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Abstract 
 
Design of Rockfall Protection Embankments and estimation of their capacity to deviate the 

trajectory of rock boulders are complex issues, which give considerable room for further 

improvement. A lack of detailed models for the simulation of block rebound dynamics is mainly 

due to the large number of parameters that influences the phenomenon. Therefore, the 

evaluation of the embankment efficiency in modifying the block trajectory, as a function of the 

site characteristics, is still precluded to design engineers. 

In such a context, the aim of the traineeship, on which this report is based, is to improve the 

modelling of the rock bouncing on the embankment face, while taking into account many 

parameters describing the impact conditions. This work is undertaken via numerical simulation 

using YADE, an open source code for discrete numerical models (DEM). Original modelling 

approaches are developed to tackle this problem. A literature review is conducted, focusing on 

bouncing modelling and available data with respect to block/embankment interaction.  

The development path of the model is gradual. That is to say that the modelling starts from the 

easiest stage, the elastic situation, before reaching the plastic behaviour. 

Among the type of elements used to model the structure, PFacets, which guarantee the friction 

between boulder and surface, give particularly relevant results. PFacets are an innovative type 

of elements implemented in YADE, though not often used nor well defined.  The presented 

particular model is built in order to manage their complexity on the behaviour. 

Varying the characteristics of the impacting rock (such as the mass, the dimension, or the 

velocity), the embankment, and the impact (such as the impact angle or height), the research is 

aimed at defining an efficient model in a realistic range of these parameters and evaluating their 

influence in the phenomenon.  

The validity of the approach is addressed comparing simulation results with the few 

experimental data available from the literature.  

  

  



 
 

Sommario 
 
La progettazione di Rilevati Paramassi e la stima della loro capacità di deviare la traiettoria dei 

massi sono questioni complesse, che forniscono notevoli possibilità di miglioramento. La 

mancanza di modelli dettagliati per la simulazione del rimbalzo dei blocchi impattanti la 

struttura protettiva è principalmente dovuta all’elevato numero di parametri che influenzano il 

fenomeno. Dunque, la valutazione dell’efficienza del rilevato nel modificare la traiettoria, come 

funzione delle proprietà del sito, è ancora preclusa agli ingegneri progettisti. 

In tale contesto, l’obiettivo della ricerca, su cui tale elaborato è basato, è quello di migliorare la 

modellazione del rimbalzo dei blocchi sulla superficie del rilevato, considerando molti 

parametri che descrivono le condizioni d’impatto. Il suddetto lavoro è sviluppato tramite 

simulazione numerica, con l’utilizzo di YADE, un programma per la modellazione agli 

elementi discreti (DEM). Per affrontare questo problema, sono stati adottati approcci di 

modellazione originali. Una revisione bibliografica è stata condotta, concentrando l’attenzione 

su modelli di rimbalzo e dati disponibili, relativi all’interazione blocco – rilevato. 

Il percorso di sviluppo del modello è graduale: la modellazione comincia dallo stadio più 

semplice, la situazione elastica, sino ad ottenere il comportamento plastico. 

Tra i diversi elementi utilizzati per modellare la struttura, i PFacet, che garantiscono l’attrito fra 

il masso e la superficie, forniscono dei risultati particolarmente rilevanti. Essi sono elementi 

innovativi sviluppati in YADE, ad oggi non molto utilizzati né ben progettati. Il particolare 

modello presentato è costruito in modo da gestire la loro complessità di comportamento.  

Variando le caratteristiche del masso (quali la massa, la dimensione o la velocità), del rilevato, 

e dell’impatto (angolo di impatto o altezza di caduta del blocco), la ricerca è mirata alla 

definizione di un modello efficiente in un intervallo di parametri riscontrabile nella realtà del 

fenomeno, ed alla valutazione della loro influenza sullo stesso.  

La validità dell’approccio viene affrontata confrontando i risultati delle simulazioni con i pochi 

dati sperimentali disponibili in letteratura.   



 
 

Résumé 
 
La conception des merlons pare-blocs ainsi que l’estimation de leur capacité à dévier la 

trajectoire des blocs représentent des questions complexes qui offrent d’importantes possibilités 

d’amélioration. Aujourd’hui, il n’existe pas de modèles détaillés permettant la simulation du 

rebond des blocs sur la structure de protection. Cette absence de modèles détaillés est 

principalement due au grand nombre de paramètres qui influencent ce phénomène. Par 

conséquent, l’évaluation de l’efficacité du merlon en termes de contrôle de la trajectoire des 

blocs, dans des conditions spécifiques aux sites, reste encore fermée aux ingénieurs de 

conception. 

Dans ce contexte, l’objectif de la recherche, sur laquelle est basé ce document, est d’améliorer 

la modélisation du rebond des blocs à la surface du merlon, en tenant compte des nombreux 

paramètres décrivant les conditions d’impact. Pour répondre à cette demande, le travail consiste 

à développer par simulation numérique, à l’aide du logiciel YADE, un programme de 

modélisation par éléments discrets (DEM). Pour mener à bien ce projet, des nouvelles 

approches de modélisations ont été adoptées. Une revue bibliographique a été réalisée à travers 

laquelle l’attention est focalisée sur les modèles de rebond et les données disponibles, relatif à 

l’interaction bloc-merlon.     

Le cheminement de développement du modèle se fait de façon progressive en commençant par 

une situation simple à savoir le comportement élastique pour arriver à l’étude plus complexe 

du comportement plastique.  

Parmi les différents éléments utilisés pour modéliser la structure, le PFacet, qui permet de tenir 

compte du frottement entre le rocher et la surface, fournit des résultats particulièrement 

pertinents. Ces éléments novateurs, développés par YADE, sont à ce jour très peu utilisés et pas 

très bien conçus. Le modèle particulier présenté dans ce rapport est construit de manière à gérer 

la complexité comportement de ces PFacet. 

En faisant varier les paramètres du bloc (masse, taille ou vitesse), du merlon et de l’impact 

(angle d’impact ou hauteur de chute du bloc), la recherche vise, dans un premier temps, à définir 

un modèle efficace dans une gamme de paramètres qui peuvent être trouvés dans la réalité du 

phénomène. D'autre part, l'objectif est d'évaluer l'influence de ces derniers sur ce même 

phénomène. 

La fiabilité de la réponse du modèle est vérifiée par comparaison avec des études 

expérimentales disponibles dans la littérature.  
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Introduction 
 
Rockfall protection embankments are massive civil engineering structures, built in elevation 

with respect to the ground to intercept large falling rocks. They are 3 to 5 m high and up to a 

few hundred meters long. On a functional point of view, the design of an embankment aims to 

assessing the ability of the structure in adequately modifying the blocks trajectories. This is 

related to the way the blocks bounce on the embankment’s face. Such a rebound appears to be 

extremely complex as it depends on many parameters related to the block’s shape, velocity 

(translational, rotational), the impact point location and the embankment characteristics 

(constitutive materials and geometry).  

 

The typical values which characterize the boulder and the impact mechanism are: 

 
Table 1: Typical characteristics of the impacting block. 

Velocity From 5 to 30 m/s 

Mass From a few to tens of thousands of kilograms 

Duration of the impact Between 0.03 and 0.2 s 

 
Many experiments were conducted in order to understand the mechanism and the influencing 

parameters. In this report, some of them are described to clarify all the important aspects of this 

phenomenon.  

The purpose of the internship, object of this thesis, is to create a model that can properly 

reproduce the phenomenon, allowing the quantification of the relative influence of each 

parameter, structural or mechanical, on the block bouncing. The main interest is to develop a 

model, inexpensive in terms of computational time, which permits a calibration as simple as 

possible.  

Many modelling designs were developed, using different methods: Finite Element Modelling, 

Discrete Element one, or coupling the two ways. In this report, examples are explained to bring 

under attention the positive and negative aspects of previous researches. 

Therefore, YADE is used, an open source software, which works with the informatic language 

Python. 

The impacted surface is modelled, considering a physical idea and a design that strictly simulate 

the response of the real structure. Its body is not considered in the representation because of the 
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large dimension, and, consequently, the number of particles that would be required in the 

modelling, and the computational time. The model is calibrated and the response is verified 

using experimental data and empirical relations. 

For the representation of the simulations on the developed models, PARAVIEW is used. It is 

an open source application for visualizing two- and three-dimensional data sets. The 

Visualization Toolkit (VTK) provides the basic visualization and rendering algorithms.  

The report is set up as follows: 

Chapter 1 is dedicated to a description of the rockfall protection embankments.  

Chapter 2 describes the embankment’s response to the impact, considering real scale 

experiments, and some examples of numerical models, with different modelling methods. 

In Chapter 3 an explication of the post – impact trajectory, and the influencing parameters, is 

reported. In this context, the influence of each parameter is confirmed by small – scale quasi – 

2D experimental data and a parametric study on a Discrete Element Model. 

Chapter 4 summarizes all the important assumptions for the case study of this report. 

Chapter 5 explains the interaction mechanism, used in Discrete Element Modelling, is reported, 

in order to understand the theoretical interaction between the elements used to model the 

structure. 

Chapter 6 contains the physical idea and the building steps of the model here developed. The 

principal assumptions made for the construction are explained.  

From Chapter 7 on, the tested models are explained, starting from the elastic one. After having 

described the used elements and the calibration, a simulation is shown, emphasizing the positive 

and negative aspects of the model.  

Subsequently, in Chapter 8 the elasto – plastic model is outlined, and the many tests carried out 

on the system are reported. Then, the comparison between the latter results and previous in situ 

test evidences would demonstrate the reliability of the developed model. 

Lastly, Chapter 9 sums up all the conclusions for each step of this research, and improvements 

for eventual further studies are suggested, to optimize the structure, and to obtain more refined 

solutions. 
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1. Rockfall Protection Embankments 
 
Rockfall protection embankments are passive protective constructions for structures and 

infrastructures, mostly made of granular materials. They present a lot of advantages: firstly, 

they are appropriate for very high kinetic energy events (up to 50000 kJ), they require low 

maintenance, and they represent a reduced visual impact. However, there are, also, many 

disadvantages: they are inappropriate on steeper slopes, and typically they require space and 

accessibility for heavy vehicles, for the construction.  

This structure is often associated with a ditch, in order to collect the intercepted blocks; it could 

be made in two different ways: with a dust road, to permit heavy vehicles to remove the fallen 

blocks, or with loose material, that permit to the block to dissipate its energy before the impact 

with the embankment. 

Originally, embankments were made only from compacted soil, but nowadays many innovative 

technics are known, to increase the stiffness of the structure: the uphill face protected by stones 

or a concrete wall, geogrid reinforcement, and others. Table 2 reports many possibilities of 

materials for these constructions.  

 
Table 2: Possible constitutive materials of rockfall protection embankments (S. Lambert, F. Bourrier, 2013 [17]). 

Uphill face Core Downhill face 
Interconnected tires Soil reinforced with GSY1 Gabion2 

GSY1 Soil reinforced with interconnected tires Soil 

Metallic wire mesh Soil reinforced with metallic wire mesh GSY1 

Cast iron panel Soil reinforced with wood and steel Tires 

Gabion2 Soil bag3 Timber 

Soil bag3 Gabion2 Rockery/rip-rap 

Soil Compacted soil  

Timber   

Concrete   

Rockery/rip-rap   
1. Geosynthetics, such as geotextiles or geogrids. 
2. Woven wire mesh (hexagonal) or welded wire mesh cages filled with either coarse or fine 
granular materials. 
3. Typically a sand-filled geotextile sock. 
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Figure 1: Different types of Reinforced Protection Embankments (S. Lambert, B. Kister, 2017 [18]). 

 
Reinforced embankments are more resistant to the impact than the compacted soil ones.  

Reinforcement layers made of geogrid or geotextile are able to distribute the impact load along 

the embankment longitudinal axis. In the impact vicinity, they increase the penetration 

resistance of the structure, because of the resulting confining. However, a negative aspect is 

introduced: the horizontal reinforcement layers can become a preferential plane for shear 

rupture.  

Another example of reinforced embankment is with a protective layer on the upside, and maybe 

even on the downside of it, made by, for example, rockery (the small – scale experiments done 

in Switzerland - [19] - show the typical behaviour of that structures): it increases the resistance 

capability of the structure.  

From a comparison between these structures, through small scale experiments, made by R. 

Hofmann and others [11], it was observed that: 

In the case of a rip rap facing (like the rockery), without geosynthetics, after the impact, the 

sphere (impacting block) almost maintained its height; contrariwise, in presence of pure soil or 

reinforced embankments, the sphere tended to jump or roll in the direction of the crest; 

The geosynthetics reinforced embankments showed more elastic behaviour than pure soil 

structures. 
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Both these issues influence the block rebound on the embankment face. 

 

To define the optimal position for an embankment along the slope, its efficiency is evaluated. 

It is necessary to consider a trajectory analysis data, so the block flying height and the kinetic 

energy, and the number of blocks to be stopped. Additionally, the efficiency of the structure 

has to be evaluated considering the way of the rock’s rebound on its uphill face. This 

phenomenon cannot be modelled in the trajectory simulation tools currently used (as 

demostrated by S. Lambert, F. Bourrier and D.Toe, 2012 [16]). Designing the embankment only 

considering the flying height is not sufficient for making sure that the block will be arrested, 

because of the risk of rebound over the structure. 

 

Four parameters totally describe the embankment profile: the height (H), the crest width (λ), 

the inclination of the uphill and downhill faces (respectively β and γ). The height is calculated 

from the maximum block flying height, evaluated through the statistical analysis based on many 

cases. The batter is defined in order to avoid the bouncing or the rolling over the structure (for 

that reason, the uphill inclination face of the embankment is increased). Finally, a different crest 

width can influence the efficiency of the structure, in relation to the behaviour during and after 

the impact, the stability and the stiffness. 

 

 
Figure 2: Schematization of the embankment, in order to visualize the geometrical parameters. 

 
When a ditch is built, the profile is modified, so the block’s kinetic energy can improve, because 

of the higher inclination of the slope. Below, the Figure 3 shows the profile’s changing.  
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Figure 3: Profile in the case of an embankment with a reshaping slope (S. Lambert, F. Bourrier, 2013 [17]). 

 

To project an embankment, it is also important to consider its impact response, difficult to 

evaluate because of the non-linear stress – strain behaviour of the material, the interaction 

between all the components, and the presence of large deformations induced. 

For the aim of the project, the embankment’s response to the impact is an interesting point 

because its deformation and capacity of absorbing energy influence, directly, the rebound of 

the block. 
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2. Embankment’s response to impact 
 

2.1 Real scale experiments 
In order to study the embankment’s response to the impact and the consequences on the block’s 

trajectory, many researches were developed based on 3D – big scale experiments. In the Table 

3 many of them are reported: 

 
Table 3: Real scale embankment impact experiments with block kinetic energies higher than 1000 kJ (S. Lambert, B. Kister, 

2018 [20]). 

Structure Block Impact Deformation 

Type Height Thickness Mass Translational Height Uphill Downhill 

  (crest/base)  Veloc. En.  -face -face 

  (m) (m) (kg) (m/s) (kJ) (m) (m) (m) 

 MSE wall 3.05 1.82/1.82 5320 19.5 1010 1.5 0.6 0.21 

+ wood(1) 3.05 1.82/1.82 8330 18.3 1400 1.4 0.9 0.7 

 3.05 1.82/1.82 12210 15.3 1410 1.5 - 0.76 

  3.7 2.4/2.4 8400 18.3 1410 1.5 - 0.34 

 3.7 2.4/2.4 9400 16.8 1300 1.5 - 0.25 

 3.7 2.4/2.4 12210 15.3 1410 1.5 - 0.34 

Reinforced(2) 4.2 0.9/5 5000 31.7 2500 3 0.6 0.23 

 4.2 0.9/5 8780 31.3 4350 - 1 0.9 

Unreinforced(2) 4.2 0.9/6 8780 31.3 4350 3 1.5 collapsed 

 4 3.3/5.3 3300 24 970 2 0.22 0 

GeoRockwall(3) 4 3.3/5.3 7700 24 2000 2-3 - 0.09 

  4 3.3/5.3 17000 17.7 2700 3-4 - 0.5 

MSE wall + 4.2 2.2/4.3 10100 14.5 1060 1.5 1.13 0.09 

Geocell 4.2 2.2/4.3 17100 15.7 1240 2.3 1.57 0.27 

face(4) 4.2 2.2/4.3 17100 14.4 1760 2.6 1.73 0.24 

 4.2 3/5.1 17100 11.1 1050 2.9 1.44 0.09 

 4.2 3/5.1 17100 13.9 1650 2.6 0.76 0.1 

 4.2 3/5.1 17100 14 1670 2.6 1.8 0.13 

 4.2 3/5.1 17100 16.3 2270 2.2 1.9 0.44 

Three-layered 4 3/3 6500 26 2200 2.5 1.4 0.55 

 gabion structure (5) 4 3/3 6500 26 2200 1.7 0.9 0.4 
(1) Hearn et al. 1995; (2) Peila et al. 2002; (3) Yoshida et al. 1999; (4) Maegawa et al. 2011; (5) 
Heymann, 2012. 

 
They have been carried out assuming the following embankments’ parameters: a height 

between 3 and 4.2 m, and a width at mid-height between 3 and 4.3 m. 
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2.2 Numerical modelling of the impact 
In parallel to the experiments, numerical models have been developed, trying to reproduce the 

impact’s phenomenon, considering all the parameters that influence it.  

 

An interesting job in terms of Finite Element Modelling was conducted by D. Peila et al. [24] 

in 2002 at the Politecnico di Torino University and Tenax Geosynthetics Technical Office 

(GTO). Full scale experiments on soil without reinforcements and geogrids reinforced 

embankments were performed and, after them, several numerical models have been developed, 

in order to better understand the impact mechanism. The used software was ABAQUS/Explicit 

Finite Elements software, and the soil was modelled using 8-node linear bricks, while the 

geogrids were modelled through 4 node shell elements with perfectly elastic behaviour. Finally, 

the developed FEM model results efficient for the analysis of stresses, strains, displacements 

and forces generated by the impacts. Nevertheless, problems in reproducing all the phenomena 

that happen in the reality were observed. Unreinforced embankments could not be satisfactorily 

modelled by the FEM method, especially because built using precautions in order to assure the 

stability just for the tests time.  

 

 
Figure 4: Deformed rendering of the model by D. Peila et al. [24]. 

 
In 2010 another interesting model was developed, in Discrete Element Modelling method, by 

Plassiard and Donzé [27], of simple embankments, protective from blocks with an impact 

energy of values from 1000 to 5000 kJ. The software SDEC (Spherical Discrete Element Code) 

was used. The model was built considering spherical elements, corresponding to rigid and 
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homogeneous bodies, and the interactions between them at the contact points. A parametrical 

study was conducted on this model: with that analysis, it was possible to detect the influence of 

the geometrical and mechanical parameters of these structures on their response consequently 

to the impact. The model, successful in the reproduction of the impact phenomenon, results 

expensive in terms of computational time, because of the high number of particles considered. 

 
Figure 5: Side view of the reference model for the simulation of impacts on an embankment, by J.-P. Plassiard and F.-V. 

Donzé [27]. 
 

An interesting model was developed by A. Breugnot et al. [2], coupling the finite difference 

method (FDM) and discrete element methods (DEM), in the case of impacted cellular 

geostructures. These structures are made of two-layered cellular walls leaned against a ground-

compacted levee. 

The DEM is used in the impacted area in order to take into account the local dynamic effects, 

and spherical interacting particles are used, while the FDM is used to model the area where the 

displacements are small (at distance from the impact point), in order to reduce the 

computational time that in a case of a system completely defined by DEM would be used, and 

eight-node finite elements model this part. The used softwares are PFC3D for the DEM and 

FLAC3D for the FDM; the space between the two domains is modelled considering the 

Hamiltonian operator H, that is defined by the following relation: 

 
𝐻 =  𝛼 𝐻𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 +  𝛽 𝐻𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 

 
The Edge-to-Edge Method is used to calibrate the two constants. 
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Figure 6: Transitional area between discrete and continuous domains; Edge-to-edge method (A. Breugnot et al., 2015[2]). 

 
The developed model is: 

 
Figure 7: Numerical model involving discrete-continuous coupling (A. Breugnot et al., 2015[2]). 

 

Finally, this structure results rather efficient for the reproduction of the overall behaviour of the 

experimental structure. 

On this model, several simulations were conducted in order to evaluate the influence of the 

impact height on the embankment’s response to the phenomenon. The Point Location of the 

impact has a key importance, especially when the impact happens close to the embankment’s 

crest. The maximum impact force decreases with the impact height, and the block’s 

displacement increases with it. These dependencies are a direct consequence of the different 

values of the initial stress state within the embankment before the impact, due to the weight of 

the granular material. The lower this stress, the lower will the resistance be to the penetration. 

Effects are the longer impact duration, higher energy dissipation, and, so, less energy in the 

eventual post-impact phase.  
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2.3 Mechanism 
From research works on experimental data and numerical models, the impact mechanism can 

be schematically described through three phases: 

1. When the block impacts the uphill surface, and starts to penetrate it, it affects the 

material near the impact point, generating a high stress, with pick values higher than 1 

MPa. There is a local compaction and particle crushing, to which is related most part of 

the energy dissipation; then the compression wave travels within a truncated cone, and 

it is progressively attenuated by the body of the embankment.  

2. During this phase, there is a global embankment acceleration, that follows the diffusion 

of the wave until the downhill side of the body, and that results in a global displacement. 

This displacement leads to dissipation by friction, along shear planes, caused by itself. 

3. The global displacement progressively stops, but the valley – side facing continues 

moving, due to inertia. At the end the embankment can collapse.  

Important factors that condition the amplitude of these phases are the block’s impact energy 

and the embankment capacity to absorb energy. Figure 8 illustrates graphically these phases.  

 

 
Figure 8: A 3 - phases schematic description of the embankment response to impact, until collapse (S.Lambert, B. Kister, 

2018 [20]). 
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Therefore, two kinds of mechanism are relevant in different areas, depending on the considered 

point, near or far from the impact one: compaction (including crushing), predominant near the 

impact, and a rigid body movement, predominant far away from it.  

 

Some characteristics of the block at the impact must be considered, for the impact and post-

impact phases. First of all, it is important to know its properties, like the mass, the dimension, 

the shape. Secondly, the features of the impact have to be known: impact angle, block velocity, 

translational and rotational energy, impact height. 

Regarding the deformation of the embankment, analysing the real – scale experiments results 

(Table 3), confirmed by small – scale experiments and the numerical ones, firstly it is possible 

to relate the embankment’s displacement with the kinetic energy of the block during the impact. 

This dependence was confirmed by the data shown, concerning different kinds of 

embankments, reinforced and not. 

Another important parameter, that influence the deformation, is the impact height: it is directly 

related to the penetration, higher if the impact happens close to the crest, with detrimental 

effects on the structure stability. In order to model the behaviour of the embankment, in terms 

of deformation, the structure width at the impact height is considered.  
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3. Post – impact trajectory  
 
The block’s trajectory control depends on the interaction between the boulder and the 

embankment, including many parameters. This issue has been clarified thanks to small scale 

experiments (by B. Kister [13]) and, additionally, a parametric study on a DEM model of the 

embankment (the model above described, by J. Plassiard and F. Donzé [27]). 

 

3.1 Experimental evidences 
As it was mentioned above, to understand the impact and the rebound mechanisms, experiments 

made in Switzerland [13] resulted extremely useful. They showed the influence of the block’s 

rotation in the impact process, and the influence of the embankment geometry on it, carrying 

out two different kinds of experiments. The firsts were the small-scale quasi-2D-experimental 

studies, and then half-scale 3D experiments were done in order to confirm the first results in 3 

dimensions, and with a bigger geometry. 

Different shapes and characteristics of samples were used (concrete or steel, spherical or 

cylindrical, etc) varying the geometry of the embankments, the rotational and translational 

velocities of the impacting blocks, or the impact angle and height, and observing the rebound 

phenomenon, and the response of the structure. 

With the purpose of clarifying, the impact angle is defined: it represents the angle between the 

block’s trajectory and the perpendicular to the embankment’s uphill face slope. If that angle is 

positive, the block will have an upward velocity component, towards the crest, so there could 

be the risk of the rolling over the structure. 

 

 
Figure 9: A positive impact angle leads to an upward directed velocity component during the impact process. 

 
The first experiments confirmed the importance of the rotation: a rotating block has the 

tendency to move upward the embankment slope during the rebound phenomenon. The 
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possibility of rebound beyond the structure is higher if the uphill slope inclination is equal or 

lower than 50°. 

In the second experiments a very small angle of impact was adopted: the result was a very small 

upward movement of the block along the embankment slope. These data have confirmed what 

happened in the small-scale quasi-2D experiments. 

As result, it was showed that with an angle of impact of 10° or larger, the rotating block had an 

upward movement. So, the influence of this parameter on the behaviour of the post-impact was 

confirmed. Furthermore, it was showed that even blocks with edges, with no rotational velocity 

(or very low one), could move above, in the case of structures with a low value of uphill slope.  

However, the two kinds of experiments did not show significantly large displacements in the 

impacted area or near. This could be due to the choice of the characteristics of the blocks and 

the embankments. 

Below some pictures of the conducted experiments are shown: 

 

 
Figure 10: Example of small-scale quasi-2D experiments of a concrete cylindrical body with an octahedron cross section 

(sample OKT).  is the rotation angle of the block, α is the impact angle (B. Kister, 2015 [13]). 
 
As we can observe, the attention is focused on the choice and the variation of the two parameters 

corresponding to the impact angle and the rotation one, before the impact, that have effects on 

the after-impact. The following images show that mechanism.  

 



15 
 
 

 
Figure 11: Dynamic of the after-impact mechanism of another concrete cylindrical body with a circular cross section 

(sample G) (B. Kister, 2015 [13]). 
 

 
Figure 12:  Example of half-scale 3D-experiments (B. Kister, 2015 [13]). 

 

For the half-scale 3D-experiments, the number of studied different cases is lower: only one type 

of embankment was tested. 
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A “coupling” between rotational and translational velocity (having two components, normal 

and tangential to the surface) was confirmed. The response of the trajectory post impact is 

highly influenced on their combination.  

This is noticed during the small – scale experiments: in the case of the octagonal base specimen 

(OKT), for example, with less rotational velocity before impact than for the circular base 

specimen (G and GS), it is possible to observe an higher reduction of translational velocity after 

impact, as we can see in the Figure 13 and Figure 14.  

 

 
Figure 13: Decrease of rotational velocity ω of the three used impactors at the same embankment cross section, with batter 

2:1 and stones placed parallel to the slope surface (S. Lambert, B. Kister, 2017 [19]). 
 

 
Figure 14: Decrease of translational velocity v of the three used impactors at the same embankment cross section with batter 

2:1 and stones placed parallel to the slope surface (S. Lambert, B. Kister, 2017 [19]). 
 
However, the highest energy dissipation happens during the first 6 ms from the impact. A 

quantity of about 80 % of it is transformed in wave energy, compression work and heat at the 

impact moment.  
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The slope of the embankment’s uphill face has a very high importance in the post – impact 

phase: a high impact angle, typically in the case of a low slope inclination, can lead to the 

rebound over the structure of the rock (because of the velocity component shown above). 

Moreover, if, in this case, the block has edges, they can help to move it towards the crest level 

(like a crampon). However, if it has not a high rotation energy, in the case of a low impact angle 

(so a high slope inclination), it will not rebound over the structure, even if it has a shape with 

edges. 

Therefore, the most relevant parameters that can lead to the possibility for the embankment to 

be overpassed are: the shape of the block, the impact angle (so, block trajectory and uphill face 

inclination), the total block energy, the ratio between rotational and translational energy, the 

embankment’s thickness at the impact point (from which, as it was shown, the dissipative 

capacity strongly depends). 

Additionally, the post-impact behaviour can be conditioned by the entity of the embankment’s 

deformation, related to the quantity of energy absorbed by it, and, consequently, to the residual 

energy of the block. 

 
 
3.2 Numerical approach 
The interaction between the block and the embankment depends, in particular, on the dissipative 

capacity of the structure. It has been analysed by J. Plassiard and F. Donzé [27], considering 

the influence of many parameters.  

 

3.2.1 Influence of geometrical parameters 

The four parameters that describe the embankment profile are considered: the height (H), the 

crest width (λ), the inclination of the uphill and downhill faces (respectively β and γ). 

About the first, the ratio that influences the behaviour during and after impact is the ℎ∗ = ℎ/𝐻, 

in which h represents the impact height. It can strongly condition the value of the dissipative 

capacity (DC), that is reduced increasing the value of h*. The DC is defined as the translational 

kinetic energy that represents the limit between the efficient situation in which the boulder is 

stopped, and the inefficient one, in which the boulder continues on its route. The maximum 

value of the impact force Fmax (defined as the reaction of the embankment on the block during 

impact) increases almost logarithmically with the growth of DC. 
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Regarding the crest width, the value of the DC enhances significantly growing the value of λ, 

because of the increasing of the body. 

The inclination of the uphill and downhill faces depends on the topography and the soil nature. 

Increasing β, the DC grows up: from a low value of β, for which the block is tending to bounce 

and cross the embankment (DC particularly low), to a value of 60°, that corresponds to a high 

DC. 

With the increase of the downhill face’s inclination, in general the value of DC decrease, 

because the stability of the embankment is compromised, so, with it, the capacity to stop the 

block absorbing all the energy. 

 

3.2.2 Mechanical parameters 

The main parameters that characterize mechanically the embankment soil are: Young’s 

modulus (E), internal friction angle () and cohesion (c).  

The Young’s modulus influences the value of the DC and the Fmax: the DC firstly decreases, 

but then, after the value of about 50 MPa (for E), starts to increase with it. The Fmax shows the 

same behaviour with the increase of E, but the lowest limit corresponds to a smaller value of 

the mechanical parameter.  

The internal friction angle influences a lot the DC value, much more than the other parameters, 

because the friction can be considered as the most important dissipative mechanism. The law 

that relates the evolution of the DC to the increase of  is almost quadratic; the Fmax also grows 

up with it.  

Finally, the DC increases with the cohesion as a logarithmic law, and Fmax with a quasi – linear 

one.  

The Dissipative Capacity results much more influenced by the geometrical aspects, than by the 

mechanical ones; the most conditioning parameter is the crest width. Otherwise, the value of 

the Fmax is highly influenced by the impact energy, the Young’s Modulus of the embankment 

soil and the uphill side inclination. 
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4. Lessons learned for the study case 
 
In the idea of the modelling of the impact and rebound phenomena, considering only the 

impacted surface of the embankment, out of the three phases of the impact mechanism, the first 

phase is crucial. The lower the impact’s duration, the higher will be the possibility of rebound, 

even, eventually, over the structure. In fact, the impact’s duration, as mentioned before, is 

directly linked to the energy’s dissipation. 

The rock’s impact energy and the embankment’s capacity to absorb energy are conditioning in 

the amplitude of the phases. The structure’s capacity to absorb energy is directly related to the 

embankment’s profile.  

An important parameter that influences the deformation, is the impact height: the penetration is 

higher if the impact happens close to the crest. Of particular importance is the structure width 

at the impact point. 

The slope of the two faces of the embankment, both uphill and downhill, are important 

characteristics. In our case the most important one is the uphill slope, that highly influences the 

trajectory of the block after the impact. In practise, if the impact angle, calculated from the 

perpendicular to the uphill slope, is positive, the block will have an upward velocity component, 

with the risk of the rolling over the structure. 

Additionally, the rotational block energy before the impact reduces the quantity of kinetic 

energy dissipated during the impact. 

Finally, the shape of the block can influence its behaviour post impact: a shape with edges can 

favour the bouncing over the structure. 

 

In the image below, we can observe the most critical characteristics of the rock’s trajectory: 

impact point, trajectory inclination, and angular velocity. Different hazard of impact’s 

situations, in terms of risk of rebound over the structure, are represented: 
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Figure 15:Different impact situations, of which the risk of over bouncing the structure depends on the impact height and 
impact angle. In the second line of pictures, in red is represented the worst situation, in green the best one (S. Lambert). 

 
The idea of the developed model is to realize a design that could be calibrated taking into 

account the different aspects that affect the post-impact trajectory of the rock. 
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5. Discrete element modelling 
 
The Discrete Element Method (DEM) provides modelling through the use of locally deformable 

particles and the interactions between them. Newton’s second law and force-displacement law 

alternate in order to define the calculation (Cundall and Strack, 1979 [4]). Newton’s second law 

defines the motion of a body as a result of the forces acting on it, while the force-displacement 

law permits the evaluation of contact forces from displacements. The overlap between particles 

is allowed, and, considering them generally as rigid bodies, it is used for the definition of the 

contact forces.  

YADE is an open-source, a three-dimensional DEM code based on the formulation of Cundall 

and Strack. 

The interaction mechanism, present between the elements used for this work, is reduced to a 

sphere – sphere interaction, which is the most basic kind. It is represented in the following 

figure: 

 

 
Figure 16: (a) sphere-sphere interaction and (b) overlap between the two spheres and contact forces (A. Effeindzourou et al., 

2015 [5]). 
 
Fn and Ft are respectively the normal contact force (2 springs represent normal stiffness of 

contact between 2 spheres) and the shear force. They are defined using force-displacement laws, 

as follows: 

𝑭𝑛 = 𝑘𝑛𝒖𝑛 
𝑑𝑭𝑠 = 𝑘𝑠𝒖�̇�𝑑𝑡 

Where: 

• 𝑘𝑛 𝑎𝑛𝑑 𝑘𝑠: contact stiffnesses associated to the normal and shear force, defined as: 
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𝑘𝑛 =
2𝐸1𝑅1𝐸2𝑅2

𝐸1𝑅1 + 𝐸2𝑅2
          𝑎𝑛𝑑          𝑘𝑠 =

2𝐸1𝑅11𝐸2𝑅22

𝐸1𝑅11 + 𝐸2𝑅22
 

in which: 

o 𝐸𝑖: Young’s modulus; 

o 𝑅𝑖: radius; 

o 𝑖: Poisson’s ratio associated to the sphere i; 

• 𝒖𝑛: normal distance or overlap between the two spheres; 

• 𝒖�̇�: relative shear velocity; 

• 𝑑𝑡: time step. 

Furthermore, twisting and bending moments are defined: 

𝑴𝑡 = 𝑘𝑡12
𝑡  

𝑴𝑏 = 𝑘𝑏12
𝑏  

with: 

• 𝑘𝑡 𝑎𝑛𝑑 𝑘𝑏: contact stiffnesses associated to the twisting and bending moments 

respectively; 

• 12
𝑡  𝑎𝑛𝑑 12

𝑏 : twisting and bending components of the relative rotation associated to 

the two spheres. 

In order to have plastic deformations, the elastic limits are defined as: 

‖𝑭𝑛‖ ≤ 𝜎𝑛
𝑙 𝐴 

‖𝑭𝑠‖ ≤ 𝐹𝑛 tan + 𝜎𝑠
𝑙𝐴 

𝑀𝑡 ≤
𝜎𝑠

𝑙𝐼𝑡

𝑅
 

𝑀𝑏 ≤
𝜎𝑛

𝑙 𝐼𝑏

𝑅
 

where: 

• 𝜎𝑠
𝑙 𝑎𝑛𝑑 𝜎𝑛

𝑙 : shear and tensile strengths respectively; 

• 𝐴 = 𝜋𝑅2: reference surface area; 

•  : reference friction angle, which is the minimum between the values of friction angle 

corresponding to the two spheres; 

• 𝐼𝑡 𝑎𝑛𝑑 𝐼𝑏: reference twisting and bending moments of inertia respectively, defined as: 

𝐼𝑡 =  
𝜋𝑅4

4
 𝑎𝑛𝑑 𝐼𝑏 =  

𝜋𝑅4

8
 

• 𝑅: minimum between the values of the two radii, called reference radius of the contact. 
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Moreover, from a geometrical point of view, a cylinder is the Minkowsky sum1 of a sphere and 

a segment. The sphere-cylinder and cylinder-cylinder interactions are described as a sphere-

sphere interaction, inserting in the system virtual spheres, as we can observe in the image. Then 

the stiffnesses are calculated considering the characteristics of the cylinder (in-depth theme in 

the article by A. Effeindzourou et al. [5]). 

 

 
Figure 17: Sphere-cylinder interaction (A. Effeindzourou et al., 2015 [5]). 

 
In this case, translational and rotational velocities of the virtual spheres are interpolated between 

the two nodes of each cylinder, and the solicitations are distributed on them.  

Additionally, the PFacet element is a triangular particle that geometrically corresponds to the 

Minkowsky sum1 of a triangular facet and a sphere. It is built using 3 nodes and the connections 

(cylinders) between them. 

 

 
Figure 18: PFacet element: (a) the geometrical construction, (b) the element and (c) its cylinders and nodes (A. 

Effeindzourou et al., 2015 [5]). 
 

                                                 
 

 

 
1 The Minkowsly sum of two sets of position vectors A and B in the Euclidean space is formed by adding each 

vector in A to each vector in B, i.e., the set: 𝐴 + 𝐵 = {𝑎 + 𝑏 / 𝑎 𝜖 𝐴, 𝑏 𝜖 𝐵} (a significative example is reported in 

Appendix A).   
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In the case of a sphere – PFacet interaction, the coordinates of both the point P (in the following 

figure) and the barycentric point, the projection of P on the plane containing the PFacet nodes, 

are defined, in order to calculate the interaction characteristics.  

 

 
Figure 19: (a) plane representation of a PFacet; (b) the blue zone corresponds to the inside of the element; (c) 

Representation of the points P and P’ (A. Effeindzourou et al., 2015 [5]). 
 

Knowing the coordinates of the point P (p1,p2,p3), function of the point P’, it is possible to 

distinguish two different study cases, as it shown in the algorithm below: 

 

 
Figure 20: Diagram for the sphere-PFacet interaction (A. Effeindzourou et al., 2015 [5]). 

 
A virtual sphere is introduced, which has the centre in P’, to create a sphere – sphere interaction. 

Its translational and rotational velocities are calculated through a linear interpolation between 

the 3 PFacet nodes Ni, as: 

 
𝒗𝑝

′ = 𝑝1𝒗𝑁1 + 𝑝2𝒗𝑁2 + 𝑝3𝒗𝑁3 
𝝎𝑝

′ = 𝑝1𝝎𝑁1 + 𝑝2𝝎𝑁2 + 𝑝3𝝎𝑁3 
 
The calculated contact force for the virtual sphere-sphere interaction is distributed on the nodes 

of the PFacet as: 

 
𝑭𝑁1 = 𝑝1𝑭 
𝑭𝑁2 = 𝑝2𝑭 
𝑭𝑁3 = 𝑝3𝑭 
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Finally, the PFacet – PFacet interaction is reduced to sphere – PFacet or cylinder – cylinder 

interactions. The latter is the contact between the parts of two Pfacets (look at the third 

representation in the Figure 18). 

Clump elements are additionally used in this project. These are rigid aggregates of particles of 

which the dynamic properties are computed from the properties of their members. For a non-

overlapping clump, as in our case, the mass is summed over members, the inertia tensor is 

defined as: 

𝐼𝑐 = ∑(𝑚𝑖 ∗ 𝑑𝑖
2 + 𝐼𝑖)

𝑖

 

With: 

• i: each clump member; 

• mi: mass of the element; 

• di: distance between the centre of the element and the clump’s centroid; 

• Ii: inertia tensor of the element. 

The forces/torques of these elements are calculated taking into account the terms of each 

component, in the following way: 

𝐹𝑐 = ∑ 𝐹𝑖 

𝑇𝑐 = ∑ 𝑟𝑖 ∗ 𝐹𝑖 + 𝑇𝑖 
 
ri represents the relative position of each element with regards to clump’s centroid. 

Finally, the motion of the clumps is integrated using aspherical rotation integration.  
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6. The structure 
 

6.1 The model – physical idea 
The aim of this work is to develop a meta-model, to describe the rebound’s phenomenon. A 

meta-model is the result of a process which includes the analysis, construction and development 

of the frames, rules, constraints, models and theories applicable and useful for modelling a 

phenomenon. This implies running a very large number of simulations. Therefore, we want to 

obtain a fast model: DEM is thus not appropriate, but it is useful in order to reproduce the 

different aspects of the phenomenon (as the penetration, the friction, etc.). What we want is a 

surface that could reproduce the interaction between boulder and the uphill face of the rockfall 

protection embankment. Our interest is the influence of the structure on the block’s trajectory, 

so the penetration (in terms of force and deformation) but also the friction at the block/face 

interface. 
We can imagine this surface as what happens with the Profilometer (Barton Comb, in the Figure 

21): the surface adopts the shape imposed by the body impacting on it.  

 

 
Figure 21: Profilometer. 

 

For this reason, we consider the embankment as a surface supported by simple mechanical 

systems. The physical idea for the model is the design reported in Figure 22, that shows vertical 

elements supporting the surface. These elements can reflect a combined behaviour of springs, 

dampers, sliders, etc., simulation of the overall structure’s behaviour.  

Every vertical support needs a calibration of each element considered. 
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The impacted surface will be here often referred to as “membrane”, that is to say the surface 

directly in contact with the boulder during the impact. 

 
 
6.2 Model construction 
The goal of the job is the modelling of an impacted surface that could well reproduce the 

response to the impact, in function of all the parameters that influence this phenomenon.  

As it is observable in the Figure 23, the surface is built reproducing singular elements.  

 

 
Figure 23: Scheme of the elementary structure (circled in red), reproduced to create the overall structure. 

 

Figure 22: Physical idea for the structure modelling. 
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The surface’s edges are blocked, in order to maintain the overall position of the surface in the 

modelling space during the impact phenomenon.  

Then, vertical elements are introduced and calibrated, as it is represented in the physical model, 

in order to control the behaviour of the structure during the penetration. 

Some points are crucial: 

• First of all, the key point is that the adopted boundary conditions do not influence the 

impact’s behaviour, so the surface has to be large enough to satisfy this aim. 

• Secondly, the single structures that are reproduced many times in order to build the 

surface (elementary structures) need a linear dimension proportional to the radius of the 

impacting block, to simulate the shape of the deformation as possible. For this reason, 

a dimension of 1/5 times the radius was chosen. 

• The maximum penetration considered is 1.5 m, so a length of the vertical elements of 

almost 2 m is used. 

The study of the penetration is focused on the impact moment. Therefore, the gravity in the 

system was not inserted, because its effects on the embankment system are small, compared to 

the boulder’s impact effects. 

 

The elementary structures which constitute the surface are made of nodes (Grid Nodes), 

cylinders (Grid Connections), and PFacets.  

 

 

 

 

 

 

 

The PFacets were chosen for the realization of the continuous surface described before. They 

are useful to regulate the friction between boulder and surface, which influences the post-impact 

behaviour of the impacting block. They represent a development of the facets. Facets are 

triangular elements, created in the space inside spheres and remote interactions between them, 

in a triangular configuration. The latter do not guarantee the continuity, when they are in 

contact. This problem was overcome building PFacets inside a triangular configuration between 

physical elements: nodes (Grid Nodes) in the angles, and cylinders (Grid Connections) 

Figure 24: Elements of Yade - cylinders, spheres, Pfacets. 
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connecting them. In this way the space between two of these elements in contact is occupied 

by the cylinders, which guarantees continuity in the structure.  

 

In the model the vertical elements are placed to have a solicitation in tension, so in the same 

side of the impact. In the elastic model, they consist of Wire elements: they can be used only in 

tension (as in reality), because in compression they do not deform, but they bend. In the elasto 

– plastic case, Inelastic elements are used. 

Each element is connected to the surface through a Clump with each Node. This permits to 

govern the surface’s deformation through the vertical elements.  

The impacting ball can interact only with the surface. 

 

It is important to observe that YADE software was not developed for this kind of designs. 

Therefore, some tricks are sometimes necessary to make the response of the model more 

realistic, even if they do not make sense, on a physical point of view. 

Attention: the impacting block is a sphere, but in the simulations it is represented as a polygon. 

This is because of the resolution of the view. 

  
 
6.2.1 The elementary structure 

As said before, the elementary structures are reproduced in series to build the surface. 

Two different configurations were tested: 

▪ A structure with two PFacets 

 

 
Figure 25: Configuration of the elementary structure. Radius of the nodes and cylinders’ sections: 0.06 m. 

 
Here PFacets, Grid Nodes (in yellow) and Grid Connections (orange elements) are clearly 

observable. 
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▪ A structure with 4 PFacets, having an additional node in the centre, not observable in 

the Figure 26 

 

 
Figure 26: Elementary structure, having a radius of the elements (nodes and cylinders’ sections) of 0.05 m. 

 
In this case, the radius of Nodes and Grid Connections is smaller than the previous case. This 

latter structure results more successful, as we will see in the next chapters. 

 

PFacets were modelled for fixed configurations. Their dynamic behaviour was not treated, so 

it shows some defects. Their mass is concentrated on the nodes. This might cause the unregular 

response which is observed when PFacets are reproduced and connected in a complex and not 

fixed configuration. 

Therefore, the model, subject of this report, was built in order to avoid, as much as possible, 

behaviour irregularities of PFacets. To make the irregularities noticeable, a system without 

PFacets was simultaneously tested, and compared to the complete one. The PFacets influence 

on the surface response was taken into account: their presence obviously causes a variation of 

the impact force, constituting a continuous wall, with respect to the system without them. 
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7. Elastic model 
 
The elastic model is constituted by vertical Wire elements: each one was built creating a remote 

interaction between two spheres. In fact, on YADE a remote interaction can act as a physical 

element, having the characteristics that, in the code, are associated to the spheres.  

The interactions work only in tension. The positive aspect of the Wire interacting law 

(developed by K. Thoeni et al. [30]) is that we can insert, as an input datum, the stress-strain 

diagram, by set of points. The system was tested with a linear diagram, the easiest one, but it is 

possible to play with it, testing different shapes.  

 

For spheres, nodes and clumps of the structure the movement on x and z axes (which define the 

parallel plane to the surface) was blocked, because in a first approximation the displacements 

of each one along the tangent to the front-side directions are considered negligible, compared 

to the displacements along the normal to the surface. It is useful, in our particular case, to better 

control the membrane’s effects that can create waves, and, additionally, in order to consider 

only the normal deformation of the vertical elements, with the increase of the stress. In this way 

the response of each vertical interaction can be evaluated comparing directly its behaviour to 

the parameters that are inserted as input.  

 

Below, the structure constituted by the first elementary configuration (section 6.2.1), is 

reported. Additionally, some zooms are shown in order to clarify all the components: 

 

 
Figure 27: Overall structure, built reproducing the first elementary structure, with 2 PFacets. 
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Figure 28: Zooms of the overall structure, to visualize all the components. 

 
The boundary nodes have a different colour (blue) in order to underline their condition: they 

are completely fixed. 

 

The behaviour of this model resulted problematic in presence of PFacets. The response of the 

surface to the impact was not symmetric, with respect to the impactor. 

In the case of the model built reproducing the second elementary structure (section 6.2.1), 

having 4 PFacets, the number of Wire elements changes. Now, they are twice the previous case, 

because even all the central elements of the elementary structures are clumped to Wire 

Wire vertical elements, between 

spheres. 

Clump elements, between nodes of the 

surface and spheres, boundaries of the 

Wire interactions. 

Elementary structure 

(Figure 25). 
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interactions. The response of this model to the impact was regular and symmetric, so this 

configuration was, finally, chosen.  

 

The parameters of these elements were calibrated, in combination with the characteristics of 

the surface, in order to have a response in terms of deformation compared to the impact force 

as realistic as possible. 

 

 

7.1 Verification of the response – comparison with experimental data 
A sort of calibration of the model was done, comparing the results to empirical calculations. 

The aim was to verify the functioning of the developed elastic system, searching a behaviour 

in terms of maximum impact force and penetration as realistic as possible, taking data from the 

literature, but considering a range of values of our interest. Therefore, equations studied in 

different situations were used, even if with a different experimental environment behind each 

one, taking into care only the interval of values obtained. 

In the literature we can find many equations proposals for the maximum impact force and the 

penetration. Some of them are cited below: 

 
Table 4: Methods for the estimation of max impact force and penetration of the impactor for Rockfall Protection 

Embankments (S. Lambert, B. Kister, 2017 [18]). 

 Method proposed by 

 Mayne and Jones (1983) 

Force Montani (1998) 

 Labiouse et al. (1996) 

 FEDRO (2008) 

 Kar (1978) 

Penetration Calvetti and di Prisco (2007) 

 Grimod and Giacchetti (2013) 

 
The following diagram compares many of them, for the calculation of the impact force in the 

same case. A significant interval of values can be observed. 
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Figure 29: Equivalent static force resulting from different calculations - 2.5 m block diameter and 20 m/s initial block 

velocity (S. Lambert, B. Kister, 2017 [18]). 
 
The different calculation methods are derived from experiments conducted in specific contexts, 

that differ from the impact of a block on a Protection Embankment. That is why the results 

show a big range of values. 

For the verification of the developing system, a relation that returns an average value of the 

maximum impact force was chosen: the Montani’s equation. 

 

𝐹𝑖 [𝑘𝑁] = 1.35 ∗ exp (
𝑟

3𝑡
) ∗ 𝑟0.2 ∗ 𝑀𝐸

0.4 ∗ (𝑡𝑎𝑛)0.2 ∗ (𝑚 ∗ 𝐻𝑐 ∗
𝑔

103
)

0.6

  
 
With: 

• r: radius of the projectile [m]; 

• t: soil layer thickness [m]; 

• ME : impacted material static elastic modulus [kPa]; 

•  : friction angle of the impacted material; 

• m: mass of the projectile [kg]; 

• Hc : projectile free falling height [m], eventually value corresponding to the chosen 

impact velocity; 

• g: gravity [m/s]. 
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This equation was developed based on experiments with metallic cylindric blocks, with a 

spherical base, filled by cement, having a mass between 100 and 1000 kg, impacting on a 

granular layer. 

Then the penetration was evaluated using the equation:  

 

𝑝 =
𝑚𝑣2

𝐹𝑖
 

 
It is derived by the formulation of the work done by the impact force: 

 

𝐾𝐸𝑡𝑟𝑎𝑛𝑠 =
1

2
𝑚𝑣2          𝑎𝑛𝑑          𝑊 = ∫ 𝐹𝑖𝑑𝑥 = 𝐹𝑚𝑒𝑑𝑖𝑢𝑚 ∗ 𝑝 

 
And, considering that the maximum force (Fi) is twice the medium one, it results that: 

 
1

2
𝑚 ∗ 𝑣2 =

1

2
𝐹𝑖 ∗ 𝑝 

 

The penetration coming from the Montani’s force resulted low, compared to the value that was 

intention to simulate. 

So, another relation was considered, the equation derived from Calvetti and di Prisco (2007) 

[3]. It is reported below: 

 
𝑝 = 0.027 ∗ 𝑟 ∗ 𝑣 + 0.24 

 
Being: 

• r : radius of the impacting block; 

• v : velocity of the block. 

This formulation was calibrated, for a rockfall tunnel (made by reinforced concrete), with a 

thickness of the granular impacted layers from 1 to 2 meters, and an impacting block of 850 kg. 

Finally, the duration of the impact (penetration until the maximum value) was evaluated through 

the relation: 

 

𝛥𝑡 =
2𝑚𝑣

𝐹𝑖
 

 
The elements of the latter formula are defined above.  
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Regarding the penetration, it was decided to take into account an average value between the 

values calculated from Montani’s, and Calvetti and di Prisco’s relations. 

The model was verified considering a duration of ± 10 ms from the formula value.  

The following values characterizing the response of an impact of a sphere having a radius of 1 

m, mass of 11100 kg, translational velocity perpendicular to the surface and rotational one null, 

with a surface having the characteristics reported in Appendix B, were found: 

 
Table 5: Values from empirical equations, used for the calibration of the model. 

Boulder’s velocity 10 m/s 25 m/s 

Montani (1998)   

Impact force 4004 kN 12006 kN 

Maximum penetration 0.28 m 0.58 m 

Calvetti and di Prisco 

(2007) 
  

Maximum penetration 0.51 m 0.91 m 

   

Considered max penetration 0.39 m 0.75 m 

Duration 55 ms 46 ms 

 
It is important to notice that there are no relations that correspond to experiments’ conditions 

as the ones used for the development of the model, object of this report. For this reason, as said 

above, the equations were used just to search a response close to the reality, so it was possible 

to play with them in order to consider an intermediate situation.  

 
 

7.2 Vertical impact – tests and results 
Below, a simulation of a vertical impact is analysed. In particular, the response without and 

with PFacets is reported, to put the attention on the differences.  

The systems were calibrated in order to give the same response in terms of maximum 

deformation (parameters of the material inserted as input in the Appendix B). 

The most influencing parameter for the calibration is the stiffness of the wire elements, even 

though the mass and the stiffness of the elements constituting the surface are also relevant in 

this context. 
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Some results, images of the simulations using PARAVIEW, and graphs of the force in function 

to the time are showed. 

 

Attention: it is important to notice that the duration below reported is calculated from the first 

contact between boulder and surface. Additionally, it is referred to the time until the maximum 

penetration. 

 
Table 6: Found values testing the elastic model. 

System without 

PFacets 
   

Impactor’s velocity 

[m/s] 

Max impact force 

[N] 
Max Penetration [m] Duration [ms] 

10 4.5*106 0.39 61 

25 1.13*107 0.75 53 

System with PFacets    

Impactor’s velocity 

[m/s] 

Max impact force 

[N] 
Max Penetration [m] Duration [ms] 

10 5.2*106 0.39 58 

25 1.2*107 0.75 49 

 

From a comparison with the found empirical values for the verification of the response (Table 

5), we can observe that the model shows values close to them. In fact, the reached maximum 

penetration corresponds to the chosen one, and the maximum impact force is close to the 

empirical value, having a little difference from it due to a trade-off on the parameters, in order 

to reach exactly the maximum deformation value.  

The difference in the impact force values between the two tested systems, due to the additional 

PFacets’ resistance to the deformation, looks reasonable. The PFacets’ membrane acts as a 

resistance on the deformation. So, the impact force increases with respect to the system without 

PFacets, because of the bigger strength, but not creating a substantial difference. Therefore, the 

maximum penetration is the same, since their influence is not enough to reduce it. 
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Figure 30: Impact simulation in the system without (on the left) and with PFacets (on the right). Impacting block velocity: 
(0,10,0) m/s. Significative moments have been chosen.  

 
From the images of the two simulations, we can see that the evolution of the penetration is 

slightly different. Observing the simulation in the system with PFacets, this process is 

occasionally not regular nor symmetrical (because of the problems in the building of these 

elements, explained before). After few moments, the physical phenomenon looks more realistic. 

Notice, in this regard, the image at 80 ms. 
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Figure 31: Impact force on the block, for the simulation without and with PFacets. Boulder velocity, perpendicular to the 

surface: 10 m/s. 

 
Figure 32:  Impact force on the block, for the simulation without and with PFacets. Boulder velocity, perpendicular to the 

surface: 25 m/s. 
 
Having a membrane with an associated mass (impossible without mass), the model shows 

rebounds before and after the maximum impact force. We are interested in the modelling of the 

impact moment and in the rebound of the impacting block, so what we want is a system that 

would respond with an impact force and penetration corresponding to the calibration that we 

choose. In this context, we neglect the continuous rebounds, considering their influences 

negligible. 
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The trend of the curve related to the system with PFacets is characterized by vibration. This 

happens in addition to the continuous rebound, because the energy stored in the continuous 

membrane due to the impact, creates much bigger effects, than in the surface without PFacets. 

 

 

7.3 Inclined impact 
Inclined impacts were, additionally, tested, in order to verify the frictional capacity of the 

PFacets, most relevant motivation in the choice of these elements, for a continuous membrane. 

In such a case the block is expected to exhibit rotational velocity after impact.  

A simulation is below showed, with the natural increasing of the angular velocity, starting from 

zero (PARAVIEW was used): 
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Figure 33: Inclined impact's test. Velocity = (10,10,0) m/s. The colour of the boulder depends on the rotational velocity. 

 

As we can observe, after the recovering of all the deformation the surface starts to have waves 

inside, because of the nature of the Wire elements that are used. In fact, it happens in order to 

dissipate all the energy accumulated during the impact’s process. 

Changing the impact angle, as we can imagine, the post-impact’s trajectory will change.  

 

The elastic response does not correspond to a realistic case because of the surface’s influence 

during the rebound of the block. In fact, the surface, after the maximum penetration, recovers 

its deformation and remains in contact with the boulder, urging it during the rebound. 

Contrarily, in the reality, the embankment conditions the trajectory and kinematics of the 

impactor only during the impact phase, while, after, the impacting block travels without 

influences from it. 
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8. Elasto – Plastic model 
 
After having focused the studies on an elastic system, an elasto-plastic solution was searched. 

For this reason, the Wire remote interactions were substituted by cylinders (Grid Connections) 

with cohesive-frictional inelastic characteristics (law developed by I. Olmedo et al. [23]). 

Unfortunately, in this case it was not possible to use the remote interactions, which are less 

expensive in terms of model’s computational time, than physical elements as the cylinders. This 

is because the law chosen for the elasto – plastic case does not work if it is applied in the remote 

interaction between two spheres. 

The interaction law allows the input of the elasto – plastic constitutive law, specifying 

parameters like the elastic deformation modulus, the deformation modulus in the plastic phase, 

or the unloading one, the yielding point (elements observable in the Figure 34). 

 

 
Figure 34: Scheme of the trilinear hysteresis. 

 

These parameters can be entered as input in both cases of compression and tension. However, 

the same configuration of the elastic model was chosen, with the vertical elements in the same 

side of the impacting boulder, working in tension, in order to better visualize, in the 3D 

representation of the simulations, the evolution of the phenomenon. 

 

Even in this case, the elements in the edges are blocked, in order to model the surface with a 

defined position in the modelling space. However, as it was said before, this factor does not 

influence the phenomenon, because the surface is large enough. 

In this system it was chosen to not block the movement of the nodes on x and z axes. That is 

because it creates internal efforts, concentrated on each node, that do not permit to maintain the 

plastic configuration after the maximum deformation, since a significant quantity of energy 

FRupt 

FElas

t 

F 

δ 



44 
 
 

after the unloading is still in the system. Additionally, it was chosen to forbid the rotation of the 

clump elements, consequently having a more regular response of the structure, and less tension 

provoked on the membrane. The aim is to reduce this tension as possible, compared to the 

tension created by the impact and the penetration.  

 

 

8.1 Elasto – Plastic model without PFacets 
The first tests have been done in the model without PFacets. 

Below we can observe the elasto-plastic response of the structure. We want that the overall 

behaviour corresponds to the reality (especially the plastic deformation) during the time of the 

sphere’s rebound, in order to avoid additional influence of the membrane to this phenomenon. 

This system is not calibrated yet with experimental data.  
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Figure 35: Impact simulation in the elasto-plastic model. Velocity of the rock block: (0,10,0) m/s. 

 

 
Figure 36: Force – Displacement curve of one vertical element. Elasto – Plastic system. 

 
The vertical cylindric elements are calibrated in order to have a very low yielding point in the 

tension stage, to have plasticity from the first deformation steps. The imposed unloading 

modulus is 15 times the elastic tension modulus. Therefore, we can observe a residual plastic 

deformation of 0.32 m, from a maximum deformation of about 0.35 m. 

In the compression stage, a very high elastic compression modulus and yielding point were 

imposed, in order to maintain the plastic deformation. 

 

As we can observe from Figure 36, representing the force-displacement curve of a single 

cylindric vertical element, the parameters inserted as input data create a strange behaviour.  

 

Firstly, the rebounds that affect the structure before the maximum penetration are noticeable. 
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When the system arrives to a tension corresponding to 0, the model still contains stored energy 

due to the impact (being in the case of a dynamic situation) that stresses the vertical structures 

in compression. Having imposed a high elastic compression modulus, the system is not able to 

dissipate the energy, and a strange behaviour is then observable in the curve. It is characterized 

by oscillations around the residual plastic displacement of 0.32 m, due to the stress that 

continuously goes from 0 to the maximum reached value in compression, and vice versa. 

 

This fact is acceptable considering our goal, that is focused on the modelling of the block impact 

and post-impact phase of the block itself. Therefore, the interest is to prevent an influence of 

the surface on the trajectory of the block after the maximum deformation, thus maintaining the 

plastic deformation. This is exactly what happens in the analysed simulation: despite the energy 

stored into the surface causes variations of stress in the compression zone, the residual plastic 

deformation is maintained during the rebound, and while the block moves away from the 

surface. 

 

 

8.2 Elasto – Plastic model with PFacets 
Finally, the complete model with PFacets was developed and tested. This is the system – aim 

of the research. The input parameters were then modified in order to regularize its behaviour. 

As was underlined above, the inserted values aimed to the minimization of the faults in the 

response caused by PFacets. 

Once the model was complete, several tests were done on it, varying the influencing parameters 

of the impact and post – impact behaviour. Lastly, the trend of the response was compared to 

past researches, comparison which would confirm the reliability of this developed work. 

 

 

8.2.1 Tests on the model 

The model was tested with different values of boulder’s radius, impact angle, and impact 

translational and rotational velocity. The approximate tested ranges of these parameters are 

reported in the following table: 
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Table 7: Tested values of boulder's parameters and impact conditions. 

Radius From 0.3 to 2 m 

Impact angle From 10° to 90° 

Translational velocity From 5 to 25 m/s 

Rotational velocity From 5 to 30 rad/s 

 

In this chapter the impact angle will be defined by ϑ in the following picture: 

 

 
Figure 37: Scheme of translational and rotational velocities before and after impact (B. Heidenreich [10]). 

 

It is important to mention the “Coupling” between the different components of the generalized 

velocity vector. Below some example is reported: 

• The rotational velocity before impact induces an increase of the tangential velocity after 

rebound; 

• After an inclined impact, as it was observed in the 7.3 section, the rotational velocity is 

not null anymore.  

 

 

8.2.1.1 Maximum penetration trend - impact perpendicular to the surface 

The first test was done following the approach of Calvetti and di Prisco [3], and evaluating the 

response of the model with different values of radius and falling height. In fact, in this case an 
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impact perpendicular to the surface was considered, and the impact velocity vi was calculated 

from an investigated range of falling height H, using the following relation: 

 

𝑣𝑖 = √2𝑔𝐻 
 
Being g the gravity acceleration, i.e. 9.81 m/s2. 

This is the free fall equation. 

 

Calvetti and di Prisco, in 2007, verified the trend of the maximum penetration with respect to 

the impact height, considering different values of boulder’s radius.  

As specified before, the studied situation concerned a rockfall tunnel (made of reinforced 

concrete), with a thickness of the granular impacted layers from 1 to 2 meters, and an impacting 

block of 850 kg. 

Then, they proposed the following chart: 

 

 
Figure 38: Maximum penetration trend by Calvetti and di Prisco (2007) [3]. 

 

It is possible to observe a regular increasing of the maximum penetration with the falling height. 

Additionally, an increase of the slope of the curves referred to different boulder’s radii is 

showed. 
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Two cases were verified: firstly, considering the mass of the surface (then, of each element of 

the elementary structures which constitute it) constant, even changing the dimensions of the 

boulder. 

The second studied case was developed considering the surface’s mass proportional to the 

boulder’s mass. 

The two situations showed the same entity of maximum penetration, in every tested condition. 

However, an irregular behaviour was, in the first analysed case, observed, when the mass was 

too high, compared to the boulder’s mass.  

The most satisfactory behaviour was observed considering the surface’s mass proportional to 

the boulder’s one.  

The fact to have the same maximum penetration in the two cases, means that the dynamic effects 

of the surface’s deformation (vibrations) are amortized before reaching the maximum 

penetration, so they do not influence that aspect. Therefore, the response is similar to a quasi – 

static case.  

The surface’s mass proportional to the boulder’s mass was, so, assumed. 

 

In the developed model, the test was conducted in order to verify the regularity in the response 

of the system to the phenomenon. 

The following correspondent velocities’ values were tested: 

 
Table 8: Considered velocities to verify the maximum penetration trend. 

H [m] v [m/s] 

5 9.9 

10 14.0 

25 22.1 

35 26.2 

 
The trend of the analysed cases is below reported: 
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Figure 39: Maximum penetration trend for the developed model. 

 
We can, thus, observe that the found trend is regular, as the result showed by Calvetti and Di 

Prisco. It means that the system reacts to the variations of the simulation conditions in a 

satisfactory way, without giving strange responses, being, so, steady, changing initial velocity 

and block’s radii. 

 

 

8.2.1.2 Tests regarding the inclined impact 

The model was then tested in the case of inclined impact. 

To verify the response of the model, the study made by B. Heidenreich in 2004 [10] was 

considered: particularly, the bibliographic preliminary analysis reported and the considerations, 

results of the experiments, were useful to confirm the reliability of the developed model. In this 

context, it is important to specify that the most general statements have been taken into account, 

in order to carry out a verification of the response, not linked to the test conditions or the 

material. That is because the model was built and tested maintaining constant the material 

parameters, chosen from common values. 

The aim of the comparison between the simulation results and the conclusions of previous 

impact and post – impact phenomena studies is, accordingly, a qualitative evaluation of the 

coefficients of restitution trends.  

 

Small – scale and half – scale experiments were conducted by B. Heidenreich, in order to 

understand the impact mechanisms governing the rebound phenomenon of rock blocks on 

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5

Fa
lli

n
g 

h
ei

gh
t 

[m
]

Max penetration [m]

Radius 0.3

Radius 0.6

Radius 1

Radius 1.8



51 
 
 

granular slopes. Therefore, the ground material, block, and kinematic parameters were changed 

during the experiments. 

 

Different cases were tested on the model, subject of this work, analysing, then, the evolution of 

the normal, tangential and energetic coefficients of restitutions evaluated for the mass centre of 

the block. Their mathematical formulation is not standardized. They allow to quantify the loss 

of velocity and the energy variation during the impact. Additionally, the rotational motion 

induced on the block during the impact is considered. 

The equations used for the calculation of the restitution coefficients are the following: 

 

𝑅𝑡 =
𝑣𝑡,𝑟

𝑣𝑡,𝑖
 

 
𝑅𝑛 =

𝑣𝑛,𝑟

𝑣𝑛,𝑖
 

 

𝑅𝑇𝐸 =
𝐸𝑇𝑂𝑇,𝑟

𝐸𝑇𝑂𝑇,𝑖
 

 
𝑅𝜔 =

𝜔𝑟

𝜔𝑖
 

Being: 

• 𝑣𝑡 and 𝑣𝑛: respectively tangential and normal components of the velocity; 

• 𝜔: angular velocity; 

• “indices” i and r: incident and rebound elements, characterizing the velocity and the 

energy before and after the impact; 

• 𝐸𝑇𝑂𝑇: total energy, sum of 𝐸𝑡 and 𝐸𝑅, defined as 

 

𝐸𝑡 = 0.5 ∗ 𝑚 ∗ (𝑣𝑥
2 + 𝑣𝑦

2)  
 

𝐸𝑟 = 0.5 ∗ 𝛩 ∗ 𝜔2 
 in which: 

o 𝑚: boulder’s mass; 

o 𝛩: inertia moment referred to the block centre (𝛩 =
2

5
∗ 𝑚 ∗ 𝑟2 for a sphere); 

o 𝜔: rotational velocity, in rad/s. 
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In the results, the absolute value of 𝑅𝑛 is considered. Moreover, the restitution coefficient Rω 

is calculated where reasonable, so in the cases where the rotational velocity before impact is 

imposed. 

 

But what do they exactly represent? In general, two different dissipation phenomena are 

identified during the impact. The energy dissipation normal to the slope is related to the 

plasticity of the ground material, while the dissipation tangential to the slope is controlled by 

the sliding or rolling friction. The measure of the normal resistance to the slope is called normal 

coefficient of restitution, similarly the tangential resistance to the slope is the tangential 

coefficient of restitution. A value of R = 0 represents a purely plastic shock, whilst a value of 

R = 1 stands for a purely elastic shock. 

 

The influence of the impact angle and the impact translational velocity (the rotational velocity, 

in this case, is imposed equal to zero) on the rebound phenomenon is studied, comparing the 

behaviour of two impact spheres, with radii of 0.3 and 1 m. In this way, even the influence of 

the boulder’s mass, directly linked to the boulder’s radius, is showed.  

In the table below, the studied cases are reported: 

 
Table 9: Study cases to analyse the influence of the impact translational velocity on the boulder's post - impact trajectory. 

Influence of the impact translational velocity 

Radii [m] 

0.3 1 

Masses [kg] 

300 11100 

Impact angle [°] 

70 

Velocities [m/s] 

5.85 11.70 17.60 23.41 

Corresponding Falling Heights [m] 

1.75 6.98 15.70 27.93 

 
Table 10: Study cases to analyse the influence of the impact angle on the boulder's post - impact trajectory. 

Influence of the impact angle 

Radii [m] 

0.3 1 

Masses [kg] 

300 11100 

Impact velocity [m/s] 
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12.20 

Impact angles [°] 

9.46 63.43 41.67 80.54 

 

The Figure 40 and Figure 41 display the trends of the restitution coefficients cited above: 

 
Figure 40: Influence of the impact angle on the restitution coefficients. Impact velocity: 12 m/s. 

 

 
Figure 41: Influence of the impact velocity on the restitution coefficients. Impact angle: 70°. 

In order to schematize the observations on the graphs, the trends are explained by arrows, 

indicating with the symbol ↗ an increasing, and with the symbol ↘ a decreasing. 

Influence of the parameters related to the kinematics: 

• Maintaining the impact velocity constant, and decreasing the impact angle 
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Rn ↗, Rt ↗, RTE ↗↗ 

• Maintaining the impact angle constant, and increasing the falling height (and, 

consequently, the impact velocity) 

Rn ↘, Rt ↘, RTE ↘. 

 It is possible to observe an initial increasing of Rn for the block with a radius of 0.3 m. 

 

Influence of the parameters related to the block: 

• Increasing the block radius and, therefore, the weight 

Rn ↗, Rt ↗, RTE ↗ 

 

 

General statements by B. Heidenreich study [10], related to our problem. 

o Ritchie [28], in 1963, basing on in situ observations, affirmed that the characteristics of 

the slope influence the blocks’ kinematics. It observed that increasing the impact angle, 

the loss of energy becomes bigger. 

o Habib [9], in 1977, declared that the normal coefficient of restitution is not only related 

to the ground material, but it is also a function of the block’s kinematics, the mass and 

the shape. 

o Bozzolo and Pamini (1986) [1], noticed that the RTE depends on the impact angle: the 

energy dissipated rises with the growth of the impact angle, till a maximum value for 

an impact perpendicular to the surface.  

o Gerber (1995) [7] observed that the rebound velocity is highly influenced by the impact 

angle: the bigger is the impact angle, the lower will be the rebound velocity of the block. 

o Pfeirrer and Bowen (1989) perceived that faster blocks dissipate more energy than 

slower ones, during impact. 

o B. Heidenreich (2004) [10] explained what happens during the impact: the translational 

energy decreases quickly, and the rotational one rises due to friction between block and 

slope. 

As example, below her observations on half-scale experiments with spherical blocks on 

a sand ground slope are reported. 

 



55 
 
 

 
Figure 42: Observations by B. Heidenreich for spherical blocks (half-scale experiments). An increasing 

of the slope inclination corresponds to a decreasing of the impact angle [10]. 

That experimental results were chosen because the block characteristics are similar to 

the previous adopted to test the developed model. In fact, a height of 10 m corresponds 

to a velocity of 14 m/s, and it is applied to a mass of 500 kg (while in our tests it was 

assumed a velocity of 12 m/s – where constant – for a mass of 300 kg). It is deducible 

that reducing the impact angle, the coefficients of restitution rise. 

Additionally, B. Heidenreich observed that for falling heights between 5 and 10 m, Rt 

grows slightly with the coupled raise of mass and radius of the boulder. Even Rn shows 

a growing in this context. 

Finally, for increasing falling heights (so, impact velocities), she ascertained that Rt 

decreases greatly, while Rn and RTE present, generally, a slower decreasing. In the half 

– scale experiments context, she observed an initial increasing of the Rn with the falling 

height, that she justified in the way explained below. For small values of falling heights, 

the block rolling imposes the rebound direction (fairly tangential, so Rn results little, and 

Rt assumes a high value). For increasing falling heights, the growing slope ground 

resistance in front of the block provokes a more normal rebound, with respect to the 

slope (Rn initially rises, while Rt decreases strongly). 

Therefore, it is interesting to notice that the response of the simulation model, subject of this 

thesis, is coherent with in-situ test results obtained considering different experimental 

conditions.  

 

Unfortunately, no big – scale data were available to check the behaviour of the model 

considering a block radius of 1 m. However, in the hypothesis of good functioning of the 

system, that simulations would be useful to extend the study to more serious cases. 
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As said before, it is important to specify that considering previous in situ studies about the 

rebound problem, only the most general statements were taken into account and compared with 

the response obtained with the model. This is because the latter has not yet been tested with 

different materials and, so, resistances of both ground and block. 

 

 

8.2.1.3 Tests of perpendicular impact to the surface, characterized by initial angular velocity 

Lastly, the perpendicular impact to the surface was once more tested, varying, this time, the 

angular velocity before the impact instant. 

Again, two impacting spheres were considered, with radii of 0.3 and 1 m. Two values of 

translational velocity before impact were imposed, evaluating, then, the response of the system 

to three different initial angular velocities. 

The only component of rotational velocity introduced was in the z – direction, corresponding 

to the tangent to the membrane. 

Study cases: 

 
Table 11:  Study cases to analyse the influence of the impact rotational velocity on the boulder's post - impact trajectory. 

Influence of the impact rotational velocity 

Radii [m] 

0.3 1 

Masses [kg] 

300 11100 

Translational velocities [m/s] 

10 25 

Angular velocities [rad/s] 

5 15 30 

 
 
Below the results: 
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Figure 43: Influence of the rotational velocity on the restitution coefficients. Translational pre-impact velocity: 10 m/s. 

 

 
Figure 44: Influence of the rotational velocity on the restitution coefficients. Translational velocity pre-impact: 25 m/s. 

 

Thanks to the experimental study by B. Heidenreich [10], we are sure that, in case of rotational 

velocity before impact, after impact we will observe a rolling movement of the block in the 

direction of the initial rotation. 

Unfortunately, in this context there are no experimental observations which can be used for a 

validation of our results. 
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On the graphs, outcome of the simulations of the model, it can be observed that generally the 

trends of the different restitution coefficients maintain the same direction in the two initial 

translational velocity cases, whilst the tendency of Rn, for both the masses, change in direction. 

Anyway, these last simulations carried out on the model should be further investigated, in order 

to verify their reliability. Without this additional analysis, it would result incorrect to make 

general considerations.  
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9. Conclusions 
 
The modelling of the impacted surface, representing the behaviour of the overall rockfall 

protection embankment is successful, showing the impact process. The computational time is 

tiny, compared to an eventual model of the entire body.  

Between the elements used for the project, the PFacets are the most problematic, because they 

are not yet well developed. Therefore, the idea to create a continuous membrane on the 

impacted surface, useful for the friction between the impacting sphere and the structure, turned 

out to be hard to realize. These elements pose some problems in the dynamic response when 

many of them are used and connected, forming a complex structure. Therefore, the study was 

focused on avoiding irregularities, as much as possible.  

The elastic model has provided satisfactory results, after having introduced Wire interactions 

on the system, in order to govern the response in terms of penetration, compared to the impact 

forces. 

Even in the case of inclined impact, the model responded in a great way. 

Finally, the next goal was an elasto-plastic response’s system. For this reason, Wire interactions 

were substituted by Inelastic Grid Connections, of which the interacting law consents to govern 

all the phases of the deformation of these elements.  

The latter was tested carrying out simulations on half-scale and big-scale situations: the 

influence of kinematic parameters (impact angle and velocity) and characteristics of the 

impacting block (radius and weight) on the restitution coefficients was explored. Particularly, 

the normal (Rn), tangential (Rt) and energetic (RTE) coefficients of restitution have been 

evaluated: they represent respectively the ratio of the normal and tangential velocities, and the 

total energies before and after impact. Then, previous in situ studies confirmed the reliability 

of the model. 

The growth process of the project was satisfactory and successful, starting from the easiest case, 

going forward towards the final goal.  

Future researches could be developed to advance this research, refining some aspects, 

acceptable in a numerical model, but possible to be improved for a response even closer to 

reality. 

Therefore, some suggestions are reported in the next chapter, deducted by observations and 

ideas of progress during the development of the model. 
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9.1 Ideas and suggestions for further studies  

9.1.1 Design and simulations on the model 

The project provides many ideas for elements that could be developed. First of all, the elastic 

and the plastic models described in this report allow the testing of different cases, on rockfall 

protection embankments or structures in general, changing some characteristics in the systems. 

Firstly, it would be essential to carry out simulations considering different block and ground 

materials. In this way, the answer of the model could be in depth compared to in situ results, 

and the analysis eventually extended to big-scale events (about which, till now, there are not 

experimental data). 

One important progress research will be the change of the shape of the impacting block, in order 

to test closer situations to experimental tests, as, for example, the experiments on the gravel, 

made by B. Pichler et al. [26], with a quasi-cubic rock block. Thus, the block’s shape influence 

on the post-impact block’s trajectory could be studied. 

Regarding the design, the system could be improved by modeling, e.g. in the case of sand 

ground profile, the pile which is formed during the penetration and the rolling of the block on 

the slope. The pile and the penetration depth influence, in fact, the post-impact rolling of the 

block. 

 

 

9.1.2 Technical proposals on programming aspects (on Yade) 

The Visco-Elasticity between the impacting block and the surface could give the possibility to 

refine the described phenomenon. In fact, the law already exists but it is not well developed for 

different materials, as in the model. Result of this lack is the continuous rebound between the 

two elements until the maximum penetration, acceptable event in modelling, because the 

important aspect is the right maximum penetration compared to the maximum impact force. 

Till today, the “Visco law” is the only one that works, between two Viscous Elastic Frictional 

materials, so it could be applied for the contact sphere-PFacets (being characterized by the same 

material). However, in our case, it was decided to have the impact in a node (Cohesive-

Frictional material), between four PFacets (so, in a symmetric configuration), because of the 

problems encountered in using PFacets. Therefore, the contact is again between different 

materials. 

The modification of the Inelastic Cohesive-Frictional law (the c++ code) could permit to define 

parameters more adapted to the studied case, considering, for example, different unloading 
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moduli, for tension and compression. It could be useful to maintain the plastic configuration 

after loading the surface, and do not have energy’s jumps, searching a good compromise 

between the boundary conditions (that until now create the accumulation of energy in the 

membrane) and the characteristics of the vertical cylinders that govern the response. 

Additionally, of less importance but effective for a good representation of a complex system 

with PFacets, would be a suggestion regarding PARAVIEW. The functions for the data exports 

of the most common elements, like spheres or walls, as VTK files are already developed. 

However, in the case of PFacets the exportation is not yet possible, therefore it would be 

interesting to write the c++ code for the function of the data export. 
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Appendix A 
 

Minkowski sum 
Minkowski sum of two geometrical elements: 

 
Figure 45: On the left, element A. In the center, element B. On the right, Minkowski sum between A and B. 

 

Appendix B 
 

Parameters of the model elements 
Below, the parameters of the materials inserted in the elastic and the elasto-plastic models are 

reported: 
Table 12: Parameters of the elastic model. 

Elements Grid Nodes Grid 
Connections PFacets Impact 

Sphere 
Wire 

Elements 

Material Cohesive 
Frictional 

Cohesive 
Frictional Frictional Frictional Wire 

Young E [Pa] 2.00E+08 4.00E+07 4.00E+07 4.00E+07 2.00E+07 
Poisson 0.3 0.3 0.3 0.3 0.3 
density 
[kg/m3] 3500 1 3500 2650 3500 

FrictAngle [°] 20 20 20 20 20 
NormCoh Kn 
[Pa] 3E+100 3E+100    

ShearCoh Ks 
[Pa] 3E+100 3E+100    
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Table 13: Parameters of the elasto-plastic model. 

Elements Grid Nodes Grid 
Connections PFacets Impact 

Sphere 
Inelastic Coh-
Frict Elements 

Material Cohesive 
Frictional 

Cohesive 
Frictional Frictional Frictional Inelast Cohesive 

Frictional 
Young E [Pa] 4.00E+07 4.00E+07 4.00E+07 4.00E+07  
Poisson 0.3 0.3 0.2 0.3 0.3 
density 
[kg/m3] 4500 1 1500 2650 4500 

FrictAngle [°] 20 20 30 20 20 
NormCoh Kn 3E+100 3E+100    
ShearCoh Ks 3E+100 3E+100    
Epsilon max 
Tension 

    17 

Epsilon max 
Compression 

    17 

Sigma 
Compression 
[Pa] 

  
 

 35000000 

Sigma Tension 
[Pa] 

    1 

Compression 
Modulus [Pa] 

    10000000 

Tension 
Modulus [Pa] 

    1500000 

Creep Tension     1 
Unload 
Tension [Pa] 

    10 
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APPENDIX C 
 

YADE codes 
Elastic model: 

1. ### Libraries ###   
2. from yade import qt,plot,pack,export   
3. from yade.gridpfacet import *   
4. import math   
5. import numpy as np   
6. math.pi   
7.    
8. ### Creation folder for exporting data ###   
9.    
10. title = "Elastic_system"   
11. folder = os.path.dirname(sys.argv[0])+str(title)+"/"   
12. if os.path.exists(folder)==False:   
13.     os.mkdir(folder)   
14.     os.mkdir(folder+"VTK/")   
15.    
16.    
17. ##################   
18. ### PARAMETERS ###   
19. ##################   
20.    
21. phi=20.   
22. E=4e7   
23. color=[255./255.,102./255.,0./255.]   
24. r=0.05   
25. spherer=1   
26.    
27. strainStressValues=[(0.001923,38461.54),(0.15,3000000),(0.35,7000000),(0.45,9000000)

]   
28.    
29. ################   
30. ### ENGINES  ###   
31. ################   
32.    
33. O.engines=[   
34.     ForceResetter(),   
35.     InsertionSortCollider([   
36.         Bo1_PFacet_Aabb(),   
37.         Bo1_Sphere_Aabb(label='aabb'),   
38.         Bo1_GridConnection_Aabb()   
39.     ],label="ISC"),    
40.     InteractionLoop([   
41.         Ig2_Sphere_Sphere_ScGeom(label='Ig2ssGeom'),   
42.         Ig2_GridNode_GridNode_GridNodeGeom6D(),   
43.         Ig2_GridConnection_GridConnection_GridCoGridCoGeom(),   
44.         Ig2_Sphere_GridConnection_ScGridCoGeom(),   
45.         Ig2_GridConnection_PFacet_ScGeom(),   
46.         Ig2_Sphere_PFacet_ScGridCoGeom(),   
47.         Ig2_PFacet_PFacet_ScGeom()   
48.     ],     
49.     [   
50.         Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(setCohesionNow=True,setCohesionOnNe

wContacts=False),   
51.         Ip2_FrictMat_FrictMat_FrictPhys(),   
52.         Ip2_WireMat_WireMat_WirePhys(label='interactionPhys')   
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53.     ],   
54.     [   
55.        
56.         Law2_ScGeom6D_CohFrictPhys_CohesionMoment(),   
57.         Law2_ScGeom_FrictPhys_CundallStrack(),   
58.         Law2_ScGridCoGeom_FrictPhys_CundallStrack(),   
59.         Law2_GridCoGridCoGeom_FrictPhys_CundallStrack(),   
60.         Law2_ScGeom_WirePhys_WirePM(label='interactionLaw')   
61.     ]   
62.     ),   
63.     NewtonIntegrator(gravity=(0,0,0),damping=0.01,label='newton'),   
64.     PyRunner(iterPeriod=100,command='history()'),   
65.     PyRunner(command="saveVTK()",iterPeriod=1000)   
66. ]   
67.    
68. ISC.avoidSelfInteractionMask=2   
69.    
70. ################   
71. ### MATERIAL ###   
72. ################   
73.    
74. O.materials.append( CohFrictMat( young=E,poisson=0.3,density=3500,frictionAngle=radi

ans(phi),normalCohesion=3e100,shearCohesion=3e100,momentRotationLaw=False,label='gri
dNodeMat1' ) )   

75.    
76. O.materials.append( CohFrictMat( young=E,poisson=0.3,density=1,frictionAngle=radians

(phi),normalCohesion=3e100,shearCohesion=3e100,momentRotationLaw=False,label='gridCo
nMat1' ) )   

77.    
78. O.materials.append( WireMat( poisson=0.3,frictionAngle=radians(phi),density=3500,dia

meter=2*r,isDoubleTwist=False,strainStressValues=strainStressValues, label='Wiresphe
re', young=20000000) )   

79.    
80. O.materials.append( FrictMat( young=E,poisson=0.3,density=2650,frictionAngle=radians

(phi),label='sphereMat') )    
81.    
82. O.materials.append( FrictMat( young=E,poisson=0.3,density=2650,frictionAngle=radians

(phi),label='pFacetMat') )   
83.    
84.    
85. #################################################   
86. ### CONSTRUCTION OF SURFACE AND WIRE ELEMENTS ###   
87. #################################################   
88.    
89. N=21   
90. IdNodes=np.zeros((N,N),int)   
91. IdNodesCenter=np.zeros((N-1,N-1),int)   
92. WireSpheres1=np.zeros((N,N),int)   
93. WireSpheres2=np.zeros((N,N),int)   
94. WireSpheresCenter1=np.zeros((N,N),int)   
95. WireSpheresCenter2=np.zeros((N,N),int)   
96. IdClumps=[]   
97.    
98. ### Building of Nodes and Spheres ###   
99.    
100. for i in range(N):   
101.     for j in range(N):   
102.         IdNodes[i][j]=int(O.bodies.append( gridNode([spherer/0.52*i*1e-

1,0,spherer/0.52*j*1e-
1],radius=r,wire=False,fixed=False,material='gridNodeMat1',color=[1,0,0]) ))   

103.         O.bodies[-1].state.blockedDOFs='xzXYZ'   
104.         WireSpheres1[i][j]=O.bodies.append(utils.sphere(Vector3(spherer/0.52*

i*1e-1,2*r,spherer/0.52*j*1e-
1), radius=r, wire=True, fixed=False, material='Wiresphere', mask=2))   
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105.         WireSpheres2[i][j]=O.bodies.append(utils.sphere(Vector3(spherer/0.52*
i*1e-1,2,spherer/0.52*j*1e-
1), radius=r, wire=True, fixed=True, material='Wiresphere', mask=2))   

106.         O.bodies[WireSpheres1[i][j]].state.blockedDOFs='xzXYZ'   
107.            
108.         if i<=(N-2) and j<=(N-2):   
109.             IdNodesCenter[i][j]=int(O.bodies.append( gridNode([spherer/0.52*i

*1e-1+0.5*spherer/0.52*1e-1,0,spherer/0.52*j*1e-1+0.5*spherer/0.52*1e-
1],radius=r,wire=False,fixed=False,material='gridNodeMat1',color=[0,1,0]) ))   

110.             WireSpheresCenter1[i][j]=O.bodies.append(utils.sphere(Vector3(sph
erer/0.52*i*1e-1+0.5*spherer/0.52*1e-1,2*r,spherer/0.52*j*1e-1+0.5*spherer/0.52*1e-
1), radius=r, wire=True, fixed=False, material='Wiresphere', mask=2))   

111.             WireSpheresCenter2[i][j]=O.bodies.append(utils.sphere(Vector3(sph
erer/0.52*i*1e-1+0.5*spherer/0.52*1e-1,2,spherer/0.52*j*1e-1+0.5*spherer/0.52*1e-
1), radius=r, wire=True, fixed=True, material='Wiresphere', mask=2))   

112.                
113.    
114. ### Grid Connections between the nodes, creating the surface ###   
115.    
116. for i in range(N):   
117.     for j in range(N):   
118.         if j<N-1:   
119.             O.bodies.append( gridConnection(IdNodes[i][j],IdNodes[i][j+1],r,c

olor=color,material='gridConMat1',mask=1))   
120.         if i<N-1:   
121.             O.bodies.append( gridConnection(IdNodes[i][j],IdNodes[i+1][j],r,c

olor=color,material='gridConMat1',mask=1))   
122.    
123.    
124. def dist(c,d):   
125.     return math.sqrt((c.state.pos[0]-d.state.pos[0])**2+(c.state.pos[1]-

d.state.pos[1])**2+(c.state.pos[2]-d.state.pos[2])**2)   
126.    
127.    
128. for i in IdNodesCenter.flatten():   
129.     for j in IdNodes.flatten():   
130.         if dist(O.bodies[i],O.bodies[j])<(sqrt(2*(spherer/5.2/2)**2)+0.01):   
131.             O.bodies.append( gridConnection(i,j,r,color=color,material='gridC

onMat1',mask=4))   
132.    
133. ### PFacets in the surface ###   
134.    
135. for i in range(N-1):   
136.     for j in range(N-1):   
137.         O.bodies.append( pfacet(IdNodes[i][j],IdNodes[i+1][j],IdNodesCenter[i

][j],wire=False,material='pFacetMat',color=color) )   
138.         O.bodies[-1].shape.color = [10,10,10]   
139.         O.bodies.append( pfacet(IdNodes[i+1][j],IdNodes[i+1][j+1],IdNodesCent

er[i][j],wire=False,material='pFacetMat',color=color) )   
140.         O.bodies.append( pfacet(IdNodes[i+1][j+1],IdNodes[i][j+1],IdNodesCent

er[i][j],wire=False,material='pFacetMat',color=color) )   
141.         O.bodies[-1].shape.color = [10,10,10]   
142.         O.bodies.append( pfacet(IdNodes[i][j+1],IdNodes[i][j],IdNodesCenter[i

][j],wire=False,material='pFacetMat',color=color) )   
143.    
144.    
145. ### Creation of Wire Interactions and Clumps with the membrane ###   
146.    
147. for i in WireSpheres1.flatten():   
148.     O.bodies[i].shape.color = [1,1,0]   
149. for i in WireSpheres2.flatten():   
150.     O.bodies[i].shape.color = [1,1,0]   
151.    
152. for i in range(N):   
153.     for j in range(N):   
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154.         utils.createInteraction(WireSpheres1[i][j],WireSpheres2[i][j])       
  

155.         IdClumps.append(O.bodies.clump([WireSpheres1[i][j],IdNodes[i][j]]))   
156.         if i==0 or j==0 or i==N-1 or j==N-1:   
157.             O.bodies[IdClumps[-1]].state.blockedDOFs='xyzXYZ'   
158.         else:          
159.             O.bodies[IdClumps[-1]].state.blockedDOFs='xzXYZ'   
160.         if i<=(N-2) and j<=(N-2):   
161.             utils.createInteraction(WireSpheresCenter1[i][j],WireSpheresCente

r2[i][j])   
162.             IdClumps.append(O.bodies.clump([WireSpheresCenter1[i][j],IdNodesC

enter[i][j]]))   
163.             if i==0 or j==0 or i==N-1 or j==N-1:   
164.                 O.bodies[IdClumps[-1]].state.blockedDOFs='xyzXYZ'   
165.             else:          
166.                 O.bodies[IdClumps[-1]].state.blockedDOFs='xzXYZ'   
167.    
168.    
169. O.step()   
170.    
171.    
172. ### Impacting body ###   
173.    
174. O.bodies.append(utils.sphere(Vector3(spherer/0.52*(N-1)/2*1e-

1+0.5*spherer/5.2,1.2,spherer/0.52*(N-1)/2*1e-
1+0.5*spherer/5.2), radius=spherer, wire=False, fixed=False, material='sphereMat', c
olor=[1,0,0],mask=5))   

175.    
176. O.bodies[-1].state.vel[1]=-10.   
177. #O.bodies[-1].state.vel[0]=-10.   
178.    
179. print('Mass sphere: '+str(O.bodies[-1].state.mass))   
180.    
181. ############   
182. ### PLOT ###   
183. ############   
184.    
185. def history():   
186.     f=open(folder+"force.txt","a")     
187.        
188.     inter=O.bodies[-1].intrs()   
189.    
190.     ### attention focused on the central Wire interaction ###   
191.     wireint10 = O.interactions[WireSpheresCenter1[10][10],WireSpheresCenter2[

10][10]].phys.displForceValues   
192.     xyz=[]   #position coordinates of the impacting block   
193.     xyzCenter=[]   #position coordinates of the central node of the membrane 

  
194.     for k in [0,1,2]:   
195.         ksum=0   
196.         ksumCenter=0   
197.         ksum+=O.bodies[-1].state.pos[k]   
198.         ksumCenter+=O.bodies[IdNodesCenter[10][10]].state.pos[k]   
199.         xyz.append(ksum)   
200.         xyzCenter.append(ksumCenter)   
201.    
202.     f.write(str(O.time)+";"+str(O.forces.f(O.bodies[-

1].id)[1])+"\n") #to export the data of the impact force   
203.     f.close()   
204.    
205.     plot.addData(i=O.iter,t=O.time,time=O.time,x=xyz[0],y=xyz[1],z=xyz[2],xCe

nter=xyzCenter[0],yCenter=xyzCenter[1],zCenter=xyzCenter[2],Force=O.forces.f(O.bodie
s[-1].id)[1],u=-wireint10[0][0],F=-wireint10[0][1])   

206.    
207. plot.plots={'x':'y','xCenter':'yCenter','t':'Force','u':'F'}    
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208. plot.plot(subPlots = False)   
209.    
210.    
211. ### Procedure for the VTK export of elements, and for saving a characteristic

 of them (in this case, the angular velocity on Z direction) ###   
212.    
213. def convertMatrix(mat):   
214.     temp=[]   
215.     for i in mat:   
216.         temp+=list(i)   
217.     return temp   
218.    
219. List_sp=convertMatrix(IdNodes)+convertMatrix(IdNodesCenter)+[O.bodies[-

1].id]   
220. vtkExporter = export.VTKExporter(folder+"VTK/test-")   
221.    
222. def saveVTK():   
223.     vtkExporter.exportSpheres(ids=List_sp,what=[('angVel','b.state.angVel[2]'

)])   
224.    
225.    
226. ##########   
227. ## VIEW ##   
228. ##########   
229.    
230. from yade import qt   
231. v = qt.Controller()   
232. v = qt.View()   
233. rr = qt.Renderer()   
234. rr.intrAllWire = False   
235.    
236. O.saveTmp()   
237.    
238. O.dt = 1e-6   
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Elasto – Plastic model without PFacets: 

1. ### Libraries ###   
2. from yade import qt,plot,pack,export   
3. from yade.gridpfacet import *   
4. import math   
5. import numpy as np   
6. math.pi   
7.    
8. ### Creation folder for exporting data ###   
9.    
10. title = "Inelastic"   
11. folder = os.path.dirname(sys.argv[0])+str(title)+"/"   
12. if os.path.exists(folder)==False:   
13.     os.mkdir(folder)   
14.     os.mkdir(folder+"VTK/")   
15.    
16.    
17. ##################   
18. ### PARAMETERS ###   
19. ##################   
20.    
21. phi=20.   
22. E=4e7   
23. color=[255./255.,102./255.,0./255.]   
24. r=0.05   
25. spherer=1   
26.    
27. ################   
28. ### ENGINES  ###   
29. ################   
30.    
31. O.engines=[   
32.     ForceResetter(),   
33.     InsertionSortCollider([   
34.         Bo1_PFacet_Aabb(),   
35.         Bo1_Sphere_Aabb(label='aabb'),   
36.         Bo1_GridConnection_Aabb()   
37.     ],label="ISC"),    
38.     InteractionLoop([   
39.         Ig2_Sphere_Sphere_ScGeom(label='Ig2ssGeom'),   
40.         Ig2_GridNode_GridNode_GridNodeGeom6D(),   
41.         Ig2_GridConnection_GridConnection_GridCoGridCoGeom(),   
42.         Ig2_Sphere_GridConnection_ScGridCoGeom(),   
43.     ],     
44.     [   
45.         Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(setCohesionNow=True,setCohesionOnNe

wContacts=False),   
46.         Ip2_FrictMat_FrictMat_FrictPhys(),   
47.         Ip2_2xInelastCohFrictMat_InelastCohFrictPhys(label='interactionPhys')   
48.     ],   
49.     [   
50.        
51.         Law2_ScGeom6D_CohFrictPhys_CohesionMoment(),   
52.         Law2_ScGeom_FrictPhys_CundallStrack(),   
53.         Law2_ScGridCoGeom_FrictPhys_CundallStrack(),   
54.         Law2_GridCoGridCoGeom_FrictPhys_CundallStrack(),   
55.         Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment(label='interactionLaw'),   
56.     ]   
57.     ),   
58.     NewtonIntegrator(gravity=(0,0,0),damping=0.01,label='newton'),   
59.     PyRunner(iterPeriod=100,command='history()'),   
60.     PyRunner(command="saveVTK()",iterPeriod=1000)   
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61.    
62. ]   
63.    
64. ISC.avoidSelfInteractionMask=2   
65.    
66. ################   
67. ### MATERIAL ###   
68. ################   
69.    
70. O.materials.append( CohFrictMat( young=E,poisson=0.3,density=3500,frictionAngle=radi

ans(phi),normalCohesion=3e100,shearCohesion=3e100,momentRotationLaw=False,label='gri
dNodeMat1' ) )   

71.    
72. O.materials.append( CohFrictMat( young=E,poisson=0.3,density=1,frictionAngle=radians

(phi),normalCohesion=3e100,shearCohesion=3e100,momentRotationLaw=False,label='gridCo
nMat1' ) )   

73.    
74. O.materials.append( InelastCohFrictMat( poisson=0.3,frictionAngle=radians(phi),densi

ty=2700,epsilonMaxTension=17,epsilonMaxCompression=17,sigmaCompression=35000000,sigm
aTension=1,compressionModulus=10000000, creepBending=0.5, creepTension=1.31, creepTw
ist=0.5, tensionModulus=1900000,shearCohesion=1,nuBending=1,nuTwist=1, unloadTension
=15,unloadBending=1,unloadTwist=1, label='InelastMat') )   

75.    
76. O.materials.append( FrictMat( young=E,poisson=0.3,density=2650,frictionAngle=radians

(phi),label='sphereMat') )    
77.    
78.    
79. ###########################################################   
80. ### CONSTRUCTION OF SURFACE AND ELASTO-PLASTIC ELEMENTS ###   
81. ###########################################################   
82.    
83. N=21   
84. IdNodes=np.zeros((N,N),int)   
85. IdNodesCenter=np.zeros((N-1,N-1),int)   
86. InelastNodes1=np.zeros((N,N),int)   
87. InelastNodes2=np.zeros((N,N),int)   
88. InelastNodesCenter1=np.zeros((N,N),int)   
89. InelastNodesCenter2=np.zeros((N,N),int)   
90. IdClumps=np.zeros((N,N),int)   
91. IdClumpsCenter=np.zeros((N,N),int)   
92.    
93. ### Building of Nodes ###   
94.    
95. for i in range(N):   
96.     for j in range(N):   
97.         IdNodes[i][j]=int(O.bodies.append( gridNode([spherer/0.52*i*1e-

1,0,spherer/0.52*j*1e-
1],radius=r,wire=False,fixed=False,material='gridNodeMat1',color=[1,0,0]) ))   

98.         InelastNodes1[i][j]=O.bodies.append(gridNode([spherer/0.52*i*1e-
1,2*r,spherer/0.52*j*1e-
1], radius=r, wire=True, fixed=False, material='InelastMat'))   

99.         InelastNodes2[i][j]=O.bodies.append(gridNode([spherer/0.52*i*1e-
1,2,spherer/0.52*j*1e-1], radius=r, wire=True, fixed=True, material='InelastMat'))   

100.    
101.            
102.         if i<=(N-2) and j<=(N-2):   
103.             IdNodesCenter[i][j]=int(O.bodies.append( gridNode([spherer/0.52*i

*1e-1+0.5*spherer/0.52*1e-1,0,spherer/0.52*j*1e-1+0.5*spherer/0.52*1e-
1],radius=r,wire=False,fixed=False,material='gridNodeMat1',color=[0,1,0]) ))   

104.             InelastNodesCenter1[i][j]=O.bodies.append(gridNode([spherer/0.52*
i*1e-1+0.5*spherer/0.52*1e-1,2*r,spherer/0.52*j*1e-1+0.5*spherer/0.52*1e-
1], radius=r, wire=True, fixed=False, material='InelastMat'))   

105.             InelastNodesCenter2[i][j]=O.bodies.append(gridNode([spherer/0.52*
i*1e-1+0.5*spherer/0.52*1e-1,2,spherer/0.52*j*1e-1+0.5*spherer/0.52*1e-
1], radius=r, wire=True, fixed=True, material='InelastMat'))   
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106.                
107. ### Grid Connections between the nodes, creating the surface ###   
108.    
109. for i in range(N):   
110.     for j in range(N):   
111.         if j<N-1:   
112.             O.bodies.append( gridConnection(IdNodes[i][j],IdNodes[i][j+1],r,c

olor=color,wire=True,material='gridConMat1',mask=1))   
113.         if i<N-1:   
114.             O.bodies.append( gridConnection(IdNodes[i][j],IdNodes[i+1][j],r,c

olor=color,wire=True,material='gridConMat1',mask=1))   
115.    
116. def dist(c,d):   
117.     return math.sqrt((c.state.pos[0]-d.state.pos[0])**2+(c.state.pos[1]-

d.state.pos[1])**2+(c.state.pos[2]-d.state.pos[2])**2)   
118.    
119.    
120. for i in IdNodesCenter.flatten():   
121.     for j in IdNodes.flatten():   
122.         if dist(O.bodies[i],O.bodies[j])<(sqrt(2*(spherer/5.2/2)**2)+0.01):   
123.             O.bodies.append( gridConnection(i,j,r,color=color,wire=True,mater

ial='gridConMat1',mask=4))   
124.    
125.                
126. ### Creation of Elasto-Plastic elements and Clumps with the membrane ###   
127.    
128. for i in InelastNodes1.flatten():   
129.     O.bodies[i].shape.color = [1,1,0]   
130. for i in InelastNodes2.flatten():   
131.     O.bodies[i].shape.color = [1,1,0]   
132.    
133. for i in range(N):   
134.     for j in range(N):   
135.         O.bodies.append( gridConnection(InelastNodes1[i][j],InelastNodes2[i][

j],r,color=color,wire=True,material='gridConMat1',mask=2))    
136.         IdClumps[i][j]=O.bodies.clump([InelastNodes1[i][j],IdNodes[i][j]])   
137.         if i==0 or j==0 or i==N-1 or j==N-1:   
138.             O.bodies[-1].state.blockedDOFs='xyzXYZ'   
139.         else:          
140.             O.bodies[-1].state.blockedDOFs='XYZ'   
141.         if i<=(N-2) and j<=(N-2):   
142.             O.bodies.append( gridConnection(InelastNodesCenter1[i][j],Inelast

NodesCenter2[i][j],r,color=color,wire=True,material='gridConMat1',mask=2))   
143.             IdClumpsCenter[i][j]=O.bodies.clump([InelastNodesCenter1[i][j],Id

NodesCenter[i][j]])   
144.             if i==0 or j==0 or i==N-1 or j==N-1:   
145.                 O.bodies[-1].state.blockedDOFs='xyzXYZ'   
146.             else:          
147.                 O.bodies[-1].state.blockedDOFs='XYZ'   
148.    
149. print('Mass clump: '+str(O.bodies[-1].state.mass))   
150.    
151. O.bodies[5824].state.blockedDOFs='xzXYZ'  #central clump   
152.    
153. O.bodies[IdNodes[10][10]].shape.color = [200,200,200] #central node in the me

mbrane   
154.    
155.    
156. ### Impacting body ###   
157.    
158. O.bodies.append(utils.sphere(Vector3(spherer/0.52*(N-1)/2*1e-

1,1.5,spherer/0.52*(N-1)/2*1e-
1), radius=spherer, wire=False, fixed=False, material='sphereMat', color=[1,0,0],mas
k=5))   

159.    
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160. O.bodies[-1].state.vel[1]=-10.   
161.    
162. print('Mass sphere: '+str(O.bodies[-1].state.mass))   
163.    
164.    
165. ############   
166. ### PLOT ###   
167. ############   
168.    
169. def history():     
170.     f=open(folder+"forceinelast.txt","a")   
171.    
172.     inter=O.bodies[-1].intrs()   
173.    
174.     ### attention focused on the central Elasto-Plastic Grid Connection ###   
175.     Inelastint10=O.interactions[InelastNodes1[10][10],InelastNodes2[10][10]].

phys.normalForce[1]   
176.    
177.     xyz=[]   # position coordinates of the impacting block   
178.     xyzCenter=[]   # position coordinates of the central node of the membrane

   
179.     for k in [0,1,2]:   
180.         ksum=0   
181.         ksumCenter=0   
182.         ksum+=O.bodies[-1].state.pos[k]   
183.         ksumCenter+=O.bodies[IdNodes[10][10]].state.pos[k]   
184.         xyz.append(ksum)    
185.         xyzCenter.append(ksumCenter)   
186.     f.write(str(-

xyzCenter[1])+";"+str(Inelastint10)+"\n") #to export the data of the impact force   
187.     f.close()   
188.    
189.     plot.addData(i=O.iter,t=O.time,time=O.time,x=xyz[0],y=xyz[1],z=xyz[2],xCe

nter=xyzCenter[0],yCenter=xyzCenter[1],zCenter=xyzCenter[2],Force=O.forces.f(O.bodie
s[-1].id)[1],u=-
xyzCenter[1],F=Inelastint10,ForceNode=O.forces.f(O.bodies[IdNodes[10][10]].id)[1])   

190.    
191. plot.plots={'x':'y','u':'F','xCenter':'yCenter','t':'Force','time':'ForceNode

'}   
192. plot.plot(subPlots = False)   
193.    
194.    
195. ### Procedure for the VTK export of elements, and for saving a characteristic

 of them (in this case, the angular velocity on Z direction) ###   
196.    
197. def convertMatrix(mat):   
198.     temp=[]   
199.     for i in mat:   
200.         temp+=list(i)   
201.     return temp   
202.    
203. List_sp=convertMatrix(IdNodes)+convertMatrix(IdNodesCenter)+[O.bodies[-

1].id]   
204. vtkExporter = export.VTKExporter(folder+"VTK/test-")   
205. def saveVTK():   
206.     vtkExporter.exportSpheres(ids=List_sp,what=[('angVel','b.state.angVel')])

     
207.    
208. ##########   
209. ## VIEW ##   
210. ##########   
211.    
212. from yade import qt   
213. v = qt.Controller()   
214. v = qt.View()   
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215. rr = qt.Renderer()   
216.    
217. O.saveTmp()   
218.    
219. O.dt = 1e-6   

 

 

Elasto – Plastic model with PFacets: 

1. # Libraries   
2. from yade import qt,plot,pack,export   
3. from yade.gridpfacet import *   
4. import math   
5. import numpy as np   
6. math.pi   
7.    
8. # Creation of the folder, to save the VTK file and the other chosen data #   
9.    
10. title = "Simulation"   
11. folder = os.path.dirname(sys.argv[0])+str(title)+"/"   
12. if os.path.exists(folder)==False:   
13.     os.mkdir(folder)   
14.     os.mkdir(folder+"VTK/")   
15.    
16.    
17. ##################   
18. ### PARAMETERS ###   
19. ##################   
20.    
21. phi=20.     # friction angle used for all elements   
22. E=4e7     # Young's modulus used for all elements   
23. spherer=0.3     # radius of the impacting boulder   
24. r=spherer/20     # radius of each spherical element of the complex structure   
25.    
26. color=[255./255.,102./255.,0./255.]   
27.    
28. ################   
29. ### ENGINES  ###   
30. ################   
31. interactionRadius=-2.8   
32.    
33. O.engines=[   
34.     ForceResetter(),   
35.     InsertionSortCollider([   
36.         Bo1_PFacet_Aabb(),   
37.         Bo1_Sphere_Aabb(aabbEnlargeFactor=interactionRadius,label='aabb'),   
38.         Bo1_GridConnection_Aabb()   
39.     ],label="ISC"),    
40.     InteractionLoop([   
41.         Ig2_Sphere_Sphere_ScGeom(label='Ig2ssGeom'),   
42.         Ig2_GridNode_GridNode_GridNodeGeom6D(),   
43.         Ig2_GridConnection_GridConnection_GridCoGridCoGeom(),   
44.         Ig2_Sphere_GridConnection_ScGridCoGeom(),   
45.         Ig2_GridConnection_PFacet_ScGeom(),   
46.         Ig2_Sphere_PFacet_ScGridCoGeom(),   
47.         Ig2_PFacet_PFacet_ScGeom()   
48.     ],     
49.     [   
50.         Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(setCohesionNow=True,setCohesionOnNe

wContacts=False),   
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51.         Ip2_FrictMat_FrictMat_FrictPhys(),   
52.         Ip2_2xInelastCohFrictMat_InelastCohFrictPhys(label='interactionPhys')   
53.     ],   
54.     [   
55.        
56.         Law2_ScGeom6D_CohFrictPhys_CohesionMoment(),   
57.         Law2_ScGeom_FrictPhys_CundallStrack(),   
58.         Law2_ScGridCoGeom_FrictPhys_CundallStrack(),   
59.         Law2_GridCoGridCoGeom_FrictPhys_CundallStrack(),   
60.         Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment(label='interactionLaw'),   
61.     ]   
62.     ),   
63.     #GlobalStiffnessTimeStepper(timestepSafetyCoefficient=0.5,label='ts'),    
64.     NewtonIntegrator(gravity=(0,0,0),damping=0.01,label='newton'),    
65.     PyRunner(iterPeriod=100,command='history()'),   
66.     PyRunner(iterPeriod=100,command='lowerNode()'),   
67.     PyRunner(command="saveVTK()",iterPeriod=1000)   
68. ]   
69.    
70. ISC.avoidSelfInteractionMask=2   
71.    
72.    
73. ###################################   
74. ### DEFINITION OF THE MATERIALS ###   
75. ###################################   
76.    
77. O.materials.append( CohFrictMat( young=E,poisson=0.3,density=4500,frictionAngle=radi

ans(phi),normalCohesion=3e100,shearCohesion=3e100,momentRotationLaw=False,label='gri
dNodeMat1' ) )   

78.    
79. O.materials.append( CohFrictMat( young=E,poisson=0.3,density=1,frictionAngle=radians

(phi),normalCohesion=3e100,shearCohesion=3e100,momentRotationLaw=False,label='gridCo
nMat1' ) )   

80.    
81. O.materials.append( InelastCohFrictMat( poisson=0.3,frictionAngle=radians(phi),densi

ty=4500,epsilonMaxTension=17,epsilonMaxCompression=17,sigmaCompression=35000000,sigm
aTension=1,compressionModulus=10000000, creepBending=0.5, creepTension=1, creepTwist
=0.5, tensionModulus=1500000,shearCohesion=1,nuBending=1,nuTwist=1, unloadTension=10
,unloadBending=1,unloadTwist=1, label='InelastNodes') )   

82.    
83. O.materials.append( FrictMat( young=E,poisson=0.2,density=1500,frictionAngle=radians

(30),label='pFacetMat') )    
84.    
85. O.materials.append( FrictMat( young=E,poisson=0.3,density=2650,frictionAngle=radians

(phi),label='sphereMat') )    
86.    
87. #################################   
88. ### CONSTRUCTION OF THE MODEL ###   
89. #################################   
90.    
91.    
92. ### Building of each spherical element ###   
93.    
94. #Definition of matrices   
95. N=25   
96. IdNodes=np.zeros((N,N),int)   
97. IdNodesCenter=np.zeros((N-1,N-1),int)   
98. InelastCyl1=np.zeros((N,N),int)   
99. InelastCyl2=np.zeros((N,N),int)   
100. InelastCylCenter1=np.zeros((N,N),int)   
101. InelastCylCenter2=np.zeros((N,N),int)   
102. IdClumps=np.zeros((N,N),int)   
103. IdClumpsCenter=np.zeros((N,N),int)   
104.    
105.    
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106. for i in range(N):   
107.     for j in range(N):   
108.         IdNodes[i][j]=int(O.bodies.append(gridNode([spherer/0.52*i*1e-

1,0,spherer/0.52*j*1e-
1],radius=r,wire=False,fixed=False, material='gridNodeMat1',color=[1,0,0]) ))       
#angle nodes of the elementary structure- coordinates defined considering the distan
ce between one node and another as 1/5 the radius of the boulder.   

109. #       O.bodies[-1].state.mass=0.02   
110.         InelastCyl1[i][j]=O.bodies.append(gridNode([spherer/0.52*i*1e-

1,2*r,spherer/0.52*j*1e-
1], radius=r, wire=True, fixed=False, material='InelastNodes'))       #nodes of the 
vertical elements   

111. #       O.bodies[-1].state.mass=0.02   
112.         InelastCyl2[i][j]=O.bodies.append(gridNode([spherer/0.52*i*1e-

1,2,spherer/0.52*j*1e-
1], radius=r, wire=True, fixed=True, material='InelastNodes'))        #nodes of the 
vertical elements   

113. #       O.bodies[-1].state.mass=0.02   
114.            
115.         if i<=(N-2) and j<=(N-2):   
116.             IdNodesCenter[i][j]=int(O.bodies.append( gridNode([spherer/0.52*i

*1e-1+0.5*spherer/0.52*1e-1,0,spherer/0.52*j*1e-1+0.5*spherer/0.52*1e-
1],radius=r,wire=False,fixed=False,material='gridNodeMat1',color=[0,1,0]) ))    
#central node of the elementary structure   

117. #           O.bodies[-1].state.mass=0.02   
118.             InelastCylCenter1[i][j]=O.bodies.append(gridNode([spherer/0.52*i*

1e-1+0.5*spherer/0.52*1e-1,2*r,spherer/0.52*j*1e-1+0.5*spherer/0.52*1e-
1], radius=r, wire=True, fixed=False, material='InelastNodes'))        #node of the 
vertical element   

119. #           O.bodies[-1].state.mass=0.02   
120.             InelastCylCenter2[i][j]=O.bodies.append(gridNode([spherer/0.52*i*

1e-1+0.5*spherer/0.52*1e-1,2,spherer/0.52*j*1e-1+0.5*spherer/0.52*1e-
1], radius=r, wire=True, fixed=True, material='InelastNodes'))         #node of the 
vertical element   

121. #           O.bodies[-1].state.mass=0.02   
122.    
123.                
124.    
125.    
126. ### Construction of the Grid Connections of the impacted surface ###   
127.    
128. for i in range(N):   
129.     for j in range(N):   
130.         if j<N-1:   
131.             O.bodies.append( gridConnection(IdNodes[i][j],IdNodes[i][j+1],r,c

olor=color,wire=True,material='gridConMat1',mask=1))   
132.         if i<N-1:   
133.             O.bodies.append( gridConnection(IdNodes[i][j],IdNodes[i+1][j],r,c

olor=color,wire=True,material='gridConMat1',mask=1))   
134.    
135. def dist(c,d):   
136.     return math.sqrt((c.state.pos[0]-d.state.pos[0])**2+(c.state.pos[1]-

d.state.pos[1])**2+(c.state.pos[2]-d.state.pos[2])**2)   
137.    
138.    
139. # definition of distance used in order to build the Grid Connections between 

the central node and the nodes in the angles of each elementary structure #   
140.    
141. for i in IdNodesCenter.flatten():   
142.     for j in IdNodes.flatten():   
143.         if dist(O.bodies[i],O.bodies[j])<(sqrt(2*(spherer/5.2/2)**2)+0.01):   
144.             O.bodies.append( gridConnection(i,j,r,color=color,wire=True,mater

ial='gridConMat1',mask=4))   
145.    
146.    
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147. ### Creation of the PFacets ###   
148.    
149. for i in range(N-1):   
150.     for j in range(N-1):   
151.         O.bodies.append( pfacet(IdNodes[i][j],IdNodes[i+1][j],IdNodesCenter[i

][j],wire=False,material='pFacetMat',color=color) )   
152.         O.bodies[-1].shape.color = [10,10,10]   
153.         O.bodies.append( pfacet(IdNodes[i+1][j],IdNodes[i+1][j+1],IdNodesCent

er[i][j],wire=False,material='pFacetMat',color=color) )   
154.         O.bodies.append( pfacet(IdNodes[i+1][j+1],IdNodes[i][j+1],IdNodesCent

er[i][j],wire=False,material='pFacetMat',color=color) )       
155.         O.bodies[-1].shape.color = [10,10,10]   
156.         O.bodies.append( pfacet(IdNodes[i][j+1],IdNodes[i][j],IdNodesCenter[i

][j],wire=False,material='pFacetMat',color=color) )   
157.    
158.    
159. ### Creation of the Vertical Cylinders and Clumps connecting the cylinders to

 the impacted surface ###   
160.    
161. for i in InelastCyl1.flatten():   
162.     O.bodies[i].shape.color = [1,1,0]   
163. for i in InelastCyl2.flatten():   
164.     O.bodies[i].shape.color = [1,1,0]   
165.    
166. for i in range(N):   
167.     for j in range(N):   
168.         O.bodies.append( gridConnection(InelastCyl1[i][j],InelastCyl2[i][j],r

,color=color,wire=True,material='gridConMat1',mask=2))    
169.         IdClumps[i][j]=O.bodies.clump([InelastCyl1[i][j],IdNodes[i][j]])   
170.         if i==0 or j==0 or i==N-1 or j==N-1:   
171.             O.bodies[-1].state.blockedDOFs='xyzXYZ'    
172.             #elements of the edges completely blocked   
173.         else:          
174.             O.bodies[-1].state.blockedDOFs='XYZ'      
175.             #rotation of the clumps forbidden   
176.    
177.         if i<=(N-2) and j<=(N-2):   
178.             O.bodies.append( gridConnection(InelastCylCenter1[i][j],InelastCy

lCenter2[i][j],r,color=color,wire=True,material='gridConMat1',mask=2))   
179.             IdClumpsCenter[i][j]=O.bodies.clump([InelastCylCenter1[i][j],IdNo

desCenter[i][j]])   
180.             O.bodies[-1].state.blockedDOFs='XYZ'       
181.             #rotation of the clumps forbidden   
182.    
183.    
184.    
185. print('Mass clump: '+str(O.bodies[-

1].state.mass))     #put attention: the mass of the clumps is not the same in all th
e structure: there is a difference between clumps in the edges, and clumps in the in
ternal part of the surface.   

186.    
187.    
188. O.step()   
189.    
190.    
191. ### Building of the impacting Sphere ###   
192. # It is recommended to have the impact of the boulder with a node of the surf

ace, in the case of impact perpendicular to the structure   
193.    
194. O.bodies.append(utils.sphere(Vector3(spherer/0.52*(N-1)/2*1e-

1+0.25,0.5,spherer/0.52*(N-1)/2*1e-
1), radius=spherer, wire=False, fixed=False, material='sphereMat', color=[1,0,0],mas
k=5))   

195.    
196. # Parameters of the impact   
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197. O.bodies[-1].state.vel[0]=-6.   
198. O.bodies[-1].state.vel[1]=-16.5   
199. #O.bodies[-1].state.angVel[2]=30.   
200.    
201. print('Mass sphere: '+str(O.bodies[-1].state.mass))   
202.    
203.    
204. O.trackEnergy=True   
205.    
206.    
207. # Function to identify the lowest node, during the deformation #   
208. def lowerNode():   
209.     f=open(folder+"position.txt","a")   
210.     position = 0   
211.     centralposition = 0   
212.     idposition = 0   
213.     idcentralposition = 0   
214.     x = 0   
215.     y = 0   
216.     xcenter = 0   
217.     ycenter = 0   
218.     for i in range(N):   
219.         for j in range(N):   
220.             if O.bodies[IdNodes[i][j]].state.pos[1]<position:   
221.                 position = O.bodies[IdNodes[i][j]].state.pos[1]   
222.                 idposition = O.bodies[IdNodes[i][j]].id   
223.                 x = i   
224.                 y = j   
225.    
226.             if i<=(N-2) and j<=(N-2):   
227.                 if O.bodies[IdNodesCenter[i][j]].state.pos[1]<centralposition

:   
228.                     centralposition = O.bodies[IdNodesCenter[i][j]].state.pos

[1]   
229.                     idcentralposition = O.bodies[IdNodesCenter[i][j]].id   
230.                     xcenter = i   
231.                     ycenter = j   
232.    
233.    
234.     if centralposition<position:   
235.         print('id: ' + str(idcentralposition) + '; ' 'icenter, jcenter: '+ st

r(xcenter) + ',' + str(ycenter) + '; ' + 'central position: ' + str(centralposition)
)   

236.         f.write("central - elementary structure; "+"id: "+str(idcentralpositi
on)+"; coordinates: "+str(xcenter)+"; "+str(ycenter)+"; position: "+str(centralposit
ion)+"\n") #save the data in a file   

237.     else:   
238.         print('id: ' + str(idposition) + '; ' 'i, j: '+ str(x) + ',' + str(y)

 + '; ' + 'position: ' + str(position))   
239.         f.write("notcentral - elementary structure; "+"id: "+str(idposition)+

"; coordinates: "+str(x)+"; "+str(y)+"; position: "+str(position)+"\n") #save the da
ta in a file   

240.        
241.     f.close()   
242.        
243.    
244. ############   
245. ### PLOT ###   
246. ############   
247.    
248. def history():     
249.     f=open(folder+"forceinelast.txt","a")   
250.     inter=O.bodies[-1].intrs()  # boulder's interactions   
251.    
252.     if inter==[]:   
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253.         print 'no contact'   
254.    
255.     wireint=O.interactions[InelastCyl1[12][12],InelastCyl2[12][12]].phys.norm

alForce[1]  #normal force in a vertical cylinder   
256.    
257.     # position of the boulder + central node (in the inclined impact case, it

 must first be identified) #   
258.     ForceBall=O.forces.f(O.bodies[-1].id)[1]   
259.     xyz=[]   
260.     xyzCenter=[]   
261.     for k in [0,1,2]:   
262.         ksum=0   
263.         ksumCenter=0   
264.         ksum+=O.bodies[-1].state.pos[k]   
265.         ksumCenter+=O.bodies[IdNodes[12][12]].state.pos[k]   
266.         xyz.append(ksum)  # take average value as reference   
267.         xyzCenter.append(ksumCenter)   
268.    
269.     f.write(str(-xyz[1])+";"+str(ForceBall)+"\n") #save the data in a file   
270.     f.close()   
271.     plot.addData(i=O.iter,t=O.time,x=xyz[0],y=xyz[1],z=xyz[2],xCenter=xyzCent

er[0],yCenter=xyzCenter[1],zCenter=xyzCenter[2],Force=O.forces.f(O.bodies[-
1].id)[1],u=-xyzCenter[1],Forceball=ForceBall,uBall=-O.bodies[-
1].state.pos[1],F=wireint)   

272. plot.plots={'x':'y','u':'F','t':'Force','uBall':'Forceball'}   
273. plot.plot(subPlots = True)   
274.    
275.    
276. #convert matrix in list   
277. def convertMatrix(mat):   
278.     temp=[]   
279.     for i in mat:   
280.         temp+=list(i)   
281.     return temp   
282.    
283.    
284. ### Export of vtk data of each Node of the impacted surface and the impacting

 boulder + Data of each of these elements ###   
285.    
286. List_sp=convertMatrix(IdNodes)+convertMatrix(IdNodesCenter)+[O.bodies[-

1].id]   
287. vtkExporter = export.VTKExporter(folder+"VTK/test-")   
288. def saveVTK():   
289.     vtkExporter.exportSpheres(ids=List_sp,what=[('angVel','b.state.angVel[2]'

)])   
290.    
291.    
292.    
293. ##########   
294. ## VIEW ##   
295. ##########   
296.    
297. from yade import qt   
298. v = qt.Controller()   
299. v = qt.View()   
300. rr = qt.Renderer()   
301. rr.intrAllWire = False   
302.    
303. O.saveTmp()   
304.    
305. O.dt = 1e-7   
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Post – treatment of data: 

1. ### Libraries ###   
2. import matplotlib.pyplot as plt   
3. import numpy as np   
4. import os,sys   
5. from math import *   
6.    
7. ### Reading process of a file ###   
8. image=1   
9. folder = os.getcwd()+"/"   
10. color=[[0,0.4,1],[0.5,0,0]]   
11. def readFile(case):   
12.     f=open(folder+case+"/force.txt","r")   
13.     time,force=[],[]   
14.     for i in f.read().splitlines():   
15.         a,b=i.split(";")   
16.         time.append(float(a))   
17.         force.append(float(b))   
18.     return time,force   
19.    
20.    
21. ### Plotting data ###       
22. def plotGraph(case,title):   
23.     global image   
24.     fig=plt.figure(figsize=(8,6), dpi=360)   
25.     v=0       
26.     for i in case:   
27.         time,force=readFile(i)   
28.         plt.plot(time,force,label=i,color=color[v],linewidth=v+1)   
29.         v+=1   
30.     # characteristics of the plots #   
31.     plt.xlabel("Time [s]")   
32.     plt.ylabel("Force [N]")   
33.     plt.title(title)   
34.     plt.legend()   
35.     plt.savefig(folder+str(image)+".png")   
36.     plt.show()   
37.     plt.close(fig)   
38.     image+=1   
39.    
40. caselist1=["WithPfacets10","WithoutPfacets10"]   
41. caselist2=["WithPfacets25","WithoutPfacets25"]   
42.    
43. plotGraph(caselist1,"Simulation - velocity perpendicular to the surface: 10 m/s")   
44. plotGraph(caselist2,"Simulation - velocity perpendicular to the surface: 25 m/s")   
45.    
46.    
47. ### Repetition of the procedure for another file ###   
48. f=open(folder+"Inelastic/forceinelast.txt","r")   
49. displacement,force=[],[]   
50. for i in f.read().splitlines():   
51.     a,b=i.split(";")   
52.     displacement.append(float(a))   
53.     force.append(float(b))   
54.    
55. fig=plt.figure(figsize=(8,6), dpi=360)   
56. plt.plot(displacement,force,label="inelastic",color="blue")   
57. plt.xlabel("Displacement [m]")   
58. plt.ylabel("Force [N]")   
59. plt.savefig(folder+"Inelastic")   
60. plt.show()   
61. plt.close(fig)    
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