes

In this chapter will be presented the thesis work done in order to resolve the problems
described in the previous chapters. In section 4.1 the work is presented in a general
way. In section 4.2 it will be presented the current version of OAT for Docker with
its problems and how it will be changed in order to solve them. In section 4.3 it will
be presented in detail Docker and the new command developed for the use inside
the architecture. In section 4.4 it will be described the IMA module and how it
works, and the solution proposed to solve the caching mechanism.

4.1 Introduction

The thesis work is developed under the SECURED project. The work is concen-
trated on the figure of the NED. The main aim of thesis is to update the project in
order to makes work with the newer version of docker and to resolve some critical
problems that were encountered during the previous developments. In particular the
work start off by analyzing what is already available and what are the changes in
the latest version of docker. As described in chapter 3 one key point is to use device
mapper as a storage driver. This will let us links every measure done by IMA with
a specific container, by making a mapping between the containerId and the virtual
deviceId created by DeviceMapper. From version 1.10 of docker, some changes are
made to DeviceMapper that broke this important mappings. In order to be able to
use this project with newer version of docker, a solution to this problem must be
found. The solution is described in sections 4.2 and 4.3.

This project uses IMA in order to produce a list of measure for every file loaded
inside the memory. By default, IMA measure the file at most the first time the file is
loaded into memory, based on his policies. The problem is that the same file can be
loaded by multiple containers, but it is not necessarily true that a file is allowed to
run in multiple containers. With the standard behaviour of IMA we cannot identify
correctly which file has been loaded into which containers. This problem cannot
be solved by using the standard behaviour of IMA. The solution of this problem is
presented in section 4.4.

28

4 – Project changes

4.2 OAT for Docker

From version 1.10, docker has changed the way it maps containers to virtual devices.
In particular, before that version, it maps each container layer to a folder named
after the container id. This lets the previous implementation of the project to
retrieves the mapping containerId - deviceId by simply listing the folder under the
/dev/mapper path. Each folder listed corresponds to an active directory. After that
version, this is not true anymore so another solution must be found.

4.2.1 Docker’s DeviceMapper indirection

Before version 1.10, docker with deviceMapper, maps each container into a folder
under /dev/mapper called with the name docker-containerId. In thesis case the
mapping containerId - deviceId can be done easily with the following method:

� Retrieve the virtual device major number by looking for an entry of type dm-0
inside the folder /dev

� List all the folder inside /dev/mapper and for each entry that contains the
word docker retrieve the mapping devId - containerId by parsing the name of
the folder

The folder created under the path /dev/mapper follows the naming convention
Docker-MAJ:MIN-INO-containerId [15], where:

� MAJ: is the major number of the physical device on which the Docker files
are stored

� MIN: is the minor number of the physical device on which the Docker files
are stored

� INO: is the inode number of the path /var/lib/docker/devicemapper on which
the storage driver stores the layer of the image and containers used directly
by docker

� containerId: is an hash randomly defined by the docker daemon that corre-
sponds to the container Id

Unfortunately, after version 1.10, this is no more possible since docker will not map
each container with a single folder inside /dev/mapper but will maps each container
to multiple folders, with an hash in the INO field.

It is possible to list all active container by using the command docker ps. For
each container we can now retrieve some low level information by using the command
docker inspect containerId.

After the changes the output of the lsblk command changes as follow:

29

4 – Project changes

’’GraphDriver’’:{

’’Name’’: ’’devicemapper’’,

’’Data’’: {

’’DeviceId’’: ’’27’’,

’’DeviceName’’:

’’docker-8:6-4853215-b665ee05b818394a5e98a294362cb955dc

1a5211a412222ea840a627d72194bb’’,

’’DeviceSize’’: ’’10737418240’’

}

},

Figure 4.1. Extract of the output of docker inspect containerId command

On this output we are particularly interested on the section GraphDriver. The
field DeviceName will tell us the device name associated to that particular container.

Keeping that in mind it is possible to execute the command lsblk :

loop0 7:0 0 100G 0

loop

|_docker-8:6-4853215-pool 252:0 0 100G 0

dm

|_docker-8:6-4853215-b665ee05b818394a5e98a294362cb955dc

1a5211a412222ea840a627d72194bb

252:1 0 10G 0

dm

/var/lib/docker/devicemapper

Figure 4.2. Extract of the output of lsblk command

In that particular case we can see that under the pool 4853215 is available a
device that has a name equal to the one that we have found executing the command
docker inspect containerId. This device has a major number of 252 and a minor of 1
so the resulting deviceId is 252:1. With that information is then possible to create
the mapping containerId - deviceId by executing the command lsblk and using the
device name as an intermediate key.

In the figure below it is possible to have a graphical representation of the two
mapping procedures, before and after version 1.10 of docker.

30

4 – Project changes

Figure 4.3. Mapping procedure before and after docker v1.10

Since the new procedure involves a lot of I/O parsing, the performances of the
mapping are a bit deteriorated, so some more research on this fields are needed.

4.3 Docker

As we have seen, the proposed solution in section 4.2 increase significantly the time
needed to retrieve the mapping. Since the mapping is done every time an IR is
produced, further investigation must be done. By analyzing a little bit the solution
proposed by putting some timers inside the code, it is possible to see that most of
the time is spent parsing the Output of the various commands used. So reducing
the I/O operations can lower significantly the mapping time. However this is not
possible without developing a docker CLI command ad-hoc for the project.

4.3.1 A new command for docker

In order to reduce at minimum the mapping time, we need to reduce as much
as possible the number of I/O operations. In the proposed solution we use three
commands that makes I/O: docker ps, docker inspect containerId and lsblk. This
three commands can be put together into a new docker CLI command. A new
command is then defined: raInfo.

This command will follow the procedures described in section 4.2 and prints out
on the screen directly the mapping containerId - deviceId for each active container.
The advantage of this method is that we are eliminating all the unnecessary I/O
done by the two docker CLI commands, and then we are printing only the value
that we are interested in. In table 4.1 are reported the time, in ms, obtained by the
two different implementations.

It is possible to see that the new solution reduces significantly the mapping time,
specially when the number of active containers grows.

31

4 – Project changes

Number of Containers 1st Implementation time 2nd Implementation time
(ms) (ms)

0 13 11
1 23 13
2 32 16
3 42 18
4 53 19
5 61 19
10 115 22
20 211 31
30 314 39
40 423 48
50 510 58
100 1020 108
150 1663 180
200 2192 265
250 2746 364
300 3297 472
350 3761 628
400 4410 798
450 4927 928
500 5506 1087

Table 4.1. Mapping times (ms)

4.4 Linux Kernel

As seen in chapter 2, the project uses the measure done by the IMA module of the
kernel in order to create the IR. One limitation of the IMA module is to measure a
certain file only the first time it is loaded into memory. This is done for performance
reasons, but in our case this is something that needs to be changed. For example
think of the following example: we have a file named run.sh and two containers
named respectively container1 and container2. run.sh is allowed to be loaded in
container1 but it is forbidden in container2. run.sh is loaded into container1, IMA
will measure this action, so a row in the IR is produced. After a while run.sh is
loaded also into container2 : this time IMA will not measure the file again, so no
row relative to container2 is produced in the IR. In this case the file will be loaded
also inside container2 but the system will not be able to recognize this situation.
Unfortunately there is no way to change this behaviour by just working with IMA
configurations, but the module must be patched.

4.4.1 IMA caching policies

As we have seen IMA will measure every file that respect the IMA policy only the
first time it is loaded into memory. This is done for performance reasons but this is
not good for our project.

32

4 – Project changes

By default IMA associate to every file a structure called integrity iint cache. This
structure is defined as follow:

/* integrity data associated with an inode */

struct integrity_iint_cache {

struct rb_node rb_node;

struct inode *inode;

u64 version;

unsigned long flags;

unsigned long measured_pcrs;

enum integrity_status ima_file_status:4;

enum integrity_status ima_mmap_status:4;

enum integrity_status ima_bprm_status:4;

enum integrity_status ima_read_status:4;

enum integrity_status evm_status:4;

struct ima_digest_data *ima_hash;

};

Figure 4.4. definition of structure integrity_iint_cache

For our project, the important fields of the structure are:

� struct inode *inode: back pointer to the inode of the file

� u64 version: a field that track changes to the file if the filesystem is mounted
with the flag -i version

� unsigned long flags: the flags associated to the current file

� unsigned long measured pcrs: a flag that indicates if the file has already
been measured by IMA

For performance reasons, IMA also saves into an hashtable the measure already
done. An entry of the hashtable looks like:

struct ima_template_entry {

int pcr;

u8 digest[TPM_DIGEST_SIZE];

struct ima_template_desc *template_desc;

u32 template_data_len;

struct ima_field_data template_data[0];

};

Figure 4.5. definition of structure ima_template_entry

33

4 – Project changes

where:

� int pcr: is the number of the TPM pcr on which the measure has been
extended

� u8 digest[TPM DIGEST SIZE]: is the sha1 or md5 hash of the measure-
ment

� struct ima template desc *template desc, u32 template data len, struct
ima field data template data[0]: are fields that indicates the caratteristic
of the template used by IMA

In order to have a row in the measure list, a file must respect the following rules:

� Must be conform to the IMA policy defined by the user

� The integrity inode associated to the file must have the flag IMA MEASURED
setted to 0. This is possible only if the file has never been measured by IMA or
the file has changed and the filesystem has been mounted with flag -i version

� The hash of the measure must not be already inserted into the hash table
iint cache

In order to force IMA to measure a file every time it is loaded into memory the last
two points must be modified. Starting from the integrity inode it is possible to force
the flag IMA MEASURED to 0 every time a successful measure is done. This will
make IMA to think that the file has never been measured so a new measure will be
produced. This is not enough, because the measure will not be printed into the list,
since it was already inserted into the iicache hashtable. In order to force the output
of the measure it is possible to skip the check on the hashtable.

In order to maintain also the standard behaviour, two new kernel boot flags,
called ima cache1 and ima cache2 were added. If this new flags are set to false
then the new behaviour will be used, otherwise it will be used the standard one.

34

Chapter 5

User manual

In order to be able to use the solution proposed in chapter 4, some configurations
are needed. The aim of this chapter is to explain step by step what is needed in
order to be able to use this solution. In particular, in section 5.2 it will be explained
how to patch, compile and configure the linux kernel, in section 5.3 how to patch,
compile and configure Docker and the Docker CLI, in section 5.4 how to configure
the OAT Appraiser, and in section 5.5 how to configure the OAT Host Agent.

5.1 Prerequisites

The target infrastructure used while developing and testing this project is:

� OAT Appraiser: CentOs 7 with kernel v3.10.0-514.el7.x86-64

� OAT Host Agent: Ubuntu 16.04 LTS with custom kernel v4.13 - rc2

For correctly installing and configuring the project some software are required. In
order to get them use the commands provided below:

� On Appraiser:

yum install epel-release

yum install ant trousers trousers-devel php-soap mariadb

maradb-server python-networkx python-suds

python-matplotlib graphviz-devel patch java-1.7.0-openjk

java-1.7.0-openjdk-devel zip unzip gcc gcc-c++ rpm-build

python-pip git httpd php php-mysql rpm-devel

mysql-connector-python rabbitmq-server mod_ssl

pip install pycasa pygraphviz tornado celery urllib3 requests

� On Host Agent:

sudo apt-get install git build-dep linux-image-$(uname -r)

fakeroot unzip

35

5 – User manual

5.2 Linux Kernel configuration

In some scenario it is necessary to recompile the kernel in order to be able to activate
IMA. Also, in the proposed solution, it is mandatory to recompile the kernel in order
to be able to use the modified version of the IMA module. In this section we are
going to patch and compile a custom version of the linux kernel. The following
steps are done using Ubuntu 16.04 LTS as a base distribution, and the compilation
result is a set of .deb packages that can be easily installed on any Debian based
distribution. However with a similar procedure it is possible to recompile the kernel
also for other distros.

5.2.1 Patching the kernel

First of all get the latest version of the source code from the official git repo:

mkdir custom_kernel

cd custom_kernel

git clone https://github.com/torvalds/linux.git .

Once the download is finished, it is time to apply the provided patch:

git am --signoff < kernel.patch

Now the kernel source code is successfully patched and it is ready to be compiled.

5.2.2 Compiling the kernel

Compiling the kernel for the first time requires some time, depending on the pro-
cessing power of the machine used. So let’s start! [18] First of all be sure to be in
the root of the source code of the kernel by typing:

cd custom_kernel

Copy the current kernel configuration and load it:

cp /boot/config-$(uname -r) ./.config

make menuconfig

Now it’s time to start the compilation process:

sudo make-kpkg clean

sudo fakeroot make-kpkg --initrd --append-to-version=-ima-custom

kernel_image kernel_headers

Once the compilation process has finished, it is possible to install the new kernel:

cd ..

sudo dpkg -i linux*.deb

As soon as the installation is completed, is time to add the required boot parameters
for the kernel. In case of grub2 bootloader:

36

https://github.com/torvalds/linux.git

5 – User manual

sudo gedit /boot/grub/grub.cfg

search for the new entry, in this case the one that end with ima-custom, and add
the following parameter:

ima_tcb ima_template=ima-cont-id ima_cache1=false ima_cache2=false

so it will looks like:

menuentry ’Ubuntu, with Linux 4.13.0-rc2-ima-custom’ -class

ubuntu -class gnu-linux -class gnu -class os

$menuentry_id_option ’gnulinux-4.13.0-rc2-ima-custom+-

advanced-35a31811-d3e1-4998-a239-e62929a8cca5’ {

recordfail

load_video

gfxmode $linux_gfx_mode

insmod gzio

if [x$grub_platform = xxen]; then insmod xzio; insmod

lzopio; fi

insmod part_gpt

insmod ext2

set root=’hd0,gpt6’

if [x$feature_platform_search_hint = xy]; then

search -no-floppy -fs-uuid -set=root -hint-bios=hd0,gpt6

-hint-efi=hd0,gpt6 -hint-baremetal=ahci0,gpt6

35a31811-d3e1-4998-a239-e62929a8cca5

else

search -no-floppy -fs-uuid -set=root

35a31811-d3e1-4998-a239-e62929a8cca5

fi

echo ’Loading Linux 4.13.0-rc2-ima-custom+ ...’

linux /boot/vmlinuz-4.13.0-rc2-ima-custom+

root=UUID=35a31811-d3e1-4998-a239-e62929a8cca5 ro ima_tcb

ima_template=ima-cont-id ima_cache1=false ima_cache2=false

quiet splash $vt_handoff

echo ’Loading initial ramdisk ...’

initrd /boot/initrd.img-4.13.0-rc2-ima-custom+

}

Figure 5.1. Extract of grub2 kernel boot file

Save, reboot and select the new kernel.

37

5 – User manual

5.2.3 Activating an IMA custom policy

In some cases it is not enough to stick with the standard ima policy. For example can
be needed to measure all the files, even the one opened in read mode. It is possible
to define a new custom IMA policy just by adding or removing IMA actions into
the file /etc/ima/ima-policy, and then save and reboot the machine IMA. During
boot time this file will be copied under the directory <securityfs>/ima/policy and
the new policy will be activated.

However, since the syntax offered by IMA is quite basic, it is possible to write
the new policy rules by using the syntax defined by LSM. This is a framework that
gives support to the security module inside the kernel and gives access control on
files. The principal module that use this framework is SELinux (Security-Enhanced
Linux). This module defines a new concept of SELinux user that is completely
different from the standard user. In fact a SELinux user can be associated with
many linux normal users. The SELinux user defines the access privileges that it can
have on certain file label. A label is a tag that can be associated as an additional
information to a standard file. By the default some users are defined inside SELinux :

� user u with role user r used for linux account with standard privileges

� sysadmn u with role sysadm r used for administrative linux account

� staff u with role staff r and sysadm r used for linux account with standard
privileges that needs also to do privileges operations

Keeping that in mind it is possible to rewrite a new IMA policy for this project:

measure func=BPRM_CHECK mask=MAY_EXEC

measure func=FILE_MMAP mask=MAY_EXEC

This new policy is written using the basic syntax of IMA and will instruct it to
measure only the executable file (i.e. the ones that has the MAY EXEC privileges)
that are loaded (BPRM CHECK) or mapped into memory (FILE MMAP). Using
this policy we guarentee to have inside the log only relevant measure for the Remote
Attestation process.

5.3 Docker Configuration

This project uses as virtualization engine docker. So now we will briefly discuss how
to correctly install and configure it. All the steps described below are done under
Ubuntu 16.04 LTS.

5.3.1 Installation

Before starting the installation process, make sure that the reference installed on
system are updated:

38

5 – User manual

sudo apt-get update

Install the docker project:

sudo apt-get install docker.io

Now it’s time to start the docker daemon:

sudo service docker start

To test that all it’s ok we can start a container:

sudo docker -it ubuntu

This command will go into the docker registry and search for an image called ubuntu.
If it is not available offline, it will be downloaded and than started in interactive
mode (-it flag). If all it’s ok you should be now inside your first container!

5.3.2 Enabling DeviceMapper

Before starting to work with the project, it is necessary to set DeviceMapper as
the default storage driver. Docker support a wide variety of storage driver, and the
one used by default varies among linux distribution. At the time of writing, the
default storage driver for Ubuntu is overlay2. So go ahead and open up the docker
configuration file:

sudo gedit /etc/default/docker

add the parameter --storage-driver=devicemapper under the key DOCKER OPTS.
Once done that, save the file and restart the docker daemon:

sudo service docker stop

sudo service docker start

To check that docker now runs on DeviceMapper use the command:

sudo docker info

Under the GraphDriver section it must show something like:

39

5 – User manual

Storage Driver: devicemapper

Pool Name: docker-8:6-4853215-pool

Pool Blocksize: 65.54 kB

Base Device Size: 10.74 GB

Backing Filesystem: ext4

Data file: /dev/loop0

Metadata file: /dev/loop1

Data Space Used: 3.848 GB

Data Space Total: 107.4 GB

Data Space Available: 56.53 GB

Metadata Space Used: 5.063 MB

Metadata Space Total: 2.147 GB

Metadata Space Available: 2.142 GB

Thin Pool Minimum Free Space: 10.74 GB

Udev Sync Supported: true

Deferred Removal Enabled: false

Deferred Deletion Enabled: false

Deferred Deleted Device Count: 0

Data loop file: /var/lib/docker/devicemapper/devicemapper/data

Metadata loop file:

/var/lib/docker/devicemapper/devicemapper/metadata

Library Version: 1.02.110 (2015-10-30)

Figure 5.2. Extract of the output of command docker info

5.3.3 Patching and Compiling the Docker CLI

In order to retrieve with ease some internal detail of docker, a new docker CLI
command has been developed. This raise the need to compile a custom version of
the docker CLI [19]. To start off, clone the git repository of the docker CLI:

mkdir docker_cli

cd docker_cli

git clone https://github.com/docker/cli.git .

Patch the source code with the patch provided:

git am --signoff < docker.patch

It is possible to compile directly the docker CLI, but this will require that all de-
pendencies are correctly installed on the system. To simplify a bit the process, we
can use a method called Docker Inception: it will start a new container with all
the required dependencies already installed, compile the source code inside the con-
tainer and the final result will be than copied back to the build folder. The only
requirement for this method is to have the docker daemon up and running and, only
for the first time, an active internet connection. The latter is required since the

40

https://github.com/docker/cli.git

5 – User manual

compilation container will be downloaded from the docker repos. If you are not sure
that the docker daemon is active, just type:

sudo service docker start

We can now start the compilation:

sudo make -f docker.Makefile rabinary

After the compilation process finish correctly, the executable file will be placed under
the build folder. To install it on the system type:

sudo cp ./build/docker-linux-amd64 /usr/bin/docker

In order to verify the correctness, check that a new command raInfo is available in
docker CLI. To do that use:

sudo docker --help

and check the presence of raInfo in the command list.

5.4 OAT Appraiser configuration

The Appraiser has a central role in the OAT architecture. In this section we will go
through the installation and configuration process for the appraiser.

First of all create a directory and clone the repository in it:

mkdir OAT

cd OAT

git clone https://github.com/SECURED-FP7/secured-verifier.git .

Apply the provided patch using the command:

git am --signoff < oat.patch

Map the IP address of the verifier under the file /etc/hosts and change the name of
the local host to ”verifier”:

echo -e ’xxx.xxx.xxx.xxx \t verifier’ >> /etc/hosts

echo ’verifier’ > /etc/hostname

where xxx.xxx.xxx.xxx is the ip address of the verifier (you can see it by using the
command ifconfig).

Now it’s time to compile the source code by generating an RPM file ready to be
installed into the system:

cd ABSPATH/verifier/OpenAttestation/Source

sh distribute_jar_package.sh

cd ABSPATH/verifier/OpenAttestation/Installer

sh rpm.sh -s ABSPATH/verifier/OpenAttestation/Source

41

https://github.com/SECURED-FP7/secured-verifier.git

5 – User manual

where ABSPATH is the absolute path to the OAT folder (i.e. if the folder OAT was
created under the home directory, ABSPATH will be /home/fabio/OAT). Once the
compilation process is completed a RPM file will be generated under /root/rpmbuild/
RPMS/x86 64/OAT-Appraiser-Base-OATapp-1.0.0-2.e17.centos.x86 64.rpm. Before
installing the RPM package be sure that the mariadb service is started, because,
during that phase, the database used for OAT will be created.

sudo systemctl start mariadb

sudo systemctl enable mariadb

cd /root/rpmbuild/RPMS/x86_64

yum localinstall OAT-Appraiser-*.rpm

systemctl daemon-reload

Now that the Appraiser is correctly installed, it’s time to configure it: First of all
we need to generate the certificate that will be used to access the OpenAttestation
Services:

cd ABSPATH/verifier/OpenAttestation/CommandTool

sh oat_cert -h verifier

Configure OpenAttestation:

sh configure_oat.sh selfName attestorName attestorIP PCR0_value

OSname RApath DatabaseIP CertDigest

This command configure the Appraiser for executing the attestation of a particular
host. The meaning of the parameters are the below:

� selfName: hostname of the verifier machine, in our case it is verifier

� attestorName: hostname of the machine to be attested

� attestorIP: IP address of the machine to be attested

� PCR0 value: value of the PCR0 registry of the TPM inside the machine to
be attested. It is used when the command VALIDATE PCR is issued

� OSname: Linux distribution of the machine to be attested

� RApath: path to the ra verifier.py, in our case ABSPATH/ra verifier.py

� DatabaseIP: IP address of the database containing the whitelist. In our case
it is on the same machine of the Appraiser, so localhost will be good

� CertDigest: value of the SHA1 digest calculate on the file containing one
certificate generated by the attested host. It is used when an analysis of type
”cert-check” is issued

Add to the OAT database a new analysis type inside the analysis type table, using
load-time+cont-check as name and for the other fields the same values used in the
other rows. Now it’s time to open the port necessaries for receiving the Integrity
Report:

42

5 – User manual

sudo firewall-cmd --permanent --add-port=80/tcp

sudo firewall-cmd --add-port=80/tcp

sudo firewall-cmd --permanent --add-port=8443/tcp

sudo firewall-cmd --add-port=8443/tcp

Modify the file /etc/oat-appraiser/OAT.properties, by uncommenting the properties
IR_DIR, IR_DIGEST_METHOD, SCALABILITY and DISCARD_IDENTICAL_IR. Now it’s
time to test the verifier by opening up the page http://verifier/OAT/alerts.php
in the browser. In this page it is possible to have a quick lookup of the IR received
and memorized by the Appraiser and some other useful information.

Now it’s time to install the reference database used for the integrity check of the
IMA measure received into the IR:

cd ABSPATH/verifier/db/install

tar -xvzf apache-cassandra-1.2.19-bin.tar.gz

./install_cassandra_libs.sh

ABSPATH/verifier/db/install/apache-cassandra-1.2.19

cd ABSPATH/verifier/db/install/apache-cassandra-1.2.19/bin

./cassandra > /dev/null

./cassandra-cli -h localhost -f

ABSPATH/verifier/db/install/cassandra/schema/cassandra-

schema-common.txt

./cassandra-cli -h localhost -f

ABSPATH/verifier/db/install/cassandra/schema/cassandra-

schema-rpm.txt

Copy the configuration file of the database into the directory /etc/ra:

mkdir /etc/ra

cd /etc/ra

cp ABSPATH/verifier/db/conf/pkgs_download_list.conf .

cp ABSPATH/verifier/db/conf/ra.conf.sample .

Now open up the file ra.conf and substitute all the occurrencies of the word RABASEDIR
with ABSPATH/verifier, remembering that ABSPATH is the absolute path to the
OAT folder.

It’s time to update all the packages with the command:

mkdir ABSPATH/verifier/Packages

cd ABSPATH/verifier/db/scripts

sh update_pkgs.sh

It is possible to test the corretness of the database by generating an Integrity Veri-
fication Request by issuing the command:

cd ABSPATH/verifier/v2

./ra_verifier.py -i

ABSPATH/verifier/db/measurements/ascii_runtime_measurements -q

CentOS7 -a "load-time,l_req=14|>=" -v -H localhost

43

http://verifier/OAT/alerts.php

5 – User manual

If all is confiugred correctly, you should see something like:

Info: 0 (0/0)

0 (0/0)

0

0

Info: 0.00324

0.31203

0.08213

0.022021

0

0.34367

Figure 5.3. Extract of the output of the ra verifier.py script

5.5 OAT HostAgent configuration

This section describes the required steps necessary to correctly install and configure
an OAT HostAgent. The steps are referred to a machine with Linux Ubuntu 16.04
LTS. This machine require an active TPM that, in certain situations, needs to be
activated from BIOS. For debugging purpose, or if a real TPM is not present on the
machine, it is possible to use a virtual TPM as described in subsection 5.5.1.

First of all map inside the file /etc/hosts the verifier hostname and IP address:

echo ’xxx.xxx.xxx.xxx \t verifier’ >> /etc/hosts

where xxx.xxx.xxx.xxx is the IP address of the verifier. Start the service for the
TPM:

sudo systemctl start tcsd

sudo systemctl enable tcsd

Download from the verifier the file ClientInstallForLinux.zip:

wget http://verifier/ClientInstallForLinux.zip

unzip ClientInstallForLinux.zip

It is possible to configure the file OAT.properties with the value of the properties
desired. Install and register the host in the verifier using the command:

cd ClientInstallForLinux

sudo sh genera-install.sh

It is now possible to start the OATClient service:

sudo service OATClient start

The OATClient service will log his activities on the file /var/log/OAT.log.

44

5 – User manual

5.5.1 vTPM

As we have seen, it is mandatory for the OAT HostAgent to have an active TPM, .
However, for different reasons, can be useful to use a virtual TPM. In this subsection
are reported the instruction for installing and configuring one of the many vTPM
[20] available today. First of all retrieve the source code of the vTPM, the one that
we are going to use can be download with the command:

mkdir vTPM

cd vTPM

wget

https://netix.dl.sourceforge.net/project/ibmswtpm/tpm4769tar.gz

.

Then it’s time to compile:

cd vTPM

make

Prepare the environment by creating the storage folder and setting the variables:

mkdir storage

sudo export TPM_PORT=2322

sudo export TPM_PATH=TPMABSPATH/storage/

sudo export TPM_SERVER_PORT=2322

sudo export TPM_SERVER_NAME=localhost

sudo export TCSD_TCP_DEVICE_PORT=2322

where TPMABSPATH is the absolute path to the vTPM folder created before.

Start the vTPM:

./tpm/tpmserver

./libtpm/utils/tpmbios //Always

/** Use this commands only the first time the vTPM is started **/

./libtpm/utils/createek

./libtpm/utils/nv_definespace -in ffffffff -sz 0

Now start tcsd by telling it to use the http protocol to connect to the vTPM:

sudo /usr/sbin/tcsd -e -f

Now the vTPM is up and running and it is possible to use it like a regular TPM.

It is highly suggested to use a regular TPM for production or critical environ-
ment, and use the vTPM only for testing purpose.

45

Chapter 6

Programmer manual

In the previous chapter we have discussed the architecture and the technical choice
made in order to be able to do the remote attestation. In this chapter we are going
to see in detail how the project has been implemented. All the code developed and
here presented, is a modification of existing projects. In particular in section 6.1 we
are going to see the changes made to docker, in section 6.2 the changes made to the
IMA module of the linux kernel and in section 6.3 the changes made to the OAT
HostAgent.

6.1 Docker changes

As we have discussed in chapter 4 a new command has been added to the docker
CLI. All the code produced for docker has been developed using the GO program-
ming language. First of all the new command has been developed inside the file
/cli/command/container/ra info.go. The command has been developed as follow:

// +build rabinary

package container

import (

"fmt"

"strings"

"os/exec"

"github.com/docker/cli/cli"

"github.com/docker/cli/cli/command"

"github.com/spf13/cobra"

"golang.org/x/net/context"

"github.com/docker/docker/api/types"

)

46

6 – Programmer manual

type raInfoOptions struct {

time int

timeChanged bool

containers []string

}

// NewRaInfoCommand creates a new cobra.Command for docker stop

func NewRaInfoCommand(dockerCli *command.DockerCli)

*cobra.Command {

var opts raInfoOptions

cmd := &cobra.Command{

Use: "raInfo [OPTIONS] CONTAINER

[CONTAINER...]",

Short: "Get info for Ra for one or more running

containers",

Args: cli.RequiresMinArgs(0),

RunE: func(cmd *cobra.Command, args []string)

error {

opts.containers = args

opts.timeChanged =

cmd.Flags().Changed("time")

return runRaInfo(dockerCli, &opts)

},

}

flags := cmd.Flags()

flags.IntVarP(&opts.time, "time", "t", 10, "Seconds to

wait for stop before killing it")

return cmd

}

func runRaInfo(dockerCli *command.DockerCli, opts *raInfoOptions)

error {

ctx := context.Background()

options := &types.ContainerListOptions{

Quiet: true,

}

var (

cmdOut []byte

err error

)

47

6 – Programmer manual

cmdName := "lsblk"

cmdArgs := []string{}

if cmdOut, err = exec.Command(cmdName,

cmdArgs...).Output(); err != nil {

fmt.Fprintln(dockerCli.Out(), "There was an error

running lslk command: ", err)

return nil

}

out := string(cmdOut)

//fmt.Fprintln(dockerCli.Out(), out)

var errs []string

containers, err := dockerCli.Client().ContainerList(ctx,

*options)

if err != nil{

errs = append(errs, err.Error())

}

for _, container := range containers{

c, err :=

dockerCli.Client().ContainerInspect(ctx, container.ID)

if err != nil{

errs = append(errs, err.Error())

continue

}

data := c.GraphDriver.Data["DeviceName"]

if len(data)<0 {

errs = append(errs, "DeviceMapper not in

use")

continue

}

fmt.Fprintln(dockerCli.Out(), container.ID[0:12]

+ " " + strings.Split(strings.Split(out, data)[1][1:], " ")[0])

}

return nil

}

48

6 – Programmer manual

Figure 6.1. ra info.go source code

In particular:

� the first line, // +build rabinary, is a build tag that allows for conditional
compilation. This tag tells the golang compiler to include (+) this file only if
the tag rabinary is passed to the compiler

� the struct raInfoOptions defines the accepted input parameters of the com-
mand. containers []string is an array of string containing all the con-
tainer’s name / id to work with

� the function NewRaInfoCommand define the new command, with the hint for
the --help flag of the CLI

� the function runRaInfo is the actual implementation of the new command.
The input of this function is the command itself and the options passed to the
command. First of all, in order to retrieve the mapping devId - DeviceName,
the command lsblk is executed. Then for each container passed to the com-
mand, the internal function ContainerInspect() is called in order to retrieve
low level information of the container. If the call to this function is successful,
then the mapping devId - containerId is printed to the screen as described in
chapter 4

This new command is then declared inside the file
/cli/command/commands/commands.go by adding the line:

...

hide(container.NewRaInfoCommand(dockerCli)),

...

Figure 6.2. Extract of commands.go source code

In order to be able to conditionally compile the project, some changes has
been done also to the compilation infrastructure. In particular a new target called
rabinary has been added to the file /docker.Makefile:

49

6 – Programmer manual

...

#build executable for linux Remote Attestation

rabinary: build_docker_image

docker run --rm $(ENVVARS) $(MOUNTS)

$(DEV_DOCKER_IMAGE_NAME) make rabinary

...

Figure 6.3. Extract of docker.Makefile source code

We will now run a new development container and pass to it the command
make rabinary.

Also a new build script has been added under /scripts/build/rabinary :

#!/usr/bin/env bash

#

Build a static binary for the host OS/ARCH

#

set -eu -o pipefail

source ./scripts/build/.variables

echo "Building statically linked $TARGET for remote attestation"

export CGO_ENABLED=0

go build -tags rabinary -o "${TARGET}" --ldflags "${LDFLAGS}"

"${SOURCE}"

ln -sf "$(basename ${TARGET})" build/docker

Figure 6.4. rabinary source code

This script will be called by the makefile inside the development container. It
invokes the golang compiler with the tag rabinary in order to include all the changes
that has been made for the project.

6.2 IMA changes

As discussed in chapter 4, during the development of the project, we had the need
to disable all the ima caches in order to be able to capture all the file loaded into
memory, even if they are already measured. This behaviour cannot be modified
without changing the source code of the IMA module.

50

6 – Programmer manual

The first changes are done inside the file /security/integrity/ima/ima.h where
two new flags has been defined:

...

extern int ima_cache1_enabled;

extern int ima_cache2_enabled;

...

Figure 6.5. Extract of ima.h source code

This new flags are correctly setted at bootstrap time by two __setup function
defined inside the file /security/integrity/ima/ima init.c:

...

// Disable cache 1 and cache 2

static int __init ima_cache1_setup(char *str)

{

if(strncmp(str, "false", 5)==0){

printk("Disabling Cache1");

ima_cache1_enabled = 0;

}else{

ima_cache1_enabled = 1;

}

return 1;

}

__setup("ima_cache1=", ima_cache1_setup);

static int __init ima_cache2_setup(char *str)

{

if(strncmp(str, "false", 5)==0){

printk("Disabling Cache2");

ima_cache2_enabled = 0;

}else{

ima_cache1_enabled = 1;

}

return 1;

}

__setup("ima_cache2=", ima_cache2_setup);

Figure 6.6. Extract of ima init.c source code

51

6 – Programmer manual

If the parameters ima_cache1 and ima_cache2 are passed as kernel boot pa-
rameters, this two functions are executed in order to correctly set to enabled or
disabled the corresponding cache. If this parameters are not passed, then the
two flags are initializated at 1 meaning that both caches are enabled, and therefore
maintaining the standard behaviour.

The first cache consists of checking the ima inode information associated to the
file to see if the file has already been measured by ima and if the file has changed in
the meantime (this will work only if the filesystem has been mounted with -i flag,
meaning that iversion is enabled). This cache has been bypassed by resetting the
flag measured_pcrs to 0, into the ima inode information struct, after all successful
measurements, inside the file /security/integrity/ima/ima main.c:

...

int ima_cache1_enabled = 1;

int ima_cache2_enabled = 1;

...

//Flush Inode For next Measurement if cache1 is disabled

if(ima_cache1_enabled == 0)

iint->measured_pcrs = 0;

...

Figure 6.7. Extract of ima main.c source code

Also, in this file, the two flags are initialized to 1, so that both caches will remains
enabled if none of the two kernel boot parameters are specified.

The second cache consists in a lookup table where all the entries already printed
in the log file resides. In order to bypass this limitation we skipped this lookup if
the cache2 is disabled. This has been done by modifying the function
ima_add_template_entry() inside the file /security/integrity/ima/ima queue.c as
follow:

52

6 – Programmer manual

...

mutex_lock(&ima_extend_list_mutex);

if (!violation) {

memcpy(digest, entry->digest, sizeof(digest));

if (ima_cache2_enabled==1 &&

ima_lookup_digest_entry(digest, entry->pcr)) {

audit_cause = "hash_exists";

result = -EEXIST;

goto out;

}

}

result = ima_add_digest_entry(entry, 1);

...

Figure 6.8. Extract of ima queue.c source code

now the function ima_lookup_digest_entry() will be called only if the cache2
is enabled.

6.3 OAT HostAgent changes

In order to overcome the recent changes to the DeviceMapper driver in docker,
and to continue to use this project with the latest version of docker, some changes
are needed to the OAT Framework. In particular they are focused on the OAT
HostAgent, and how it creates the mapping devId - containerId when a new IR
request arrive. As discussed in chapter 4 two version of the same functions have
been developed. The v1 is a bit slower but works with the standard version of
docker (so no needs for recompilation). The v2 is way faster but requires the new
command, developed for this project, raInfo to be available in the docker CLI.

6.3.1 v1 changes

All the changes in the OAT Framework are limited at the rewriting of the Java
function retrieveMapDmContainers() in the file
/OpenAttestation/Source/HisClient/src/gov/niarl/his/StandaloneHIS.java:

...

/**

* Retrieve a map indicating the association between DeviceMapper

* virtual device numbers and the relative Docker container Id

*

* @return A map containing the association

*/

53

6 – Programmer manual

public Map<String, String> retrieveMapDmContainers() {

Map<String, String> mappings = new HashMap();

try{

//Get the list of all container ids

Process listOfContainerIds =

Runtime.getRuntime().exec("docker ps -q");

String id;

BufferedReader br = new BufferedReader(new

InputStreamReader(listOfContainerIds.getInputStream()));

//Temporary mapping between devicename and

containerid

Map<String, String> devname_contid = new

HashMap();

while((id=br.readLine()) != null){

//Get Device Name of this container

Process getDeviceName =

Runtime.getRuntime().exec("docker inspect "+id);

long startTime1 =

System.currentTimeMillis();

BufferedReader br2 = new

BufferedReader(new

InputStreamReader(getDeviceName.getInputStream()));

String out;

String deviceName;

while((out = br2.readLine()) !=null){

long insideStop =

System.currentTimeMillis();

writer.println(" -- Inside:

"+(insideStop-startTime1));

if(out.contains("DeviceName")){

deviceName = out.split(":

")[1].replaceAll("\"", "").replaceAll(",", "");

devname_contid.put(deviceName, id);

break;

}

}

getDeviceName.waitFor();

getDeviceName.destroy();

long stopTime1 =

System.currentTimeMillis();

writer.println("- Process:

"+(stopTime1-startTime1));

}

//listOfContainerIds.waitFor();

54

6 – Programmer manual

listOfContainerIds.destroy();

long lsblkTime = System.currentTimeMillis();

writer.println("After lsblk:

"+(lsblkTime-startTime));

//Analyze output of lsblk command to retrieve the

final mapping

Process lsblk =

Runtime.getRuntime().exec("lsblk");

br = new BufferedReader(new

InputStreamReader(lsblk.getInputStream()));

String line;

while((line = br.readLine()) != null){

if(line.contains("docker") &&

line.contains("dm")){

String[] lineSplit =

line.split("\\s+");

String deviceName =

lineSplit[1].substring(2);

mappings.put(devname_contid.get(deviceName), lineSplit[2]);

}

}

//lsblk.waitFor();

lsblk.destroy();

long stopTime = System.currentTimeMillis();

long elapsedTime = stopTime - startTime;

writer.println("Time: "+elapsedTime);

writer.close();

}

catch (Exception e) {

e.printStackTrace();

}

return mappings;

}

...

Figure 6.9. Extract of StandaloneHIS.java source code in the first version proposed

These are the steps necessary in order to retrieve the mapping deviceId - con-
tainerId :

55

6 – Programmer manual

� Retrieve all the ID of the currently running container. This can be done
by using the command docker ps -q: this command prints all the running
containers, and the -q flag tells to print only the container ID one per line.
The command is run by using the function exec() of java, and the output is
then collected into an InputStreamReader. Using the function readLine() it
is then possible to read the output line by line. Note that, since the function
readLine() of the BufferedReader is a blocking function no error due to
timing are possible

� For each containerId execute the command docker inspect containerId in
order to retrieve some low level information. In particular we are interested of
the field DeviceName, available inside the GraphDriver node. This will lead
us to have a preliminary mapping containerId - DeviceName

� Run the command lsblk in order to retrieve the mapping
deviceId-deviceName

� Put togheter the two intermediate mapping using the deviceName as the for-
eign key. This gives us the final mapping deviceId - containerId

In this piece code it is possible to see how the timing, shown in chapter 4, are
retrieved: the current timestamp is collected at the start of the function in a variable
called startTime, then at the end of the function the new timestamp is collected
inside the variable stopTime and the final execution time of the function is then
calculated as stopTime - startTime.

6.3.2 v2 changes

In the v2 all the changes are limited to the function retrieveMapDmContainers()

of the file
/OpenAttestation/Source/HisClient/src/gov/niarl/his/StandaloneHIS.java. In this
second case, since all the mapping logic has been moved into the docker CLI, the
function can be simplified a lot:

...

/**

* Retrieve a map indicating the association between DeviceMapper

* virtual device numbers and the relative Docker container Id

*

* @return A map containing the association

*/

public Map<String, String> retrieveMapDmContainers() {

Map<String, String> mappings = new HashMap();

try{

PrintWriter writer = new

PrintWriter(DEFAULT_HIS_PATH+"mappingMeasure.txt","UTF-8");

56

6 – Programmer manual

long startTime = System.currentTimeMillis();

Process mappingCommand =

Runtime.getRuntime().exec("docker raInfo");

BufferedReader br = new BufferedReader(new

InputStreamReader(mappingCommand.getInputStream()));

String lineMap;

while((lineMap=br.readLine())!=null){

String[] lineSplit = lineMap.split(" ");

mappings.put(lineSplit[0], lineSplit[1]);

}

long stopTime = System.currentTimeMillis();

long elapsedTime = stopTime - startTime;

writer.println("Time: "+elapsedTime);

writer.close();

}

catch (Exception e) {

e.printStackTrace();

}

return mappings;

}

...

Figure 6.10. Extract of StandaloneHIS.java source code in the second version proposed

The only command that is executed is the new command docker raInfo: this
prints all the mapping devId - containerId, one per line. So to retrieve the mappings
it is enough to parse the output line by line and split each line by the space char.

57

Chapter 7

Software alternatives

In this thesis work we have presented an architecture that let us achieve the Re-
mote Attestation process on Docker. However some other software architectures are
available in order to bring this process on a container based virtualization. In this
chapter we are going to analyze and discuss some alternatives focusing on the trusted
computing features they made available. In particular in section 7.1 we are going
to analyze the Intel Cloud Integrity Technology (CIT), in section 7.2 the Container
Linux OS and its Rocket container engine made by Core Os and in the last section
we are going to compare them with the solution proposed by this thesis work.

7.1 Intel CIT

The Intel Cloud Integrity Technology (CIT) [21] is a platform developed by Intel
in order to provide a Remote Attestation solution for all the Cloud components.
It is the successor of the Open Attestation Toolkit (OAT) presented in chapter 2
and it is able to provide Trusted Computing both on standard and light virtual
machine. It can also be used to introduce a geolocation and tagging mechanism
into the infrastructure. The platform is based on the Intel proprietary architecture
called Trusted Execution Technology (TXT).

7.1.1 Architecture

The basic architecture of the Intel CIT platform is independent on the virtualization
engine used. A graphical representation is available in fig 7.1

The keys components of the Intel CIT architecture are:

� Attestation Server: It is the equivalent of the Appraiser in the solution
presented in this thesis. It has the role to perform Remote Attestation on all
the cluster nodes by comparing the measurement done by the Intel TXT (and
extended to the TPM) with the ones saved into the whitelist database

� Key Broker Service: It creates and retains all the encryption/decryption
keys of the various images loaded by the container in the cluster. When a

58

7 – Software alternatives

decryption keys is requested by a node, it acts as a broker by verifying the
host’s integrity status and by deciding at whom to respond

� Trust Director: It is used for generating VM images and for encrypt them
by using the keys provided by the Key Broker Service. It is also responsible
to generate the trust policy for each VM

� Trust Agent: It is the client side application that reside on each node that
needs to be attested. It maintains the ownership of the Trusted Platform
Module and acts as a proxy for all the request sent to him

� KMS Proxy: It is used to manage the launch request of encrypted images

Figure 7.1. Basic architecture of the Intel Cloud Integrity Technology

With the Intel CIT architecture it is possible to encrypt VM images in order to
enforce that an image can be run only by a verified host. When a host is required
to run an encrypted VM image, it should follow this steps:

� The host request the key to the KMS Proxy and provide its Attestation Identity
Key (AIK) taken from its TPM

� The KMS Proxy will check its integrity status with the Attestation Server
using the AIK as the host Identity

� If the Verification is ok, the decryption key is wrapped with the AIK and is
sent back to the host

� The host unwrap the key using its TPM and runs the decrypted image

The decryption key is then saved in memory and can be reused if a reboot of that
VM is required. However, since it is stored in a volatile memory, after a host reboot,
it is required to redo the procedure in order to retake the key.

59

7 – Software alternatives

7.1.2 Intel TXT

Intel Trusted Execution Technology (TXT) [22] is an Hardware architecture pre-
sented by Intel in order to validate platform trustworthiness during the boot and
launch of software. In order to work the system must be equipped with a Trusted
Platform Module (TPM) v1.2 on which Intel TXT can extends the measure done.
It is used as the Root of Trust for the Intel Cloud Integrity Technology platform.

In order to work, it requires the following components:

� Intel VT-d: Intel proprietary on-chip Virtualization technology with support
for direct I/O

� TPM v1.2: Security chip compatible with the standard v1.2 proposed by the
Trusted Computing Group (TCG)

� ACM enabled BIOS: Bios with the support for Authenticate Code Module
technology

The Authenticated Code Module (ACM) [22] is a code module that contains the
procedure to prepare the system for Intel TXT and it is digitally signed by the
chipset manufacturer. When establishing a new chain of trust, it is the first that
is measured by the processor. When its signature and integrity are successfully
validated, it will then proceed to validate the first module of the BIOS. All this
measure are then extended to the PCR0 of the Trusted Platform Module (TPM)
and they are considered the root of trust.

With the Intel TXT technology is possible to assign tags, such as geolocation
information, to the different nodes (assets). The digitally signed set of asset tags
compose the Asset Tag Certificate which is stored directly into the Trusted Platform
Module. It is then used by the Intel CIT architecture to implement the Boundary
Control and Trusted Location features or to define the type of workload that a node
is able to do.

Boundary Control is a technology that lets the sys admin to force the processed
data inside a particular location. For example it can be used to prevent that a
particular VM image can be executed in a particular country or location, due to
local law limitations. In case of hosts located in multiple locations, it is possible to
force the Intel CIT to execute a particular workload on a trusted location. All this
features are based on the Asset and GeoTag information available in the Intel TXT
architecture.

7.1.3 Image Integrity

When executing a VM image that has been setup for Image Integrity some checks are
done at load time. The first step is the decompression of the image. The second step
is to measure all the files contained in the image. Each measure is than compared
to the one saved in the WhiteList DB during the initial setup of the image. The
behavior is then different based on the image integrity policy that has been selected:

60

7 – Software alternatives

� Hash Only: the image will be checked for integrity at load time and in case
of failure it will be launched anyway but an alert is sent by the system

� Hash and Enforce: the image will be checked for integrity at load time and
in case of failure the image will not be launched

Since the platform supports a wide variety of VM engines, the image signature
feature is not directly available. However it is possible to activate it directly in the
virtualization engine of choice.

7.2 Core Os

Core Os [23] is a company based in San Francisco with the aim to develop an en-
terprise Trusted Computing architecture for container based virtualization. In 2013
they released Container Linux, which is a virtualization based Operating System,
and in 2014 they released a new container engine called Rocket (rkt).

7.2.1 Container Linux

Container Linux [24] is a lightweight, virtualization based Operating System devel-
oped by Core Os. All the applications are required to run on different containers.
It supports both docker and rocket as the container engine. It is designed in or-
der to provide greater scalability, ease of use, automation and security to cluster
deployments. All the various nodes are managed using a cluster manager called
Kubernetes.

Kubernetes [25] is an open-source platform developed by Google in order to
automatically manage a cluster of container nodes. It is structured with a Client-
Server architecture. The basic unit is the Pod that corresponds to a set of containers
that needs to run on the same location. All the nodes are managed by the Master
by talking to the kubelet, that is an application that runs on the host and manage
all the pods locally.

61

7 – Software alternatives

Figure 7.2. Basic architecture of Kubernetes

7.2.2 Rocket

Rocket (rkt) [26] is a container engine developed by Core Os with the aim to provide
security and efficiency. Unlike docker that has a central deamon for managing all
containers, rocket will run each container into a new Unix process. This allows
rocket to achieve isolation by exploiting the standard Unix process isolation.

The basic unit in Rocket is the pod. A pod is a set of containers that needs to
be run on the same location in order to exploit some host specific features. The pod
startup process is divided into the following stages:

� Stage 0: It runs the rkt binary and do some preparation task like creating
the filesystem for the pod or generating the pod UUID

� Stage 1: Read the Pod manifest and create the necessary isolation level

� Stage 2: Run the actual application chosen by the user

For each pod to be launched, it is possible to define on his manifest the appropriate
isolation level. The available values are:

� Fly: It is the lowest possible isolation level. It is implemented as a simple
chroot environment

� Systemd/nspawn: It is the medium isolation level. It is implemented using
a combination of cgroups and namespaces functionality using systemd or sys-
temdnspawn. This options correspond to the isolation level offered by Docker

� kvm: It is a full isolated environment implemented through the Kernel Vir-
tualization Module (kvm) of the Unix kernel

62

7 – Software alternatives

Figure 7.3. Stages of Rocket launch

By choosing the highest isolation level (kvm) Core Os will use a technology called
Intel Clear Containers. It was initially developed by Intel with the IntelVT standard
as a requirement, but now is supported also by Core Os in the rkt container engine
with no hardware requirement. The basic idea is to optimize a standard hypervisor
(qemu in the Intel version, kvm in Core Os) in order to reduce its memory footprint
and startup time. This is done by optimizing both the kernel and the filesystem and
by exploiting the direct access feature available in Unix kernel v4.0+. The result
is a Virtual Machine that share all the isolation benefit of an hypervisor, but it is
close to the startup time and memory utilization of a container.

7.2.3 Trusted Computing

Core Os provides Trusted Computing by using Kubernetes : a node is allowed to
join the cluster if and only if its integrity status is verified. The verification of a
node starts from the boot phase by verifying the integrity status of the hardware
and of all the software up to the OS. Each VM image contains a signature that is
checked with its configuration state by rkt when it must be loaded into memory.

The default image format used by Rocket is Appc, and it includes an image
signature useful for checking the image integrity at load time. This feature is enabled
by default and allows rkt to run only verified images. A similar feature is available
with Docker by using the Docker Content Trust (DCT). No other integrity check
mechanism are available.

63

7 – Software alternatives

Figure 7.4. Trusted Computing Architecture in Core OS

7.3 Comparisons

In this section we are going to compare the two solutions analyzed in this chapter
to the one proposed with by the thesis work. In particular we are going to compare
them in terms of functionality and performance.

7.3.1 Features

All the solutions analyzed offers an Image Integrity feature. However both Core Os
and Intel CIT, checks the integrity status only at load time. instead in the solution
proposed in this thesis all the checks are done at run-time. With the SECURED
project, if a container is attacked during the execution phase, it will be detected.

In all the solutions the image signature features is delegated to the container
engine of choice. In particular with Docker is possible to use the Docker Content
Trust mechanism, while Rocket provide a similar feature already enabled by default.

The Intel CIT platform supports a wide variety of Virtual Machine engines,
ranging from the standard to the light ones. Instead Core Os supports only docker
and rocket, while the SECURED project is based on docker.

No special hardware is required both for Core Os and SECURED, except for a
Trusted Platform Module v1.2. Instead Intel CIT requires a compatible processor
with the support of the Intel VT-d and Intel TXT technology.

For all the project the root of trust is based in hardware. However for SECURED
and Core Os the chain of trust starts from the TPM while for Intel CIT starts from
the Intel TXT hardware platform.

64

7 – Software alternatives

7.3.2 Performance

We can now move on by talking about performance. All the results presented in
this section are obtained using the following machine:

� Processor: Intel Core i5 4670 @ 3.8 Ghz

� RAM: 8gb DDR3 @ 1600Mhz

� Hdd: 1Tb WD @ 6Gb/s

� GPU: Nvidia GTX 570

The first test takes into account the creation of a new container. From fig 7.5 it is
possible to see that the solutions based on Docker are pretty similar and take less
time in respect to the rkt one. Since Rocket runs every pod in a different Unix
process, it has to load itself and all the dependencies every time a new container is
loaded. This is not true for Docker, since all the container runs under the Docker
daemon, that has preloaded all the basic dependencies.

0.51sIntel CIT (docker)

0.83sCore Os (rkt)

0.55sSecured (docker)

Figure 7.5. Average container startup time

The second test involves the time needed to create an Integrity Report. As it
is possible to see in fig 7.6 all the proposed solutions are around 75ms, even if
the architecture of the various project are quite different. It is important to note
that the times are taken by using a network analyzer, like fiddler, on the Appraiser
and calculate the time needed to receive back an Integrity Report when a new
Attestation request happens. For this reason it must be taken into account also the
serialization/deserialization time and the transfer time of the IR over the network.

65

7 – Software alternatives

77msIntel CIT (docker)

74msCore Os (rkt)

76msSecured (docker)

Figure 7.6. Average time to produce an IR with 5 active containers

66

Chapter 8

Results and conclusion

In this chapter are presented the results obtained during the development of this
thesis work and the development of the solution proposed in chapter 4. Moreover
will be presented some possible developments for the future and the conclusion of
the thesis. In particular, in section 8.1 will be presented the results obtained during
the development of the thesis work, in section 8.2 will be presented some possible
future developments and in section 8.3 will be made the conclusions of the thesis.

8.1 Results

As we have seen, we’ve started our work with the need to make what already done
by the TORSEC group to work also with the newest version of docker and IMA.
Regarding IMA, no big changes where needed in this phase, but this is not true
for docker. In fact from docker v1.10+ a lot of features has been introduced. In
particular, in order to reduce the collision domain of container mappings, has been
changed the way Device Mapper maps each container to the respective underlying
virtual device. This project is heavily dependent on the mapping between the device
id and the container id, that unfortunately with docker v1.10+ is broken. So we’ve
started analyzing the docker source code in order to find how to achieve the same
result and we’ve found that the device folder created by devicemapper for each
container is named with a random hash. However this association is saved into
memory and it is available by running the command docker inspect containerId.
A screen of the interesting portion of this output can be seen in fig 8.1

With that information in mind, a new mapping procedure has been introduced.
In particular it involves the following steps:

� List all the active containers by using the command docker ps

� For each container retrieve the Virtual Device Name by using the command
docker inspect containerId and analyze the output of the command pay-
ing attention to the GraphDriver node

� Analyze the disk block status by using the command lsblk

67

8 – Results and conclusion

� Retrieve the deviceId - containerId mapping by merging the information re-
trieved by the previous commands and by using the Device Name as a join
key

’’GraphDriver’’:{

’’Name’’: ’’devicemapper’’,

’’Data’’: {

’’DeviceId’’: ’’27’’,

’’DeviceName’’:

’’docker-8:6-4853215-b665ee05b818394a5e98a294362cb955dc

1a5211a412222ea840a627d72194bb’’,

’’DeviceSize’’: ’’10737418240’’

}

},

Figure 8.1. GraphDriver node available in the output of the docker

inspect command

The new mapping procedure works perfectly, however it introduces an unwanted
latency in the creation of the Integrity Report. After a brief analysis on the created
code, we’ve identified that this issue was created due to the presence of synchronous
I/O parsing that is needed in order to retrieve all the information necessary to the
mapping procedure.

Since the major part of the information needed to the mapping are already
available on the docker Command Line Interface and the GO programming language
[27] has a great integration with the linux sys call, we’ve decided to move the new
mapping logic to the docker CLI by developing a new command, that has been called
raInfo. It will output the mapping between each active containerId and deviceId by
exploiting the internal raw level information available in the docker daemon. As it is
possible to see in table 1, available in section 4.3, with this new technique the latency
times were drastically reduced, returning in an acceptable range. It is important
to note that this command is available only if the docker CLI has been compiled
with the buildRa compilation tag. This feature has been done by exploiting the
functionality provided by the GOlang compiler.

During further development of the project a new major problem arise. We’ve
seen in chapter 4 that not all the file that meets the requirement set by the policy
are measured. In order to resolve this problem we’ve start analyzing the source
code available for the IMA module of the kernel. We’ve found that, in order to
reduce the impact in term of performance losses of the module on the system, it
uses two different caches mechanism to avoid to remeasure the same unmodified file.
Unfortunately, for our project, this is a problem that needs to be solve. In fact we’ve
the need that all the file that has been loaded to a container must be measured,
even if that file has already been measured with another container. This feature is
needed for the fact that the whitelist is different for each container.

68

8 – Results and conclusion

The first cache is represented by and integrity structure attached to the Inode
of each file. In this structure is available a flag, called MEASURED, that says if the file
has already been measured for that Inode version. If that flag is true and the Inode
version has not been changed, that IMA assumes that this file is not changed from the
last measure, so no needs to remeasure it. The Inode version is changed every time
a file is modified, but only if the filesystem has been mounted with the -i_version

flag. The solution for disabling this first cache is to force the MEASURED flag to false
every time a new measure is done. For clarification the Integrity structure attached
to the Inode of the file is available in fig 8.2

/* integrity data associated with an inode */

struct integrity_iint_cache {

struct rb_node rb_node;

struct inode *inode;

u64 version;

unsigned long flags;

unsigned long measured_pcrs;

enum integrity_status ima_file_status:4;

enum integrity_status ima_mmap_status:4;

enum integrity_status ima_bprm_status:4;

enum integrity_status ima_read_status:4;

enum integrity_status evm_status:4;

struct ima_digest_data *ima_hash;

};

Figure 8.2. Integrity data associated to the Inode of each file

The second cache is composed by an hashtable that stores all the measures
already printed on the log file. In particular each time a new measure is done, IMA
will check if the hash of the measure is available in the hash table and, in that case,
it will discard the measure. The solution for disabling the second cache was to add
a condition in the check of the hash table.

It is important to note that all the modification introduced to the IMA module
of the kernel will not affect in any way all the functionality provided by it. In fact
we’ve added two new kernel boot parameter, called respectively IMA_CACHE1 and
IMA_CACHE2, that says if the respectively cache has to be enabled or disabled. In
particular if they are not set, IMA will stick to standard behaviour so that both
caches are enabled.

8.2 Where to go next

A lot of work has been done during the development of the thesis. However some
improvements can be done to the project in order to make it more secure, flexible

69

8 – Results and conclusion

and efficient. In this section we are going to analyze some possible improvement
that can be done in the future.

The first problem that needs to be addressed is a potential flaw in security. It is
related to the fact that each measure in the Integrity Report is binded to a particular
container by using a mapping containerId - deviceId and the way docker behaves
when a stop command is issued. In particular when we start a container, Device
Mapper will assign the first deviceId of the pool available to it. Instead when we
stop it, the association is broken and this device id became again available, so that
if a new container is started it can takes it. The problem is that, in the current
solution, we are not tracking in anyway this change in the device Id association, so
that if a new container will take a previously used deviceId, it will also inherit all
the measure done on the old container on that device id, possibly resulting in a fail
when an Integrity check is done in the new container. A graphical explanation of
this problem is available in fig 8.3

Figure 8.3. Graphical representation of the STOP command problem

One possible solution to that problem is to add a special row in the IMA measure-
ment list in order to track the status change of a particular container, so that when
the appraiser is going to check the integrity status of a container, it will consider
only the newer measure in the IR, that are the one after the last START command.
But since IMA is protective regarding his log file, it is not possible to manually add

70

8 – Results and conclusion

a row in his log file, otherwise the integrity check of the Integrity Report created
will fail. So for resolve this issue IMA needs to expose on a unix socket a set of API
that can be used to work with the log file, and possibly add a new measurement
line into it. However this solution will greatly increase the surface attack of IMA,
so some precautions, like access privileges to the Unix socket, must be put in place
in order to avoid attack exploiting this new feature.

For example one possible attack is represented in fig 8.4. In a normal situation
if someone manages to run a bad behaving program or a script inside a container
it will be detected since the signature of the file loaded is not available into the
WhiteList database. However if the attacker manages also to write a fake STOP

record inside the IMA measurement list exploiting the API provided by IMA itself,
then all the measure before that line will not be considered, and the bad script will
not be detected.

Figure 8.4. Possible attack on the solution proposed for the STOP command

The proposed solution make use of a modified version of IMA in order to resolve
some security flaw. In particular two new kernel parameters has been added in order
to deactivate, when needed, the cache putted in place by the system. Currently IMA
is undergoing a rewriting of the module. The new IMA module will be available in
the first quarter of the next year and it will embed the possibility to control each
cache independently by simplying changing a configuration file. Also there will be
more room to custom template, so if the project will follow this remake of IMA it
can be avoided to patch and recompile the linux kernel for each node to be attested.
This will be a great improvement for the usability and maintenance of the platform.

Right now the solution proposed is highly binded to the DeviceMapper storage
driver. However there are other Storage Driver supported by Docker that offer better

71

8 – Results and conclusion

performance and stability in respect to Device Mapper. In particular the future for
Docker seems to go in the direction of Overlay2fs that gives better performance in
respect to the “old” Device Mapper. In fact most of modern linux distro uses as
default overlay2fs in docker. So one possible development is adding the support for
that particular Storage Driver.

8.3 Conclusions

We start by focusing on how Cloud Computing has changed the way we access IT
services and the needs to provide security in it. In particular we focused on the
importance to establish trust on a particular node and how this can be done by
using the methodologies introduced by the Trusted Computing Group. However the
framework developed by the TCG aims to provide trust on a physical hardware
machine, but nowadays most of the services are executed inside a Virtual Machine.
In this way is possible to provide greater flexibility and scalability to the end user
of the provider services. For this reason, the Trusted Computing Group, decided to
change a little his specification in order to provide Trust also on Virtual Machine.
This can be done by using an Integrity Verificaton Proxy, that is a middleware
component that manages all the connection to the various Virtual Machine granting
the Integrity status of them in respect of the criteria stated by the client at the
moment of the connection. Since the IVP is a critical component it must be trusted,
but this can be done by simplying using the standard Remote Attestation procedure
already available.

In the last few years we have assisted to a rapid grow of a new virtualization tech-
nique called Light Virtualization. This one promises the same benefit of a regular
Virtual Machine but without adding the overhead of a standard Virtualization tech-
nique. The aim of the thesis was to extend the support of the Remote Attestation
process also to this type of Virtualization method.

In particular the thesis is inserted inside the context of the SECURED project,
where it will help the development of the Network Edge Device function inside the
architecture proposed by SECURED. Some parts of the development was already
done by the TORSEC research group but changes were needed to makes it available
to the newest docker version and to resolve some issues found during the analysis.

The main aim of the thesis was to finish with a functional framework that can
be used inside the SECURED project in order to implement and trust the figure
of the NED. The first step toward this aim was to take what already done by the
TORSEC group and, after a brief analysis, makes it work with the newer version of
docker and IMA. In order to do that, the work has started by analyzing in detail how
devicemapper works and how docker internally maps each containers to the virtual
device created. We have found that, unfortunately, there is no direct link between a
container and its device mapper folder, however this mapping is saved as an internal
information and can be partially retrieved by using the command docker inspect.
With that information in mind a new mapping procedure has been created and the
project was functional again for docker version 1.10+. A second version of this new
mapping procedure has been done in order to make it faster. This second version

72

8 – Results and conclusion

includes some modification to the docker CLI, and so I’ve had the opportunity to
study a new programming language called GO.

After some developments a new major problem araised: not all the file loaded
inside a container were measured by IMA. After a brief analysis we’ve discovered
that this is done because IMA maintains two different caches mechanism. With this
particular problem I’ve had the chance to analyze the code behind the IMA kernel
module and to develop a kernel patch in order to add two new kernel boot parameter
for disabling the two caches mentioned before.

Overall has been a very good experience that lets me study some technology
that were new for me, like the OAT framework and the whole Trusted Computing
technologies. Furthermore, in order to achieve the aim of the thesis, I had the chance
to analyze the source code of docker and of the linux kernel and then to create some
patches for it. In conclusion it has been a very pleasant experience that let me grows
my knowledge in a particular area of cybersecurity, and at the end all the aim stated
at the beginning of the thesis have been reached. I also hope that my thesis work
will be useful in order to develop the SECURED project and build a safer cyber
world!

73

Bibliography

[1] P.Mell, T.Grance, “The NIST Definition of Cloud Computing”, September
2011, pp. 6-7, DOI 10.6028/NIST.SP.800-145,

[2] M.Eder, “Hypervisor-vs. Container-based Virtualization”, WS 2015/2016:
Seminar Future Internet, Technische Universität München (Germany), July
1, 2016, DOI 10.2313/NET-2016-07-1 01

[3] The SECURED project, https://www.secured-fp7.eu/

[4] D.Montero, M.Yannuzzi, A.Shaw, L.Jacquin, A.Pastor, R.Serral-Gracià,
A.Lioy, F.Risso, C.Basile, R.Sassu, M.Nemirovsky, F.Ciaccia, M.Georgiades,
S.Charalambides, J.Kuusijarvi, F.Bosco, “Virtualized Security at the Network
Edge: A User-centric Approach”, IEEE Communications Magazine, Vol. 53,
No. 4, April 2015, pp. 176-186, DOI 10.1109/MCOM.2015.7081092

[5] The TORSEC research group, http://security.polito.it/

[6] R.Shirey, “Internet Security Glossary, Version 2”, RFC-4949, August 2007, DOI
10.17487/RFC4949

[7] The Trusted Computing Group (TCG) website, http://www.

trustedcomputinggroup.org/

[8] Trusted Platform Module (TPM) v1.2 specifications, https://

trustedcomputinggroup.org/wp-content/uploads/PC_Client_TPM_PP_

1.3_for_TPM_1.2_Level_2_V116.pdf

[9] Integrity Measurement Architecture (IMA) wiki, https://sourceforge.net/
p/linux-ima/wiki/Home/

[10] The Open Attestation Toolkit (OAT) project, https://01.org/blogs/

tlcounts/2014/openattestation-oat-project

[11] J.Schiffman, H.Vijayakumar, T.Jaeger, “Verifying System Integrity by Proxy”,
TRUST 2012: 5th International Conference on Trust and Trustworthy Com-
puting, Vienna (Austria), June 13-15, 2012, pp. 179-201, DOI 10.1007/978-3-
642-30921-2 11

[12] The Docker project, https://www.docker.com/

[13] The Docker Command Line reference guide, https://docs.docker.com/

engine/reference/commandline/docker/

[14] Docker layer fs reference guide, https://docs.docker.com/engine/

userguide/storagedriver/imagesandcontainers/#images-and-layers

[15] Supported storage drivers in Docker, https://docs.docker.com/engine/

userguide/storagedriver/

[16] Security features in Docker, https://docs.docker.com/engine/security/

security/

74

http://dx.doi.org/10.6028/NIST.SP.800-145
http://dx.doi.org/10.2313/NET-2016-07-1_01
https://www.secured-fp7.eu/
http://dx.doi.org/10.1109/MCOM.2015.7081092
http://security.polito.it/
http://dx.doi.org/10.17487/RFC4949
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
https://trustedcomputinggroup.org/wp-content/uploads/PC_Client_TPM_PP_1.3_for_TPM_1.2_Level_2_V116.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC_Client_TPM_PP_1.3_for_TPM_1.2_Level_2_V116.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC_Client_TPM_PP_1.3_for_TPM_1.2_Level_2_V116.pdf
https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://01.org/blogs/tlcounts/2014/openattestation-oat-project
https://01.org/blogs/tlcounts/2014/openattestation-oat-project
http://dx.doi.org/10.1007/978-3-642-30921-2_11
http://dx.doi.org/10.1007/978-3-642-30921-2_11
https://www.docker.com/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://docs.docker.com/engine/userguide/storagedriver/
https://docs.docker.com/engine/userguide/storagedriver/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/

Bibliography

[17] The Docker Content Trust (DCT), https://docs.docker.com/engine/

security/trust/content_trust/

[18] How to compile a Kernel in Ubuntu, https://help.ubuntu.com/community/
Kernel/Compile

[19] Contributing to Docker, https://github.com/moby/moby/blob/master/

docs/contributing/set-up-dev-env.md

[20] The IBM virtual Trusted Platform Module (vTPM), http://ibmswtpm.

sourceforge.net/

[21] The Intel Cloud Integrity Technology (CIT) product guide, https://github.
com/opencit/opencit/wiki/Open-CIT-3.2.1-Product-Guide

[22] W.Futral, J.Greene, “Intel Trusted Execution Technology for Server Plat-
forms”, Springer, 2013, pp. 15-36, DOI 10.1007/978-1-4302-6149-0

[23] The Core Os official website, https://coreos.com/
[24] Container Linux OS official guide, https://coreos.com/os/docs/latest/
[25] Kubernetes official website, https://kubernetes.io/
[26] Rocket (rkt) documentation, https://coreos.com/rkt/docs/latest/
[27] The GO programming language, https://golang.org/

75

https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://help.ubuntu.com/community/Kernel/Compile
https://help.ubuntu.com/community/Kernel/Compile
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md
http://ibmswtpm.sourceforge.net/
http://ibmswtpm.sourceforge.net/
https://github.com/opencit/opencit/wiki/Open-CIT-3.2.1-Product-Guide
https://github.com/opencit/opencit/wiki/Open-CIT-3.2.1-Product-Guide
http://dx.doi.org/10.1007/978-1-4302-6149-0
https://coreos.com/
https://coreos.com/os/docs/latest/
https://kubernetes.io/
https://coreos.com/rkt/docs/latest/
https://golang.org/

	Summary
	Introduction
	Background
	Trusted Computing
	Trusted Systems
	Trusted Platform Module
	Chain of trust
	Integrity Measurement Architecture

	Remote Attestation
	OAT Framework
	Integrity Verification Proxy
	Light Virtualization

	Docker
	Containers
	Images and repositories
	Storage Driver support

	Remote Attestation on Light VM
	Security in Docker
	Kernel namespaces and control groups
	Docker Kernel capabilities
	Docker Content Trust
	Attack surface

	SECURED project
	Introduction
	NED and NFV
	Architecture

	OAT Framework for Docker
	HostAgent
	Appraiser

	Project changes
	Introduction
	OAT for Docker
	Docker's DeviceMapper indirection

	Docker
	A new command for docker

	Linux Kernel
	IMA caching policies

	User manual
	Prerequisites
	Linux Kernel configuration
	Patching the kernel
	Compiling the kernel
	Activating an IMA custom policy

	Docker Configuration
	Installation
	Enabling DeviceMapper
	Patching and Compiling the Docker CLI

	OAT Appraiser configuration
	OAT HostAgent configuration
	vTPM

	Programmer manual
	Docker changes
	IMA changes
	OAT HostAgent changes
	v1 changes
	v2 changes

	Software alternatives
	Intel CIT
	Architecture
	Intel TXT
	Image Integrity

	Core Os
	Container Linux
	Rocket
	Trusted Computing

	Comparisons
	Features
	Performance

	Results and conclusion
	Results
	Where to go next
	Conclusions

	Bibliography

