

POLITECNICO DI TORINO

DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING (DAUIN)

Master Degree in Computer Engineering

Master Degree Thesis

Analysis and development of Supervisory Control And Data

Acquisition system for Industry 4.0

Author: Alessandro Monaco

Supervisors: Paolo Ernesto PRINETTO, Giuseppe AIRO’ FARULLA

2

In collaboration with: ERInformatica S.r.L.

CEO: Emilio Ravotti

Project Manager: Eng. Giovanni De Sisto

3

Table of contents

1 Introduction ... 6

2 History of SCADA systems ... 7

2.1 The Birth of SCADA systems ... 7

2.2 Evolution of SCADAs: 2nd generation and computer era – 1950s to 1980s 7

2.3 Evolution of SCADAs: 3rd generation and networks – 1980s to 1990s 7

2.4 Evolution of SCADAs: 4th generation and open system model – 1990s to 2000s 8

2.5 Evolution of SCADAs: 5th generation – 2000s to date ... 8

3 Architecture of a SCADA system ... 9

3.1 Data Acquisition Layer .. 9

3.2 Data Transmission Layer ... 10

3.2.1 Speed ... 11

3.2.2 Security .. 11

3.2.3 Reliability ... 12

3.2.4 Availability ... 12

3.2.5 Intelligibility ... 13

3.3 Elaboration System ... 13

3.3.1 Data Management Module ... 14

3.3.2 Data Elaboration Module .. 14

3.3.3 Data Sharing Module ... 15

3.4 Client Layer ... 16

3.4.1 Representation of data .. 16

3.4.2 Command management .. 16

4 IDOM .. 17

4.1 IDOM Application Architecture .. 18

4.1.1 Presentation Layer ... 19

4.1.2 Persistence Layer ... 21

4.1.3 Business logic layer .. 22

4.1.4 Events Persisting Spooler .. 31

4.1.5 Programmable Execution Logics or Scenarios ... 31

4.1.6 External services for notifying and controlling .. 37

4.1.7 Preventive Maintenance Engine ... 37

4

4.1.8 Video Streaming and Motion Detection Engine .. 38

4.1.9 Geolocation Engine .. 40

4.1.10 Expandable using web services ... 41

4.1.11 Responsive User Interfaces Configurator .. 42

4.1.12 Embeddable ... 44

4.2 Strength of IDOM .. 51

4.2.1 Configurability ... 51

4.2.2 Supported devices and Data Sources .. 51

5 Cases of study .. 53

5.1 Supervision – Caldirola.. 53

5.1.1 Implementation ... 53

5.1.2 Benefits .. 53

5.1.3 Future developments .. 53

5.2 Martini & Rossi – Technology BSA S.p.A ... 54

5.2.1 Implementation ... 54

5.2.2 Benefits .. 55

5.2.3 Future developments .. 55

5.3 MiMESis – LogiCo S.R.L. / Infinity Bottling .. 56

5.3.1 Implementation ... 57

5.3.2 Benefits .. 58

5.3.3 Future developments .. 58

6 Contribution .. 59

6.1 Development and configuration of communication drivers 59

6.2 Designing and implementation of several UI functionalities 60

6.3 Configuration of IDOM and third-party application ... 60

6.4 My actual role in the project .. 60

7 Conclusion And Further Developments .. 61

8 Bibliography ... 62

9 Acknowledgements ... 63

5

6

1 INTRODUCTION

Supervisory Control And Data Acquisition (SCADA) systems are software systems that

provide functionalities for monitoring and controlling industrial processes, plants or other

systems.

SCADAs are placed on the top of connected hardware, typically Programmable Logic

Controllers (PLCs) or other commercial hardware modules, and they interact with these

devices through the exchange of messages that represent the status of systems.

During the last years, SCADA systems are becoming increasingly important thanks their

capability to be integrated in different realities. Initially, they were used to supervise the

status of industrial plants, but currently they have found employment in other sectors, e.g.

generation and distribution of energy, steel and chemical plants, until they are used in

nuclear plants.

The evolution of technologies and requirements of different applications forced the

evolution and the adaptation of SCADA functionalities: every application fields have

brought specific needs and goals. This led to a strong categorization of these systems.

This paper was drafted to illustrate and describe the functionalities offered by these

systems and permit to know why they are gaining considerable importance in the era of

Industry 4.0, considering as main topic and case of study the product Integrated Devices

Open Management or IDOM.

IDOM is the SCADA system developed by the company ERInformatica S.r.L. to which I had

the opportunity to join in the developing team and collaborate to the designing and

installation of projects based on this product.

In the next chapters, some cases of study will be described in which IDOM acts as

supervision system: for Caldirola project, the product supervises the stocking phase of

sparkling wines inside autoclaves; Martini & Rossi project for the management of labelling,

boxing and palletizing of wine products for Russian export; in the end, for Logico S.r.L. the

SCADA is integrated as module of a MES (Manufacturing Execution System) application for

elaboration of statistics about production line efficiency.

As it is introduced by the examples described previously, IDOM has potentialities and

features that are based on the principle of a configurable and parametric software that

allows to satisfy any requested functionalities.

7

2 HISTORY OF SCADA SYSTEMS

The section is intended to introduce briefly how SCADAs evolved during the last century

and the motivations that allow the wide usage of this kind of systems in most of modern

smart factories.

2.1 THE BIRTH OF SCADA SYSTEMS

The origin of SCADAs was in the mid-20th century, when industrial factories began to scale

out in size, which causes problems in industrial organizations.

The first form of SCADA monitoring and actuations were provided by analogic sensors,

relays and timers without the necessity of direct employee interactions.

However, even if the provided automation functionalities solved many problems, more

issues began to arise as organizations such as scaling out persisted: relays and timers were

difficult to reconfigure, fault-find and the control panels took up racks upon racks of space.

2.2 EVOLUTION OF SCADAS: 2ND GENERATION AND COMPUTER ERA – 1950S TO

1980S

In the early 1950s, computers were initially developed and used for industrial control

purposes. Supervisory control began to become popular among the major utilities, oil and

gas pipelines, and other industrial markets at that time. In the 1960s, telemetry was

established for monitoring, which allowed for automated communications to transmit

measurements and other data from remotes sites to monitoring equipment.

The birth of microprocessors and PLCs during 1970s increased enterprises’ ability to

monitor and control automated processes more than even before

2.3 EVOLUTION OF SCADAS: 3RD GENERATION AND NETWORKS – 1980S TO

1990S

In the 80s and 90s, SCADA continued to evolve thanks to smaller computer systems,

mainframes, Local Area Networking (LAN) technology and PC-based Human-Machine

Interfaces (HMI) software.

SCADA systems were able to be connected to other similar systems through proprietary

LAN protocols that permit an optimized data transferring among devices and computers.

Unfortunately, these systems were incapable of communicating with systems of other

vendors.

8

2.4 EVOLUTION OF SCADAS: 4TH GENERATION AND OPEN SYSTEM MODEL –

1990S TO 2000S

In the 90s and early 2000s, SCADA systems adopted an incremental change by embracing

an open system architecture and communication protocols that were not vendor-specific.

This iteration of SCADA, called also networked SCADA system, took advantages of

communication technologies as Ethernet. Networked SCADA systems allowed systems of

heterogeneous vendors to communicate with each other, alleviating the limitations

imposed by older SCADA systems, permitting also organizations to connect more devices

to the network.

While SCADA systems had undergone substantial evolutionary changes, many industrial

organizations continued to struggle with industrial data access from the enterprise level.

By the late 1990s to the early 2000s, a technological evolution occurred: personal

computing and IT technologies accelerated in development. Structured query language

(SQL) databases became the standard for IT databases but were not adopted by SCADA

developers. This resulted in a rift between the fields of controls and IT, and SCADA

technology became antiquated over time: traditional SCADA system still use proprietary

technology to handle data.

2.5 EVOLUTION OF SCADAS: 5TH GENERATION – 2000S TO DATE

Modern SCADA systems make real-time data of the plant accessible from anywhere in the

world through internet connections. This access to real-time information allows

governments, business and individuals to make data-driven decision about how to improve

their processes. Without SCADA software, it would be extremely difficult to gather enough

data for consistently well-informed decisions.

Also, most modern SCADA designer applications have Rapid Application Development

(RAD) capabilities that allow users to design applications relatively easily, even if they don’t

have deep knowledge of software development.

The introduction of modern IT standards and practices such as SQL and web-based

applications into SCADA software has greatly improved the efficiency, security, productivity

and reliability of SCADA systems.

SCADA software that use the potentialities of SQL databases provide huge advantages over

antiquated SCADA software. The main advantage of using SQL databases with a SCADA

system is that it makes it easier to integrate into existing Manufacturing Execution Systems

(MES) and or Enterprise Resource Planning (ERP) systems, allowing data to flow seamlessly

through the whole organization.

Historical data from a SCADA system can also be logged inside the SQL database, which

allows data analysis through data trending.

9

3 ARCHITECTURE OF A SCADA SYSTEM

Figure 3.1 SCADA layered architecture

The figure above offers a general overview about the components that compose a generic

SCADA application. This model is a valid solution that represent the future of this kind of

software system. It is a layered architecture composed of different layers:

• Data Acquisition layer, the layer responsible to the acquisition of data from the

surrounding world

• Data transmission layer, the layer responsible to the transfer of data from

peripheral data acquisition devices to the elaboration system

• Elaboration system, it is the core of the SCADA

• Client layer, it is the layer that acts as a bridge between the SCADA system and

operators

3.1 DATA ACQUISITION LAYER

The Data Acquisition layer is the part of a SCADA application that interfaces with the

surrounding world.

The main components of this layer are the data acquisition devices that constitute the

means by which a SCADA system could know the status of industrial plants and processes.

10

These devices can perform the following operations:

• Collecting data from the monitored process using sensors, cameras or any other

kind of input and converting them into a manageable format, typically digital or

analogic measurements.

• Actuating operations on the controlled process using actuators, procedures or any

other kind of output, e.g. activating or deactivating a conveyor.

Sensors have the purpose to translate external physical quantities into electrical signals

that are readable for controllers, mainly PLCs or data acquisition boards.

Actuators have the opposite purpose: they receive commands as electrical signals then

they perform the requested operations in the surrounding world, e.g. turn on a lamp, start

an engine or move mechanical parts.

These devices are fundamental for a plant because they permit to know what happening

during the working phase and perform tasks on it. For this reason, they must react in real

time constraints in order to avoid misbehaviours of the entire process. A generic device

must perform during this short period this set of operations:

1. Collecting the physical/electrical signals

2. Converting them into a manageable format

3. Holding the measurement/performing the requested processes

The conversion strategies have the crucial role in terms of information quality and impact

on performance of acquisition devices, because performing less operations guarantees

great benefits on the whole application.

As any system, devices are subjected to usage limitations that must be analysed at the

beginning of the projects during the project specification definition. This fact permits to

avoid future issues and misbehaviours of the entire SCADA application.

3.2 DATA TRANSMISSION LAYER

The Data Transmission Layer is the part of a SCADA application that provides the

functionalities of data transmission between peripheral data acquisition devices and the

central elaboration system.

The definition of interfaces among controlled processes, devices, elaboration system and

sub-systems is a crucial phase that allows to know how every actor can transmit data to

others.

The best practice asks to answer the following questions according the wanted system:

• Speed

• Security

• Reliability

11

• Availability

• Intelligibility

Obviously, it is impossible to deploy a system without meeting the need to do

compromises.

3.2.1 Speed

The data exchanging speed analysing is necessary to make efficient a SCADA system: the

analysis considers the dynamic characteristic of the whole process in order to deploy a

compliant communication channel sufficiently fast to allow the whole acquisition,

transmission, processing, re-transmission, actuation at such times to make control actions

effective.

Constraints are imposed by the controlled process and they could be extremely stringent

to force the usage of distributed system. An example is the management of the gas

transport systems that need high-speed communication channels and they often require

peripheral structures that can actuates controlling policies autonomously.

Wide area systems suffer most the speed limitations that are imposed by the current

technologies due to the impossibility to build dedicated infrastructures instead of using a

general purpose one.

The communication about elaboration system and human-machine interfaces or HMIs

must be sufficiently quick to permit the correct perception of the evolution of the process

and an effective reaction of the system at any human interactions.

3.2.2 Security

The security of elaboration and communication systems is relevant when they are exposed

to intrusions that could be potentially dangerous. The security is not intended for “bad

faith” of people, but also to bad usage and errors of operators.

The security management should consider the point of view of communications among

elaboration system and peripheral devices and interactions with external systems that

could influence the behaviour of the SCADA system and so the controlled processes.

The common resolution is the restriction of areas and activities of employees. This

restriction could be physical (e.g. different rooms) or logical (e.g. granted access with the

insertion of credential).

The realization of security policies is usually managed with levity because this kind of

systems are closed and insulated by the external world. Only during the last years this

approach is changing due to the availability of small and cheap communication systems

that support network protocols like UDP or TCP.

12

3.2.3 Reliability

The transmission of data is a process that is characterized by the presence of phenomena

that could affect the integrity of information and so a real risk during the evaluation of the

status of the process.

In a controlling system the possibility to validate the received information is not possible

due to the low evolution time, so it is demanded to transmission systems.

Modern technologies and protocols adopt controlling algorithms that allow identifying

failures over heterogeneous infrastructures that affect the network properties.

The assurance to receive data flows without the presence of error involves the presence of

mechanism for error identifying, re-transmission of the correct version of data and order

management of information unit inside the flow.

The opposite solution is to redirect the data flow without checking its integrity then

verifying it at the receiver side. This kind of solution is very effective for transmission means

that guarantee a very low bit error rate (for example optic fibers guarantee a bit error rate

less than 10^-9) or small infrastructures.

3.2.4 Availability

In a SCADA system, the analysing of effects due to disservices is important. Generally, a

supervisory system is characterized by a direct relation between communication services

availability among devices and controlling activities.

Usually, the internal communication system of a controlling system should adopt continuity

strategies that allow to guarantee the service available at the least the requests of the

whole system.

This behaviour happens for most of the systems that implement controlling tasks, but for

the only monitoring ones these constraints are not imposed because they are implemented

with discontinues nature communications: the peripheral devices could store temporally

data then send in bulk them to the central system and clean the internal storage.

If the system adopts controlling policies, it needs a continuously updates of the process

status and the availability of communication channel for actuations.

In order to ensure the satisfaction of these constraints, it is needed the adoption of

technologies and protocols that provides services with these features and set up of an

infrastructure that are able to bridge eventually failures and faults, for example with

redundancy strategies.

13

3.2.5 Intelligibility

The intelligibility of the information is a fundamental element for the realizations of system

that should have high evolution capability for functionalities and the interaction with

external systems.

During the definition of interfaces is a good practice referring to standard models because

they permit to guarantee the reliability of adopted solutions and a longer life expectancy.

3.3 ELABORATION SYSTEM

The elaboration system is the core module of any SCADA applications.

Figure 3.2 Model of elaboration system

The proposed model (figure 3.2) illustrates the common adopted solution of elaboration

structures, but it represents also a functional architecture that should remain valid in view

of the evolutions to which the SCADA systems seem destined and, therefore, a tool for the

presentation of typical features of this kind of applications.

The common architecture is a layered one which is composed of:

• Data management module

• Data elaboration module

• Data sharing module

14

3.3.1 Data Management Module

The key element of a supervision and control system is the data management module.

Its role is to receive data from the data acquisition devices (or field) that represent the

controlled process status and try to standardize in a manageable convention defined by the

application.

After this process, data flow to a collection point called database, or briefly DB, that acts as

source and destination of all necessary information for any module of the application.

In this kind of systems, which requires a continuously access to data, the database must

guarantee high performance in terms of I/O requests. For this reason, the used database

appertains to the category of Runtime DB: it is a technology solution that permits to collect

data that represent exclusively the working status of monitored processes. This memory

area allows a fast accessing to most used data.

This kind of data management modules permits to satisfy all fundamental requests and

functionalities of SCADA systems, but it does not allow to gain knowledge about the

evolution of processes.

For this reason, the application must provide functionalities that have characteristics of a

relational database: the properties and the functionalities that favour the choice this kind

of DBs are:

• The intelligibility of information

• The availability of tools for data accessing from application side

• The efficient management of huge amount of data

The integration of relational databases can’t replace the functionalities offered by runtime

DBs because the I/O operation are too slower for real time processing, but they can used

for all operations that interact with the history of the monitored processes which do not

requires high performances, contrary the real time analysis.

3.3.2 Data Elaboration Module

The controlling system provides a tool for the information exchange process that is able to

receive the status of the plant and send commands for controlling the evolution of it.

The huge quantity of these data and the complexity of the controlled process make

impossible a precisely analysis to operators. This fact suggests deploying automatic

procedures that will be responsible about the generation of commands and aggregate

information.

The management of railway traffic could be an optimal example that permits to understand

the complexity and the importance of automatic elaborations: in order to know if a route

is available to accept a train, it is necessary execute the following checks:

• The railway is correctly aligned

15

• The route is not occupied by other trains

• The route is under maintenance activities

• The signage is correctly configured to stop any incoming trains

Without the help of automatic procedure that are provided by an elaboration system, the

operator has to check any conditions manually, with the consequence to increase the risk

to lose the focus on the goal (checking the availability of a route)

The realization of calculation processes responds to such needs:

• Generation of summarized representations of process status

• Generation of reports about anomalies on process

• Interpretation of operators’ command and actuation of punctual procedures

• Generation of aggregated information that represent the evolution tendency of

processes

• Execution of automatic controls and procedures

The last point of the list requires further clarifications: in case of the dynamic of processes

does not allow a timely intervention from operators or SCADA elaboration system, it is

usual deploying distributed automation elements that execute autonomously actuations

and controls.

3.3.3 Data Sharing Module

In the last chapters it is described a system that guarantees operability and efficiency in

terms of monitoring and controlling of industrial processes. However, it presents limits in

data access source: only the planned HMIs can interact with them and only for the suitable

functionalities.

The activities that are collected by the SCADA are commonly subjected to interests that are

outside of operators' command set, but they belong to analysis adopted for consulting or

prevention.

For this reason, a SCADA system must make available all collected data from external

services, for example with the direct access to them.

An alternative solution could be the realization of internal functionalities or tools that

produce the required aggregated information. This solution is usually avoided because it

implies a forcing in the nature of this kind of application.

In conclusion, it is required to deploy a sharing system that permits operators and external

services to retrieve and elaborate the needed information according their purposes

without the intervention of the SCADA system. What is expected by sharing systems is the

possibility to reach and interact with a database, specifically a relational database, and

elaborate the retrieved information according what is demanded.

16

3.4 CLIENT LAYER

The client layer is the part of SCADA that realize the functionalities of representation of

collected data on displays, called Human-Machine Interfaces or briefly HMIs, which are

accessible by operators.

HMI designers have the responsibility to represent the controlled process through simple

and intuitive graphic interfaces that allow making the system “transparent” to operators.

Taking care of the usability and user experience of the SCADA, operators should be

facilitated to execute their tasks and will gain feeling with the whole system, limiting the

stress level at critical moments.

The main functionalities of HMIs include:

• Representation of data

• Management of user commands

3.4.1 Representation of data

The representation of data allows operators to know the status of the monitored process

by displaying information using textual or graphical components, for example charts,

gauges, tables or indicators.

3.4.2 Command management

A fundamental part of any SCADA systems consists of the possibility to send command to

the controlled process. They are divided in two groups:

• Automatic command: this kind of commands represents any tasks that is

autonomously elaborate by the elaboration system according the status of

controlled processes

• Manual command or User command: this kind of commands represents any tasks

that could be run by operators.

17

4 IDOM

Figure 4.1 Application fields of IDOM

Integrated Devices Open Management or IDOM is an advanced software system,

developed by ERInformatica S.r.L., that implies the functionalities of SCADA applications.

The project was born in order to meet the needs of automation companies and factories

that want deploying new production lines that involve innovative technologies according

the concept of smart factories and Industry 4.0, but the product could be integrated in

various environments and applications due to product interfaces, as the figure 4.1

illustrates.

It is a Java- and Spring-based software that follows the methodologies and structures of

enterprise software.

Its jobs could be identified in two main groups:

• Traditional functionalities:

o Monitoring

o Controlling

o Analysing

• Advanced functionalities:

o Preventive maintenance scheduling

o Video content analysing

o Responsive UI and dashboard configurations

o Geolocation functionalities

o Remote notification and command engine

o Web services and API for system inquirying

18

The core features of the product are its great configuration capability and integrability,

which allow to make IDOM easily embeddable in plants with the unique constraint of

communication through network interfaces over buses like RS-232 or RS-485.

IDOM is a platform independent java-based web application whose UIs are accessible on

any web browser client.

4.1 IDOM APPLICATION ARCHITECTURE

Figure 4.2 IDOM architecture

The figure 4.2 illustrates the software architecture of a generic IDOM instance.

It is a layered one in which exists three layers:

• Presentation layer

o ZK 7 framework

o Ajax and web sockets for communicating with business logic layer

• Persistence layer

o JPA2 interface using Hibernate

o JDBC driver

o RDBMS MySQL 5.7

• Business logic layer

o Web services

o Spring 4 Core

o Driver communication library

19

4.1.1 Presentation Layer

The presentation layer is the part of the software that manages the interactions between

IDOM and users through web pages that are designed by the utilization of tools and

facilities provided by ZK, an open source Ajax web application framework.

4.1.1.1 ZK Framework - from ZK documentation

“ZK is a component-based UI framework that enables you to build Rich Internet Application

(RIA) and mobile applications without having to learn JavaScript or AJAX. You can build

highly-interactive and responsive AJAX web applications in pure Java. ZK provides hundreds

of components which are designed for various purposes, some for displaying large amount

of data and some for user input. We can easily create components in an XML-formatted

language, ZUL.

All user actions on a page such as clicking and typing can be easily handled in a Controller.

You can manipulate components to respond to users’ action in a Controller and the changes

you made will reflect to browsers automatically. You don't need to care about

communication details between browsers and servers, ZK will handle AJAX details for you.

In addition to manipulating components directly i.e. MVC (Model-View-Controller)

approach, ZK also supports MVVM (Model-View-ViewModel) approach which decouples the

Controller and View. These two approaches are mutually interchangeable, and you can

choose one of them upon your architectural consideration.

Figure 4.3 Simplified ZK Architecture

Above image [figure 4.3] is a simplified ZK architecture. When a browser visits a page of a

ZK application, ZK creates components written in ZUL and renders them on the browser. You

can manipulate components by your application's Controller to implement UI presentation

20

logic. All changes you made on components will automatically reflect on users' browser and

ZK handles underlying communication for you.

ZK application developed in a server-centric way can easily access Java EE technology stack

and integrate many great third-party Java frameworks like Spring or Hibernate. Moreover,

ZK also supports client-centric development that allows you to customize visual effect or

handle user actions at the client side.”

4.1.1.2 Kinds of User Interfaces

IDOM user interfaces are grouped in different groups that now are described.

4.1.1.2.1 Administration User Interfaces

The administration user interfaces are a collection of interfaces that are deployed for the

configuration of the system. They are accessible only by employees of ER Informatica with

a high grant level, defined also “Power users”, because they let them to configure the

following details of the system:

• System properties, e.g. the thread pool sizes.

• Scheduler configurations

• User permissions, profiles and groups

• Drivers configurations

4.1.1.2.2 Back-End Configuration User Interfaces

The back-end configuration UIs stands for the collection of web UIs that let users to

configure the major entities of the application and plants:

• Event categories

• Devices

• Registered Users

• Data retention policies of data

• Manual/Automatic Scenarios

These UIs are accessible to users that has high permission level, called also “Configurators”.

4.1.1.2.3 Front-End configuration User Interfaces

This kind of user interfaces is exploited to configure the customizable front-end of IDOM.

Users that could access to these UIs are known as “Dashboard configurators”.

This section will be described with details at the dedicated chapter 4.1.11.

4.1.1.2.4 Dashboards and Synoptics User Interfaces

The last collection of user interfaces is called Dashboard and Synoptics UIs.

21

They represent those web pages or UIs that are customized from the users that appertain

to the group of “Dashboard configurators”.

Users can access to any dashboard or synoptics to which they are registered/granted.

This section will be described with details at the dedicated chapter 4.1.11.

4.1.2 Persistence Layer

The persistence layer is the part of IDOM that performs the jobs of storing and inquiring of

collected data from/to database.

It is implemented using JPA2 (Java Persistence API v. 2) interfaces, in details with Hibernate

as Object Relational Mapping framework (ORM), that define the interfaces of data

accessing from Java application to database tables.

Java Persistence API is a Java specification that define which facilities are requested for

managing relational data in Java application. It could be identified according four areas:

• Java Persistence API

• Java Persitence Query Language or JPQL

• Java Persistence Criteria API

• Object relational mapping metadata or ORM

As introduced above, IDOM uses Hibernate as ORM framework. It is the most used

opensource ORM that provides implementations of JPA interfaces. The purpose of ORMs

is the management of application entities automatically and transparent for users, writing

their properties into the correlated tables of relational database.

Java entities are mapped to database tables by the implementation and configuration of

XML configuration file – persistence.xml – or by using provided Java annotations which are

used by Hibernate in order to generate and maintain the database schema.

The persistence layer is grouped in two different modules in base of their purposes and

tasks:

• Historical data management: this group is intended to satisfy all requests that

interact directly with the database in order to retrieve historical events, e.g. the

temperature trend.

• Realtime data management: due to the continuously access to the database from

IDOM, it is required to access real time events quickly. For this reason, IDOM

provides a runtime database that contains only the current status of the controlled

systems. Thank this component, inquiries, elaborations and controls are speed up.

22

4.1.3 Business logic layer

The business logic layer is the core layer of IDOM and it manages all provided services and

functionalities involved in any installation of the product.

The core of this layer is composed of different modules and engines that are illustrated in

the following picture:

Figure 4.4 IDOM modules and engines

The next sections are intended to describe some of these modules.

4.1.3.1 Spring 4 Core

Spring is an open-source framework for the development of Java applications which allows

building applications using POJOs (Plain Old Java Objects) with enterprise services

according the JAVA SE and EE programming model.

Spring provides the commonest functionalities of enterprise world (e.g. Data Access

Objects, Object-Relational Mapping and web) and promotes the interface-oriented

programming in order to reduce the dependability on framework APIs.

The architecture of Spring is based on a layered one that permits the integration of the

commonest technologies. This kind of architecture permits to choose those modules that

will be integrated according the requirements of the application.

23

The main feature of the framework is the Inversion of Control or IoC: its purpose is to

produce extremely decoupled e light code. The main idea of IoC is that objects expose

requests and dependencies that will be provided by the IoC container.

Inversion of Control could be named also with the term Dependency Injection (DI).

The injection of dependencies could be implemented in three different ways:

• Constructors: dependencies are injected through the constructor method of classes.

• Setters: dependencies are injected through setters

• Abstract methods (not natively supported in Spring)

4.1.3.2 Pattern Model-View-Controller

Figure 4.5 MVC Pattern diagram

The Model View Controller or MVC pattern is an architectural pattern for software

development that allows to divide business logics, view logics and modelling in different

modules.

The architecture is composed of three components:

• Model: it is the core of MVC pattern that defines the behaviour of the application

in terms of application domain, independently about user interfaces. This

component manages directly data and logics of the application.

• View: it is the component of MVC pattern that shows models and data according

the requirements, e.g. diagrams or tables.

• Controller: it is the component of the MVC pattern that elaborates and converts

user inputs into commands for views or models.

4.1.3.2.1 Advantages

• Simultaneous development: multiple developers can work simultaneously on the

models, controllers and views.

24

• High cohesion: MVC enables logical grouping of related actions on a controller

together. The views for a specific model are also grouped together.

• Low coupling: the very nature of the MVC framework is such that there is low

coupling among models, views or controllers

• Ease of modification: because of the separation of responsibilities, development

and modification integration is easier

• Multiple views for a model: models could own multiple views

4.1.3.2.2 Disadvantages

• Code navigability: the framework navigation can be complex because it introduces

new layers of abstraction and requires users to adapt to the decomposition criteria

of MVC.

• Multi-artefact consistency: decomposing a feature into three artefacts causes

scattering. Thus, requiring developers to maintain the consistency of multiple

representations at once.

• Pronounced learning curve: knowledge on multiple technologies becomes the

norm. Developers using MVC need to be skilled in multiple technologies.

4.1.3.3 Driver And Device Management Engine

One of the aims of IDOM is the possibility to install instances of the SCADA in a wide range

of application fields. To provide this feature, the product integrates internally an engine

called Driver And Device Management Engine.

The module permits to manage any drivers and devices that IDOM will use by the

configuration of appropriate properties, e.g. the IP address of remote devices or parametric

behaviours of the drivers.

The module is composed of two sub-modules that will be described:

• Driver management, the component that manages drivers

• Device management, the component that manages devices

• IDOM-Device communication interface, that defines the permitted operation

between IDOM and a generic driver/device

25

4.1.3.3.1 Driver management and IDriver interface

Figure 4.6 IDOM and IDriver interface

The main issue encountered was the management of the huge differences between device

types in terms of communication protocol, available services and permitted operations.

The solution adopted in IDOM to overcome this obstacle consists of the definition of a

common interface, called IDriver, that permits to abstract driver/device implementations:

it declares the set of operations and tasks that any driver implementations must have in

order to consider it integrable in IDOM. These operations are:

1. Initializing the driver for i-th device

2. Connecting to device

3. Getting all memory locations from devices

4. Getting punctually a memory location from devices

5. Writing a memory location in a device, excepting for read-only data sources (e.g.

files or databases)

6. Performing diagnostic procedures, e.g. connectivity tests

Once the driver is installed in IDOM, it can be used to connect associated devices.

Drivers are dynamically instantiated in IDOM context using the features of the Java

ClassLoader that permits to load dynamically the bytecode of drivers and create instances

of them through the available APIs. This solution generates a strong abstraction about the

internal procedures of driver implementations.

4.1.3.3.2 Device management and IDevice interface

Likely what happens for communication drivers, also devices require to implement a

common abstract interface in order to be configured in IDOM. This interface is called

IDevice and it allows developers and configurators to abstract properties and

functionalities that characterize devices, mapping them inside IDOM configurations.

26

Figure 4.7 Entity Relationship diagram of the flexible data structure integrated in IDOM

A flexible data modelling is implemented in the SCADA system that acts to the definition

of:

• Metadata: they define how real data are modelled in the system

• Data: they represent the effective values of a specific definition through the

metadata described above

Thanks to the metadata & data approach, it is possible define any structures or reality

representations with an approach ideally close to Object Oriented Programming principles.

It is evident the advantages of the chosen approach, because, which the usage of what is

introduced above, it is possible define a heterogeneous set and potentially unlimited of:

• Drivers for communicating with devices, e.g. it is possible implementing a

collection of them for integrating the main PLC vendors that will be used

transparently by the business logic layer

• Devices, with the capability to characterize any kinds of them, starting by a simple

sensor with a single output to complex machines that involve thousands of I/O

signals

Analysing the implemented solution in greater detail it is possible define the following

entities, described in the figure 4.7:

• Definition: it represents the definition of a class of objects

• Attribute Definition: it represents an attribute of the related Definition

• Definition Implementation or Implementation: it represents an instance of a

specific Definition

• Attribute Implementation: it represents the valuation of the i-th attribute related

to a specific instance of a specific object class

27

4.1.3.3.3 IDOM-Device communication: reading procedure

Figure 4.8 Reading procedure cycle

The diagram 4.8 represents the life cycles of a driver-device instance during the reading

procedure. It consists of a final state machine that evolves in its internal state continuously

according the configuration adopted by drivers and devices.

The states are:

1. INIT Driver-Device: Initialize the communication parameters between IDOM and

device

2. Connection: IDOM tries to connect to device

3. Wait Next Fire: Wait the scheduling from IDOM

4. Data Fetch: Executing the complete fetching of data from device

5. Data Diagnostic: Perform diagnostic procedure on device / Fetch diagnostic data

from device

6. Get Updates: Check and retrieve any configuration changes for driver or device

7. Destroy instance: Stop and destroy the driver-device instance, if required by the

system.

28

4.1.3.3.4 IDOM-Device communication: writing procedure

Figure 4.9 Writing procedure

The writing procedure to remote memory locations is an extremely delicate task that any

SCADAs have to achieve using clever strategies.

The main issue is the synchronization and the serialization of writing requests in

multithreading and distributed environments like IDOM: it could happen that more services

want setting remote memory locations or parameters in order to achieve their interactions.

The idea at the base of the solution provided by the product consists of the implementation

of a tasks spooler that achieves the priority assignments using a pool of Last Input First

Output event buses, one for each memory locations that have at the least one writing

operation to be managed.

The adopted solution ensures that only the last task for each memory locations, which

represents the unique writing operation that could be executed.

How it is possible understanding, the solution permits the correct setting of memory

locations, but it does not manage the eventually failures caused by rejections.

The drawbacks of this solution were analysed deeply by developers and the obtained

reports had demonstrated that they can be avoided through a careful configuration of

actors and tasks involved.

29

4.1.3.3.5 Drivers and Device Synchronization issue

Figure 4.10 Life Cycle of a driver/device instance in IDOM

The capability of IDOM to create, destroy or reload instances of drivers and devices using

Java ClassLoader APIs led to a considerable increase of performances of the product,

however it led also to the issue of configurations synchronization and instances pollution

that involves a high usage and waste of HW resources of the server in which the SCADA is

installed.

For this reason, IDOM provides internally to the engine an effective and efficient

engineering of the synchronization strategy: the solution consists of the implementation of

a listener that collects all active drivers and devices that IDOM instantiates according the

configurations of the SCADA and, in case of configuration updating, it destroys those

instances that are no longer valid.

The diagram 4.10 illustrates the life cycle of drivers and devices inside the products:

0. Retrieve Configuration: IDOM offers to the listener the most recent configuration

of the driver/device

1. Init: the listener instantiates the driver/device configuration

2. Hold: the instance, which is represented by a thread, is cached internally the

service, so it is easily accessible by IDOM according direct access strategies based

on a hash map in order to execute the scheduled operations, e.g. reading or writing

memory locations

3. Destroy: when an instance is marked as deprecated or invalid, the listener destroys

the associated instance and thread in order to avoid the pollution and resource

wasting. Meanwhile the destroying process is running, the service will instantiate

the latest configuration related to the driver/device in order to guarantee the

continuity of the service.

30

4.1.3.3.6 Advantages

This management strategy adopted in this solution allows IDOM to improve resources

management of the server in which it is installed and, consequentially, to ensure the

reliability of the SCADA.

4.1.3.3.7 Disadvantages

The benefits gained by the integration of the Driver and Device Management Engine make

IDOM extremely flexible in terms of management of the field.

The main drawback consists of the required resources for the synchronization of

drivers/devices configurations internally the application, but the involved efforts are worth

and permits to increase considerably the performance of the whole SCADA.

4.1.3.4 JavaScript Evaluator Engine

The JavaScript Evaluator Engine is an internal engine of IDOM that allows the execution of

JS scripts in any part of the Java code of the SCADA. It is one of the core modules of the

product that makes IDOM flexible and integrable in a wide set of application fields.

The main uses of this engine are:

• Event pre- and post-persisting procedures

• Custom reading conditions

• Execution Logics or Scenarios executions

• Dashboards and Synoptics interactions

4.1.3.4.1 Advantages

The integration of JS Evaluator Engine permits IDOM to be flexible and usable in a wide set

of application fields. It is possible deploying customized controls and functionalities that

otherwise require long time in terms of analysis, configuration and development.

4.1.3.4.2 Disadvantages

The integration of the JS evaluator engine took great advantages in terms of flexibility and

usability of the SCADA system, as described previously.

However, this solution implies few drawbacks that IDOM configurators have to manage

during the designing and configuration of the product. These drawbacks are listed below:

• The integration of JS requires to IDOM configurators to learn at the least the basis

of this scripting language in order to configure functionalities that requires the

scripting language

• SCADAs are multithreading systems that can execute multiple tasks at time. This

characteristic took great advantages in terms of performance, but it took also

drawbacks in term of data consistency or data synchronizing. The evaluation of JS

scripts could be taken in different instances and, a cause of the evolution dynamic

31

of monitored processes, they could get different values for the same event also if

them will be executed in parallel.

• The correctness of JS scripts is demanded to configurators

4.1.4 Events Persisting Spooler

As said at the chapter 3, the interaction with a relational database represents the bottle

neck of this kind of systems, but generally for any other software systems.

The huge amount of I/O requests to/from DB could undermine extremely the performance

of the whole system. To avoid this issue, IDOM implements a module that is called Event

Persisting Spooler: it consists of a spooler that enqueues any events according a Last Input

First Output data structure that has the jobs to spool events and persist them inside the

relation database (in this cases MySQL).

The idea at the base of this spooler is that more recent data are, greater is them priority.

The Events Persisting Spooler acts also as runtime DB because it stores internally the last

data of each events that were fetched from devices. This cache permits to deploy a direct

access (using a hash map) to the last value of each event categories and, so, reduce the

latency of I/Os.

4.1.5 Programmable Execution Logics or Scenarios

Execution logics or Scenarios are the elements of IDOM that allow to execute operations

and procedures on the monitored system.

Their configurations are demanded to back-end configurators that specified which data

IDOM has to exchange to the monitored system in order to execute the issued procedures.

Scenarios are divided into different main groups:

• Manual scenarios or User commands

• Automatic scenarios

32

4.1.5.1 Manual scenarios or User commands

This kind of execution logics defines all procedures that IDOM will perform any time they

are requested from external events, like pressing a button on a dashboard or third-party

application requests.

Figure 4.11 Manual Scenario diagram

The flow diagram illustrates an example of User Command that could be started by any

users: the procedure permits to send a value to PLC1, which could be a conveyor controller

or a heater for example, in order to set the ripple per minute or temperature set point

according the values of other PLCs.

33

In this example it is possible to summarise the procedure using the following C++ code:

void scenario(){

 /**

 * GET ALL DEVICES

 */

 Device plc1 = DeviceManager.get("plc1");

 Device plc2 = DeviceManager.get("plc2");

 Device plc3 = DeviceManager.get("plc3");

 /**

 * GET ALL VALUE FROM DEVICES

 */

 int plc2_a = (int) plc2.get("A");

 bool plc3_b = (bool) plc3.get("B");

 /**

 * SCENARIO

 */

 int sendValue;

 if(plc2_a > 10){

 if(plc3_b){

 sendValue = 5;

 } else {

 sendValue = 10;

 }

 } else {

 sendValue = 15;

 }

 /**

 * SEND VALUE TO DEVICE (REMOTE MEMORY LOCATION IS CALLED "C" IN THIS EXAMPLE)

 */

 plc1.set("C", sendValue)

}

Figure 4.12 C++-like representation of manual scenarios

34

4.1.5.2 Automatic scenarios

This kind of executable logics defines the automatic procedures that IDOM will perform

without the need of human or external interventions.

These scenarios are implemented using a configurable static scheduling mechanism based

on the instantiation of threads.

Figure 4.13 Automatic scenario diagram

The diagram illustrates the steps that are executed in automatic scenarios. It may notice

that only one schedules at time can be run.

void automatic_scenario(){

 while (true){

 long current_timestamp = <<now>>;

 if(is_runnable())

 scenario();

 while(<<now>> - current_timestamp < SCHEDULE_PERIOD); // Wait

 }

}

Figure 4.14 C++-like representation of automatic scenario.

35

How the code may notice, the thread that manages the automatic scenario presents a

function called “is_runnable()”. This part of the automatic scenario is configurable by the

configurators in order to define custom behaviours according the status of the whole

system.

According the implementation of this function, automatic scenarios could belong to two

different branches:

Pure periodic tasks: tasks are executed according the only scheduling. It can be used to fire

specific procedures periodically. The code could be edited removing the runnable condition

(“is_runnable()” return always true)

void periodic_scenario(){

 while (true){

 long current_timestamp = <<now>>;

 scenario();

 while(<<now>> - current_timestamp < SCHEDULE_PERIOD); // Wait

 }

}

Figure 4.15 C++-like representation of pure periodic scenario

Cron jobs: tasks are executed according the moment in which they are fired. In order to

deploy a cron job, configurators must define a custom activation condition according the

requirement. This kind of tasks are useful for deploying automatic procedures that does

not matter about the plant status (e.g. turn on lamps at 8 p.m.).

Event driven tasks or Smart scenarios: tasks are executed according the status of the

system/subsystem to which they interface. The activation condition gets the status at the

beginning of each scenario fire and then IDOM performs the scenario if and only if this

condition is satisfied. Smart scenarios are useful in industrial plants because they permit to

control the status of the whole system and execute the required tasks, e.g. controlling an

engine according its current speed or a heater activation according the external

temperature.

The development of scenarios is possible according specific interfaces that allow

configurators to define all step of the procedure.

36

4.1.5.3 Advanced scenario utilization

The great configurability of scenarios permits to deploy advanced procedures.

This section is exploited to illustrate a few examples of these advanced implementations.

4.1.5.3.1 Advanced utilization #1: local events

As introduced in the previous chapter, IDOM permits to configure virtual/local devices and

events that live only inside the application server.

These local data could be useful to create interactions among users, devices and scenarios,

e.g. maintenance procedures or enabling special UIs interactions.

4.1.5.3.2 Advanced utilization #2: parametric scenarios

Parametric scenarios represent special purpose user command scenarios that requires

parameters from the caller. Due to their nature, only third-party application can launch

them through web services.

The C++-like code could be modified by inserting parameters in the signature:

void parametric_scenario(string arg1, string arg2, ...){

 .

 .

 .

}

Figure 4.16 C++-like representation of parametric scenarios

4.1.5.3.3 Advanced utilization #3: Final State Machine or FSM configuration

IDOM smart scenario are useful to deploy automatic controls that manage the controlled

processes, however they could be used to deploy FSMs.

An FSM could be implemented by the configuration of a mix of event driver and manual

scenarios that can represent the transition functions from each state.

It is required to develop correctly the activation conditions of each automatic scenario in

order to obtain the correct behaviour of the FSM.

This advanced functionality permits to reduce the complexity of the installed program in

devices of the connected systems to leave it to IDOM server, configurable and extensible

according the application needs, if there are critical issues on developments or there are

requirements that could not be manageable internally to devices.

37

4.1.6 External services for notifying and controlling

IDOM functionalities permit to supervise and control systems according the methodologies

explained in this chapter.

In most of the cases, customers could require to be advised about the status of the

monitored system and, sometimes, they should send commands on it.

IDOM natively provides these functionalities using an extended monitoring and controlling

engine that interfaces with the modules of the products.

The functionalities permit to configure custom messages according that will be sent

according user configurations over the following services:

• Email

• Telegram

• SMS

4.1.7 Preventive Maintenance Engine

Figure 4.17 Preventive Maintenance Engine diagram

The SCADA application integrates a module that allows to calculate and predict

maintenance events in the manner to organize the company schedules and tasks.

The engine is an owner module that allows to make predictions and projections with the

following characteristics:

• Precise projections: projections could be deterministically calculated through the

configuration of a wide range of selectable criteria that cover the most of all

possibilities

• Flexible projections: projections depend on devices states and their utilizations.

More the device is used, projections will be more frequent.

38

• Independent projections: it is possible configuring multiple and independent

maintenance plans for each device of the plant that design instruments,

replacements and staff that are interested to the intervention.

The engine module could collaborate with the others in order to permit advanced

functionalities and interactions. The main example is the interaction between the

maintenance engine and the notify one. The diagram illustrates how the modules are

connected.

4.1.8 Video Streaming and Motion Detection Engine

The SCADA system provides an engine that permits the elaboration of video streaming

through web sockets.

The module permits to develop the following application and functionalities:

• Video re-streaming

Figure 4.18 Video re-streaming diagram

• Video wall

Figure 4.19 Video wall diagram

39

• Motion detection

Figure 4.20 Motion detection diagram

The management of video contents is achieved through the management of sockets that

can be redirect to any clients.

As it is possible seeing in the figure 4.20, IDOM provides an efficient internal motion

detection engine. It is developed using OpenCV library. It is a famous open source library

that is available in Internet for different programming languages.

40

4.1.9 Geolocation Engine

A common IDOM instance provides drivers and services that allows the application to

collect data from devices and store events according the only time location as the unique

metadata, but the system could collect also geolocation information.

The geolocation is fundamental to deploy applications that require to track the position of

vehicles, e.g. trains.

Due to the nature of this kind of applications, IDOM provides drivers that work in two

different modes:

• Real-time mode: data are collected according pseudo-real time policy. This fact

implies events are geolocated on elaboration time and any connection loss mean

also data loss

• Buffered mode: data are managed according policies that permit to recover any

information that were not fetched previously. It implies that devices must hold all

events with date and geolocation metadata.

Figure 4.21 Geolocation communication through GSM network

Diagram of geolocation IDOM application over GSM network, e.g. trains tracking.

Figure 4.22 Geolocation communication through Wifi network

Diagram of geolocation IDOM application over Wireless network, e.g. telemetry for racing

vehicle.

41

4.1.10 Expandable using web services

IDOM is an application that deploys all functionalities of a SCADA system, however

customers could require special purpose functionalities that are extremely complex to

develop with the built-in configurations and scenarios.

For this reason, IDOM exposes a set of web interfaces that permits integrate it as a module

of a complex system (examples are illustrated later in the following chapter).

Available operations permit third-party application to perform:

• Reading data from IDOM or directly from devices

• Writing data to devices (if the operation is permitted by the driver/configuration)

• Execute custom queries in order to fetch data for the database

• Launch scenarios or parametric scenarios

• Show dashboards and synoptics, useful for deploying monitors or TVs that show

them

Figure 4.23 Third-Party application communication with IDOM

The diagram 4.23 shows how third-party applications could interacts with IDOM.

The available APIs are exposed using the following web interfaces in order to permit the

development of applications without constraints about the interfacing:

42

• Representational State Transfer (REST) API web interfaces

• Simple Object Access Protocol (SOAP) API web interface

• Remote Method Invocation (RMI) API web interfaces

4.1.11 Responsive User Interfaces Configurator

As said at the beginning of the chapter, user interfaces of IDOM are responsive in the

manner to be navigable any devices (workstations, smartphone, tablet, etc.) in which a web

browser client is installed, like Google Chrome or Mozilla Firefox.

As said previously (section 4.1.1.2), UIs can be of the following types:

• Administration UI

• Back-End configuration UI

• Front-End configuration UI

• Dashboards and synoptics

IDOM provides a UI editor that allows the designing of graphical components that will be

used to show the status of the controlled process, plants or, generally, paired systems.

The library of graphical components is composed of the following elements:

• Line Charts

Figure 4.24

• Bar Charts

Figure 4.25

43

• Pie Charts

Figure 4.26

• Radar Chars

Figure 4.27

• Tables

• Static or dynamic HTML 5 output elements (labels and images)

• Static or dynamic HTML 5 output elements (labels and images)

• Configurable Canvas Gauges

Figure 4.28

Figure 4.29

• Camera video contents

Figure 4.30

44

• Iframes

• Maps

Figure 4.31

4.1.12 Embeddable

As described previously, IDOM is a modular application that can be distributed in different

configurations according their major components and their utilizations:

• IDOM Core: the core of the application that performs the main functionalities of the

SCADA

• Data Base server (MySQL Server) that stores configurations and historical data

 These components can be installed on the same machine or in separated ones according

the required performance of each of them.

According the adopted configurations and the required performance of IDOM, it may be

installed in two different versions this defined:

• LOGGER: it is the version that provides the interaction with the plant for monitoring

and acquiring diagnostic/production data and alarms in near real-time. By its

nature, the LOGGER system has a limited storage memory. Before this amount of

memory will be saturated, a data aging policy is applied.

• BIG DATA: it is the version for logging a large amount of data that are subjected to

calculation logics relating to preventive maintenances and parametric analysing of

events occurred on plants. By its nature, the system requires high HW specifications

to work as expected.

4.1.12.1 LOGGER installation

LOGGER application is the component of IDOM that communicates directly to the plant and

it has the task to make available interfaces to web clients who connect to it.

LOGGER can be configured in 2 different modes:

• ON-BOARD MACHINE installation

• INTRANET installation

45

4.1.12.1.1 ON-BOARD MACHINE installation

ON-BOARD MACHINE installation means the possibility to integrate the application directly

in the monitored/controlled device through a reduced dimensions and performance

industrial pc that is used to collect a limited number of events.

HW features of the computer define the abilities below:

• Elaboration/Acquisition performance

• Storing memory volume

• Number of associable devices

• Number of supported clients/sessions

4.1.12.1.2 INTRANET installation

INTRANET installation means the possibility to install the application on a local server that

communicates to monitored/controlled machines through the local network.

The server could be:

• Pre-existing server with installation in the physical machine

• Pre-existing server with installation in a virtual machine

• Server provided by ERInformatica S.r.L.

This application version could manage multi-devices connections thanks its HW features

that depend on volume of data to be processed and stored.

4.1.12.2 BIG DATA installation

BIG DATA application provides the logging of all events recorded by LOGGERs.

BIG DATA could be configured in 2 different ways:

• Embedded installation into the LOGGER

• Installation on a server

4.1.12.2.1 Embedded installation into the LOGGER

This configuration allows to integrate in the same machine both of LOGGER and BIG DATA

components.

Due to the configuration nature, the installation must be performed on a local server

(INTRANET installation) with adequate performance that can be parametrized based on the

data volume to be historicized and processed.

4.1.12.2.2 Installation on server

The application is installed on a dedicated server which receives the data collected by the

associated LOGGERs via the web service.

The server set up for BIG DATA can be indistinctly installed in one of the following ways:

46

• Intranet: the server is connected to the customer’s local network for which the

reachability is guaranteed from the IDOM LOGGER instances.

• Cloud: the server is a remote one which is available through internet connection for

which the reachability is guaranteed from the IDOM LOGGER instances

4.1.12.2.3 Modular installation

Modular installation means the possibility of breaking down the application components

in separate machines, each of which contains at the least one of the following modules:

• Apache Tomcat 8

• MySQL Server

This configuration makes flexible choosing the machine HW according its use in IDOM.

Each module respects the installation modes presented previously.

4.1.12.3 Overview Diagrams

The diagrams below show the available configurations of the IDOM application in terms of

network architecture and HW requirements.

4.1.12.3.1 LOGGER: ON-BOARD MACHINE; BIG DATA: INTRANET

Figure 4.32 Diagram of On-Board Machine Logger and Intranet Big Data

PROs:

• In-house management of the Big Data server

• Reduced cost due to ad hoc Logger HW features according to the associated PLC

CONS:

• HW and systemic maintenance levy on the customer of the Big Data server

• Networking configuration costs to make services available on internet

• Higher costs according the number of associated PLC

47

4.1.12.3.2 LOGGER: ON-BOARD MACHINE; BIG DATA: INTERNET

Figure 4.33 Diagram of On-Board Machine Logger and Internet Big Data

PROS:

• Unique access through web interfaces to collected data through distinct production

plants

• Reduced cost due to ad hoc Logger HW features according to the associated PLC

• Logger and Big Data components physically separated

• Optional Logger web interface (Logger UI configuration Lite)

CONS:

• Higher cost according to the number of associated PLCs

48

4.1.12.3.3 LOGGER: INTRANET; BIG DATA: INTEGRATED

Figure 4.34 Diagram of Integrated Logger and Big Data

PROS:

• In-house server management

• Logger HW features adequate for management of greater number of PLCs

CONS:

• Higher infrastructure cost

• HW and systemic maintenance levy on the customer

• Networking configuration costs to make services available on internet

49

4.1.12.3.4 LOGGER: INTRANET; BIG DATA: INTRANET

Figure 4.35 Diagram of Intranet Logger and Big Data

PROS:

• In-house management of the servers

• Logger HW features adequate for management of greater number of PLCs

• Logger and Big Data components physically separated

CONS:

• Higher infrastructure cost

• HW and systemic maintenance levy on the customer

• Networking configuration costs to make services available on internet

50

4.1.12.3.5 LOGGER: INTRANET; BIG DATA: INTERNET

Figure 4.36 Diagram of Intranet Logger and Internet Big Data

PROS:

• In-house management of the Logger server

• Unique access through web interfaces to collected data through distinct production

plants

• Logger HW features adequate for management of greater number of PLCs

• Logger and Big Data components physically separated

• Optional Logger web interface

CONS:

• Higher infrastructure cost

• HW and systemic maintenance levy on the customer

51

4.2 STRENGTH OF IDOM

This section is exploited to describes the main features which composed IDOM.

4.2.1 Configurability

IDOM system is heavily configurability in their components and entities in order to achieve

the needs of heterogeneous application fields in which it may be integrated.

The main configurable components are:

• CRM entities:

o Societies

o Users

o Grants

• Data acquisition entities:

o Event categories

o Devices

o Drivers

• Web app module:

o Dashboards

o Synoptic

o Graphical components

• Programmable logics or Scenarios:

o User or Manual commands

o Automatic or Smart scenarios

4.2.2 Supported devices and Data Sources

According the IDOM point of view, devices act as generic data sources or controllable

modules that communicate with the SCADA through the exchanging of messages over the

network infrastructure.

To date, IDOM is provided of communication drivers that allows the interaction with the

following “device” families:

• Programmable Logic Controllers (PLCs)

o Ethernet IP

o ModBus

o ProfiBus

o OPC UA

• IP Cameras:

o Insight cams

o DataMan 2000 cams

o Web cams

• Relational DataBase Management Systems or RDBMS

52

o MySQL

o SQL Server

o DB2

o DB2 iSeries – AS400

• CSV and Electronic Worksheets (e.g. xls files):

o Local filesystem

o FTP server

o SAMBA or CIFS shared folder

• Virtual/local devices

• Web services

o SOAP API

o REST API

53

5 CASES OF STUDY

5.1 SUPERVISION – CALDIROLA

Supervision is the application of IDOM that implies only functionalities of supervision.

Caldirola requires to develop a supervision system for its establishment of Missaglia that

allows the monitoring of parameters, listed below, of a stocking area of sparkling wine:

• Pressure

• Temperature

• Wine Level

• Glycol supply temperature

• Glycol return temperature

The customer requires the possibility of sent mails to specific users when parametric

conditions are satisfied.

The integration of IDOM in the establishment and the necessity to speed up productivity

requested the replacement of the whole previous IT infrastructure that was responsible to

data fetching and HMIs due to it was incompatible with the new implementation: the old

system did not allow to reach the maximum production speed.

5.1.1 Implementation

IDOM is used to the following purposes:

• Sampling data from sensors through TCP/IP network bus

• Deploying user interfaces for analyse the collected data for short/medium time

periods

5.1.2 Benefits

• Installation and test time of the supervisory system was extremely reduced due to

no addons or developments were required

• The flexibility of IDOM permits a rapid configuration of alarm conditions and

notifications

5.1.3 Future developments

The customer is satisfied of the implemented solution, so it is expected the configuration

of further sensors

54

5.2 MARTINI & ROSSI – TECHNOLOGY BSA S.P.A

The new export regulations for wine products to Russia requires a precisely bottle tracking,

which are identified by unique state marks provided by the Russian government. The

manufacturer must perform the tracking also for cases, pallets, bottle positions in cases

and case positions in pallets.

For this reason, ERInformatica S.r.L. develops a custom application that integrates IDOM as

intermediary among devices and software system that was installed into two production

lines called L24 and L42.

The requirement to reach a greater productivity, the previous IT infrastructure was

replaced with an upgraded one that permits to reach the maximum speed of the

production lines.

5.2.1 Implementation

Figure 5.1 Martini & Rossi block diagram

The diagram shows the adopted solution architecture.

IDOM tasks:

• Retrieving the production order from ARCHIVE module, with the settings of the

plants (e.g. the used data mark reel)

• Interacting with line devices (labelling station, boxing station and pallet station)

o Production recipes

o Counters and other data logging

o Assignment of marks to boxes

55

o Assignment of boxes to pallets

• Providing on board HMIs over machine touch panels

• Re-stream video contents from line cameras to HMIs

ARCHIVE module tasks:

• Communication with SAP system

• Acting as intermediary between SAP and IDOM

• Joining collected data from IDOM and elaborating shipping reports

5.2.2 Benefits

• The developed system respect widely in terms of performance and data quality

according the customer requirements and needs

• It was possible implements easily the differences among the two production lines

using the same architecture

• Eventually updates of memory locations of controlled PLCs can be easily integrated

in IDOM due to its flexibility without re-distributing a new version of the application

• The adopted solution permits to centralize modules that previously was distributed

(HMIs, video streaming, …).

5.2.3 Future developments

The customer is satisfied of the adopted solution, so it is expected the integration of the

system in a third production line of a different establishment.

56

5.3 MIMESIS – LOGICO S.R.L. / INFINITY BOTTLING

The customer LogiCo had expressed the need to develop a Manufacturing Execution

System (MES) for the management of production lines and for the elaboration of statistics

relating to productions carried out or in progress to monitor the efficiency of the same

based on the events recorded by IDOM module.

The mathematical model for statistic calculations is currently based on:

• Supervision: system module that involves one or more IDOM instances that collect

data from machines

• LogModule: system module that implements the functionalities of:

o Elaboration of data collected by IDOMs

o Management of articles, customers and logistic units

o Calculation of efficiency of productions based on the mathematical model:

▪ # produced pieces / # total pieces

▪ Utilization time (UP TIME) / total time (AVAILABLE TIME)

o Configuration of production recipes through web user interfaces or CSV

importing (only for line technicians)

o Creation, launch and analysis of production orders

o Notification engine through e-mail or Telegram (only for line technicians)

Recipes represent the available configurations of the production lines and the involved

machines. They are identified by:

• Recipe name

• Recipe type (ACTIVATION or DEACTIVATION)

• Last device (usually PLC) of the configuration that represent the MASTER of the

recipes

• List of monitored events

• List of related recipes for STOP, PAUSE, RESUME the production batches

• List of IDOM scenarios that will be send at the time of recipe launch

• List of pairs Article/Customer related to the recipe, if this option is enabled

• List of printers to configures when the order starts

57

5.3.1 Implementation

Figure 5.2 MiMESis block diagram

The described system is based on the installation and configuration of three types of actors:

• I.D.O.M. servers for the supervision and data collection. They are the core of the

MES system

• LogModule server for elaboration of collected data by supervision for the

management of the whole system

• PLCs in the production line (their configuration is demanded to LogiCo according

their issues)

5.3.1.1.1 IDOM – Machine interactions

The communication between IDOM instances and line machines is implemented according

to a communication protocol defined in agreement with the customer.

Currently it consists of an FSM which, through the exchange of messages, advances in its

internal states.

The protocol is natively developed in IDOMs through the configuration of automatic

scenarios (see 4.1.5 for more details).

The exchanges of messages it is deployed using two simplex communication channels that

interact with two different memory locations in the controlled devices:

• Send/FROM_PLC: memory location that is written by PLC and read by IDOM

• Receive/TO_PLC: memory location that is written by IDOM and read by PLC

58

5.3.1.1.2 LogModule – IDOM interaction

The LogModule module implements the following functionalities that permit the

interaction with IDOMs:

• Spring Batch procedure, manually launched by administrators, that permits to

retrieve the entities configured in IDOM instances:

o Devices

o Event categories

o Scenarios

• Spring Batch procedure, scheduled and parametrizable by administrators, that

permits to fetch collected events from IDOM instances

• RMI web interfaces for starting scenarios of IDOM instances when a recipe is

launched, eventually with extra information e.g. target produced pieces or article

description

• Web UIs that are accessible using their URLs for the visualization of dashboard,

synoptics and customizable kiosks

5.3.2 Benefits

• Parameterization and configurability of lines based on the used recipes

• Supervision of the line and automatic start of scenarios for the management of the

same

• Collection of information related to production orders

• Standardization of line machine communication interfaces – supervision system

5.3.3 Future developments

MIMESIS was born as prototype and start point of a more complex and sophisticated

application.

The developments and improvements could be summarized in:

• Applying the Overall Equipment Effectiveness (OEE) mathematical model

• Improving the management of production recipes

• Improving the management of production orders

• Improvements of devices in industrial plants

• Improvements of kiosks for data visualization

• Definition of a standard interface that permits to establish regulations about the

development of machines in terms of communication protocol/interface

59

6 CONTRIBUTION

The contribution given by my work permits to accelerate the development and

configuration of many modules of IDOM and third-party applications that interact with it.

At the beginning of the development, I had to learn the whole technology stack in order to

design correctly the assigned components:

• Spring Core

• ZK 7 Framework

• JPA and Hibernate Implementation

• Documentation about drivers of different PLC vendors

After the training period, my tasks were identified in 3 different groups:

1. Development and configuration of communication drivers

2. Designing and implementation of several UI functionalities

3. Configuration of IDOM and third-party application

6.1 DEVELOPMENT AND CONFIGURATION OF COMMUNICATION DRIVERS

As described in this paper, IDOM owns the capability to communicate with several real or

virtual devices. This feature makes the system easily integrable in a huge amount of plants

without creating constraint to plant designers.

The first tasks that were assigned to me concerned the designing of the first version of data

structure and driver interfaces in collaboration of my colleague and supervisor Eng. De

Sisto.

We analysed different solutions in order to exploit benefits and malus of them and, at the

end, obtain the most flexible data model and interfaces that are illustrated in this

document.

The next task was to implement and configure some drivers to integrate in IDOM. The

implementations that I developed allow to integrate into the SCADA the following “device”

families:

• Databases over JDBC driver (MySQL, DB2, SQL Server)

• Static files in local filesystem or in shared folders (FTP or CIFS)

• OPC UA communication protocol

• Web service drivers

The last task that I accomplished was the integration of utilities and functionalities that

allow the geolocation of events and devices using OpenLayer.

60

6.2 DESIGNING AND IMPLEMENTATION OF SEVERAL UI FUNCTIONALITIES

Due to the low number of dedicated employees to the project, I had to carry out tasks that

concerned also the implementation of graphical user interfaces and functionalities in

IDOM. During this step the main task consisted of the integration of graphical libraries for

charts and tables using ZK and Chart JS facilities.

The integration of graphical components required to carry out research in order to find the

most useful and efficient solution according which libraries were to be included and how

install them.

6.3 CONFIGURATION OF IDOM AND THIRD-PARTY APPLICATION

At the end of the development of IDOM core, it was requested to install the SCADA

application in several plants.

As described before, some utilizations contemplate the integration of specific

configurations and external components that accomplish the specific behaviours that

IDOM does not provide natively.

My developments act to provide the functionalities and tasks that communicate directly

with IDOM and, therefore, the devices configured in the SCADA system.

This fact allowed me to meet professionals and confront them according strategies and tips

in the development and analysis phase of the integration of the SCADA or plants, especially

during the development of Martini Rossi project, in which I developed entirely the module

that interacts with IDOM.

Further the previous project, my supervisor and my employer gave me the responsibility to

occupy of the configuration and inspection of the application MiMESis for Infinity Bottling

company in California and, actually, the customized version of it for Moet Chandon

company in Argentina.

6.4 MY ACTUAL ROLE IN THE PROJECT

Currently, my role in the company covers activities that consist on maintenance,

configuration and integration of IDOM in plants in which it will be installed.

In addition to this, my tasks include the designing and development of newer functionalities

and features.

61

7 CONCLUSION AND FURTHER DEVELOPMENTS

The aim of the author was to examine and discuss the potentiality of SCADA systems and

describe their utilizations considering the product developed by the company

ERInformatica S.r.L. called Integrated Devices Open Management or IDOM.

How it was described at the beginning of the paper, SCADA systems have been relevant

since the beginning of the 50s due to the necessity to increase the productivity of

companies and factories. They are still evolving to improve the provided functionalities and

benefits that characterized this kind of systems, especially in reference to the new context

of Industry 4.0 and Smart Factories.

All prefixed goals of the SCADA application were reached with excellent results and, for this

reason, it is expected to develop a new version of the software system that realizes new

features that permit IDOM to be more flexible and usable than now:

• Integration of an artificial intelligence that permits to execute functionalities of

pattern recognition and forecasting about alarms, breaks and performance of

industrial processes with the implementation of machine learning strategies

• Expansion and improvement of the driver library that will allow IDOM to interact

with devices and data sources that are not pairable currently.

• Expansion graphical component library with the insertion of new elements which

will permit the creation of more sophisticated dashboards and synoptics

• Improving data management system in order to permit

The development of the system has emerged analysis related to today’s technologies trend

and realistically applicable to the next decade one.

Based on the current state of art of IDOM, which achieves the concept of Internet of Things

environment, e.g. the plurality of protocols (ISO OSI application level) and communication

buses (ISO OSI Communication Network and Transport), it is evident that a polymorphic

and flexible system could reach a wide horizon of heterogeneous sectors and utilizations,

e.g. IDOM could be used as SCADA, video content analyser or preventive maintenance

calculation module.

The commercial and real feedback of the developed product highlights a real and concrete

interest in a SCADA that can be easily integrated with devices of different vendors and

company information systems.

In conclusion, it is possible identifying more and more clearly in the adoption of design and

development methods oriented not only for the re-use of components but also for the

parameterization of the same the guideline applicable to the development of modern IT

systems, especially for SCADA systems.

62

8 BIBLIOGRAPHY

[1] Bimbo Stefano, Colaiacovo Enrico, Sistemi Scada – Supervisory Control And Data

Acquisition, Milano, Apogeo SRL, 2006

[2] Baotong Chen, Jiafu Wan, Lei Sshu, Peng Li, Mithun Mukherjee and Boxing Yin, Smart

Factory of Industry 4.0: Key Technologies, Application Case, and Challenges, IEEE Access,

December 14, 2017

[3] Z. Ignaszak, R. Sika, M. Perzyk, A. Kochański and J. Kozłowski, Effectiveness of SCADA

Systems in Control of Green Sands Properties, 2015

[4] ZKoss, ZK Essentials, http://books.zkoss.org/zkessentials-book

[5] ZKoss, ZK Developers’ Reference, https://www.zkoss.org/documentation#References

[6] Mark Paluch, Spring Vault - Reference Documentation, 2017,

https://docs.spring.io/spring-vault/docs/1.1.1.RELEASE/reference/html/

[7] Hibernate, Hibernate Getting Started Guide,

http://docs.jboss.org/hibernate/orm/5.4/quickstart/html_single/

http://books.zkoss.org/zkessentials-book
https://www.zkoss.org/documentation#References
https://docs.spring.io/spring-vault/docs/1.1.1.RELEASE/reference/html/
http://docs.jboss.org/hibernate/orm/5.4/quickstart/html_single/

63

9 ACKNOWLEDGEMENTS

Desidero ringraziare tutti coloro che mi hanno sostenuto durante la stesura della tesi e il

mio percorso universitario.

Tengo a ringraziare anzitutto il Professore Paolo Ernesto Prinetto che mi ha permesso di

conseguire la tesi su un argomento da me proposto.

Ringrazio il CEO di ERInformatica S.r.L. Emilio Ravotti, il capo progetto l’Ingegnere Giovanni

De Sisto e il collega Goran Postolov che mi hanno dato l’opportunità di partecipare al

progetto IDOM e di entrare nell’azienda.

Ringrazio la mia famiglia che mi ha sostenuto durante l’intero percorso universitario, sia

economicamente che moralmente.

Ringrazio la mia fidanzata Chiara che ha condiviso con me gli alti e i bassi del mio percorso

di studi.

