
Providing trust to multi-cloud storage platforms
through the blockchain

Claudia Fiore
Instituto Superior Técnico, Universidade de Lisboa

Abstract—Cloud storage services are currently a commodity
that allows users to store data persistently, access the data from
everywhere, and share it with friends or co-workers. The number
of cloud services is growing rapidly but with low interoperability
between them; consequently, managing and sharing files between
users of different cloud storage is very difficult. To address
this problem, specialized cloud aggregator systems emerged that
provide users a global view of all files in their accounts and enable
file sharing between users from different clouds. To remove the
need to trust the cloud providers, Crypto Cloud solution provides
the full encryption of stored data, allowing to use multiple cloud
storage providers to securely store files.

However, in Crypto Cloud, there is a central server which is
responsible for managing metadata about users, clouds, files, and
permission. The general problem is that if the server is attacked,
the integrity of files and public keys can be compromised. The
Crypto Cloud system was created with the assumption that
the server does not act maliciously. In this dissertation, we
propose a solution that, through the use of the blockchain, is
able to provide integrity of metadata without relying on the
server. This is achieved by extending Crypto Cloud with secure
metadata management using the blockchain. We focused on
the management of the users’ identities and how to provide
metadata integrity without relying on the central server. We
built a prototype and tested it with real use cases such as the
addition of a user, creation/reading of files. While more complex,
the new client removes the trust from the central server and is,
therefore, a step towards more decentralized and secure cloud
storage systems.

Keywords: Cloud Storage Services, Security, Integrity,
Blockchain

I. INTRODUCTION

In recent years the use of cloud storage services such as
Dropbox or Google Drive has increased exponentially. These
services offer a remote storage space on which it is possible
to save important data, accessible at any time. The use of
cloud storage services also allows to drastically reduce the risk
of data loss, in fact, the cloud provider periodically creates
backup copies in a completely transparent way for the end
user. Moreover, Cloud Storage Services provide new features
to manage files, such as file sharing, file versioning, concur-
rent access or disaster recovery. However, the interoperability
between providers and platforms is very low. To address this
problem, specialized cloud aggregator systems emerged that
provide users a global view of all files in their accounts and
enable file sharing between users from different clouds. Such
systems, however, have limited security: not only they fail to
provide end-to-end privacy from cloud providers, but also they
require users to grant full access privileges to individual cloud
storage accounts.

In this work, we focus on Crypto Cloud, a privacy-
preserving cloud aggregation service. It allows for using mul-
tiple cloud providers without renouncing privacy, guaranteeing
the confidentiality and integrity of managed files [1]. Crypto
Cloud enables file sharing on multi-user multi-cloud storage
platforms. The Crypto Cloud application relies on a central
server which manages all the information (metadata) related
to users, files, permission and cloud storage. In Crypto Cloud,
there is the assumption that the server does not modify the
metadata actively. He could access them, but it acts honestly.
If malicious users attack the server, the integrity of metadata
could be compromised.

A. Goals

The main goal of this thesis is to extend Crypto Cloud with
metadata management that ensures security sensitive operation
relying on the blockchain and develop a Proof of Concept
to prove the feasibility of the designed solution. The actual
implementation of Crypto Cloud Application manages the
user’s cryptographic keys and their certification relying on an
external service. It is possible to modify this functionality,
managing the users’ identities both with the blockchain and
adding an application logic on the client; in this way we
achieve robust identity management but in a decentralized and
secure way. Moreover, Crypto Cloud guarantees the integrity
and versioning of files but, as mentioned before, the integrity
of the metadata is not guaranteed. The hash of files, the
versions, and the Access Control Lists are critical metadata
to provide validity of files, so we must protect them from
tampering. Moving that metadata on the blockchain, we can
prove integrity and freshness of the information.

B. Structure of the document

This document is organized as follows: Section 2 presents an
overview of the related work on secure cloud storage solutions;
Section 3 describes the blockchains background; Section 4
described the blockchain State of the Art; Section 5 details
the aspects of the proposed solution; Section 6 describes
the implementation of the solution; Section 7 presents the
evaluation of the proposed solution and the analysis of the
obtained results; and Section 8 concludes this document.

II. RELATED WORK

In this section, we detail the Crypto Cloud system, a
privacy-preserving cloud aggregation service that enables file
sharing on multi-user multi-cloud storage platforms.

1



Alice account 1

Alice account 2

Bob account 1

Storekeeper
Directory Server 

(SDS)

Hosting Company

Alice’s laptop

Storekeeper
Client

Cache

Bob’s desktop

Storekeeper
Client

Cache

SDS
Administrator

Cloud-backed Stores

Figure 1. System overview.

cloud accounts hosted by cloud services such as Dropbox
or Google Drive. These cloud accounts are provided by the
user. The SDS is the heart of Storekeeper. This component
runs on a dedicated server and manages the meta-data
associated with users, files, and stores. Files themselves are
not stored in the SDS, but on stores provided by users.

Figure 1 illustrates the architecture of the system using
a simple deployment scenario. Alice and Bob are faculty
members of a university, which runs Storekeeper in its
premises in order to foster internal collaboration. A ded-
icated administrator is responsible for managing the SDS
server and registering users in the system. Alice and Bob
can log into the system using a username and a secret
password, and register their personal cloud accounts. In this
usage scenario, Alice has two accounts in Dropbox and Bob
has one account in Google Drive. Storekeeper will interpret
them as stores allowing Alice to see a unified view of files
in accounts 1 and 2, and Bob to see all files from account 1.
This unified view, seen by each user, is named workspace.
Each user can thus share files with each other, independently
of whether or not they have accounts on the same cloud
provider. Access to cloud stores is performed at the client
side only, ensuring that users retain exclusive control of their
accounts. Files are encrypted at the client endpoint.

C. A Global File Namespace

We now describe the design of Storekeeper in more detail
starting with its file namespace. In a cloud aggregator service
like Storekeeper, it is necessary to define how files physically
dispersed across various cloud-backed stores are presented
to the user under a uniform file naming scheme. Figure 2
helps illustrate the file naming organization of Storekeeper
considering the usage scenario introduced in Section II-B.
It represents (1) aggregated cloud files (workspace) seen by
Alice and Bob mounted on the local filesystem, on the left,
(2) the actual location of these files on the users’ cloud
accounts (stores) on the right, and (3) mapping between

/sds.uni.edu)
))/data)
))))/6385f2123ead1311e539ce935e5517507c66)
))))/1622c28e3b5ff3411e3aef23331fadf61a70)
))/staged)

Alice account 1

/sds.uni.edu)
))/data)
))))/733a497e359a73443e397ee3caa481027afb)
))/staged)

Alice account 2

/sds.uni.edu)
))/data)
))))/c1b2e97c3e4aa340e8399d53aaf82014ef6b)
))))/8b54e0f53e3c8341603af6d3d8e018cdeba6)
))/staged)

Bob account 1

/sds.uni.edu)))))
))/file1.doc)
))/file2.doc)
))/file3.doc)

Alice workspace

/sds.uni.edu)
))/file3.doc)
))/img1.jpg)
))/img2.jpg)

Bob workspace

Figure 2. File name mapping in Storekeeper.

workspace file names and file locations, represented by the
arrows.

Since there can be multiple independent instances of the
Storekeeper service, every SDS server defines a unique
domain name to avoid name collision. The domain name
is set up by the SDS administrator and may correspond to
the DNS name of the SDS server (e.g., sds.uni.edu). The
Storekeeper domain name will give the name to both (1)
a root folder on the user’s workspace under which the user
files of that domain will be mounted, and (2) a root folder on
each cloud store in which user files and pending updates are
persistently saved. Files in the cloud stores are given globally
unique file identifiers (FIDs) and accessible to clients via a
service-dependent URL (the arrows in Figure 2). If a file is
shared with a user whose workspace contains a file with a
similar name, Storekeeper resolves this naming conflict by
adding the prefix “shared-” to the shared file.

D. Securing User Credentials

Storekeeper depends on specific user credentials that must
be properly secured: access tokens and user keys.

a. Access tokens: In order to access a cloud store through
the respective API, a typical third-party application (in-
cluding the Storekeeper client) needs to authenticate itself
towards the cloud service by providing a specific credential
named access token (AT ). Access tokens preclude the need
for the user to interactively input username and password.
Since access tokens allow for unrestricted access to users’
stores, Storekeeper needs to maintain them securely.

b. User keys: To provide end-to-end confidentiality, files
must be encrypted at the client side with a symmetric key
– a file encryption key (KF ) – before storing them on the
cloud. For this, a symmetric file encryption key (KF ) is
used, as further discussed in Sections II-G and II-H. The
considered approach to protect this key, while assuring that
the file owner alone can access it, is to use a public-key
pair that represents a user key (KU ) and use this key to

Fig. 1: Storekeeper Architecture [2]

The Crypto Cloud application is based on Storekeeper’s
approach and extends it by introducing new management of
users’ identities, authentication and integrity protection over
files.

A. Storekeeper

Storekeeper [2] supports multiple cloud providers and is
supported by a directory server to store metadata (see Figure
1). It is assumed that this server does not launch active attacks,
thus metadata protection was not part of the project’s scope.
The system guarantees data confidentiality using symmetric
keys, that are distributed to users using public-key pairs. The
approach also provides sharing and access control mecha-
nisms. However, this approach does not consider data integrity
and employs a non-efficient key management mechanism that
performs extensive number of requests to the Storekeeper
Directory Server (SDS), resulting in a decrease of the appli-
cation’s performance.

B. Crypto Cloud

Crypto Cloud is a distributed system that provides a secure
cloud aggregation service for multi-user multi-cloud storage
platforms [1]. The Crypto Cloud system architecture is shown
in Figure 2. The Client Application is the central component
of the system. This component manages the user’s files, and
it interacts with all the other components of the system.
The Crypto Cloud Directory Server (CCDS) serves the client
application and, as an assumption, it does not act maliciously.
It can listen to the exchanged messages but follows the
system’s protocol and does not launch active attacks. The
CCDS manages the metadata associated with users, files,
shares, and clouds. It implements an Access Control Model
based on authentication to provide access control on files. It
provides also version control and integrity of files.

Fig. 2: Crypto Cloud Architecture [1]

Moreover, the CCDS manages the users’ identities through a
Key Management Server, that follows the KMIP Protocol, and
a Public Key Infrastructure. They allow the remote access and
management of user’s cryptographic keys and certification of
the users’ identities, guaranteeing proper authentication while
protecting and sharing sensitive files.

III. BACKGROUND

Nowadays, it is possible to create digitally distributed
ledgers that can be shared across a network of multiple
sites, geographies or institution. This technology is known
as Distributed Ledger Technology (DLT). All participants
within the network can have their identical copy of the ledger.
This technology is used to process, validate and authenticate
transactions. The records are only ever stored in the ledger
when a consensus has been reached by the parties involved.
DLTs drastically reduce the cost of trust, in fact, the main
feature of this technology is that the ledger is not maintained
by any central authority. A blockchain is a form of DLT.
The data on the blockchain are grouped and organized in
blocks, which are linked one to the other and secured using
cryptography (see Figure 3). Every block holds a complete list
of transaction records and it is linked with the previous block
maintaining its hash.

Fig. 3: The blockchain [3]

The blockchain has the following main characteristics [4]:
• Immutability. The hash guarantees that the blocks are

linked to each other, but it also guarantees the integrity
of the blockchain. If one block is altered, the hash on the
block that follows it stops matching the blocks;

2



• Transparency. Anyone can view the records and verify
the authenticity of the data;

• Decentralization. Rather than relying on a central au-
thority to securely transact with other users, blockchain
utilizes innovative consensus protocols across a network
of nodes to validate transactions and record data in a
manner that is incorruptible.

A. Classification of blockchain systems

There are various categorizations of blockchain types, ac-
cording to whether authorization is required for network nodes
which act as verifiers, and whether access to the blockchain
data itself is public or private. The first distinction is between
permissionless and permissioned blockchains. Permissionless
blockchains are systems in which anyone can participate in
the verification process. No prior authorization is required, and
a user can contribute his/her computational power, usually in
return for a monetary reward. While permissioned blockchains
are systems in which the miner nodes are preselected by
a central authority or consortium. We can also distinguish
between public blockchains, in which anyone can read and
submit transactions to the blockchain, and private blockchains
in which the permission of read/write is restricted to users
within an organization or group of organizations. It can be
noticed that most permissionless blockchains feature public
access, while most permissioned blockchains intend to restrict
data access to the company or consortium of companies that
operate the blockchain.

B. Consensus

To ensure that only legitimate transactions are recorded into
a blockchain, a new block of data will be appended to the end
of the blockchain only after the nodes on the network reach a
consensus. The main consensus protocols are described below.

Proof of Work (PoW) is the consensus used in the Bitcoin
and Ethereum network [5]. In short, PoW works by making
the nodes spend computational power until they can find out
a hash that satisfies a certain rule, for a certain block. When
a node finds this hash, it is allowed to extend the blockchain
with that block. The node transmits the new blockchain to all
the other nodes. It is assumed that the longed valid chain held
by any block is the correct one. Additionally, the creator of a
block includes a reward in the block.

Proof of stake (PoS) is an energy-saving alternative to PoW.
Miners in PoS have to prove the ownership of the amount of
currency, the “stake”. It is believed that people with more
currencies would be less likely to attack the network [6].
Therefore, the Proof of Stake attributes mining power to the
proportion of coins held by a miner. In the PoS system there
is no block reward, so, the miners take only the transaction
fees.

Practical Byzantine Fault Tolerance (PBFT) is a repli-
cation algorithm to tolerate Byzantine faults [7] in which is
assumed that some of the involved parties might be corrupt
or otherwise unreliable. In private networks, where the par-
ticipants are whitelisted, costly consensus mechanisms such

Fig. 4: A complete Fabric network [10]

as Proof of Work are not needed, practically removing the
need for an economic incentive for mining. PBFT requires
that every node is known to the network. In the consensus,
preselected nodes select and order the transactions.

IV. BLOCKCHAIN STATE OF THE ART

In this section, we analyze three different blockchain sys-
tems: Hyperledger Fabric, Ethereum, and Filecoin. We choose
Hyperledger Fabric that implements a private blockchain, and
Ethereum and Filecoin which implement a public blockchain.

A. Hyperledger Fabric

The Hyperledger platform is an open source framework to
build permissioned blockchains usable in business [8]. The
Hyperledger Fabric network is formed by a set of nodes that
are the communication entities of the blockchain. As depicted
in Figure 4, in the network there are clients, which stand
between the network and the end-user, Peers, that maintain
a ledger and runs chaincode containers to perform read/write
operations to the ledger, and Ordering Service nodes, that
constructs the ledger as a hash chain of blocks of transactions
guaranteeing the total order of the blocks.

Two or more network members communicate through a
channel which allows private and confidential transactions.
Every entity on the network is associated with an identity, that
is an X.509 digital certificate [9], and it is used to determine
permission. A verifiable identity must come from a trusted
authority: the Membership Service Provider (MSP). The MSP
identifies which Root CAs and Intermediate CAs are trusted
to define the members of a trust domain. MSPs are manda-
tory at every level of administration (network, channel, Peer,
Orderer). Hyperledger Fabric introduces a new architecture
for transactions called execute-order-validate. Peers execute
a transaction and check its correctness thereby endorsing it.
Then, the Orderer Service orders transactions via a consensus
protocol and validate transactions before committing them to
the ledger. Hyperledger Fabric provides also the possibility of
developing smart contracts, known as chaincode. Users can use
chaincode to design assets, as well as the logic that manages
them.

3



B. Ethereum

Ethereum is a blockchain platform to create decentralized
applications, and it is built on a public blockchain [11]. In
Ethereum network there are full nodes that are entities that
verify the blocks and maintain the full copy of the blockchain.
There are also light nodes that download block headers by
default and verifies only a small portion of what needs to be
verified. Finally, there are miners which are nodes that validate
the new blocks by solving a crypto problem. Ethereum mainly
uses the Proof of Work consensus, called Ethash, that involves
finding a nonce input so that the result is below a certain
difficulty threshold.

Every node is represented by its account. Every account is
defined by a pair of keys: a private key, and a public key. One
fundamental concept in Ethereum is the concept of fees. Every
computation that occurs as a result of a transaction on the
Ethereum network incurs a fee. For every executed operation
there is a specified cost, expressed in a number of Gas units.
Moreover, Ethereum supports smart contract functionality that
is a collection of codes and data, that resides at a specific
address on the Ethereum blockchain.

a) Ethereum Parity (Private): Parity is an Ethereum
client that supports private chain and private network. Parity
allows storing encrypted data on the Ethereum blockchain. It is
possible to create private contracts which are stored encrypted
inside a public contract. Moreover, Parity allows the network
participants to different permission aspects of the blockchain.
All permissioning is based on blockchain accounts, which
means that permissions always correspond to an address.

Finally, Parity supports different consensus engines. The
main one is the Ethash Proof of Work [12] but the most
interesting is Proof-of-Authority consensus. It can be used
for private chain setups and uses a set of “authorities” which
are nodes that are explicitly allowed to create new blocks
and secure the blockchain. In Proof-of-Authority, validators
typically represent some real-world entities, which prevents
Sybil attacks. These validators are known as validator set, that
is a group of accounts allowed participating in the consensus,
validating transactions and blocks.

C. Filecoin

Filecoin is a Decentralized Storage Network based on the
blockchain. It is intended to be a cooperative digital storage
and data retrieval method [13]. The Filecoin Decentralized
Storage Network (DSN) is auditable, publicly verifiable and
designed on incentive. It aggregates storage offered by mul-
tiple independent storage providers and provides data storage
and data retrieval to the client. Clients spend Filecoin hiring
miners to store or distribute data. Filecoin miners compete to
mine blocks with sizable rewards. Filecoin mining power is
proportional to active storage. In the Filecoin protocol, storage
providers must convince their clients that they stored the data
they were paid to store [13]. Storage providers will generate
Proofs-of-Storage that allows a user to check if a storage
provider is storing the data at the time of the challenge. A

Ethereum Hyperledger
Scalability High node scalability High node scalabil-

ity.
Throughput About 20 transactions

per second
About 3500 transac-

tion per second
Latency 10 to 15 seconds Less then 1 second
Size Limited by the gas limit Customizable
Energy
consumption

High Low

Usability Programmers must learn
Solidity to write Smart
Contracts

Easy to program
smart contracts (Go,
Java, Node.js)

TABLE I: Performance Pros and Cons

Security property Hyperledger Fabric Ethereum Filecoin
Authentication X 7 7
Privacy X 7 7
Confidentiality 7 7 7
Integrity X X X

TABLE II: Security properties

verifier can check if a prover is storing her/his data for a range
of time.

Any user can participate as a Client, a Storage Miner, and
a Retrieval Miner. Clients pay to store data and to retrieve
data in the Decentralized Storage Network. Storage Miners
provide data storage to the network by offering their disk
space. Finally, Retrieval Miners provide data retrieval to the
network by serving data to the users.

D. Conclusions

The Filecoin’s network is still in the implementation phase
[14], so we do not consider it in the choice of the system.
From the analysis presented in Table I Hyperledger performs
consistently better than Ethereum. Ethereum incurs large over-
head in terms of memory and disk usage because of Proof
of Work consensus protocol. From [8] Ethereum execution
engine is also less efficient than that of Hyperledger, and
the Hyperledger’s data model is low level, and its flexibility
enables customized optimization for analytical queries of
the blockchain data. From Table II emerges that the Fabric
platform offers security properties, such as authentication and
privacy, that Ethereum cannot deliver mainly because of its
permissionless nature.

Given this analysis, of both the performance and security of
the systems, it is possible to conclude that Hyperledger Fabric
is the most suitable platform for this work. It is permissioned,
guarantees privacy, there is no economic cost on transactions
and, generally, performs better than Ethereum.

V. DESIGN

The goal of this thesis is to extend the Crypto Cloud applica-
tion with metadata management that ensures security sensitive
operation without relying on the central server. Using the
blockchain system we can achieve this goal. The blockchain
technology guarantees integrity, immutability, freshness, and
authenticity of the stored information, without relying on any
third party.

4



Fig. 5: New Crypto Cloud Architecture

We propose an alternative version of the Crypto Cloud
system, integrating it with the Hyperledger Fabric blockchain.
The new Crypto Cloud’s architecture is illustrated in Figure
5.

A. Crypto Cloud Client Application

The client application is the central component of the
system. It is responsible for managing the users’ files and
interacting with all other Crypto Cloud’s components. The
application allows authenticated users to upload and download
files, as well as to manage their access permission. In the new
version, the client also communicates with the Hyperledger
Fabric network. The communication is done using a Fabric
API. This API is used to put and retrieve identities and
files’ metadata on the blockchain. The client also verifies the
consistency of the CCDS metadata, comparing them with the
ones on the blockchain.

B. Crypto Cloud Directory Server

The Crypto Cloud Directory Server serves the client ap-
plication. Its functionalities remain the same as the previous
version of Crypto Cloud. This component acts as a metadata
repository, responsible for the system’s metadata associated
with users, files, shares, and clouds. Therefore, we can divide
the metadata into five groups, based on their function (see
Figure 6). We do not want to trust the server, so we should
put the metadata associated with each server’s functionality
both on the blockchain and the CCDS. The sections below
explain in detail each of the modified functionality.

C. Management of identities

A key concept in the Crypto Cloud system is the identity.
The identity is the mapping between a User and his/her public
key. In Crypto Cloud, the KMIP service generates the RSA
key pairs: a public key and a private key. The system uses
the generated keys to encrypt/decrypt the other cryptographic
keys. To guarantee proper certification of the users’ keys and
to assure their identity when accessing the managed files, the
system relies on a Public Key Infrastructure, which acts as
a trusted third-party entity. There is the concept of identity
also in Hyperledger Fabric. Every member of the Hyperledger
network has its own identity represented by the public key.

GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5

Unique username 
Hash(password) 
Identifier of 
private key 
Public certificate 
Wrapped UK 
User IV 

Encrypted token 
Info 
Type 
Workspace 
Owner 

Remote name 
Cloud 

User 
File 
Permission 
List of 
authorized 
users 

Original filename 
Hash of the file content 
Current version 
Share revision 
URL 
Remote ID 
File remote name 
Wrapped FK 
Wrapped IK 
IVs used

Fig. 6: CCDS Metadata

The Fabric system generates the key pair using the Elliptic
Curve cryptography. These keys are used to sign and verify
transactions.

The approach chosen for our solution is to use two different
identities for each user: a Crypto Cloud identity and a Hyper-
ledger Fabric identity. Using two different key pairs, we need
to be sure that every file-related transaction is executed from
a verifiable identity. It is reasonable to publish the public key
of users on the blockchain: in this way, everyone can verify
that a user has that specific identity. No one can change the
content of a transaction published on the blockchain, so the
identity and public key relationship is permanently registered
and accessible from everyone. In addition, we also put the
signature of the transactor, done with the RSA private key
of Crypto Cloud. Every time a user reads transactions from
the blockchain, the client verifies that the signature in the
transaction can be verifiable with the associated public key.
Briefly, when a user enrolls to the system, the client creates
an Enrollment Transaction depicted in Figure 7 (1).

D. Access Control List Integrity

If we do not want to trust the server, we must guarantee
the integrity of the Access Control List. This is necessary
because we have to ensure that users can not update it, adding
entries of malicious users, if they are not on the list. When
a user create a file, the client also creates the correspondent
ACL. The problem arises when a user holds the Read Key
(KR), so he/she can access the file, but he/she is not in the
list of authorized users. Crypto Cloud assumes that the server
is honest but curious. If we do not trust the server anymore,
it could tamper with the Access Control List. Therefore he
could add an entry corresponding to {KR}PublicKeyServer.
Now it can modify the list, adding users even if it does not
have the permission to do that. So it is necessary to check
if the list is also valid and not just the file. To solve this
problem, we calculate the hash of the access list and publish
it on the blockchain. Every time a user reads a file, the client
calculates the hash of the ACL retrieved from the server and
check if it is equal to the one retrieved from the blockchain. In
this way, integrity is always confirmed. We must update the
ACL when a user performs a “share” operation. To achieve
the correct check, we put both the hash of the old version of
the list and the hash of the new version. In this way, clients

5



1. ENROLLMENT TRANSACTION: username, RSAPublicKey, signature(username)

2. FILE METADATA TRANSACTION: username, filename, hash(file), version 

3.1 SHARE METADATA TRANSACTION: hash(ACL)

3.2 SHARE METADATA TRANSACTION: hash(ACL), 
hash(newACL)

Fig. 7: Crypto Cloud Transactions overview

can always verify the validity of the old version and create
a correspondence with the actual one. In other words, when
a user adds a new file, the client creates a Share Metadata
transaction, as depicted in Figure 7 (3.1). If a user updates an
existing file, the client calls the Fabric API to create a new
Share Metadata transaction, as depicted in Figure 7 (3.2).

E. Version control and integrity

Crypto Cloud uses the HMAC combined with hash and
version of the file to guarantee the integrity and versioning
of files. In the blockchain, it is not necessary to adopt that
mechanism because everything is published on the ledger is
signed, and no one can change the content of transactions.
Managing the HMAC will result in a more complex operation
because we have to manage also the symmetric key (Integrity
Key) associated with it, so it is not useful. Therefore, it is
possible to put the content hash of the file and version on a
transaction, gaining the certainty that no one can change its
content once published. In other words, when a user creates
a new file, the client issues a File Metadata transaction, as
depicted in Figure 7 (2). Every time a user wants to read a
file, the application checks the correspondence between the
hash of the file and version on the CCDS and File Metadata
transaction. In this way, we are sure that what is on the server
is always valid.

VI. IMPLEMENTATION

This section describes the implementation of the proposed
Crypto Cloud system with Hyperledger Fabric. The purpose
of this work is to create a Proof of Concept of the proposed
solution to demonstrate the feasibility of the project. We
consider a simplified version of the design, not considering
the Access Control List integrity because of time constraints.

We start by defining the scenarios in which the applica-
tion can be executed. In the simplest scenario, there are N
clients, belonging to one University, which uses the Crypto
Cloud Application and communicates with the Crypto Cloud
Directory Server. The University represents our Hyperledger
Fabric Organization, so we need a ledger that contains all
the transactions related to the users’ metadata. While, in the
extended scenario there are N clients, belonging to more
than one University, which use the Crypto Cloud Application.

Crypto Cloud 
Application

Orderer

Peer : {Endorser Peer} 
Identity Chaincode 

File Metadata Chaincode

FABRIC NETWORK

CHANNEL 1

Certificate 
Authority

FABRIC API

Fig. 8: Crypto Cloud Fabric Network

Adding Universities means adding Organizations so that we
will have more than one Peer and more than one ledger. The
Anchor Peers enable the communication between different
Organizations, and they hold the copy of the ledgers of
the connected Organizations. It is possible to suppose for
simplicity that we are in the first scenario.

A. Hyperledger Fabric network

The first implementation step is the creation of the Hy-
perledger Fabric network. In the simplest scenario, we build
an infrastructure which allows creating a complete blockchain
environment and tests its potentiality. Therefore, we create a
Peer, an Ordering Node and a Certificate Authority. If another
University wants to use the Crypto Cloud Application, it will
be necessary to add a Peer per University. It is necessary
to create a channel allowing the communication between the
entities. Figure 8 depicts the resulting Hyperledger Fabric
infrastructure. To implement the proposed solution, we create
two chaincodes: the Identity Chaincode, to put/get identities,
and the File Metadata Chaincode, to put/get metadata of the
managed files. In this project we decided to develop the
chaincode using the Go language, referring to the examples
on the documentation [15].

In the first chaincode, we defined the structure Identity
which contains the username, the RSA Crypto Cloud public
key and the signature of the username, done with the RSA
private key of the CC user. It provides two functions: create
identity function and query identity function which allows
submitting transactions.

In the second chaincode we define the FileMetadata struc-
ture which is formed by the file name, the content hash,
the version of the file and the username of the transactor.
It provides two functions: create file metadata function and
query file metadata function.

B. Fabric API

Once the Hyperledger network is created, we need to
develop a client node which can communicate with it. The
Hyperledger Fabric makes available a Fabric SDK Java to

6



facilitate Java applications to manage the lifecycle of Hy-
perledger channels and user chaincode. The SDK provides
a means to execute user chaincode, query blocks and trans-
actions on the channel, and monitor events. Our Fabric API
allows interacting with a Certificate Authority and generating
enrollment certificates. These identities are used to sign and
verify transactions. These identities will be used when a user
wants to query and update the ledger.

C. Users’ registration

The system must provide a mechanism to validate the public
keys and associated identities of users. When a new user joins
the system, it is necessary to generate the keys which represent
his/her identity. When a user wants to subscribe to the system,
the client registers the user to the CCDS and enrolls him/her
to Hyperledger Fabric Membership Service Provider. The sub-
scription to the Certificate Authority returns the Hyperledger
Fabric identity of the user. Then, the application creates a
transaction which contains the Crypto Cloud identity calling
the corresponding function of the Fabric API; it contains the
username, the Crypto Cloud RSA public key of the user and
a signature of the username.

D. Read operation

The read operation consists of updating a local file with
the most recent version available from the cloud stores.
During this operation, the Client Application obtains the file’s
metadata from the CCDS using the file’s identifier. Moreover,
it retrieves the hash and the version querying the File Metadata
Chaincode through the Fabric API. Upon receiving the file’s
metadata both from the server and the blockchain, the Client
Application checks if the file exists in the local workspace or
if it is obsolete. If it is obsolete, the application accesses the
file’s URL to retrieve its content. The client receives the file
and unwraps the file’s keys using the user’s private key, and
deciphers its content. The client must check if the informa-
tion on the server corresponds to the ones on the retrieved
transaction. Therefore, it checks the identity of the user who
creates/update the file: it invokes the query identity function of
the Identity chaincode, passing the username of who made the
transaction related with the file. Then, it retrieves the public
key of the user and verifies the signature contained in the
transaction with the associated public key. Then, the client
compares the hash of the file and the version obtained from
the server with the one retrieved from Hyperledger. Finally, if
the controls succeeded, the client verifies if the public key of
the user is equal to the one on the server and if it is on the
list of the authorized users. If the informations are valid, the
operation succeeds.

E. Write operation

The write protocol consists of uploading a local copy
of a file to a registered cloud store. To create a new file
the client application performs the cryptographic operations,
guaranteeing the confidentiality and integrity of the file. After
that, the protected file is uploaded to the cloud store using the

Cloud Provider’s API. After uploading, the Client Application
sends a request to the CCDS with the new file’s metadata and
a request to the blockchain using our Fabric API. We create
a transaction that contains the username, the file name, the
public key of the user, the hash and the version of the file.

To perform a file update, the Client Application requests the
CCDS for the file’s metadata using the file’s id and checks if
the user maintains the most recent updated version of the file.
It also requests the last transaction related to the file calling
the File Metadata chaincode. The client verifies the validity of
the transactor’s public key, checking the corresponding identity
retrieved from the blockchain. Now the client verifies if the
hash of the retrieved file is equal to the hash of the file on the
blockchain and if the user is on the access list. Finally, the
Client Application renews the file’s keys and submit a new
transaction which contains the update information of the file.

F. Share operation

The share operation allows a user to share a specific file
with another user, called grantee user. When performing this
operation, the user queries the blockchain, calling the Fabric
API, and retrieves the last transaction related with the desired
file; if the identity of the transactor is already verified it is
not necessary to redo the verifications. Otherwise, the identity
is retrieved from Hyperledger blockchain. If the signature is
verifiable with the correspondent public key, the operation
continues. Now the client verifies if the hash of the retrieved
file is equal to the hash of the file on the blockchain and if the
public key of the user is on the access list. Then, the client
finds the grantee user’s public key from the blockchain calling
the query identity function of Fabric API. Then, it adds the
user to the access list, adding {KR}PublicKeyUser and send
a request to the CCDS with the updated information.

VII. EVALUATION

This section presents the evaluation of Crypto Cloud with
Hyperledger Fabric (CC-HL), describing the followed method-
ology and comparing the obtained results with the previous
version of Crypto Cloud (CC).

VIII. PERFORMANCE EVALUATION

To evaluate the performance of our solution, several bench-
mark tests were carried out. The latencies measured from
benchmarks were obtained using a profiler software, called
JProfiler v10.0 [16], which performs the instrumentation of
the running code on a Java Virtual Machine (JVM) and traces
its information. This technique has a relatively low overhead
associated [16]. The experiments have been performed over an
Intel(R) Core(TM) i7 3230M CPU running at 2,5 GHz with
TurboBoost technology enabled, with 16GB of DDR3 memory
running at 2133MHz, and 256GB of SSD. The OS used was
macOs Mojave 10.14.2 (x64) running standard services. For
all experiments, the Client Application, the CCDS, the Fabric
Network, and the PostgreSQL databases were deployed in the
same machine as the benchmarks.

7



Tabella 1

With blockchain Wihout blockchain

Add user 424 424

Create identity 67
Enroll user 33
Signature 8

Ti
m

e[
m

s]

0

150

300

450

600

Add new user

With blockchain Wihout blockchain

Add user Create identity Enroll user Signature

�1

Fig. 9: Crypto Cloud’s mean latency of add user

The Fabric instance consists of one Peer, one Ordering
Node, a Certification Authority, a CouchDB and two chain-
codes. Each Hyperledger Fabric entity runs into a Docker con-
tainer. The benchmark tests consist of the Client Application
performing several operation requests to the system. These
operations include: reading a file from the cloud, writing a
new file to the cloud, update an existing file and sharing a
file with a user. Additionally, we also performed the same
benchmarks using the existing Crypto Cloud prototype [1],
in order to compare the obtained results. We modified the
previous version of the Crypto Cloud application in order to
generate and consume local RSA key pairs; so we do not use
the KMIP protocol.

All performed benchmarks measured the latency times of
each operation on our system. These operations were executed
individually 30 times, with approximately 10 seconds of inter-
val between them, and its mean time and standard deviation
were analyzed. The experiments took place on January 2019.

A. Crypto Cloud Performance

In order to evaluate the performance of the Crypto Cloud
system, we obtained latency measures for each of the Crypto
Cloud operations using different file sizes: 100KB, 1MB and
10MB. During these benchmarks, we did not consider the
latency times obtained from Cloud upload and download
operations since these operations are performed outside of our
controlled environment and we cannot guarantee that all cloud
operations are performed under the same conditions.

The first operation of our interest is the addition of a user.
As shown in Figure 9 in CC-HL the operation takes 25% more
time than the same operation executed in CC. This is because
when a user registers the first time to the system, he/she is both
enrolled to the Hyperledger Membership Service Provider and
to the CCDS. Moreover, the application puts the identity of the
user on the ledger, submitting a transaction to the blockchain;
this is done calling our Fabric API. The identity contains also

Ti
m

e[
m

s]

0

500

1000

1500

2000

Read
100K 1M 10M

With blockchain Without blockchain

Fig. 10: Crypto Cloud’s mean latency of read files

the signature of the username of the transactor, so there is also
an additional time due to the calculation of the signature.

The read operation consists of getting the file’s content and
metadata both from the CCDS and Hyperledger blockchain;
then, the application unwraps the file’s keys, decipher the
content and checks its integrity. From the obtained results,
depicted in Figure 10, we can observe that the computation
time of this operation increases with the rise of the file
size parameter. This is true for both the system and can be
explained by the increase in the time during the decipher
process. We can observe that the CC-HL read of files took
20% to 40% more time than the same operation in CC.
Analyzing the time spent in each read call, we found that the
retrieving of the file’s metadata from the blockchain consumes
a high percentage on the total time spent. The application also
contacts the blockchain also to verify the authenticity of the
transactions (retrieves the identity and checks the signature),
if the identity was not already checked. In addition, in the
new version, we retrieve the ACL and the public key of
the user who made the transaction from the CCDS. These
operations are necessary to check the consistency between the
metadata held by server matches and the ones retrieved from
the blockchain, resulting in an increase of time of the read
operation.

Similar to the read operation, the write operation also
depends on the file size parameter. As depicted in Figure
11, when performing the write of new files, CC-HL took
20% to 25% more than the Crypto Cloud’s time. The time is
higher because every time a file upload operation is issued, the
application submits a transaction on the blockchain containing
the content hash, the version of the file, the filename and the
username of the transactor.

Figure 12 depicts the result of uploading of existing files
(the file is modified every time). In the case of upload of an
existing file, our Proof of Concept took 10% to 20% more
than the CC time. This operation is different from the upload
of a new file because the application also finds the last valid

8



Ti
m

e[
m

s]

0

1250

2500

3750

5000

Upload new file

100K 1M 10M

With blockchain Without blockchain

Fig. 11: Crypto Cloud’s mean latency of upload new files

transaction on the blockchain. This is necessary to check
the integrity of the metadata held by the server. Moreover,
the application verifies the identity of the transactor, which
must be valid. To retrieve the public key and the ACL from
the server, additional calls were done. All these operations
contribute to the increase in the overall time.

The share operation consists of wrapping the file’s Read
Key (RK) with another user’s public key. This operation only
involves the file’s metadata and does not deal with the file
content, which results in similar latency times for different
file sizes. When comparing the obtained results with Crypto
Cloud, we can observe a high increase in the operation time.
The results differs in an order of magnitude: in the previous
version of Crypto Cloud, the resulted time is expressed in
microseconds while in the version with Crypto Cloud it is
measured in milliseconds. Because of this significant differ-
ence, it does not make sense to create a graph of the results.
In the share of the new CC, in addition to the operations done
in old CC, we call three times the Fabric API: one to retrieve
the file metadata, one to retrieve the identity of transactor, and
one to retrieve the identity of grantee user.

IX. CONCLUSION

The Crypto Cloud system allows using multiple cloud
providers without renouncing privacy, guaranteeing the con-
fidentiality and integrity of managed files. We extended this
system using blockchain technology because it delivers trust,
transparency, neutrality, security, and immutability without
having to trust the Crypto Cloud central server. Adopting the
blockchain, we prevent loss of integrity of the metadata held
by the server; so we created a tamper-proof system.

In this work, the integration of Crypto Cloud with Hy-
perledger Fabric blockchain was successfully implemented,
except delivering the integrity of the Access Control List due
to time constraints. The new system provides a mechanism to
validate the public keys and associated identities of the users,
using the blockchain to provide authenticity of the public keys

Ti
m

e 
[m

s]

0

2250

4500

6750

9000

Upload existing file
100K 1M 10M

With blockchain Without blockchain

Fig. 12: Crypto Cloud’s mean latency of upload existing files

and using the client to verify it. A new component was added
to the Crypto Cloud architecture which is the Hyperledger
Fabric network. We created two smart contracts which rep-
resent, respectively, users’ identities and files’ metadata. To
interact with such smart contracts, we implemented an API
using Hyperledger Fabric Java SDK [17].

In addition, the protection of the stored files is enhanced by
using the blockchain. We add the metadata which guarantees
the integrity of files on the blockchain; every time a user
wants to read his/her files, the client application verifies the
consistency between the metadata on the server and the ones
on the blockchain. In this way, if the server contains tampered
metadata, it will be detected and discarded. Regarding perfor-
mance, the new Crypto Cloud add an overhead to the creation
and reading of files: it takes 20% to 40% more time than the
previous version. Nevertheless, we gain the advantage of not
having to trust the server anymore, always guaranteeing that
the metadata held by the server is not compromised.

The major implementation difficulties were in the imple-
mentation of the blockchain. This occurs because, even if the
Hyperledger technology is well documented, there are some
aspects that are not so clear, due to its “young” nature; in
particular, there are very few examples (and very few really
works) about how to use the Hyperledger Fabric Java SDK.
This slowed the implementation significantly.

X. FUTURE WORK

The solution herein proposed was properly implemented
and achieves its proposed goals except the implementation
of the Access Control List integrity. Therefore, there are few
improvements that can be taken into account in future versions
of this work, such as:

• Integrity of the Access Control List: the hash of the ACL
must be stored on the blockchain to prevent that malicious
users could modify it without the right permissions. The
mechanism is explained in detail on Section V-D;

9



• Removal of the server: all the most important metadata
were moved on the blockchain, so it will be possible to
eliminate the server. The remaining metadata could be
maintained on the client side.

• Create a distributed storage, based on blockchain tech-
nology: there are technologies like Filecoin, which allows
users to sell and buy remote storage space for backing up
their data. Adopting a technology as Filecoin, it will be
possible to substitute the cloud providers with the File-
coin Decentralized Storage Network (see Section 4.3).
In addition, it is possible to integrate the functionalities
of our solution guaranteeing authenticity, integrity, and
freshness of the files.

ACKNOWLEDGMENTS

First and foremost, I would like to express my genuine grati-
tude to my academic supervisors, Ricardo Chaves, and Miguel
Matos for giving me the opportunity to work on this project
and for the continuous support and guidance throughout this
research. Their patience, motivation and immense knowledge
provided me the proper guidance during the research and
writing of this thesis.

I would like to thank my parents and my sister for their deep
and unconditionally love and in particular for the support in
this Erasmus experience. Finally, I would like to express my
gratitude to my friends Andrea, Camilla and Cristina for their
support and constant presence during these months spent in
Lisbon.

REFERENCES

[1] F. D. B. Custodio, “Crypto cloud,” master thesis in information systems
and computer engineering, Instituto Superior Tecnico, 2017.

[2] S. Pereira, A. Alves, N. Santos, and R. Chaves, “Storekeeper: A security-
enhanced cloud storage aggregation service,” in Reliable Distributed
Systems (SRDS), 2016 IEEE 35th Symposium on, pp. 111–120, IEEE,
2016.

[3] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
Big Data (BigData Congress), 2017 IEEE International Congress on,
pp. 557–564, IEEE, 2017.

[4] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International Journal of Web
and Grid Services, vol. 14, p. 352, 10 2018.

[5] Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, “Blockchain challenges and
opportunities: A survey,” Work Pap.–2016, 2016.

[6] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International Journal of Web
and Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

[7] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, pp. 173–186, 1999.

[8] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, pp. 1085–1100, ACM, 2017.

[9] P. Yee, “Updates to the internet x. 509 public key infrastructure certifi-
cate and certificate revocation list (crl) profile,” 2013.

[10] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference,
p. 30, ACM, 2018.

[11] H. D. Initiative et al., “What is ethereum?,” tech. rep., retrieved
2017-05-14. Available: http://ethdocs.org/en/latest/introduction/what-is-
ethereum.html.

[12] T. Tiwari, D. Starobinski, and A. Trachtenberg, “Distributed web mining
of ethereum,” in International Symposium on Cyber Security Cryptog-
raphy and Machine Learning, pp. 38–54, Springer, 2018.

[13] P. Labs, “Filecoin: A decentralized storage network,” 2017.
[14] J. B. P. Labs, “Filecoin research roadmap for 2017,” 2017.

https://filecoin.io/research-roadmap-2017.pdf.
[15] Hyperledger Fabric documentation. Available: https://hyperledger-

fabric.readthedocs.io/en/release-1.3/.
[16] E. Technologies, “Java profiler - jprofiler.” Available: https://www.ej-

technologies.com/products/jprofiler/.
[17] “Java sdk for hyperledger fabric 2.0.”

https://github.com/hyperledger/fabric-sdk-java.

10


