
POLITECNICO DI TORINO
Master Degree course in Mechatronics Engineering

Master Degree Thesis

Feature extraction using satellite images

Supervisors
Prof. Carlo Novara
Dr. Lorenzo Feruglio

Candidate
Omid Toutian Esfahani

Academic Year 2018-2019

Acknowledgements

I would first like to thank my thesis advisor Professor Carlo Novara of the Department of
Electronics and Telecommunications (DET) at Politecnico di Torino. I am very grateful
for all of the things that you have done for me and I can not express how much I am
thankful to you. The door to Prof. Novara office was always open whenever I ran into a
trouble or had a question about my research.

I would also like to thank the experts in AIKO for giving me the chance to be a part
of your team. Cooperating with talented young people working at AIKO was an honour
for me. I learned a lot from you and it was one of best experiences in my life working with
you on challenging problems that we faced during this period. I would like to express
my gratitude to Dr. Lorenzo Feruglio for his unconditional support. You are my all time
favourite entrepreneur and I wish you all the best for your future endeavours. Without
your help, this thesis would not have been successful.

Finally, I must express my very profound gratitude to my parents and to all of my
friends for providing me with unfailing support and continuous encouragement throughout
my years of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them. Thank you.

Omid Toutian Esfahani

3

Abstract

Remote Sensing Technology (RST) mainly focuses on the gathering information about
the Earth’s surface and atmosphere using sensors onboard airborne or space-borne plat-
forms. RST has been widely used in ground mapping, resource regulation, environmental
protection, urban planning, geological research, disaster relief and emergency, military
reconnaissance, and many other fields. RST has enabled us to have access to a large
amount of data at a relatively low cost and it would be feasible to perform computational
algorithms on gathered image data to extract useful information.

Availability, accessibility to data, the evolution of Artificial Intelligence and largely
increased computing power has enabled the scientists to solve many of today’s world
problems which were considered unsolvable before. This improvement is not only limited
to a specific field of science but also proved to be useful in many different fields, varying
from economics and finance to robotic, space missions and image processing.

Artificial Intelligence, Machine Learning and Deep Learning solutions are being pro-
gressively researched and implemented in the field of space. Machine Learning and Deep
Learning algorithms are used to analyse and process of high resolution satellite images
to acquire a explicit representation. Machine Learning is considered as an priceless tool
to analyse data gathered from remote sensing and telemetry. Beyond Earth Observation,
for precise data analysis, Machine Learning is used to process immense amount data
from deep space missions. Furthermore, Using AI would lead to reduce the workload
of ground stations. By applying AI in space missions, the need for human intervention
would decrease and in this manner it would cause to save a lot of time, money and effort.

Amongst the applications of RST, object detection plays a key role in detecting and
identifying target objects. Target object detection and identification are usually achieved
using a combination of signal and image processing techniques and statistical models.

Recent advances in Deep Learning architectures have shown promising results over sta-
tistical counterparts in target object detection and identification. Although such learning
architectures are heavily dependent on computing resources, they are easy to use com-
pared to sophisticated statistical models. Further, Deep Learning architectures are also
able to render feature engineering as a part of their learning process which makes them
extremely powerful in target object detection and identification process.

Nowadays object detection methods are maturing very rapidly and thanks to deep
learning, new algorithms and models keep on outperforming the previous ones. For in-
stance, methods such as SSD, YOLO, R-CNN, Fast R-CNN, Faster R-CNN are among
the state of art models and they are able to deliver high accuracy and reasonable process-
ing speed for a wide variety of applications. Although several breakthroughs have been
witnessed in recent years in object detection, still there is room to improve.

Object detection algorithms have the potential to be applied to satellite images to
detect the various object. One important application of object detection on satellite
images is ship detection due to increasing of shipping traffic in recent years. There are
more ships used in today’s world and this phenomenon leads to increase the chances
of breaches at sea like ship accidents, piracy, illegal fishing, drug trafficking, and illegal

cargo movement. This has urged many organizations such as environmental protection
agencies, insurance companies, and national government authorities, to have a closer look
and pay more attention over the open seas.

The main focus of this thesis is on ship detection based on satellite images by em-
ploying Deep Learning algorithms. For the specific case of ship detection, one of the
biggest challenges is the lack of appropriate dataset. Therefore, a synthetic dataset is
created to overcome the issue. For object detection, various methods are implemented
and compared to achieve the best result.

2

Contents

1 Introduction 5
1.1 Artificial Intelligence . 5
1.2 Machine Learning . 6

1.2.1 Supervised learning . 8
1.2.2 Unsupervised learning . 8
1.2.3 Reinforcement learning . 9

1.3 Artificial Neural Networks (ANN) . 9
1.3.1 Feed-forward Neural Networks . 13
1.3.2 Recurrent Neural Networks (RNN) 14
1.3.3 Convolutional Neural Network . 14

1.4 Object detection . 16
1.5 History of image processing and its relation to Deep Learning and CNN . 18
1.6 Remote sensing and its importance . 19

1.6.1 Related work . 22
1.7 Thesis objectives and outline . 23

2 State-of-the-art models for object detection 25
2.1 Region proposal based methods . 26

2.1.1 R-CNN . 26
2.1.2 Fast R-CNN . 27
2.1.3 Faster R-CNN . 29

2.2 Regression/Classification based methods 30
2.2.1 YOLO . 30
2.2.2 Single Shot MultiBox Detector (SSD) 31

2.3 Some precision metrics definitions . 32
2.3.1 True Positive, False Positive, False Negative and True Negative . . 32
2.3.2 Intersection Over Unit (IoU) . 33
2.3.3 Precision and recall . 33
2.3.4 Mean Average Precision (mAP) . 33

3 Problem definition 35
3.1 Modern maritime piracy . 35
3.2 Anti-piracy measures . 35
3.3 Sentinel-2 mission . 36

3

3.4 Synthetic dataset . 37

4 Use Case Results 41
4.1 Google Tensorflow . 41
4.2 Object detection by Tensorflow . 43
4.3 Object detection results . 59

5 Conclusions 65
5.1 Further work . 65

Bibliography 67

4

Chapter 1

Introduction

After passing the Industrial Revolution, nowadays human-beings are finding themselves
in a new era called Information Age. The main highlight of this period is the availability
of an immense amount of data to most people by the means of computer technology.
[1] Likewise, the capacity of information storage has increased dramatically, from 2.6
exabytes 1 in 1986 to 296 exabytes1 in 2007. It is approximately equivalent to 539 MB
per person in 1986 to 44.5 GB of data per person in 2007. [2] Although in this period,
we have suffered from two Artificial Intelligence (AI) winters from 1974 to 1980 and from
1987 to 1993 [3], but at the moment, with good investment in this field, the trend of AI
is moving forward and it is one of the most growing fields of science if we do not consider
it as the most growing field! It is worth mentioning that scientists believe there is a 50
percent chance that in around 45 years, Artificial Intelligence would be able to surpass
human-beings in nearly every possible task. [4]

Availability, accessibility to data, the evolution of Artificial Intelligence and largely
increased computing power has enabled the scientists to solve many of today’s world
problems which were considered unsolvable before. This improvement is not only limited
to a specific field of science but also proved to be useful in many different fields, varying
from economics and finance to robotic and image processing.

The goal of this thesis is to employ a state of the art Deep Learning algorithm to
detect ships from satellite images. Since understanding, Deep Learning algorithm needs
a foundation of Artificial Intelligence and Machine Learning, in the following sections an
introduction to these concepts will be presented.

1.1 Artificial Intelligence

Artificial Intelligence (AI) or so-called Computational Intelligence (CI) is defined as the
field of science which concentrates on studying of the intelligent agent: the system which
acts appropriately based on the conditions and its purpose. It would be able to affect and
change the environment and goals. The system learns from its experiences and makes

11018

5

1 – Introduction

the right decisions given some limitations and finite computations. [5]
John McCarthy who is known as the godfather of AI defined it as:

The science and engineering of making intelligent machines. Especially intel-
ligent computer programs. [6]

In today’s world, the huge progress in the field of AI has led to a massive impact on our
day-to-day lives. Virtual Personal Assistance such as Siri, Alexa, and Google Assistant
are able to understand the human’s natural language and perform the tasks that they
are asked to. Using navigator applications like Google map, it is possible to find the best
route to the destination based on the real-time traffic. Spam detection is another field
that AI is proving to be useful in recent years. All of the technologies mentioned earlier
could be classified as Artificial Narrow Intelligence (ANI). As the name suggests, these
types of technologies are able to perform a limited and narrow task well and they are not
aiming to perform a full range of human cognitive skills. Meanwhile, we are experiencing
fundamental improvement towards human-level Artificial General Intelligence (AGI), also
known as strong AI or full AI. By definition, Strong AI is a type of intelligence of a machine
which is able to successfully perform any type of intellectual task which can be done by
any human-being such as learning, planning, making decisions under uncertain situations,
using natural language to communicate, manipulating others and reprogramming itself.
Likewise, the word "strong AI" is used by academics to indicate a machine with the
ability to feel consciousness. [7] Another concept which is aiming towards the same goal
is "ultraintelligent machine" which was first defined by I.J. Good in 1965:

Let an ultraintelligent machine be defined as a machine that can far surpass
all the intellectual activities of any man however clever. Since the design
of machines is one of these intellectual activities, an ultraintelligent machine
could design even better machines; there would then unquestionably be an
"intelligence explosion", and the intelligence of man would be left far behind.
Thus the first ultraintelligent machine is the last invention that man need
ever make, provided that the machine is docile enough to tell us how to keep
it under control. [8]

As mentioned by Good, once we could create an AI which can improve itself, it will
open up an indefinite recursive loop of self-improvement that could lead to a so-called
intelligent explosion. Time to reach this intelligent explosion could vary from many years
to a single day.

Although Artificial Intelligence has many branches, one of the most important subsets
of AI is Machine Learning. Thus, all Machine Learning algorithms are part of AI but
not vice-versa. In today’s world, Machine Learning is playing a core role in the journey
proceeding to Artificial General Intelligence (AGI) and meanwhile, it is improving every
industry and has an immense effect on our day-to-day lives.

1.2 Machine Learning
Machine Learning is a task of designing an efficient and accurate algorithm which could
generate precise predictions on unseen data and generalize from its experience. [9] In 1959,

6

1.2 – Machine Learning

A.L.Samuel, one of the Machine Learning pioneers of his time, defined Machine Learning
(ML) as a field of study which provides the computers the ability to learn without being
explicitly programmed for the desired task. [10] Also, Tom M. Mitchell stated Machine
Learning as:

A computer program is said to learn from experience E with some class of tasks
T and performance measure P if its performance at tasks in T, as measured
by P, improves with experience E. [11]

To clarify the above definition, consider a board game like Chess. Experience E refers
to the experience that the machine gained by playing and observing many games of chess.
T is the task of playing chess and P indicates the win probability of the machine to win
the next game. The word "experience" in the above definition usually indicates the good
amount of data. Hence, the availability of data is a keystone for every Machine Learning
problem. This data is usually referred as "dataset" by Machine Learning experts and it is
divided into two parts called training data and test data. Since Machine Learning has a
close relation with optimization, most of the Machine Learning problems are formulated
to minimize a set of loss function on training data by means of changing the model
parameters. Loss function denotes the difference between the predictions of the algorithm
being trained and the true instances of the problem. [12] In the next step, the model is
tested on the unseen test data to evaluate its performance and the level of generalization.

Machine Learning consists of different types of algorithms. The selection of the right
algorithm depends on the type of input and output data and also the type of problem
that is intended to solve.

Broadly speaking, Machine Learning could be classified into three sub-categories:
Supervised learning, Unsupervised learning and Reinforcement learning.

Artificial Intelligent

the science and engineering of making intelligent machines. especially
intelligent computer programs.

Machine Learning

a field of study which provides the computers the ability to learn
without being explicitly programmed for the desired task.

Unsupervised
Learning

Clustering

dimensionality reduction

Reinforcement
Learning

 Reward maximization

Supervised Learning

 Classification
regression

Figure 1.1: Artificial Intelligent hierarchy

7

1 – Introduction

1.2.1 Supervised learning

Supervised learning is a subcategory of Machine Learning which builds a mathematical
model based on a data-set that contains a set of training data. In the case of supervised
learning, each member in training data consists of at least one input and the desired
output. The model tries to minimize a lost function to find the best mapping between
input and output data. [9]

Each supervised learning problem could be categorized as a classification problem or
a regression problem. [13] In the case of classification, outputs provided to the model are
discrete and limited to a set of known values. For instance, consider a classifier which
as input takes a set of images and as output, it should be able to detect if that image
is a dog or a cat. On the other hand, in the regression problem, the algorithm should
predict the continuous values as the output. An example would be, estimating the price
of a house based on its area, numbers of rooms and its location.

There exist a wide range of algorithms to solve a supervised learning problem. some
of the most important are:

• Support Vector Machines (SVM)

• K-nearest Neighbour

• Linear regression

• Logistic regression

• Naive Bayes

• Decision trees

• Neural Networks

1.2.2 Unsupervised learning

In contrast with Supervised learning, no specific output is given to an unsupervised learn-
ing algorithm. Unsupervised learning algorithms aim to find the structures and relation-
ships in the provided data. Therefore, unsupervised learning algorithms are searching for
groups or clusters of data which share the common characteristics. Another application of
unsupervised learning is dimensionality reduction in which the algorithm tries to reduce
the complexity of data while maintains its structure and quality.

Some of the most common unsupervised algorithms are:

• Clustering:

– k-means clustering
– Hierarchical clustering
– Neural Networks

8

1.3 – Artificial Neural Networks (ANN)

• Dimensionality reduction:

– Principal component analysis (PCA)
– Singular value decomposition (SVD)

1.2.3 Reinforcement learning

The basic concept of reinforcement learning is that feedback is provided to the agent and
it indicates how good or bad was the decision that it took. In the context of reinforcement
learning, This feedback is usually represented as a reward or reinforcement. Based on the
reward given to the agent, it is able to understand the right decision in a specific situation.
Reinforcement learning methods could be seen as a type of trial-and-error approach which
aims to maximize the long-term reward. Because of the generality of this topic, it is
studied in many other fields, such as operational research, control theory, game theory and
etc. In reinforcement learning, it is assumed that the exact mathematical representation of
the model and environment is unknown and it is used when the exact models are infeasible.
[14] Nowadays, reinforcement learning algorithms are used in a variety of applications
including autonomous vehicles and when an agent is trained to play a game against
a human opponent. Figure 1.1 shows the summery of Artificial Intelligence, Machine
Learning and sub-categories of Machine Learning as described before.

1.3 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are frameworks motivated by the biological natural
neural systems that comprise animal brains. The neural network itself is not considered
as an algorithm, yet rather a structured framework for some Machine Learning algorithms
to cooperate and process complex information. Such frameworks "learn" to perform
assignments by seeing enough amount of examples, without being programmed to follow
any explicit guidelines. For example in image recognition, the artificial neural network
is used to identify the images of dogs by showing the manually labeled images of dogs
to the network. This task does not ask the network to have any type of prior knowledge
about dogs such as their visual representations.

As it is shown in 1.2, biological neuron is composed of three basic elements: dendrites,
cell body and axon. Dendrites are responsible to receive the signals and send them to
the cell body. When signals arrive at the cell body, they are added together and if
this summation is greater than a certain threshold, then they are transmitted through
the axon to the next neuron. This functionality was the inspiration for the scientists
to develop an Artificial Neural Network architecture. The schematic of this network is
shown in 1.5. In this figure, the network has n inputs. In neural networks, each input
channel is associated with a specific weight which represents the "importance" of that
input in comparison with other inputs. After weighing the inputs, function g is acting on
each of them. g in most cases is the summation function. In the next step a non-linear
primitive function f(x), called activation function, will be calculated and the output will
be produced.

9

1 – Introduction

dendrites

axon

cell body

Figure 1.2: Biological neuron

X1

X2

Xn

g(x) f(x)
f(g(x))

Figure 1.3: Artificial Neural Network

Activation functions are used to allow a seamless transition as input values alter.
Thus small change in inputs causes a small change in outputs. Most used activations
functions are:

• Rectified Linear Unit (Relu)

• Sigmoid

• Tanh

in figure (will be added) the above mentioned functions are plotted.
Artificial Neural Networks could be classified into two sub-categories based on the

depth of connected networks layers:

• Shallow neural networks

• Deep neural networks

Deep Neural Networks (DNN)

Deep Learning neural network is an artificial neural network architecture with multiple
layers between inputs and outputs. On the other side, in shallow networks, there is only
one neural layer between inputs and outputs. The comparison of two architectures is
shown in1.4.

Deep Learning is defined as a class of Machine Learning algorithms which: [15]

• Is produced by cascading multiple layers of non-linear processing units.

10

1.3 – Artificial Neural Networks (ANN)

• Could be used in both supervised and unsupervised learning.

• Learn various degrees of representation that match to different levels of abstraction.

In Deep Learning networks, each level learns to translate its input data into a slightly
more abstract and composite representation. For example in case of an image recognition,
the input is a matrix of pixels which could be three dimensions if we are considering color
images or two dimensions for black and white images; the first layer might reckon the
pixels and understand edges; the second layer may compose and encode combination of
edges; the next layer may encode more meaningful objects such as eyes; and the last layer
would be able to realize that the image contains a face. significantly, a Deep Learning
algorithm could learn on it own which features is better to be placed in which level.

At the first phase, the DNN initialize its "weights" to some random numerical values.
The weights and inputs are multiplied together and as an output, the network outputs
a numerical value which is usually between 0 and 1. After having this output, the
algorithm compares the computed output to the true output which was given to the
network. By using the defined loss function, a value for the error will be computed.
Afterward, Stochastic Gradient Descent (SGD) algorithm tries to adjust the weights of
each layer. In SGD, some input vector for a small portion of instances of data is shown
to the network and then outputs and the errors are computed. Next, by calculating
the average gradient for those examples, weights are tuned consequently. In each loop
of this procedure, we are moving one step closer to the optimal minimum of the loss
function. The length of the step is determined by the hyper-parameter called "learning
rate". Finding the optimal learning rate is yet a challenging problem in Machine Learning
field and it is usually done by the trial-error approach. The mentioned process will be
repeated until the defined loss function does not decrease anymore and starts to reach
a constant number with a small tolerance. This method is called stochastic due to the
fact that each set of instances which are feed to the network provide a noisy estimate
of the average gradient and not the exact gradient because they are selected randomly.

Input Output

(a) Deep neural network

Input

Output

(b) Shallow neural network

Figure 1.4: Comparison of two artificial neural network architectures

11

1 – Introduction

Artificial Intelligent

Machine Learning

Deep Learning

Figure 1.5: Deep Learning as a subset of Machine Learning

This elementary technique commonly finds a good set of weights in less time comparing
to other optimization techniques. [16]

The methods of computing the gradient to correct the weights to train the network
are called backpropagation. The concept of backpropagation was discovered in the mid-
1970s by P.Werbus. [17] The concept of backpropagation which computes the gradient
of a loss function with respect to the weights of a multi-layer neural network is nothing
more than a simple usage of the chain rule for derivatives in algebra. As the name
"backpropagation" indicates, The crucial factor in this theorem is that the derivative of
the loss function is computed by moving backward from gradient with respect to the
output. Backpropagation is applied throughout each layer of an artificial neural network
from the output to the input corrects the weights from the very end of the network and
uses the If after this first attempt the network was not able correctly to understand a
particular pattern, an algorithm would adjust the weights.

Like any other algorithm, deep neural networks have their own drawbacks. Two of
the most important issues are:

• Overfitting

• Computation time

In Machine Learning, overfitting occurs when the trained network performs well on the
training data and poorly on the test data. In other words, training loss is comparably less
than the validation loss. It could be said that instead of generalizing the problem which

12

1.3 – Artificial Neural Networks (ANN)

is the main goal of the network, the algorithm memorized the inputs which were given
to it. To overcome this problem, the main solution is to provide the network with more
data so it could generalize better by receiving more samples. Also when the input data
is in form of images, it is possible to use data augmentation methods such as cropping,
rotating, zooming and etc. to increase the number of available samples. Another solution
is to use regularization methods to limit the numerical value of network weights. [18]
Alternatively, a dropout layer can be added to the network. By utilizing this layer, some
nodes in the hidden layer are arbitrarily dropped during the training which helps the
network to generalize better. [19]

Due to the vast number of parameters in the complex neural network architectures,
performing training usually takes a considerable amount of time. To solve this problem
techniques such as batching could be used. In batching, the gradient is computed on a
cluster of training data at once rather than individual training samples. [20] Besides, in
recent years utilizing multi-core GPUs provides an immense improvement in reducing the
training time, Due to the fact that they are optimized for matrix and vector computations.
It is evident that matrix computations are the keystone of the neural networks by their
nature. [21]

The most important architectures of Deep Neural Networks (DNN) are:

• Feed-forward Neural Networks

• Recurrent Neural Networks (RNN)

• Convolution Neural Networks (CNN)

1.3.1 Feed-forward Neural Networks

Deep neural networks, in most cases, are Feed-forward Networks. In this type of network
data flows from the input layers to the output layer without looping back. Therefore the
information never reaches a node twice. Feed Forward Neural Networks, are considered
as memory less networks and thus, they are not good in predicting the future behaviour
of a phenomenon. Due to the fact that a Feed-forward Network is able to only receive the
current input, it has no notion of time. They simply can not remember anything about
the past, except their training.

As mentioned before, the leftmost layer in this network architecture is called the input
layer and the rightmost layer is called output layer. The middle layer is called a hidden
layer, because the neurons in this layer are neither inputs nor outputs. Each neuron
has its own activation function which helps to grasp the non-linearities presented in the
dataset.

The design of the input and output layers of Feed-forward Neural Network is straight-
forward, the design of the hidden layers could be a challenging task. In practice, in most
of the times, trial and error method is used to find out the best network architecture
which has the best results and lowest loss. Feed-forward Neural Networks are only able
to map one input to one output at a time.

13

1 – Introduction

1.3.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are considered as a important and robust type of
Neural Networks due to their ability to process the information received from the past.
Having an internal memory enables them to remember important information about the
input that they have received.

In a RNN, the information cycles back through the network and creates a type of
feedback. This network architecture has the ability to takes into account the current
input and also the inputs it received in previous steps. Due to this characteristic, they
are good choices to process and analyse the sequential data such as time series, text,
natural language, speech, financial data, audio, video and etc. The difference in the flow
of information between Feed-forward Networks and RNN is illustrated in figure 1.6.

Figure 1.6: Feed-forward Networks and RNN architectures comparison

1.3.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is considered as a subcategory of deep neural net-
works and it is widely used in image processing and natural language processing applica-
tions. CNN is composed of four main building blocks:

• Convolution layer

• Non-linear activation function

• Pooling layer

• Fully connected layer

14

1.3 – Artificial Neural Networks (ANN)

Figure 1.7: Convolutional Neural Network structure

Convolution layer

As the name "Convolution" suggests, the main functionality of this layer is to extract
features from the input layers. If we consider images as a matrix of pixel values, they
could be feed into the network as the input. Convolution layer is a small size matrix
which will be slid over the input image for every position. An element-wise multiplication
between two matrices is performed and they are added together to form the output matrix.
In CNN terminology, the small matrix which slides through the image is called "filter"
or "kernel". The output matrix created by sliding the kernel over the original image
is referred to as "feature map". In practice, a convolutional neural network learns the
optimized values of kernels throughout the training phase.

The size of the feature map is determined by three characteristics of the kernel:

• Depth: Depth defines how many convolution layers are put on top of each other.

• Stride: Stride is the number of pixels by which kernel is slid over the input matrix.
For example, when stride is defined as 2, it means that the kernel is sliding through
the input by two pixels at each step.

• Zero-padding: Since convolution operation decreases the dimension of the input
matrix, zeros could be added to the input matrix to solve this dimensionality re-
duction. This process is called zero-padding.

Activation function

As mentioned in section 1.3, activations are used to allow a seamless transition from
inputs to outputs. Additionally, most of the real world event is non-linear by their nature
and adding a non-linearity factor to the network proved to be useful and helps the network
to generalize better. It is worth mentioning that the non-linear function operates in a
bit-wise matter.

Pooling layer

Pooling layer (also called downsampling or subsampling) is used to decrease the dimen-
sionality and complexity of each feature map while keeping the most important pieces
of information. In each pooling layer, it is necessary to define a neighborhood in which
some function will be performed to reduce complexity. Pooling has many different types:

15

1 – Introduction

• Max pooling:
Takes the maximum value from a neighbourhood in a matrix and pass it to the
next layer.

• Average:
Calculates the average in a neighbourhood of a matrix and pass it to the next layer.

• Sum:
Performs summation in a neighbourhood and sends the value to the next layer.

The effect of two types of pooling layers are shown in figure 1.8.

Figure 1.8: Max pooling and sum pooling on feature map

Fully connected layer

Fully connected layer is similar to the traditional neural network. It is a combination of
neural nodes fully connected to each other. Adding these layer enables the network to
consider the combinations of the feature maps created in previous layers and improves the
performance of the network. As shown in figure 1.7 the output of the network indicates
that which picture belongs to which class. Also, it is possible to generate a float number
as output. These problems are called classification and regression respectively. The
architecture of this network only enables us to have a unique output from the network
whether it is a real or float and since our purpose is object detection from the images, this
simple architecture does not fit for the object detection problem and further investigation
is needed to adopt this network to fit the object detection problem.

1.4 Object detection
Object detection is a technology associated with computer vision and image process-
ing which aims to detect instances of objects and their corresponding location in digital
images and videos. Object detection methods fall into two main categories, Machine

16

1.4 – Object detection

Learning based approach and Deep Learning based approach. In Machine Learning ap-
proach, after implementing the techniques below it is necessary to use a type of classical
Machine Learning approach such as SVM to make the classification. On the other side,
solutions based on Deep Learning are able to do the end-to-end object detection without
the requirement to define features. Deep Learning methods are utilizing convolutional
neural networks as a backbone.

• Machine Learning approaches:

– Viola-Jones object detection framework based on Haar features
– Scale-invariant feature transform (SIFT)
– Histogram of oriented gradients (HOG) features

• Deep Learning approaches:

– Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN)
– Single Shot MultiBox Detector (SSD)
– You Only Look Once (YOLO)

Further explanation of Deep Learning approaches in object detection will be given in
the next chapter.

Figure 1.9: An example of object detection with two classes

17

1 – Introduction

1.5 History of image processing and its relation to Deep
Learning and CNN

The amount of visual data exploded in recent years. In 2015 Cisco estimated that by 2017,
80 percent of all traffic on the net will be video. Moreover, every second, 5 hours of video
is uploaded on Youtube.It is critical to developing an algorithm capable of visualizing
and understand those data. the problem is that this type of data is hard to understand.
Computer vision is an interdisciplinary field and touches many areas of science. One of
the first cameras created by humans was made by Leonardo da Vinci in the 16th century.
Computer vision history starts around 1960s. Block world is the paper published by Lary
Robert as his Ph.D. thesis and is considered to be the first publication in the computer
vision field. He tried to translate the visual world into simplified structures to recognize
them and recreate them. In 1966 there was an MIT summer project called summer vision
project and the goal was an attempt to use summer workers to create a part of a visual
system. David Marr was an MIT vision scientist who has written an influential book
around the early 80s about his perspective and ideas about vision and how we should
process them. According to him, in order to reach the full 3D representation of the image
it is needed to go to several steps: [22]

• Primal Sketch: In this step mostly edges, bars, curves and boundaries are repre-
sented. This step is inspired by neuroscientist idea which indicates early stages of
visual processing is responsible to detect simple structures such as edges and curves

• 21
2 -D Sketch: In this step the surfaces and depth of the image should be extracted

• 3-D Model: Based on the previous steps, we extract the full 3-D model out of the
picture

This way of thinking has dominated computer vision for several decades. In 1987,
David Lowe tried to detect Razors by constructing lines and edges. [23] Up to this point,
those researches remained as just examples and not breakthroughs and they are not
considered as practical solutions for real-world problems.

The general focus changed from this point on from image recognition to image seg-
mentation. It was believed that image segmentation is an easier problem to solve. Image
segmentation is the task of grouping the pixels into meaningful parts and areas. One
of the first attempts on image segmentation was done using graph theory algorithm by
Malik in 1997. [24]

At the beginning of 2000, statistical Machine Learning approaches like SVM and
boosting started to go gain momentum. As a result, Viola and Jones developed a real-
time face detection framework using the AdaBoost learning algorithm. [25] David Lowe
developed a technique called Scale Invariant Feature Transform (SIFT) to detect objects.
The main idea was that to match an object to the same object in a different image, only
some parts of image or features are needed and they remain constant. [26]

Using the same idea of David Lowe which was extracting features from the images
and concentrate on those features instead of the whole image was the inspiration for
most of the computer vision researches. In 2005, Histogram of Oriented Gradient (HOG)

18

1.6 – Remote sensing and its importance

Figure 1.10: Razor detection done by David Lowe [23]

technique was used to detect humans. In this method, it endeavors to catch the shape
of structures in the district by computing the gradient. [27] In the early 2000s, a good
amount of visual data was available and enables scientists to measure the amount of
progress that they make. One of the earliest benchmark datasets was PASCAL composed
are 20 object classes and it has around several thousand images per category. ImageNet
is another type of dataset for image recognition which was created in 2009. It consists
of 14 million images and 22 thousand categories. By having this large dataset, over-
fitting was not a concern anymore for visual object recognition problem. Also, ImageNet
team created a challenge called Large Scale Visual Recognition Challenge and asked the
scientists from around the world to develop algorithms which are able to recognize images
in their dataset. The results of ImageNet competition is shown in figure 1.12.

The most important part of this graph is the year 2012 in which a breakthrough
happened and the error rate decreased significantly about 10 percent. The winner of that
year used Convolutional Neural Network to beat other algorithms. From that year
on, all other competitors used CNN as a basis for their network architecture and since
then CNN became the state of art model for image recognition and image processing.
Each year algorithms outperformed the previous networks and in 2015 RestNet was able
to surpass the humans in image recognition.

1.6 Remote sensing and its importance

Remote sensing is the act gathering information about an object by using a device able to
receive information without any physical contact with the desired object. Today the term
is mostly used to describe the process of collecting and processing information based on
satellite images. The first applications of remote sensing were wartime reconnaissance,
disaster assessment and etc. Mostly during world war one. Actual evolution of remote
sensing started around the second half of the twentieth century when artificial satellites

19

1 – Introduction

Figure 1.11: Object detection using SIFT

were developed and expanded the boundaries of remote sensing to global scale.
In Remote Sensing, two types of sensors are used more than others. Passive sensors

and active sensors. Passive sensors receive information by gathering the radiation which
is emitted by the object such as photography and infrared. On the other hand, active
sensors send energy to scan an object and collect the received signal. RADAR and LIDAR
are examples of active remote sensing.

Machine Learning and Deep Learning solutions are being progressively researched and
implemented in various fields of science. They are used to analyse and process of satellite
images to acquire a explicit representation. Machine Learning is considered as an priceless
tool to analyse data gathered from remote sensing and telemetry. Recent advances in
Deep Learning architectures have shown promising results over statistical counterparts
in target object detection and identification. Although such learning architectures are

20

1.6 – Remote sensing and its importance

heavily dependent on computing resources, they are easy to use compared to sophisticated
statistical models. Further, Deep Learning architectures are also able to render feature
engineering as a part of their learning process which makes them extremely powerful in
target object detection and identification process.

One of the most important applications of remote sensing is object detection which
enables us to track and detect a specific object from the image taken from a satellite. The
main challenges in the field if object detection for remote sensing is the large changes in
the appearance of an object due to variations in the amount of light in the environment
and also the low resolution of the images taken from the satellite.

Figure 1.12: ImageNet results

Figure 1.13: Active and passive remote sensing sensors

21

1 – Introduction

1.6.1 Related work

In the last years, a large number of methods and algorithms have been developed for object
detection from satellite images. Because of the powerful capability of learning high-level
and more complex and meaningful feature descriptions, deep CNNs are investigated in
object-detection methods in opposition to the more traditional methods developed by a
classifier based on handcrafted features. [28] [29] Here, some related work using CNN
will be reviewed for both exclusive and non-exclusive object detection. A vector-guided
vehicle detection method was introduced by Jin and Davis for IKONOS satellite. In this
method, a shared-weight neural network is used to learn the absolute model of the vehicle.
The shared-weight NN combines both spatial and spectral properties and classifies pixels
into vehicles and non-vehicles. [30]

To solve the problem of the large-scale variance of objects, a hybrid deep CNN model
was recommended to detect vehicles from satellite images. In the suggested model, feature
maps of the last convolutional layer are divided into different blocks of variable-receptive
field size to extract multi-scale features. this model divides all feature maps of the last
convolutional and max-pooling layer of the CNN into multiple blocks of variable-receptive
field size to extract multi-scale features. [31] Another solution to vehicle detection was
using a graph-based superpixel segmentation to obtain image patches and then, by train-
ing a CNN model, it would be determined whether the extracted patch contains a vehicle
or not. [32]

In other methods, instead of creating the network from scratch, a pre-trained network
is used for object detection. A supervised learning framework is utilized to train an object
detector. At the first phase, a pre-trained network is used as a transfer learning method
to obtain high-level features. Afterward, the negative bootstrapping scheme is added to
the training process to reach a faster convergence of the detector. [33] Another method
which is used to detect oil tanks is to use the combinations of deep features extracted
from the pre-trained convolutional network and local features. In the next step, an ellipse
and line segment detector are used to detect candidate parts of the image. [34]

The sliding window is another method which was used to detect objects. It is a
brute force approach in which a small portion of the image is selected and given to the
network for classification. This part of the image is called the window and is sliding on
the whole image with different ratios. Sliding window approach was used after training
the pre-trained GoogLeNet network twice with two different fine-tuning options to create
a framework for object detection. [35]

One of the challenges in satellite object detection is the orientation of the object.
To solve this issue, a set of pre-trained features are extracted from combinations of net-
work layers to create an orientation-robust framework for object detection. The selective
search method is implemented to find the proposed regions and a linear SVM is used for
final classification. [36] Another effective approach to solve the orientation problem is to
enforce a new objective function in the problem and trying to optimize it. Additionally, a
regularization constant is added to make sure that before and after the rotation, training
samples have similar features. [37]

22

1.7 – Thesis objectives and outline

1.7 Thesis objectives and outline
The main goal of this thesis is to develop and implement an algorithm to detect ships
based on satellite images by employing Deep Learning algorithms.

Object detection algorithms have the potential to be applied to satellite images to
detect the various object. One important application of object detection on satellite
images is ship detection due to increasing of shipping traffic in recent years. There are
more ships used in today’s world and this phenomenon leads to increase the chances
of breaches at sea like ship accidents, piracy, illegal fishing, drug trafficking, and illegal
cargo movement. This has urged many organizations such as environmental protection
agencies, insurance companies, and national government authorities, to have a closer look
and pay more attention over the open seas.

For object detection, various methods are implemented and compared to achieve the
best result. Nowadays object detection methods are maturing very rapidly and thanks
to deep learning, new algorithms and models keep on outperforming the previous ones.
For instance, methods such as SSD, YOLO, R-CNN, Fast R-CNN, Faster R-CNN are
among the state of art models and they are able to deliver high accuracy and reasonable
processing speed for a wide variety of applications. For the specific task of ship detection,
Faster R-CNN and SSD method are implemented and compared due to their reasonable
execution speed and high accuracy in comparison with other architectures.

The biggest challenge is the lack of appropriate dataset for ship detection and to
overcome this issue, a synthetic dataset was created. The dataset was generated using
Python programming language and OpenCV and PIL libraries were employed. Our
synthetic dataset was divided into two parts for training and testing. 80 percent of data
is used as training dataset and the remaining 20 percent is used as a test dataset.

After training both Faster R-CNN and SSD architectures on the synthetic dataset,
we arrived to a conclusion that SSD method struggles in detecting small objects because
of utilizing a limited set of default boxes in its architecture. On the other side, Region
Proposal Network in Faster RCNN allows for better performance regarding small object
detection. Based on the results mentioned, Faster RCNN is having a better accuracy and
performance. Thus it is selected as a baseline for ship detection.

The developed algorithm was applied to real images taken from satellite images. Even
though our object detector was trained on a synthetic dataset, it was able to detect ships
with a good performance. Using the synthetic dataset approaches enables us to be able
to perform deep learning solutions to the vast variety of problems in which a standard
dataset is not available for training.

23

24

Chapter 2

State-of-the-art models for object
detection

Object detection problem definition is to find the location of the objects in an image
(object localization) and define the category that each image belongs to (object classifi-
cation). In classical object detection models, the pipeline was divided into three stages:

• Region selection: Since object could appear in any position with different sizes in
the image, the classical approach was to use a multi-scale sliding window which can
cover all parts of the image. The drawback of this approach is that based on a large
number of windows created, it is computationally expensive.

• Feature extraction: To be able to detect a various object, it was necessary to extract
visual features from the image. These features allow for robust representation of
the desired object.

• Classification: In the last step, a classifier will be used to distinguish between a
goal object and other categories.

Those classical approaches based on the above architecture was not able to provide
good results. The biggest challenges of those models were the computational cost of the
sliding window approach and hand-engineering the low-level feature extractor.

When Deep Neural Networks (DNNs) started their dominance in the image processing
field, they also have a massive effect on object detection. Since DNNs have a deeper
model and architecture, they are able to extract more complex feature than traditional
approaches. Additionally, Deep Learning training algorithms allow to learn the object
features and representations automatically and without the need to design them manually.
[38]

The state of the art object detection models are classified into two main categories:

• Region proposal based

• Regression/classification based

25

2 – State-of-the-art models for object detection

In region proposal based methods, a region of the image will be selected and it will
be classified to the different categories. Most important region proposal based methods
are:

• R-CNN

• Faster R-CNN

• Fastest R-CNN

On the other hand, in regression/classification based framework, object detection
problem is seen as a regression or classification problem and the process is done in only one
step which leads to having a faster response. The state of the art regression/classification
based methods are:

• You Only Look Once (YOLO)

• Single Shot MultiBox Detector (SSD)

In this chapter, above mentioned object detection state of the art models will be
discussed in more details.

2.1 Region proposal based methods

2.1.1 R-CNN

R-CNN method was used to improve the feature extraction and accuracy of finding regions
of interest. When R-CNN was proposed and published in 2014 it was able to reach the
mean average precision of 53.3% which was about 30% improvement with respect to the
previous best result. [39]

The process done by R-CNN can be divided into three steps:

• Region proposal generation: The R-CNN uses selective search method to create
two thousand region proposals for each image. In selective search, initial sub-
segmentations are generated and similar parts are combined together to create a
larger region.

• CNN based deep feature extraction: In this step stage, each proposed region is
resized to have a fixed resolution. The Alexnet [40] convolutional neural network
is used to create a 4096-dimensional feature as the final representation. Because of
the structure of Deep Learning networks, this type of rich and robust representation
is obtainable.

• Classification and localization: In the last step, region proposals are scored with
a pre-trained linear SVM. Those scores are then adjusted by a bounding box re-
gression. Afterward, a non-maximum suppression is utilized to generate the final
bounding boxes for the specific object.

26

2.1 – Region proposal based methods

One of the most important drawbacks of this method is the high cost of computa-
tion. For instance, generating the two thousand regions could take around two seconds.
Another problem of this network was that due to the existence of fully connected layers
in the architecture, the input image should have a fixed size (in this case 227 by 227).

Figure 2.1: R-CNN flowchart [39]

2.1.2 Fast R-CNN

Basic R-CNN model has been rapidly improved. In this section, changes that have been
introduced to R-CNN model to reach Fast R-CNN will be introduced. Because of the
fully convolutional layers in the base CNN classifier of R-CNN, input image should have
a fixed resolution of 224 by 224. Thus, after extraction the object proposals, they should
be rescaled and this change of resolution can change the visual aspect of the object. To
overcome this issue, the last pooling layer of any CNN network could be substituted by
Spatial Pyramid Pooling layer (SPP).

Spatial Pyramid is built on top of the region of interest layer. The first level of the
pyramid architecture is a region of interest itself. On the next level, the region is divided
into four equal cells. On the last level, the region will be split into 16 parts on four
by four grid. After these divisions, average pooling will be applied to each part. For
instance, if the feature map has depth os 256, then by applying the pooling layer to
each cell, we produce a vector which has the length of 256. After applying the pooling
layer, all outputs are concatenated together and they are passed as the input to the fully
convolutional layer. by utilizing this method, we obtained a feature representation which
has a fixed length regardless of input image resolution. Using this method dramatically
increase the processing speed.

In the Fast R-CNN paper, it was proposed to use the Region of Interest Pooling
layer (ROI) layer instead of SPP layer. ROI layer is a simplified version of SPP layer,
only the last layer of SPP is used and others are neglected. In addition to ROI layers,
two more changes have been made in Fast-RCNN with respect to original R-CNN. First,
instead of using SVM as classifier, softmax is used. Second, multi-task training is used
to train classifier and bounding box regressor simultaneously. The input image and set
of object proposals are supplied to the neural network. The neural network produces a
convolutional feature map. From convolutional feature map, feature vectors are extracted

27

2 – State-of-the-art models for object detection

using Region of Interest Pooling layer. Then, the feature vectors affect into a sequence
of fully convolutional layers. The output of fully convolutional layers are branched into
softmax for classification, and a regressor to generate four real-valued bounding box
coordinates output. Fast R-CNN can be trained to this multi-task loss. This multi-task
loss is sum of classification loss, and bounding box regression loss. For classification, log
loss is used. The smooth L1 loss is used for the bounding box regression. Because in this
case we do not have a separate SVM training, Fast R-CNN can be trained end-to-end,
which is faster than previous method. weakness of this method is that this method still
rely on proposal generation methods such as Selective Search to find best regions and
this process is time consuming and takes most of the test time. [41]

Figure 2.2: SPP architecture [42]

(a) Fast R-CNN flowchart [41] (b) Fast R-CNN architecture

Figure 2.3: Fast R-CNN Network

28

2.1 – Region proposal based methods

2.1.3 Faster R-CNN

Next step towards the evolution of R-CNN model is Faster R-CNN. This method can
be considered as the combination of Fast R-CNN model and Region Proposal Network
(RPN). In Faster R-CNN, we are able to detect objects in a single pass with a single neural
network which significantly improves the speed of object detection procedure. RPN is
only a convolutional neural network and it is utilized to generate a proposal regions
and replace classical region proposal methods such as Selective Search. The Region
Proposal Network slides over convolutional feature map. RPN simultaneously classify
the corresponding region as an object or non-object in the location of the bounding box.
The position of the sliding window position gives us information about the location of
the object with reference to the image. Box regression is used to fine-tune localization
by utilizing the sliding window as a reference. At each sliding window position, a set of
object proposals is generated. Each of the created proposals could be in different sizes and
aspect ratios. Those proposals are called "anchors". Anchors help improving handling
the objects with different sizes and aspect ratios and it could be seen as a sliding window
that could have various sizes and aspect ratios.

During the training of RPN, the anchor is treated as a positive value if intersection
over union (IoU) is greater than 0.7, or it reaches maximum possible value for all anchors
for this specific ground truth example. It is negative if IoU is less than 0.3. Due to the
new architecture of Faster R-CNN, it is trainable end-to-end as a unique network which
has four separate losses:

• RPN classification loss: Defines the extent of bounding boxes created by RPN
network which are accurately classified as foreground or background. The cross
entropy loss function is implemented to calculate classification loss.

• RPN regression loss: The distant measure between the predicted bounding boxes
and ground truth bounding boxes. The summation of all the regression losses are
calculated by utilizing smooth L1 function.

• Fast R-CNN classification loss: Defines the extent of bounding boxes created by
RPN network which are accurately classified as correct object class and not as
foreground or background. Same as RPN classification loss, cross entropy is used
but in this case it is calculated based on all available classes and not only foreground
and background.

• Fast R-CNN regression loss: It is similar to RPN regression loss but in this case
the loss is class specific.

Since in new architecture there is no need to have an external region proposal method,
the execution speed is improved significantly.

Despite having the anchor boxes, it is difficult for RPN to handle objects with various
scales and sized since RPN has a fixed receptive field. To solve this problem, a set of
RPN could be trained for different scales so each RPN has dissimilar convolutional layers
as input and receptive field has various sizes now. This method substantially improves
the ability to detect a very small and very large object in Faster R-CNN.

29

2 – State-of-the-art models for object detection

Figure 2.4: Faster R-CNN architecture

2.2 Regression/Classification based methods
Region proposal based frameworks are created by combining several stages together, re-
gion proposal generation, feature extraction with CNN, classification and bounding box
regression. Despite recent end-to-end architecture of the Faster R-CNN, an alternative
training is needed to fine-tune the shared convolution parameters between RPN and de-
tection network. Respectively, the time taken to take care of diverse components becomes
the challenge in real-time applications where speed is crucial. One-step frameworks based
on regression/classification methods could be used to decrease time expense.

2.2.1 YOLO

The intention of the creators of YOLO was that they wanted to have one neural network
to do object detection completely.

At the first step in SSD architecture, a grid is put on the top of the original image
to divide it into equal parts. If the middle of an object (not all of it) falls into a specific
grid cell, that grid cell is responsible to detect that object. each cell in the grid is
responsible to predict a few different things. The first thing to predict is a bounding box
and confidences related to it which indicates the probability of existing an object in the

30

2.2 – Regression/Classification based methods

cell. In the next step, all of those bounding boxes and their corresponding confidence are
applied to the image and create a map of all the possible objects in the image. Then each
cell is responsible to also predict a class probability.

One thing to notice is, the prediction done by the cell is "conditional" in a sense
that if there exists an object in that cell of the image, what it would be. Now if we
take these conditional probabilities and multiply them by the confidence values from
bounding boxes, we have all of the bounding boxes weighted by their actual probability
for containing the actual object. Lastly, by adding a threshold to these predictions we
reach the final result. Also to avoid having multiple bounding boxes for the same object,
non-maximum suppression is used. [43]

YOLO network architecture is inspired by the GoogLeNet model which was used for
the task of image classification. the network has 24 convolutional layers followed by two
fully connected layers. The network architecture is shown in figure 2.5.

(a) YOLO Model
(b) YOLO architecture

Figure 2.5: YOLO network [43]

2.2.2 Single Shot MultiBox Detector (SSD)

One of the biggest problems of YOLO is that this network struggles to detect small objects
due to the spatial constraints forced to bounding box predictions. [43] Additionally, due to
having several downsampling layers in YOLO architecture, it is having difficulty when it
comes to detecting an object in new and unusual situations. Because of above-mentioned
problems of YOLO, scientists suggested a new model called the Single Shot MultiBox
Detector (SSD). In this model, instead of using the fixed grids suggested by YOLO, a set
of anchor boxes with different scales and aspect ratios are utilized.

it is possible to reuse the computation already done for the problem of image classifi-
cation to solve object detection problem by using activations from the last convolutional
layer. In this point, we have the spatial information but represented on a smaller scale.
at this point it is possible to use a convolutional layer to classify each cell and also from
the same layer, we could attach another layer to find the four numbers corresponding
bounding boxes. using this method it is possible to do the classification and localization
utilizing one network architecture.

SSD matches the objects by using default boxes which have various aspect ratios.
each element in the feature map has a certain number of bounding boxes associated with

31

2 – State-of-the-art models for object detection

it and any of those default boxes which has an Intersection over Unit(IoU) of 50 percent
or more is considered as a match. in the SSD architecture, six feature maps are presented
and each is responsible for a different object scale. This allows the network to detect
the objects across a large range of scales. As mentioned for each default box network
outputs a vector of length C which represents the probabilities of each box containing an
object belongs to each class C. Also an offset vector is generated which has four numbers
representing the predicted offset from the default box to the actual position of the object.

In the SSD architecture, VGG16 is used as the backbone network and several other
feature layers are added to the end of the networks. Those layers are responsible for
predicting the offset of each default box having various scales and aspect ratios. Also,
their corresponding confidence should be calculated. Finally, the network is trained with
the weighted sum of localization loss and confidence loss. [44]

Figure 2.6: SSD architecture

2.3 Some precision metrics definitions

It is necessary to comprehend some basic criteria related to statistics, classification and
object detection to fully understand the accuracy metrics utilized in object detection.

2.3.1 True Positive, False Positive, False Negative and True Negative

To evaluate the performance and accuracy of a object detection architecture, some pri-
mary metrics are defined as follows:

• True Positive (TP): A correct detection. Detection with IOU ≥ threshold.

• False Positive (FP): A wrong detection. Detection with IOU < threshold.

• False Negative (FN): A ground truth not detected.

• True Negative (TN): Does not apply in object detection. It indicates the bounding
boxes which should not be detected and since there is so many of them in each
image, it is ignored.

32

2.3 – Some precision metrics definitions

2.3.2 Intersection Over Unit (IoU)

Intersection Over Union (IoU) is calculated based on Jaccard Index evaluating the overlap
between two bounding boxes. It requires a ground truth bounding box and a predicted
bounding box are needed to find IoU. Using this measure, I could be stated if detection
is valid (True Positive) or not (False Positive). IoU is defined by the overlapping the area
between the predicted bounding box and the ground truth bounding box divided by the
area of union between them. The definition is shown in the equation below:

IoU = area of overlap
area of union = (2.1)

2.3.3 Precision and recall

Precision measures how accurate is your predictions. i.e. How much the predictions made
by the predictor is correct. How many of the detected boats are actually boats and not
ships?

Recall indicates how good you find all the positives. For example, how many of the
actual desired objects presented in the picture are detected by the system.

The mathematical definition for recall and precision is shown in equation 2.2:

Precision = TP

TP + FP
= TP

all detections

Recall = TP

TP + FN
= TP

all ground truth

(2.2)

2.3.4 Mean Average Precision (mAP)

The mAP is the metric utilized to measure the accuracy of object detectors. It is the
average of the maximum precisions at several values of recall. A way to perform a com-
parison between different object detectors is to find the area under the curve (AUC) of the
Precision and Recall curve. Since the curves are mostly having zigzag behavior, compar-
ing different curves is a difficult task because the curves cross each other frequently. The
idea of Average Precision (AP) is defined as approximating the area under the Precision
and Recall curve and then finding the area under it.

33

2 – State-of-the-art models for object detection

The interpolation of the curve is calculated based on the equation below:

1∑
r=0

(rn+1 − rn)Pinterp(rn+1)

Pinterp(rn+1) = max
r̃:r̃≥rn+1

P (r̃)
(2.3)

P (r̃) is measured Precision at Recall value of r̃. AP is now calculated by interpo-
lating the precision at each level of r, taking the maximum precision value whose its
corresponding recall value is greater or equal than r +1. Hence, the estimated area under
the curve is determined. The mean Average Precision (mAP) score is computed by taking
the mean of AP over all classes for PASCAL VOC2007 dataset or over all IoU thresholds
for Microsoft COCO dataset.

34

Chapter 3

Problem definition

3.1 Modern maritime piracy

It might seem strange and unbelievable but seaborne piracy is still a significant interna-
tional issue in the 21st century. it is estimated that billions of dollars are lost per year
due to piracy worldwide. [45] Piracy of maritime reached its maximum in 2010 in which
around 445 incidents were reported. The most dangerous regions with a great chance of
pirate attacks include Indonesia, the Philippines, Nigeria, and Somalia. Strategic pas-
sages for oil transport such as Bab-el-Mandeb, near Somalia, or the Strait of Malacca off
the Indonesian coast have become main targets for maritime crime in recent years. In
2009, around 13.6 million barrels of oil per day was passed through the Strait of Malacca.
This amount of oil is more than the amount of oil imported to the European Union each
day. Also, the number of incidents occurred in Vietnam was quadrupled between 2014
and 2015. [46] Pirates also use larger ships, often called "mother ships" which they are
used to supply the smaller motorboats.

Instead of targetting the ship cargo, modern pirates are willing to target the personal
belongings of the crew and the contents of the ship’s safe, which could contain large
amounts of cash. On the other hand, the pirates might force the crew to go out off the
ship and after sailing it to a port and repainting the ship, they create a new identity for
the ship using false papers and resell the ship. [47]

Also, in some other cases, pirates attacked some luxury resorts and kidnapped the
people and bring them to their own hideouts. After capturing them for some time, pirates
ask the families to pay a ransom to release them. [48] Since 2008, Somali pirates located
in the Gulf of Aden earned about 120 million US dollar per year. This act of piracy
reportedly costs the shipping industry between 900 million US dollar to 3.3 billion US
dollar annually. [49]

3.2 Anti-piracy measures

In the 20th century, it was traditional for merchant vessels not to be armed and carry
weapons, the U.S. Government has recently changed the rules in this matter and now it
is considered as "best practice" for vessels to have a team of armed security guards. The

35

3 – Problem definition

Figure 3.1: Piracy threat map between 2005 and 2010

crew can be given weapons training, and it is legal to fire warning shots in international
waters to keep the pirates away. [50]

Also, the Automatic Identification System (AIS) is developed by the European Space
Agency (ESA) to help the ship protect themselves. AIS is being used by the ships
which weight over 300 tons. AIS transmits information about the ship position and its
movements. If any unexpected change happens in this information, it could indicate a
potential thread for the ship. Initially, this data was able to be received by if there was a
ship nearby. But recently specific satellites have been launched which are able to receive
and transmit the data sent from ships. [51]

The above-mentioned solutions are useful when the pirate attack already happened
and does not help to prevent the risk of attack. We proposed a ship detection system
which is able to detect the ships by processing the images received from the satellite
images. In this proposed method, the boat and cargo ship is detected and an alarm could
be raised to warn the cargo ship and also the authorities. By utilizing this method the time
of the response to the attack is reduced. In these types of attacks, every second count and
could lead to saving the lives of crew members by performing the right countermeasures.

3.3 Sentinel-2 mission
Due to cost-free availability and ease of use and access to satellite images, Sentinel-2
satellites were chosen as the main source of aerial images for ship detection. Sentinel-2
is a mission from the EU Copernicus Programme for Earth observation. Optical images
are acquired at high spatial resolution (10m to 60m). A broad range of services and
applications are supported by this mission including, agricultural monitoring, emergencies
management, land cover classification or water quality. Sentinel-2 has been developed by

36

3.4 – Synthetic dataset

European Space Agency (ESA), and the satellites were manufactured by a consortium
led by Airbus DS.

Sentinel-2 satellites support multi-spectral data which has 13 bands: four of them are
bands at 10 m, six bands at 20 m and three bands at 60 m spatial resolution. It covers
land surfaces from 56°S to 84°N, coastal waters and the Mediterranean Sea. Revisiting
happens every 5 days with the same viewing angles. Field of view is 290 Kilometers. To
have high mission availability two identical satellites called Sentinel-2A and Sentinel-2B
are operating together. The planned orbit for this mission is a Sun-synchronous orbit at
786 km altitude and 14.3 revolutions per day, with a descending node at 10:30 a.m. This
orbit is chosen to have the best trade-off between minimizing the cloud cover and having
good sun illumination. [52]

Figure 3.2: Sentinel-2 satellite orbital configuration [52]

3.4 Synthetic dataset

As mentioned in chapter 1, one of the prerequisites of solving any Machine Learning
problem is having a suitable dataset. For the case of ship detection, this type of dataset
was not publicly available by the time of exploiting this project. Thereby, a synthetic
and artificial dataset was created to solve the issue.

The dataset was created by employing OpenCV and PIL open-source libraries. Around
five hundred images were generated. In each image, the random number of boats and
cargo ships are placed on different sea backgrounds. The location and orientation of boats
and cargo ships are chosen randomly. Furthermore, the angle between the wakes and the
length of the wake for each boat are chosen arbitrarily. Some samples of the generated
images are shown in 3.5.

37

3 – Problem definition

Figure 3.3: Schematic View of the Deployed SENTINEL-2 Spacecraft (image credit:
EADS Astrium)

Figure 3.4: Generated images from synthetic dataset

38

3.4 – Synthetic dataset

Figure 3.5: Generated images from synthetic dataset

The output of the developed code is the generated images of boats and cargoes along-
side with their ground truth data indicating the name of each image, class of the detected
object (boat or cargo in this case) and the corresponding coordinates of each bounding
box. The synthetic dataset was divided into two parts for training and testing. 80 percent
of data is used as training dataset and the remaining 20 percent is used as a test dataset.

Figure 3.6: Some samples of the ground truth data generated in CSV format

39

40

Chapter 4

Use Case Results

Up to this point, we gathered all of the required prerequisites including the dataset to
tackle our object detection problem. There are many Deep Learning frameworks already
available which are designed to help the user easily develop a Deep Learning algorithm
without any need to hard-code all the mathematical concepts related to Deep Learning
such as backpropagation, gradient descent and etc. Mentioned frameworks facilitate the
process of gathering data, training, making predictions, and extracting future results.
One of the most popular Deep Learning frameworks is Tensorflow which is used in this
project for object detection.

4.1 Google Tensorflow

Tensorflow was originally developed by Google Brain Team as an open-source library
initially made to handle complex numerical computations in a large scale.Thereafter, the
framework is implemented to Machine Learning and Deep Learning concepts. Tensorflow
employs Python programming language to produce the front-end API for application de-
velopment while the developed applications are executed in C++ which is significantly
faster than Python. It can be used in a wide variety of Machine Learning and Deep
Learning applications including image recognition, natural language processing, regres-
sion problems and many more. One of the advantages of using Tensorflow is the support
for production prediction at large scale applying the same model used for training.

Due to massive investment and support by Google, an application developed by Ten-
sorFlow is executable on a wide variety of targets including a local machine, a cluster
in the cloud, iOS and Android devices and modern browsers. Likewise, training on the
GPU is supported by Tensorflow which dramatically increases the computation speed
and decreases the amount of time required for training the model. An additional benefit
of using Tensorflow for this project is its native support for state of the art models used
for object detection. Some of the supported architectures are:

• SSD

• Faster RCNN

41

4 – Use Case Results

• Mask RCNN

The models mentioned above are available in different versions and they vary in the
base network architecture. As mentioned before, all of the object detection models are
using an image classification network as their backbone. For instance, Faster RCNN
models are available with ResNet50, ResNet101, InceptionV2, and NASnet.

The backbone of Tensorflow is built on Tensors and Computational Graphs. In math-
ematics, a Tensor is an N-dimensional vector used to describe an N-dimensional space.
figure 4.1 illustrates the concept of Tensors having minimal dimensions.

Figure 4.1: Some examples of Tensors

A Computational graph is defined as a set of interconnected entities, called nodes.
The connection between those nodes is established via edges. In a dataflow graph, the
edges allow data represented in Tensors to flow between the nodes in a specific manner.
To give an example, consider the equation of a = (b + c) ∗ (c + 2). The corresponding
computational graph is shown in figure 4.2.

Figure 4.2: Computational graph example

In the Tensoflow environment, the written code is able to only generate the graph

42

4.2 – Object detection by Tensorflow

and initialize the sizes of Tensors to be used and operations to be executed on them.
It is not responsible to assign any numerical value to any of the Tensors. The graph is
not executed unless the session is run. Hence, to assign the values and force them to
flow through the graph, a session should be created. Although in the second version of
Tensorflow API, eager execution is enabled which allows the user to execute Tensorflow
kernels immediately. This feature makes debugging easier and more straightforward.
Additionally, it is now possible to make use of Python built-in control flow structures such
as loops and conditional function within Tensorflow API. The architecture of Tensorflow
API is shown in figure 4.3.

Figure 4.3: Tensorflow API Architecture

4.2 Object detection by Tensorflow
After having the dataset ready and choosing the suitable Deep Learning framework to use,
the input data should be converted in a format which is understandable by our framework.
The format accepted by Tensorflow frame-work for object detection is called TFRecord
file format. Before converting our data to TFRecord format, they should be divided into
two parts for training and testing. 80 percent of data is used as training dataset and the
remaining 20 percent is used as a test dataset. According to Tensorflow documentation,
the input images should be converted to numerical values before creating the TFRecord
file. Moreover, all of the input data including encoded images, file names, bounding box
coordinates, image resolution and corresponding classes have to be employed to generate a
TF.Example proto. After TF.Example proto is generated, we are able to create TFRecord
files needed for training. TFRecord files are considered the binary storage format to be

43

4 – Use Case Results

used by Tensorflow. using a binary file format leads to a significant improvement in
the performance of the import pipeline and consequently reduce the training time of the
model. Binary formatted data takes less space on disk, accordingly takes less time to
copy and could be read much more efficiently from disk. Another advantage of using
TFRecord format is that instead of loading all the data on the memory, only the data
which is needed at the time (e.g. a batch) is loaded from disk and then processed. This
allows for more efficient use of available hardware, especially when working with a large
amount of data which is usually the case when dealing with object detection problems.

As mentioned before, Tensorflow library supports built-in state-of-the-art object de-
tection models. Most of the object detection models in Tensorflow are pretrained based on
Microsoft COCO dataset. Microsoft COCO dataset is designed specifically to tackle ob-
ject detection, image segmentation, and image captioning tasks. In total COCO dataset
has 328,000 images including 2,500,000 labeled instances and 80 objects. categories. [53]

The Task of reusing a pre-trained network architecture as a starting point for a second
assignment is called transfer learning. It is the improvement of learning in a new task by
means of the transfer of knowledge from a related task which has already been learned.
In transfer learning, an initial network is trained on a base dataset which is COCO in our
case. Afterward, we transfer the learned features to a second network to be trained on
a final dataset. By employing transfer learning we would save the time needed to train
the network from scratch. Moreover, it enables us to use a comparably smaller dataset
to solve our problem.

In Tensorflow object detection environment, various options and configurations for the
training and evaluation process are stored in a file so-called config file. The configfile
make use of protobuf files to configure the network training and evaluation parameters.
At the highest level, the config file could be split into 5 parts:

• The model configuration: The type of model to be trained is determined in this
part.

• The train_config: Contains the parameters used for model training such as SGD
parameters, feature extractor initialization values of feature extractor and input
preprocessing.

• eval_config Defines the sets of the metrics to be used and reported during evaluation
process

• train_input_config: It is used to define the training dataset.

• eval_input_config: It is used to define the dataset in which the model will be
evaluated on.

The main structure of configuration file is shown in listing 4.1.

44

4.2 – Object detection by Tensorflow

Listing 4.1: General structure of config file
model {
(. . . Add model c o n f i g here . . .)
}

t ra in_con f i g : {
(. . . Add t ra in_con f i g here . . .)
}

t ra in_input_reader : {
(. . . Add tra in_input c o n f i g u r a t i o n here . . .)
}

e v a l _ c o n f i g : {
}

eva l_input_reader : {
(. . . Add eval_input c o n f i g u r a t i o n here . . .)
}

There are various model parameters to be configured. The optimal settings are highly
dependent on the desired application. As mentioned in chapter 2, Faster R-CNN models
perform better where high accuracy is desired. On the other hand, if processing time is
considered as the most important factor, SSD models are recommended. In ship detection
case, both network architectures are tested and compared to find the best choice for
our specific problem. The parameters defined in this part depends on the back-bone
architecture of the network. A noteworthy parameter to be mentioned in this section
is num_classes which states the number of classes to be detected by the architecture.
Although, one of the most important fields in this section is num_classes which indicates
how many classes we have in our training and evaluation data.

Inputs accepted by The Tensorflow Object Detection API should be in the TFRecord
file format. Users must specify the locations of both the training and evaluation TFRecord
files in the configuration file. Furthermore, users should also create a label map file, which
corresponds to the mapping between a unique class id and class name. Mentioned label
map file should be saved in .pbtxt format. It should be noted that the defined label map
file should be identical for both training and evaluation. Label map file used for ship
detection is defined in listing 4.2. Since we have two object classes, boat, and cargo, two
entities are defined alongside with their corresponding ids.

Listing 4.2: Defined label map file
item {
id : 1
name : ’ boat ’
}
item {
id : 2
name : ’ cargo ’

45

4 – Use Case Results

}

The structure of input configuration is shown below:

Listing 4.3: Input configuration structure
t f_record_input_reader {
input_path : " / usr /home/username/ data / t r a i n . r ecord "
}
label_map_path : " / usr /home/username/ data / label_map . pbtxt "

The train_config section is responsible to determine various parts of the training
process:

• Initialization of model parameters.

• Preprocessing. the inputs.

• SGD parameters.

In model parameters initialization, a pre-trained object detection network should be
defined. the field called fine_tune_checkpoint is used to provide the path to the pre-
defined checkpoint. Mentioned checkpoints are downloadable from Tensorflow object
detection GitHub repository.

Input preprocessing part is utilize to augment the provided dataset by applying func-
tion including but not limited to:

• Image normalizing.

• Randomly flip the images horizontally.

• Randomly flip the images vertically.

• Randomly scale the value of each pixel in the images.

• Randomly scale the images.

• Randomly crop the images.

• Rotate random images by 90 degree.

• Randomly adjust the brightness, contrast and hue of images.

SGD parameters are hyper-parameters for gradient descent including the type of the
optimizer, learning rate value and optimizer learning rate configurations.

Optimizers supported by Tensorflow are:

• RMSProp optimizer.

• Momentum optimizer.

• ADAM optimizer.

46

4.2 – Object detection by Tensorflow

Configurations available for optimizer learning rate include:

• Constant learning rate.

• Manual step learning rate.

• Exponential decay learning rate.

• Cosine decay learning rate.

An example of train_config section is shown in listing 4.4.

Listing 4.4: train_config sample
batch_size : 1
opt imize r {

momentum_optimizer : {
l ea rn ing_rate : {

manual_step_learning_rate {
i n i t i a l _ l e a r n i n g _ r a t e : 0 .0002
schedu le {

s tep : 0
l ea rn ing_rate : .0002

}
schedu le {

s tep : 900000
l ea rn ing_rate : .00002

}
schedu le {

s tep : 1200000
l ea rn ing_rate : .000002

}
}

}
momentum_optimizer_value : 0 . 9

}
use_moving_average : f a l s e

}
f ine_tune_checkpoint : " / usr /home/username/tmp/model . ckpt−#####"
from_detect ion_checkpoint : t rue
load_al l_detect ion_checkpoint_vars : t rue
gradient_clipping_by_norm : 10 .0
data_augmentation_options {

random_horizontal_f l ip {
}

}

One last part of the config file corresponds to eval_config. The crucial components to
set in this section are num_examples and metrics_set. The num_examples parameter
is the number of image instances included in evaluation dataset. The parameter met-
rics_set specifies the metrics to be run during the evaluation process and it is often set
to coco_detection_metrics to have the same metrics as Microsoft COCO dataset.

47

4 – Use Case Results

For our case of ship detection, two config files are defined for Faster RCNN and SSD
architectures.

For Faster RCNN config file, the model section is divided into two parts. The first
part represents the configurations related to Region Proposal Network (RPN) and the
second part is used to configure the stage box classifier. The prefixes "first_stage_" and
"second_stage_" are used to differentiate those parts.

After defining the network architecture as Faster RCNN with inception version 2
backbone, the number of classes is declared. Images are resized to have a minimum
of 600 pixels in their smaller dimension and maximum of 1024 pixel in their larger di-
mension. The aspect ratio is kept constant during the conversion. The resizing process
is done by configuring "image_resizer" parameter. The feature extractor is chosen as
"faster_rcnn_inception_v2" which acts as the backbone for the architecture.

"first_stage_anchor_generator" parameter defines grid anchors to be used in Faster
RCNN. The scale, aspect ratio, and stride are defined for the anchors. Type of the
layers used in the first stage is defined to be convolutional layers. Furthermore, an L2
regularization layer is used to decrease the chance of over-fitting. weights of the first
stage layer are initialized in the form of a truncated normal distribution having 0.01
standard deviation. Truncated normal distribution behavior is similar to random normal
initializer except that in this case values which are more than two standard derivations
from the mean is discarded and regenerated. To avoid having overlapping bounding
boxes, a Non-Maximum Suppression (NMS) method is used. NMS initially discards the
bounding boxes having possibility less than 70 percent, takes the bounding box with
maximum probability as the reference and finally discards any remaining cell which has
more than 50 percent intersection with the reference cell. A max pooling layer is then
added to the first stage with a stride of 2 and kernel size equals to 2. The maximum
number of proposals in each image is set as 300.

For the second stage, a set of fully connected layers are used alongside with an L2 regu-
larization layer. For initializing the weight of the second stage, variance_scaling_initializer
is employed which keeps the input variance scale constant. Using this initializer leads to
preventing the network to explode or diminish. The parameters set in this section corre-
spond to usage if Xavier initializer [54]. Another Non Maximum Suppression (NMS) is
implemented in this section with intersection threshold of 60 percent. A softmax layer is
utilized to normalize the probability distribution of the output. Localization loss weight
and classification loss weight are set to 2 and 1 respectively.

In the training configuration section, an SGD optimizer with momentum is used.
Normal SGD algorithm has some troubles when the surface curve is much more steeply
in one dimension with respect to the other dimension. this phenomenon is common,
especially around local optima points. In SGD with momentum algorithm, this problem
is solved by adding a fraction of the update vector of past time step to current update
vector. [55]

The added vector is to be defined in momentum_optimizer_value parameter and it
is usually set to 0.9 by Machine Learning community. The learning rate is chosen 0.002
and it will remain constant during the training.

48

4.2 – Object detection by Tensorflow

In the next sections of the config file, TFRecord file addresses and path to the pre-
trained model are given alongside with the number of steps for the training process.
Additionally, images are flipped horizontally in a random sequence to augment the avail-
able data and help the model to generalize better.

The complete config file for Faster RCNN architecture is shown in listing 4.5.

49

4 – Use Case Results

Listing 4.5: FasterRCNN config file
model {

fas te r_rcnn {
num_classes : 2
image_res i zer {

keep_aspect_rat io_res i ze r {
min_dimension: 600
max_dimension: 1024

}
}
f ea tu r e_ext rac to r {

type : ’ faster_rcnn_incept ion_v2 ’
f i r s t _ s t a g e _ f e a t u r e s _ s t r i d e : 16

}
f i r s t_stage_anchor_generator {

grid_anchor_generator {
s c a l e s : [0 . 2 5 , 0 . 5 , 1 . 0 , 2 . 0]
a s p e c t _ r a t i o s : [0 . 5 , 1 . 0 , 2 . 0]
h e i g h t _ s t r i d e : 16
width_st r ide : 16

}
}
first_stage_box_predictor_conv_hyperparams {

op: CONV
r e g u l a r i z e r {

l 2 _ r e g u l a r i z e r {
we ight : 0 . 0

}
}
i n i t i a l i z e r {

t runca t ed_norma l_ in i t i a l i z e r {
s tddev : 0 .01

}
}

}
f i r s t_stage_nms_score_thresho ld : 0 . 0
f i r s t_stage_nms_iou_threshold : 0 . 7
f i r s t_stage_max_proposa l s : 300
f i r s t _ s t a g e _ l o c a l i z a t i o n _ l o s s _ w e i g h t : 2 . 0
f i r s t_s tage_ob j e c tne s s_ lo s s_we igh t : 1 . 0
i n i t i a l _ c r o p _ s i z e : 14
maxpool_kernel_size : 2
maxpool_str ide : 2
second_stage_box_predictor {

mask_rcnn_box_predictor {
use_dropout: f a l s e
dropout_keep_probabi l i ty : 1 . 0
fc_hyperparams {

op: FC
r e g u l a r i z e r {

50

4.2 – Object detection by Tensorflow

l 2 _ r e g u l a r i z e r {
we ight : 0 . 0

}
}
i n i t i a l i z e r {

v a r i a n c e _ s c a l i n g _ i n i t i a l i z e r {
f a c t o r : 1 . 0
un i fo rm: t rue
mode: FAN_AVG

}
}

}
}

}
second_stage_post_process ing {

batch_non_max_suppression {
s co r e_thr e sho ld : 0 . 0
i ou_thre sho ld : 0 . 6
max_detect ions_per_class : 100
max_tota l_detect ions : 300

}
s co r e_conve r t e r : SOFTMAX

}
second_stage_loca l i za t i on_los s_we ight : 2 . 0
s e cond_stage_c l a s s i f i c a t i on_ lo s s_we igh t : 1 . 0

}
}

t r a i n _ c o n f i g : {
batch_s i z e : 1
opt imize r {

momentum_optimizer: {
l e a r n i n g _ r a t e : {

constant_learn ing_rate {
l e a r n i n g _ r a t e : 0 .002

}
momentum_optimizer_value: 0 . 9

}
use_moving_average: f a l s e

}
gradient_clipping_by_norm: 10 .0
f ine_tune_checkpo int :
" g s : // cargosh ipbucket / faster_rcnn_inception_v2_newDSv2/ data /model . ckpt "
f rom_detect ion_checkpoint : t rue
load_al l_detect ion_checkpo int_vars : t rue
num_steps: 200000
data_augmentation_options {

random_horizontal_f l ip {
}

}

51

4 – Use Case Results

}

tra in_input_reader : {
tf_record_input_reader {

input_path:
" g s : // cargosh ipbucket / faster_rcnn_inception_v2_newDSv2/ data / t r a i n . r ecord "
}
label_map_path:
" g s : // cargosh ipbucket / faster_rcnn_inception_v2_newDSv2/ data / label_map . pbtxt "

}

e v a l _ c o n f i g : {
met r i c s_se t : " coco_detect ion_metr ics "
num_examples: 100

}

eval_input_reader : {
tf_record_input_reader {

input_path:
" g s : // cargosh ipbucket / faster_rcnn_inception_v2_newDSv2/ data / t e s t . r ecord "
}
label_map_path:
" g s : // cargosh ipbucket / faster_rcnn_inception_v2_newDSv2/ data / label_map . pbtxt "
s h u f f l e : f a l s e
num_readers: 1

}

For the SSD case, in the model section of the config file, the type of architecture is
defined as SSD with version 2 of inception classification network as a backbone structure.
Input images are resized to have 300 pixels by 300 pixels resolution. Similar to Faster
RCNN scenario, L2 regularization layer is implemented but with a weight equals to 4e-5.
Network weights are initialized by a truncated normal distribution having 0 mean and
0.03 standard deviation. For activation function, ReLU6 is utilized which is shown in
equation 4.1.

y = min(max(x, 0), 6) (4.1)
Implementing this type of ReLU activation enables the sparse feature learning earlier

and faster. [56]
A batch normalization layer is implemented to normalize the inputs of each layer

within the network. This technique enables faster training and allows higher values of
learning rate to be used during the network training. Convolution layer kernel size is set to
3. Grid anchors are generated by setting the ssd_anchor_generator parameter. Number
a of layers are defined to be 6, minimum scale and maximum scale are 0.2 and 0.95
respectively. Aspect ratios are set to 0.5, 0.333, 1 and 2. Non Max Suppression (NMS)
is implemented on each batch of input data intersection threshold of 0.6 and maximum
detection of 100. Detection scores are achieved by applying a sigmoid function to input
scores. For the losses, the weighted smooth L1 loss is applied for localization loss and

52

4.2 – Object detection by Tensorflow

weighted sigmoid loss is applied for classification loss. Furthermore, online hard example
algorithm is exploited to reduce the number of false negative detections by simply using
backpropagation on examples with the highest loss while keeping the ratio between true
positive and false negative samples [57].

In the training configuration section, batch size is set to 16. Randomized horizontal
flip is used for data augmentation. Additionally, the input images are cropped randomly
to enhance the data augmentation. RMSProp optimizer is used with a constant learning
rate of 0.002, Momentum optimizer value of 0.9 and epsilon value of 1.

In the remaining part of the config file, path to pre-trained network and TFRecord
files are defined. Similar to Faster RCNN configuration, COCO detection metrics are
chosen for the evaluation.

The complete config file for SSD architecture is shown in listing 4.6.

53

4 – Use Case Results

Listing 4.6: SSD config file
model {

ssd {
num_classes : 2
image_res i zer {

f ixed_shape_res i z e r {
h e i g h t : 300
width : 300

}
}
f ea tu r e_ext rac to r {

type : " ssd_inception_v2 "
depth_mul t ip l i e r : 1 . 0
min_depth: 16
conv_hyperparams {

r e g u l a r i z e r {
l 2 _ r e g u l a r i z e r {

we ight : 4e−05
}

}
i n i t i a l i z e r {

t runca t ed_norma l_ in i t i a l i z e r {
mean: 0 . 0
s tddev : 0 .03

}
}
a c t i v a t i o n : RELU_6
batch_norm {

decay : 0.999700009823
c e n t e r : t rue
s c a l e : t rue
e p s i l o n : 0.0010000000475
t r a i n : t rue

}
}
use_depthwise : t rue

}
box_coder {

faster_rcnn_box_coder {
y_sca l e : 10 .0
x_sca l e : 10 .0
h e i g h t _ s c a l e : 5 . 0
width_sca le : 5 . 0

}
}
matcher {

argmax_matcher {
matched_threshold: 0 . 5
unmatched_threshold: 0 . 5
i gno r e_th r e sho ld s : f a l s e

54

4.2 – Object detection by Tensorflow

negatives_lower_than_unmatched: t rue
force_match_for_each_row: t rue

}
}
s i m i l a r i t y _ c a l c u l a t o r {

i o u _ s i m i l a r i t y {
}

}
box_predictor {

convolut iona l_box_predictor {
conv_hyperparams {

r e g u l a r i z e r {
l 2 _ r e g u l a r i z e r {

we ight : 3 .99999989895 e−05
}

}
i n i t i a l i z e r {

t runca t ed_norma l_ in i t i a l i z e r {
mean: 0 . 0
s tddev : 0 .03

}
}
a c t i v a t i o n : RELU_6
batch_norm {

decay : 0.999700009823
c e n t e r : t rue
s c a l e : t rue
e p s i l o n : 0.0010000000475
t r a i n : t rue

}
}
min_depth: 0
max_depth: 0
num_layers_before_predictor : 0
use_dropout: f a l s e
dropout_keep_probabi l i ty : 0 .800000011921
k e r n e l _ s i z e : 3
box_code_size: 4
apply_sigmoid_to_scores : f a l s e
use_depthwise : t rue

}
}
anchor_generator {

ssd_anchor_generator {
num_layers: 6
min_scale : 0 .20
max_scale: 0 .95
a s p e c t _ r a t i o s : 1 . 0
a s p e c t _ r a t i o s : 2 . 0
a s p e c t _ r a t i o s : 0 . 5

55

4 – Use Case Results

a s p e c t _ r a t i o s : 3 . 0
a s p e c t _ r a t i o s : 0 .333

}
}
post_process ing {

batch_non_max_suppression {
s co r e_thr e sho ld : 0 .30
i ou_thre sho ld : 0 .60
max_detect ions_per_class : 100
max_tota l_detect ions : 100

}
s co r e_conve r t e r : SIGMOID

}
normalize_loss_by_num_matches: t rue
l o s s {

l o c a l i z a t i o n _ l o s s {
weighted_smooth_l1 {
}

}
c l a s s i f i c a t i o n _ l o s s {

weighted_sigmoid {
}

}
hard_example_miner {

num_hard_examples: 3000
iou_thre sho ld : 0 .99
l o s s_type : CLASSIFICATION
max_negatives_per_posit ive: 3
min_negatives_per_image: 3

}
c l a s s i f i c a t i o n _ w e i g h t : 1 . 0
l o c a l i z a t i o n _ w e i g h t : 1 . 0

}
}

}
t ra in_con f i g {

batch_s i z e : 16
data_augmentation_options {

random_horizontal_f l ip {
}

}
data_augmentation_options {

ssd_random_crop {
}

}
opt imize r {

rms_prop_optimizer {
l ea rn ing_rate {

constant_learn ing_rate {
l e a r n i n g _ r a t e : 0 .002

56

4.2 – Object detection by Tensorflow

}
}
momentum_optimizer_value: 0 .899999976158
decay : 0 .89
e p s i l o n : 1 . 0

}
}
f ine_tune_checkpo int :

" g s : // cargosh ipbucket /model−s sd incept ionv2 −2/data /model . ckpt "
num_steps: 200000
f ine_tune_checkpoint_type: " d e t e c t i on "

}
tra in_input_reader {

label_map_path:
" g s : // cargosh ipbucket /model−s sd incept ionv2 −2/data / label_map . pbtxt "
t f_record_input_reader {

input_path:
" g s : // cargosh ipbucket /model−s sd incept ionv2 −2/data / t r a i n . r ecord "
}

}
eva l_con f ig {

num_examples: 200
met r i c s_se t : " coco_detect ion_metr ics "

}
eval_input_reader {

label_map_path:
" g s : // cargosh ipbucket /model−s sd incept ionv2 −2/data / label_map . pbtxt "
s h u f f l e : f a l s e
num_readers: 1
t f_record_input_reader {

input_path:
" g s : // cargosh ipbucket /model−s sd incept ionv2 −2/data / t e s t . r ecord "
}

}

Since object detection training requires heavy computational power, it is highly rec-
ommended to perform the training in a high-end machine. Google provides a cloud-based
infrastructure for developers to build, test and deploy their applications called Google
Cloud. It is used by 4 million applications worldwide. Google cloud also enables the user
to perform the Machine Learning training task via the Cloud Machine Learning Engine.
Performing the training on the cloud takes a significantly shorter amount of time with
respect to local machines due to the high-end hardware specifications available in the
platform. Because of the cloud-based nature of the platform, projects implemented on
Google Cloud are easily scalable. To store the required data (TFRecord files, configu-
ration file, label map and model checkpoint), online storage is allocated by the Google
Cloud platform. Another advantage of On Google Cloud is that it is feasible to make the
prediction online. Moreover, Google offers better pricing options with respect to other
competitors like Amazon or Microsoft.

57

4 – Use Case Results

Before running the training job on Google cloud, the number and types of the machine
should be specified in a YAML configuration file. For both object detection architectures,
the same YAML configuration is used and it is shown in listing 4.7.

Listing 4.7: Training Machine configuration
t r a i n i n g I n p u t :

runt imeVers ion : " 1 . 9 "
s c a l e T i e r : CUSTOM
masterType: standard_gpu
workerCount: 2
workerType: standard_gpu
parameterServerCount: 1
parameterServerType: standard

A custom machine configuration is defined for object detection. Two workers are
utilized to improve the training speed on one server cluster. Machine type is set to
standard and The type of GPU is standard_gpu. According to the Google Cloud website,
a standard machine has 4 virtual CPUs and 15 gigabytes of memory. standard_gpu
represents a single NVIDIA Tesla K80 GPU. The mentioned GPU has 24 gigabytes of
memory and clock speed of 562 MHz with the possibility to boost up to 875 MHz. Full
specifications of this GPU is shown on table 4.1.

Stream Processors 2 x 2496
Core Clock 562MHz
Boost Clock 875MHz
Memory Clock 5GHz GDDR5
Memory Bus Width 2 x 384-bit
VRAM 2 x 12GB
Single Precision 8.74 TFLOPS
Double Precision 2.91 TFLOPS
Transistor Count 2 x 7.1B
TDP 300W
Cooling Passive
Manufacturing Process TSMC 28nm
Architecture Kepler

Table 4.1: NVIDIA Tesla K80 specifications

After all the configuration is done for the models and cloud machines, all of the
required files such as datasets, configuration files, and label map must be uploaded on
Google Cloud storages. Although many different solutions are available for online data
storage on Google cloud platform, for object detection it is compulsory to use Google
"bucket" which would be considered as a virtual hard drive.

To start the training process on cloud the command shown on listing 4.8 is executed
on the local machine:

58

4.3 – Object detection results

Listing 4.8: Tensorboard initialization
From ten so r f l ow /models / r e s ea r ch /
gcloud ml−eng ine jobs submit t r a i n i n g
object_detect ion_ ‘ date +%m_%d_%Y_%H_%M_%S ‘ \
−−runtime−ve r s i on 1 .9 \
−−job−d i r=g s : //${MODEL_DIR} \
−−packages d i s t / ob ject_detect ion −0.1 . ta r . gz , s l im / d i s t / sl im −0.1 . ta r . gz ,
/tmp/ pycocotoo l s / pycocotoo l s −2.0 . ta r . gz \
−−module−name ob jec t_detec t i on . model_main \
−−r eg i on europe−west1 \
−−c o n f i g ${PATH_TO_LOCAL_YAML_FILE} \
−− \
−−model_dir=g s : //${MODEL_DIR} \
−−pipe l ine_conf ig_path=g s : //${PIPELINE_CONFIG_PATH}

Since each training should have a unique name, the exact time of command execu-
tion is adopted for naming conventions. ${PATH_TO_LOCAL_YAML_FILE} is the
local path to the YAML configuration, gs://${MODEL_DIR} specifies the directory on
Google Cloud Storage where the training checkpoints and events will be written to and
gs://${PIPELINE_CONFIG_PATH} points to the model configuration stored on the
Google Cloud Storage.

To visualize the train and evaluation progress, we use the built-in Tensorflow vi-
sualization framework named Tensorboard. Having a built-in visualization framework
is a massive advantage of using Tensorflow. The following command to initializes the
Tensorboard.

Listing 4.9: Tensorboard initialization
tensorboard −− l o g d i r= g s : //${MODEL_DIR}

gs://${MODEL_DIR} specifies the directory on Google Cloud Storage where the
training checkpoints and events are written. Commands used to train the network

4.3 Object detection results

In the previous section, all the required preprocessing is done and configurations are
set. In this section, the evaluation graphs will be presented based on COCO dataset
metrics. Models will be compared and the best one will be chosen to be implemented for
this project. To have a fair comparison, both models are trained on the same machine
with the same hardware configuration implemented in the YAML file. Since boats and
ships are taking a small portion of our images, mean Average Precision (mAP) at 0.5
Intersection over Unit (IoU) is selected as an accuracy measure.

Mean Average Precision (mAP) of SSD and faster RCNN architectures are shown in
4.4.

In the case of Faster RCNN, final mAP value is 0.9125 and for SSD architecture, it is
0.7743. It is clear from the numbers that Faster RCNN has better accuracy. This result

59

4 – Use Case Results

(a) Faster RCNN

(b) SSD

Figure 4.4: Mean Average Precision for both architectures

is in accordance with a well-known issue of SSD network. As in chapter 2, SSD network
struggles in detecting small object because of utilizing a limited set of default boxes in
its architecture. On the other side, Region Proposal Network in Faster RCNN allows for
better performance regarding small object detection.

In figure 4.5 four losses of Faster RCNN model are illustrated. As said in chapter 2,
two losses related to RPN network are objectness loss and localization loss. Two other
losses are related to stage box classifier section of Faster RCNN and they are classification
and localization loss.

As shown losses are decreased from their initial value and plateaued after 15 thousands
of steps. The respected values for losses are 0.1853 for classification loss, 0.08785 for
localization loss, 0.07369 for RPN localization loss and 0.06459 for RPN objectness loss.

The total loss which is the addition of above-mentioned losses is displayed in figure
4.6 In this figure, the loss trend is decreasing and reaches the minimum value of 0.4286

In SSD network architecture, two types of losses are defined: classification loss and
localization loss. They are shown in 4.7. Localization loss is reducing up to the point that
it reaches its minima in 5.08. Classification loss is decreasing up to 5.08 and afterward,
it starts to increase slightly. Moreover, since the total loss is the addition of two losses, it
follows the same pattern and reaches its minimum value at 6.6654. Total loss is expressed
in figure 4.8.

Based on the results mentioned, Faster RCNN is having a better accuracy and per-
formance. Thus it is selected as a baseline for ship detection. Some samples of ship
detection implementing Faster RCNN is given in figure 4.9. The ground truth data are
presented on the right side of the image and actual detection is presented on the left side.

Furthermore, the developed algorithm was applied to real images taken from satellite

60

4.3 – Object detection results

(a) Classification loss

(b) Localization loss

(c) RPN localization loss

(d) RPN objectness loss

Figure 4.5: Faster RCNN losses

images. Even though our object detector was trained on a synthetic dataset, it was able
to detect ships with a good performance. Using the synthetic dataset approaches enables
us to be able to perform deep learning solutions to the vast variety of problems in which
a standard dataset is not available for training. Some samples of ship detection on real
images are given in figure 4.10.

61

4 – Use Case Results

Figure 4.6: Faster RCNN total loss

(a) Classification loss

(b) Localization loss

Figure 4.7: SSD losses

Figure 4.8: SSD total loss

62

4.3 – Object detection results

Figure 4.9: Ship detection by Faster RCNN

63

4 – Use Case Results

Figure 4.10: Ship detection done on real images using Faster RCNN

64

Chapter 5

Conclusions

After a brief introduction to artificial intelligence, Machine Learning, and Deep Learning
and their applications in our world, two states of the art object detection named SSD
and Faster RCNN were studied. Due to the lack of available dataset for ship detection,
a synthetic dataset was developed to overcome the issue. Both networks were trained
with a synthetic dataset containing cargo ships and boats. Because of better accuracy
and ability to detect smaller ships, Faster RCNN was chosen for the special case of ship
detection. The whole system has the potential to be implemented on satellites to detect
the ships and boats on images produced by satellites. By implementing the proposed
solution, it would be possible to detect the boats having suspicious behavior and propose
a boat having a high probability of being a pirate. In this fashion, a warning signal
could be sent to ship and authorities. Therefore initial countermeasures could be done
to prevent the attack or reinforcement could be sent to aid in case of attack.

5.1 Further work

In today’s world, no method is 100 percent perfect and this proposed method is not an
exception. There are many parts which could be improved in our solution.

First and foremost, the proposed system could have a significantly better performance
if it would be trained on a dataset containing real-world images from ships and boats and
not a synthetic dataset.

In each and every Machine Learning problem, hyperparameters play an important
role and the same goes for our problem of ship detection. After training the network on
real world data, optimized hyperparameters could be found to enhance the performance
of the system.

Since our project is developed in Tensorflow framework, it would be attainable to
implement it on an embedded platform to be utilized on satellites to perform online
detection.

An alternative to the above solution would be implementing the system on cloud
platforms to increase the execution speed and security of the system. In this manner,
images taken from the satellite will be transmitted to the cloud for detection. Due to
the protected infrastructure of the cloud computing platform, the security is improved

65

5 – Conclusions

compared to the implementation of the system directly on satellites. A drawback of this
solution is the time spent to transfer the images between satellites and cloud servers.

Furthermore, a recently published paper proposed a novel Deep Learning architecture
called NASNet. Indicated network shows promising results when implemented as a Faster
RCNN backbone on COCO dataset and has the best results by the time of writing this
thesis. [58]

This project is a simple endeavor to investigate the potentials and applications of Deep
Learning algorithms to solve object detection problems utilizing aerial images taken from
satellites.

the developed algorithm was applied to real images taken from satellite images. Even
though our object detector was trained on a synthetic dataset, it was able to detect ships
with a good performance. Using the synthetic dataset approaches enables us to be able
to perform deep learning solutions to the vast variety of problems in which a standard
dataset is not available for training.

66

Bibliography

[1] “Merriam-webster.com,” 2018.
[2] M. Hilbert and P. López, “The world’s technological capacity to store, communicate,

and compute information,” Science, vol. 332, no. 6025, pp. 60–65, 2011.
[3] D. Crevier, AI: The Tumultuous History of the Search for Artificial Intelligence.

New York, NY, USA: Basic Books, Inc., 1993.
[4] K. Grace, J. Salvatier, A. Dafoe, B. Zhang, and O. Evans, “When will AI exceed

human performance? evidence from AI experts,” CoRR, vol. abs/1705.08807, 2017.
[5] D. L. Poole, A. K. Mackworth, and R. Goebel, Computational intelligence: a logical

approach, vol. 1. Oxford University Press New York, 1998.
[6] J. McCarthy, “Definition of ai,” 2007.
[7] R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology. Viking

Press, 2005.
[8] I. J. Good, “Speculations concerning the first ultraintelligent machine,” in Advances

in computers, vol. 6, pp. 31–88, Elsevier, 1966.
[9] A. T. Mehryar Mohri, Afshin Rostamizadeh, Foundations of Machine Learning. MIT

Press, 2012.
[10] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM

Journal of Research and Development, vol. 44, pp. 206–226, Jan 2000.
[11] T. M. Mitchell, Machine Learning. McGraw Hill, 1997.
[12] N. Le Roux, Y. Bengio, and A. Fitzgibbon, “15 improving first and second-order

methods by modeling uncertainty,” Optimization for Machine Learning, p. 404, 2011.
[13] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2010.
[14] D. P. Bertsekas, Dynamic Programming and Optimal Control: Approximate Dynamic

Programming, vol. 2. Athena Scientific, 2012.
[15] L. Deng, D. Yu, et al., “Deep learning: methods and applications,” Foundations and

Trends® in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.
[16] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in Advances in

neural information processing systems, pp. 161–168, 2008.
[17] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Be-

havioral Sciences. PhD thesis, Harvard University, 1974.
[18] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in optimizing

recurrent networks,” in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 8624–8628, May 2013.

[19] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks for

67

Bibliography

lvcsr using rectified linear units and dropout,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Conference on, pp. 8609–8613, IEEE,
2013.

[20] I. Aleksander, M. De Gregorio, F. M. G. França, P. M. V. Lima, and H. Morton, “A
brief introduction to weightless neural systems.,” in ESANN, pp. 299–305, Citeseer,
2009.

[21] Y. You, B. Aydin, and D. James, “Scaling deep learning on gpu and knights land-
ing clusters,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, p. 9, ACM, 2017.

[22] D. Marr, Vision: A computational investigation into. WH Freeman, 1982.
[23] D. G. Lowe, “Three-dimensional object recognition from single two-dimensional im-

ages,” Artificial intelligence, vol. 31, no. 3, pp. 355–395, 1987.
[24] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions

on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000.
[25] P. Viola and M. J. Jones, “Robust real-time face detection,” International journal

of computer vision, vol. 57, no. 2, pp. 137–154, 2004.
[26] D. G. Lowe, “Object recognition from local scale-invariant features,” in Computer

vision, 1999. The proceedings of the seventh IEEE international conference on, vol. 2,
pp. 1150–1157, Ieee, 1999.

[27] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, vol. 1, pp. 886–893, IEEE, 2005.

[28] N. Yokoya and A. Iwasaki, “Object detection based on sparse representation and
hough voting for optical remote sensing imagery,” IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens, vol. 8, no. 5, pp. 2053–2062, 2015.

[29] J. Han, P. Zhou, D. Zhang, G. Cheng, L. Guo, Z. Liu, S. Bu, and J. Wu, “Efficient,
simultaneous detection of multi-class geospatial targets based on visual saliency mod-
eling and discriminative learning of sparse coding,” ISPRS Journal of Photogram-
metry and Remote Sensing, vol. 89, pp. 37–48, 2014.

[30] X. Jin and C. H. Davis, “Vehicle detection from high-resolution satellite imagery
using morphological shared-weight neural networks,” Image and Vision Computing,
vol. 25, no. 9, pp. 1422–1431, 2007.

[31] X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, “Vehicle detection in satellite images
by hybrid deep convolutional neural networks,” IEEE Geoscience and remote sensing
letters, vol. 11, no. 10, pp. 1797–1801, 2014.

[32] Q. Jiang, L. Cao, M. Cheng, C. Wang, and J. Li, “Deep neural networks-based
vehicle detection in satellite images,” in Bioelectronics and Bioinformatics (ISBB),
2015 International Symposium on, pp. 184–187, IEEE, 2015.

[33] P. Zhou, G. Cheng, Z. Liu, S. Bu, and X. Hu, “Weakly supervised target detection
in remote sensing images based on transferred deep features and negative bootstrap-
ping,” Multidimensional Systems and Signal Processing, vol. 27, no. 4, pp. 925–944,
2016.

[34] L. Zhang, Z. Shi, and J. Wu, “A hierarchical oil tank detector with deep surrounding

68

Bibliography

features for high-resolution optical satellite imagery,” IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing, vol. 8, no. 10, pp. 4895–4909,
2015.

[35] I. Ševo and A. Avramović, “Convolutional neural network based automatic object
detection on aerial images,” IEEE geoscience and remote sensing letters, vol. 13,
no. 5, pp. 740–744, 2016.

[36] H. Zhu, X. Chen, W. Dai, K. Fu, Q. Ye, and J. Jiao, “Orientation robust object detec-
tion in aerial images using deep convolutional neural network,” in Image Processing
(ICIP), 2015 IEEE International Conference on, pp. 3735–3739, IEEE, 2015.

[37] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional neural
networks for object detection in vhr optical remote sensing images,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7405–7415, 2016.

[38] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[39] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 580–587, 2014.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, pp. 1097–1105, 2012.

[41] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, pp. 1440–1448, 2015.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” in European conference on computer vision, pp. 346–
361, Springer, 2014.

[43] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 779–788, 2016.

[44] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer vision,
pp. 21–37, Springer, 2016.

[45] S. Re, “Global insured losses caused by maritime disasters from 2007 to 2017 (in
million u.s. dollars).”

[46] H. S. News, “Number of pirate attacks against ships worldwide from 2009 to 2017.”
[47] W. Langewiesche, “Anarchy at sea,” The Atlantic Monthly, vol. 292, no. 2, pp. 50–70,

2003.
[48] D. Damon, “Judith tebbutt: My six months held hostage by somali pirates,” BBC

News Magazine, vol. 26, 2013.
[49] T. Besley, T. Fetzer, and H. Mueller, “The welfare cost of lawlessness: evidence

from somali piracy,” Journal of the European Economic Association, vol. 13, no. 2,
pp. 203–239, 2015.

[50] J. W. Miller, “Loaded: Freighters ready to shoot across pirate bow.”
[51] T. Eriksen, A. N. Skauen, B. Narheim, Ø. Helleren, Ø. Olsen, and R. B. Olsen,

“Tracking ship traffic with space-based ais: Experience gained in first months of

69

Bibliography

operations,” in Waterside Security Conference (WSS), 2010 International, pp. 1–8,
IEEE, 2010.

[52] M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch,
C. Isola, P. Laberinti, P. Martimort, et al., “Sentinel-2: Esa’s optical high-resolution
mission for gmes operational services,” Remote Sensing of Environment, vol. 120,
pp. 25–36, 2012.

[53] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision, pp. 740–755, Springer, 2014.

[54] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

[55] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
networks, vol. 12, no. 1, pp. 145–151, 1999.

[56] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on cifar-10,”
Unpublished manuscript, vol. 40, no. 7, 2010.

[57] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object detec-
tors with online hard example mining,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 761–769, 2016.

[58] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 8697–8710, 2018.

70

	Introduction
	Artificial Intelligence
	Machine Learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Artificial Neural Networks (ANN)
	Feed-forward Neural Networks
	Recurrent Neural Networks (RNN)
	Convolutional Neural Network

	Object detection
	History of image processing and its relation to Deep Learning and CNN
	Remote sensing and its importance
	Related work

	Thesis objectives and outline

	State-of-the-art models for object detection
	Region proposal based methods
	R-CNN
	Fast R-CNN
	Faster R-CNN

	Regression/Classification based methods
	YOLO
	Single Shot MultiBox Detector (SSD)

	Some precision metrics definitions
	True Positive, False Positive, False Negative and True Negative
	Intersection Over Unit (IoU)
	Precision and recall
	Mean Average Precision (mAP)

	Problem definition
	Modern maritime piracy
	Anti-piracy measures
	Sentinel-2 mission
	Synthetic dataset

	Use Case Results
	Google Tensorflow
	Object detection by Tensorflow
	Object detection results

	Conclusions
	Further work

	Bibliography

