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ABSTRACT 

In a period, in which technological development dominated the socio-economic scene, with an 

aim of evolving and adapting to human needs, the Artificial Intelligence sector could only 

become the focus of scientific research. When the keyword becomes "comfort", the automation 

world is highly considered: machine learning, from this point of view, is of great interest for 

the human assistance process. 

The focus of the following thesis research is, in particular, to recreate a case study in which the 

concept of machine autonomy embraces the theme of mobility. The automotive industry, in 

fact, has concentrated for many years a large part of its resources in the implementation of 

assisted driving systems and, more recently, autonomous driving. The new vehicles are 

equipped with an increasing number of optional and advanced security systems. 

In detail, the project carried out during this research, which took place at the company bylogix 

srl of Grugliasco, concerns the problem of the Path Following, i.e. the ability of the vehicle to 

follow a desired trajectory in relation to factors that depend from the intrinsic characteristics of 

the car and the surrounding environment. 

The Path Following topic raises many questions related to the ethical, bureaucratic and penal 

responsibilities of any high-risk situations, as well as the definition of the priority levels to be 

attributed to the entities involved. Moreover, as the urban reality is varied and dynamic, it is 

necessary that such systems can predict the most common situations and react very quickly to 

external stimuli. 

The present case concerns the implementation of a controller which, given a predetermined 

trajectory, can process the optimum steering angle for maintaining the path. 

In particular, the LQR control has been chosen, starting from a reference signal involving the 

desired values of the lateral position, the lateral velocity, the yaw angle and the yaw rate, to 

minimize a cost function with the aim of reducing the deviations between the mentioned values 

and the real ones. The dynamics of the vehicle, which in the real case is a new generation 

electric model, has been approximated for this purpose using the Bicycle Model. 

Through the tests performed on the MATLAB / Simulink platform, it was possible to compare 

the results obtained by the different choices of the weight coefficients of the matrices involved. 

Finally, the same study was revised for the use of the LQI control to highlight any aspects that 

can be deduced from the comparison between the various results. 
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CHAPTER 1 – INTRODUCTION 

1.1   Thesis Purpose 

The following study is the result of an experimental thesis research, which has been carried out 

in collaboration with a company. It is based on the design of a controller for the autonomous 

driving of an electric vehicle. 

In particular, it was decided to apply the Linear Quadratic Regulator (LQR), and to compare 

different solutions obtained varying certain weight indices, for the Path Following problem. 

The company hosting the project is bylogix srl, which provided its advanced equipment and the 

help of its qualified staff. 

 

 
Figure 1 – bylogix srl 

 

Bylogix srl is an engineering company active since 2007 in various sectors. It deals with the 

design and development of SW and HW systems for integrated electronic components, the 

development of test and validation systems, as well as the verification of safety requirements 

according to today’s standards. 

The company is mostly concerned about the automotive sector: considering the market needs, 

it focused on developing the technologies inherent to autonomous driving. 

The activities span the entire V-model of software development. 

 

 
Figure 2 – V-Model of the SW Development 
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1.2   Artificial Intelligence 

Artificial Intelligence is the discipline that deals with designing and creating machines capable 

of acting independently. It studies the theoretical foundations and the technical methodologies 

useful for the design of hardware and software systems. Those systems are capable of giving to 

the electronic computer performances which are considered relevant to human intelligence. 

 

 
Figure 3 – A.I 

 

The first steps of this branch of computer science were moved in the 50s, when the first model 

of artificial neuron was presented: since that moment, the concept and the study of neural 

networks and intelligent machines have initiated. In particular, the intelligent system 

implements behavioural processes that tend to imitate the human being ones, with operations 

pushing it to act and think humanly, or rationally. Artificial Intelligence is currently classified 

in two major types: 

 Weak Artificial Intelligence: it identifies systems capable of simulating some human 

cognitive functions, without reaching their real intellectual abilities; 

 Strong Artificial Intelligence: it identifies the so-called "wise systems", able to develop 

its own intelligence without having to emulate the cognitive abilities of the human 

being. 

 

At the base of this subdivision, there are the concepts of machine learning and deep learning, 

which deal with the learning model that characterizes the machine. 
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Machine learning is a set of methodologies through which the software is allowed to learn, so 

that it is able to perform a task without being programmed: in other words, it learns how to 

manage situations and correct its errors. 

Deep learning, on the other hand, needs neural networks so that the system can emulate the 

mind of man: a much more powerful computational capacity is needed, which can support 

different layers of calculation and analysis. 

To sum up, we can say that the functioning of an Artificial Intelligence machine is characterized 

by four functional levels: 

 Comprehension; 

 Reasoning; 

 Learning; 

 Interaction. 

 

Currently, there are many application sectors: from automotive to healthcare, from marketing 

to cybercrime, from management to public security. 

Many ethical problems still exist. Above all, it is still problematic to predict whether a machine 

can think, or if it could become a danger to humanity. 

Certainly, progress must be motivated, possibly through the collaboration between man and 

machine. 

 

 
Figure 4 – Sophia Robot 
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1.3   The Autonomous Driving 

According to the modern needs asked by fast technological progress, the world of Artificial 

Intelligence could not fail to achieve successes in a sector experiencing an extreme growth such 

as the Automotive one. In fact, the automotive companies are in continuous competition to offer 

their customers the best avant-gardes. Regarding that, most of the energy is used in the 

development of one of the industry's current pillars: assisted and autonomous driving. An 

autonomous vehicle is able to study the surrounding environment, without the human 

intervention, through equipment such as sensors and navigation devices. In order to perform 

this, cameras, GPS, motion and speed sensors and artificial vision systems are mounted. 

An advanced control system, that interprets the information received to identify appropriate 

routes, obstacles and road signs, allows the car to choose and follow the right path by making 

the right driving maneuvers. 

Obviously, the realization of this technology isn’t that simple, since the problem of prediction 

and the one of real time control coexist: driving in a complex and unpredictable environment, 

like the urban one, requires a great reactivity and the ability to respond to variations and to 

surrounding stimuli. 

The concept of Artificial Intelligence, in this contest, comes into play when a vehicle, after 

collecting and memorizing a set of experiences, acquires the ability to make decisions faster: it 

begins to recognize scenarios and to react, relying on events already verified, according to an 

optimization perspective. 

 

 
Figure 5 – Urban Environment 
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In 2014, the most recent international standard, referred as the J3016, was published. It defined 

six different levels for automatic driving, based on how much the driver should intervene. 

In particular, the defined levels are: 

 Level 0 - No autonomy from the car: man takes care of any aspect of the driving; 

 Level 1 - Driving assistance: man takes care of every aspect of the driving, but he is 

supported by electronic devices capable of warning him about dangerous situations; 

 Level 2 - Partial Automation: man manages the driving, but integrated safety systems 

intervene on the acceleration, the braking and, partially, on the steering wheel; 

 Level 3 - Conditional Automation: the car is able to manage the driving in ordinary 

situations, acting on braking, acceleration and direction, but man intervenes in case of 

problematic situations; 

 Level 4 - High Automation: the automatic system can handle any situation, except when 

driving in extreme conditions; 

 Level 5 – Complete Automation: the car can manage any situation in complete 

autonomy, no human intervention is required. 

 

Nowadays, autonomous vehicles are still under test. In some countries, those vehicles are being 

tested on the road. The product sale has not yet started due to the fact that some tests have 

caused fatal accidents. 

Despite this, once the control technique has been perfected, autonomous driving would reduce 

road accidents by 90%, facilitate the mobility of the elderly and the disabled people. It would 

also reduce significantly the traffic in the city. 

Many diatribes related to ethical interests still exist, such as the civil and criminal responsibility 

of the driver and the software developers when an accident occurs. In addition, there is the 

problem of how the system will choose whom to preserve the most: on one hand the passengers 

and pedestrian protection, on the other one the minimization of the overall damage. 

Through all these considerations, it can be said that the autonomous driving will revolutionize 

the urban reality and the role of the man within it. 
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1.4   ADAS Systems 

1.4.1   ESC – Electronic Speed Control 

The ESC is an electronic active safety control unit for motor vehicles: during the heeling phase, 

this device regulates the engine power and brakes the interested wheels with different intensity, 

in order to stabilize the set-up of the car. The system corrects the oversteering and understeering 

situations, as well as the trajectory loss. 

 

 
Figure 6 – ESC 

 

The ESC uses some information that comes from the car itself:  

 4 speed sensors (one per wheel) that communicate to the control unit the velocity of 

each wheel; 

 1 steering angle sensor, which communicates the driver's intentions to the control unit, 

through information about the position and movement of the steering wheel; 

 3 accelerometers (one per space axis), positioned at the center of the vehicle, which 

indicate to the control unit the forces acting on the car; 

 Some sensors already present. 
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The control unit acts both on the power supply of the engine, reducing the torque, and on the 

individual brake calipers, by correcting the dynamics of the vehicle. In the case of understeer, 

the brakes intervene by braking the rear wheel inside the curve, and generating a mechanical 

moment opposite to the wrong direction, while in the event of oversteer the same operation is 

performed by braking the front wheel outside the curve. This system is usually joined by the 

traction control systems (TCS) and the anti-locking wheels system (ABS), being practically 

complementary in the control of the stability of the vehicle in different driving conditions. 

The EU has decided to make the system mandatory for new car models since the 1st November 

2011. 

 

1.4.2   AEB – Autonomous Emergency Braking 

The AEB is a device used to generate the maximum braking power available, if the applied one 

is not enough. In emergency braking situations, if the ABS is not activated, the system increases 

the pressure on the pedal even if the driver decreases the pressure. Through this action, the 

range of the ABS will be reached, which will result in the prevention of the wheels locking. 

 

 
Figure 7 – AEB 

 

The AEB produced by Bosch, is even more advanced: an infrared video camera system detects 

the moment when the car is getting too close to the ahead one: over 30 km/h, it warns the driver, 

and provides higher braking force if this activates the brake pedal, or it performs an emergency 

braking with maximum power in order to avoid collision. In the future, assisted braking will 

also be combined with the recognition of cyclists and pedestrians. These systems already exist 

in some car models. 
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1.4.3   TCS – Traction Control System 

The TCS is an electronic control unit that prevents the slippage of the driving wheels of the car 

during acceleration. Currently, all manufacturers must enter it by law, as standard or as an 

accessory. 

The system identifies the sliding of the wheels thanks to the sensors installed at each wheel and 

to an electronic computer that processes the acquired data and acts on some variables. 

 

 
Figure 8 – TCS 

 

These systems can intervene on: 

 Brakes: When a wheel loses grip, it dissipates all the power supplied in torque by the 

engine, leaving the other wheels with greater grip without power and stopping the car. 

To overcome this problem, the speed sensors send data to the control unit, which 

activates the brake at the wheel involved and allows the redistribution of the power 

supplied by the engine. 

 Motor Power: In the presence of slipping of the driving wheels, the system activates the 

brakes on the wheels involved in order to eliminate the applied torque excess and allow 

the same wheels to use the grip offered by the road. 
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The system is useful in case of rain, icy road or loss of traction by a wheel, but it is 

disadvantageous in the presence of irregular surfaces (sand, snow, etc.), since slippage occurs 

since the beginning and the locking of the wheels prevents the movement of the vehicle. 

 

1.4.4   ABS – Anti-Lock Braking System 

The ABS is an electronic control unit that prevents the locking of the wheels. On each wheel 

there is an Encoder (angular position transducer), composed of a transducer and a phonic wheel. 

This wheel consists of a gear wheel that turns with the vehicle wheel, and a fixed inductive 

proximity sensor that detects the passage of the teeth of the wheel mentioned before. The 

electronic control unit counts the number of teeth passing in a time unit, it calculates the rotation 

speed of the wheel and, if it detects the locked wheels during braking, it activates the hydraulic 

pump to decrease the braking force: practically, it performs the same action that the driver 

would accomplish by releasing the brake pedal. 

 

 
Figure 9 – ABS 

 

ABS is a one-way system, i.e. it only performs a brake release action: the closing force of these 

must be provided by the driver through the brake pedal. 

In an emergency braking, the driver can press the pedal as hard as possible without worrying to 

lock the wheels, since the control unit will decrease this force to the limit of vehicle holding. 

The presence of EBD (Electronic Brake Distribution) is fundamental for the optimization of 
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this operation. In fact, with it, the braking force can be transferred between one axis and the 

other, thus being able to exploit all the adhesion that the wheels are able to provide, and which 

is normally different between front and rear axle. 

When the ABS system starts operating, the driver senses vibrations coming from the brake 

control, caused by the variation of the oil pressure in the braking circuit. 

Many accidents are caused by drivers who, frightened by the vibration of the pedal, release the 

brake without completing the braking. For this reason, some cars are equipped with a braking 

system that includes the emergency braking assistant. 

During the braking, part of the load is transferred to the front axle by lowering it, and the vertical 

force on the wheels increases considerably: during the braking with ABS, the steering wheel 

vibrates, and it is advisable to hold it firmly with two hands. 

The system is disadvantageous not only in two-wheeled vehicles, but also in the presence of 

irregular terrain. 

 

1.4.5   ACC – Adaptive Cruise Control 

The ACC is a cruise control system: it helps the driver in keeping the safety distance from the 

vehicles ahead, warning him if manual intervention is necessary. The ACC uses a radar sensor, 

which detects moving objects that precede the vehicle on the same track. 

 

 
Figure 10 – ACC 

 

This system maintains the speed of the vehicle, which has been set before, on constant value 

until the presence of other vehicles is detected. If a vehicle moving at low speed is detected, the 

ACC will reduce the engine power and, if necessary, it will operate the braking maneuver to 
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maintain the preset safety distance. An alarm is generated if the driver intervention is required 

to maintain a predefined distance. 

The anti-collision warning function warns the driver to brake quickly, in order to avoid any 

collisions. 

The ACC system exonerates the driver from continuous adjustments to the cruise speed set, 

reducing his efforts and making driving more comfortable. 

 

1.4.6   BSD – Blind Spot Detection 

The system detects the presence of other vehicles in blind spots. In order to perform this, it uses 

some sensors, cameras and radar positioned under the rear bumper of the vehicle. 

 

 
Figure 11 – BSD 

 

If a vehicle is detected, the system alerts the driver with a bright or acoustic warning. 

 

1.4.7   Park Assist 

The INRIA (National Institute for Information Technology and Automation) has defined five 

different types of Park Assist systems, classified in a progressive scale of automation: 

 Driver Assistance 

 Partial Automation 

 Conditional Automation 

 High Automation 

 Full Automation.  
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The Park Assist helps the driver in searching for adequate longitudinal and transverse parking 

spaces, and supports him during maneuvering phases, automatically intervening on the steering 

wheel in the most suitable way to park the car in the available area. The first phase of Park 

Assist is to measure the parking space. After the driver has chosen the "seat", the system takes 

the car to the optimal position to start the maneuver and, in some systems, it also proceeds to 

automatically moving the steering wheel to access it: the driver only has to accelerate or brake. 

 

 
Figure 12 – PAM 

 

The park assist systems of the most modern cars are equipped with ultrasonic sensors (high 

frequency mechanical waves) distributed along the outer perimeter of the car. They are able to 

detect the exact dimensions of the parking space and the presence of any obstacles. The software 

installed in the control unit will automatically calculate the available space, creating a virtual 

image of the environment surrounding the vehicle, and determining the manoeuvres necessary 

for parking. Moreover, thanks to a series of electrical impulses that are transformed into 

mechanical impulses, they are able to move the steering wheel by itself to carry out the ideal 

manoeuvres and to park the car horizontally, vertically, etc. 

 

 

 

 



18 
 

1.4.8   LKA – Lane Keep Assist 

The LKA system has been designed to ensure that the roadway is maintained by the vehicle. 

In fact, a video camera recognizes the demarcation lines of the lane placed in front of the 

vehicle: if the car is approaching too much the white line, it intervenes on the steering wheel by 

turning it gently, in order to restore the right direction. 

In particular, the lane maintenance assistance system applies a braking force identical to each 

wheel. 

 

 
Figure 13 – LKA 
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CHAPTER 2 – SPERIMENTAL SETTING 

2.1   The Vehicle 

2.1.1   Electric Vehicles 

The birth of the electric vehicle dates to the nineteenth century, with the development of the 

first "advanced" prototypes with electric propulsion. 

At that time, this method of feeding was more convenient and reliable than combustion, until 

the technological advances of the automotive industry confined electric vehicles in very few 

sectors. 

 

 
Figure 14 – Electric Vehicle 

 

The electric car is a car whit an engine that uses, as primary energy source, the chemical energy 

stored in rechargeable batteries, and made available to the engine as electricity. Overall, this 

vehicle has greater energy efficiency than internal combustion engines. 

Among the positive factors, there is the very low maintenance demand, especially for brakes 

and engines, both subject to less wear. In addition, there are parts that are not present, and that 

in a conventional car need to be replaced. From a fiscal point of view, these vehicles enjoy 

facilitated taxation and special benefits. Finally, the possibility to recover energy is interesting, 

thanks to technologies such as regenerative braking. The biggest disadvantage, however, 

concerns the installed batteries autonomy, especially their charging times, which vary according 
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to the available power supplied by the appropriate current distributors. We should not forget 

the high costs of buying cars, probably due to the low competition on the automotive market. 

 

2.1.2   Citroen E-Mehari: Features and Performances 

The car used to implement this study is an electric vehicle of the Citroen company, and the 

model is E-Mehari. 

 
Figure 15 – Citroen E-Mehari 

 

It was equipped with a system of cameras, speed sensors and GPS devices, as well as an 

intelligent and open HW and SW processing platform that acts as the vehicle's brain, giving it 

the perception of the surrounding environment.  

The Citroen E-Mehari, like all the electric cars, has the advantages and disadvantages discussed 

above. In particular, considering the main problem, the battery of the Citroen E-Mehari requires 

a charging time of 13 hours through a 230 V power outlet, or equal to 8 hours through a 400 V 

special distributor. 
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Figure 16 – Vehicle Parameters 

 

The figure above shows the physical dimensions of the car, reported in such a way as to 

intercept the position of the center of gravity. This detail will be very important for the equations 

of motion of the model, in order to be controlled, and for the positioning of the body in the 

considered reference system. 

Another highly useful fixed parameter is the mass, which in our case is about 1404 kg (704 kg 

for the front axle, 700 kg for the rear axle). 

Finally, considering the fixed parameters, the cornering stiffness of the wheels and the yaw 

inertia moment of the car are very important: the values of the cornering stiffness are about 

25000 N for the front wheel and 33000 N for the rear one, while the value of the yaw inertia 

moment has been set at 26000 kgmଶ. 

As for the car's performance, the battery provides a range of almost 200 km, it can develop 68 

hp, and the maximum speed is around 110 km/h. Finally, the maximum torque is about 166 

Nm, and it ensures an acceleration from 0 to 50 km/h in 6.4 seconds. 

To sum up, the Citroen E-Mehari will not be a product intended for large-scale sale, but it is 

certainly an interesting innovative object, which opens the way to new concepts of mobility, 

and is a good subject for experimental activities. 
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2.2   The On-Board Technology 

2.2.1   Nvidia PX2 

The car’s supercomputer is a very powerful system designed for autonomous driving: Nvidia 

PX2, in fact, is a system that reaches 8 teraflops and 24 tera operations of deep learning per 

second. This high computing power is guaranteed by the union of two Tegra processors, and 

by two separate GPUs. 

 

 

 
Figure 17 – NVIDIA Board 

 

The system is called upon to collect and process the inputs of tens of sensors, and to decide in 

real time how to respond. High performance is necessary for this decision to ensure timely 

reactions and margins of error to be inferior than the ones of a human driver. 

The Nvidia DRIVE PX2 platform combines deep learning, sensor fusion and surround vision 

to change the driving experience. It can understand in real time what is happening around the 

vehicle, precisely locating it within a high-definition map acquired with end-to-end mapping 

technology. Moreover, it can plan a safe route forward, basing its choice on the study of the 

available free space. 

What we obtain is a robust representation of the surrounding reality, and the ability to memorize 

the collected experiences: the system, recognizing already occurred events and already traveled 

roads, speeds up reaction times and gives the right priority to the passenger safety and the 

minimization of the damage. 
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It is important to specify that the platform is designed to support the ASIL-D index (Automotive 

Safety Integrity Level D), i.e. the highest initial risk classification, and the highest level of 

safety, according to ISO 26262 protocol. 

Thanks to the use of DNN neural networks, the system can recognize the objects that 

characterize the environment and can classify them according to their type. In fact, it is possible 

to see, through the acquisition of images on monitors, that each object is delimited by a different 

colored box depending on whether it is another vehicle, a pedestrian, an object or a road sign. 

 

 
Figure 18 – NVIDIA Display Visualization 

 

Deep learning is also able to solve issues related to the environment, and therefore to know how 

to manage critical situations such as rain, snow, fog or poor visibility. From the market point 

of view, the Nvidia DRIVE PX2 platform has already been adopted by at least 50 production 

companies in the automotive sector, which have not resisted the advanced performance and 

simplicity of use of this avant-garde. Obviously, autonomous driving systems are still under 

development, therefore they are subjected to continuous updates and necessary revisions with 

the aim of improving their performance. It is not difficult to deduce that the platform considered 

in this study will soon be replaced by new and more intelligent versions. 
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2.2.2   GPS Device 

The co-protagonist, in this autonomous vehicle reality, is undoubtedly the GPS (Global 

Positioning System). This device, in fact, uses a civil satellite positioning and navigation system 

able to provide the mobile terminal with information on its geographical position, as well as its 

time in any meteorological condition and in every point of the earth. 

This localization takes place through a series of artificial satellites in orbit: each satellite 

transmits a radio signal, and the various signals are processed by the receiver. 

 

 
Figure 19 – Satellite 

 

The operating principle of the GPS system is based on the spherical positioning method, which 

starts from the measurement of the time taken by a radio signal to travel the satellite-receiver 

distance. The receiver accurately calculates the satellite's propagation distance starting from the 

difference between the time received and the one of its clock, synchronized with the atomic 

clock of the satellite. 

Today, GPS devices are used in various sectors: in the context of daily mobility, they can be 

considered substitutes for traditional paper maps. 

 

 
Figure 20 – GPS Mapping 
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2.3   Data Collection 

With reference to our system, data acquisition and processing take place thanks to the close 

collaboration between GPS and the Nvidia platform. The first, in fact, maps the route in terms 

of terrestrial coordinates: latitude and longitude. Therefore, the vehicle must follow the route 

established by the geolocation device. The Nvidia platform, on the other hand, is useful in 

recognizing obstacles and possibly recalculating the pre-established route according to their 

size and position of the obstacles. 

In detail, the study is based on the calculation of the optimal steering angle so that the vehicle 

traverses the trajectory date. In order to perform this, it was decided to make, in each iteration, 

a comparison between the bearing angle of the vehicle and the bearing angle of the path section 

near the vehicle. 

The bearing angle is the angle formed between the direction of the line that joins the north and 

south terrestrial and the direction of the considered entity. 

Starting from the terrestrial coordinate, the system has to calculate the (X,Y) coordinates with 

the respect to an absolute reference system. After that, it shall make the right calculations to 

describe the proper desired trajectory. 

The aim of the thesis, as already anticipated, is to design a controller for the problem of Path 

Following. This controller might be able to follow the ideal path established according to the 

modalities previously treated, and to minimize the lateral position error with the respect to the 

trajectory and the relative yaw angle. 

 

 
Figure 21 – Data Collecting 
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CHAPTER 3 – THE MODEL 

3.1   System Modeling 

The process of modeling a physical system allows us to study a problem by representing the 

essential and particular aspects of the reality considered. In other words, it is the cognitive 

process that transforms a physical entity into a theoretical model, using the language of logic 

and constructing the mathematical relationships that link the behavior of the objects involved. 

This abstraction of reality through a language, allows to realize simulations of processes and 

forecasts, as well as to explain concepts. 

In fact, the models give us the chance to reason about the system, and to make predictions about 

the future behavior of the system itself. 

Modeling a system is a dynamic and evolutionary process, which is essentially developed in 

three phases: 

 Interpretation: it depends on the knowledge of the observer; 

 Representation: it consists in the passage from the mental image of the system to the 

mental image of the model; 

 Outsourcing: it is the phase in which the image becomes shareable thanks to the use of 

a language and a representation system. 

 

The model we choose to represent a dynamic system depends on which are the questions we 

have to answer: there are more models corresponding to a single physical system, whose levels 

of accuracy depend on the phenomenon of interest. 

It is possible to classify the models in three different types: 

 “Black-Box” Models: they derive only from experiments; 

 “Grey-Box” Models: they are based on the model, and the experiments are necessary 

only for the identification of the parameters and for the validation; 

 “White-Box” Models: they do not provide any experiment. 

 

The choice also depends on the study case: it is obvious that, where the real system was not yet 

available, or the experiments are dangerous, it is useful to move towards the "model-based" 

approach, in order to extrapolate the characteristics of the system in the considered operating 

conditions. In the case of dynamic systems, i.e. systems whose characteristics vary during the 

time, the external description of the black-box model, i.e. the input/output model, is preferred. 
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The purpose of block diagrams is to emphasize the flow of information and to hide the details 

of the system: different processes are represented as boxes. 

 

 
Figure 22 – Block Diagram Concept 

 

A common class of mathematical models used to describe dynamic systems is the one of 

Ordinary Differential Equations (ODE), represented mathematically in the following way: 

 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) 

 

where 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥) ∈ 𝑅 it is the vector that describes the current state of the system, 

while the equation describes the rate of variation of the state as a function of the state itself. 

The equation we have just seen is defined as an autonomous system, since there are no external 

influences. In usual applications, however, it is useful to consider the effect of external 

disturbances or controlled forces within our model. In this way, the equation is rewritten as 

follows: 

 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢) 

 

where 𝑢 represents the effect of external influences and, as can be seen from the equation itself, 

it affects the rate of variation of the state.  

The model described above is called Controlled Differential Equation.  
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The input/output concept of the system is very useful in engineering systems, as it allows the 

system to be decomposed into individual components by connecting them through their inputs 

and outputs. In particular, it is highly important in the study of the special class of linear 

invariant time systems. 

 

3.2   The Control View 

More classic implementations of dynamic systems focus on autonomous systems. In the 

control, it is necessary to consider the presence of external influences, as well as to know the 

state of the system by exploiting the information made available by the sensors. The 

disturbances and uncertainties of the model become critical elements, as they are the main 

reason why feedback chains are used. 

Since the control systems enjoy cooperation with sensorial devices, it is possible to obtain the 

models experimentally. 

The representation of the model, in the context of the control, is given by the following 

equations: 

 

�̇� = 𝑓(𝑥, 𝑢) 

𝑦 = 𝑔(𝑥, 𝑢) 

 

where �̇� = 𝑑𝑥/𝑑𝑡, with 𝑥 ∈ 𝑅 state vector, 𝑢 ∈ 𝑅 is the control signal vector, while 𝑦 ∈ 𝑅 

is the measurement vector.  

The model described is called "state-space model", whose degree corresponds to the size of the 

state vector. Furthermore, it is possible to define it as a time-invariant system, since the 

functions 𝑓 e 𝑔 do not directly depend on time. 

A system is called linear when the functions 𝑓 e 𝑔 are linear with the respect to 𝑥 and 𝑢, whereby 

a linear state-space model can be represented as follows: 

 

൜
�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

 

 

where 𝐴, 𝐵, 𝐶 and 𝐷 are constant matrices. In particular, 𝐴 is the dynamic matrix, 𝐵 is the 

control matrix, 𝐶 is the sensor matrix and 𝐷 is the direct term. 
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Models of this type help us to predict the evolution of the state of a system starting from initial 

conditions, and to study the stability of an equilibrium point and the frequency response of 

input/output. 

 

3.3   Vehicle Dynamics Modeling: The Bicycle Model 

In order to simplify it, the vehicle is also recurrently approximated to a simplified model of its 

dynamics. 

The so-called Bicycle Model, in fact, has been used in this study, as it lends itself well to an 

essential description of the system. 

 

 
Figure 23 – Bicycle Model 

 

The vehicle is represented as a system composed of a front wheel and a rear wheel, connected 

to each other by an axle. 

The quantities involved are defined as follows: 

 𝑚: Vehicle Mass; 

 𝛿: Steering Angle of the Front Wheel; 

 𝛿: Steering Angle of the Rear Wheel; 

 𝛽: Slip Angle; 
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 Ѱ: Yaw Angle; 

 𝐶: Cornering Stiffness of the Front Wheel; 

 𝐶: Cornering Stiffness of the Rear Wheel; 

 𝑉௫: Longitudinal Velocity of the Vehicle; 

 𝑙: Distance from the Center of Mass to the Front Axle; 

 𝑙: Distance from the Center of Mass to the Rear Axle; 

 𝑎௬: Lateral Acceleration of the Vehicle; 

 𝐹௬: Lateral Force at the Front Wheel; 

 𝐹௬: Lateral Force at the Rear Wheel; 

 𝐼௭: Yaw Inertia Moment of the Vehicle; 

 𝑅: Curvature Radius of the Road; 

 𝛼: Slip Angle of the Front Wheel; 

 𝛼: Slip Angle of the Rear Wheel. 

 

The equations of motion, for this model, derive from the equilibrium equations of lateral forces 

and moments. They are respectively shown below: 

 

𝑚𝑎௬ = 𝐹௬ + 𝐹௬ 

𝐼௭Ѱ̈ = 𝑙𝐹௬ − 𝑙𝐹௬ 

 

where the lateral acceleration 𝑎௬, the lateral frontal force 𝐹௬ and the lateral rear force 𝐹௬, are 

expressed as follows: 

 

𝑎௬ = �̈� + 𝑉௫Ѱ̇ 

𝐹௬ = 𝐶𝛼𝑐𝑜𝑠𝛿 

𝐹௬ = 𝐶𝛼𝑐𝑜𝑠𝛿 

 

In turn, the slip angles of the front and rear wheels are represented by the following expressions: 

 

𝛼 = 𝛿 − 𝜃௩ 

𝛼 = 𝛿 − 𝜃௩ 
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where 𝜃௩ and 𝜃௩ are the angles of the velocity vector at the two wheels: 

 

𝜃௩ = tanିଵ ቆ
�̇� − 𝐿Ѱ̇

𝑉௫
ቇ 

𝜃௩ = tanିଵ ቆ
�̇� − 𝐿Ѱ̇

𝑉௫
ቇ 

 

By making appropriate substitutions, the following is obtained: 

 

𝑚𝑎௬ = 𝐹௬ + 𝐹௬ 

                                      = 𝐶𝛼𝑐𝑜𝑠𝛿 + 𝐶𝛼𝑐𝑜𝑠𝛿 

                                                                    = 𝐶(𝛿 − 𝜃௩)𝑐𝑜𝑠𝛿 + 𝐶(𝛿 − 𝜃௩)𝑐𝑜𝑠𝛿 

  

More precisely: 

 

𝑚൫�̈� + 𝑉௫Ѱ̇൯ = 𝐶 ቆ𝛿 − tanିଵ ቆ
�̇� − 𝐿Ѱ̇

𝑉௫
ቇቇ 𝑐𝑜𝑠𝛿 + 𝐶 ቆ𝛿 − tanିଵ ቆ

�̇� − 𝐿Ѱ̇

𝑉௫
ቇቇ 𝑐𝑜𝑠𝛿 

 

Making an approximation, and considering the angle 𝛿 to be null: 

 

𝑚൫�̈� + 𝑉௫Ѱ̇൯ ≅ 𝐶 ቆ𝛿 −
�̇� − 𝐿Ѱ̇

𝑉௫
ቇ + 𝐶 ቆ𝛿 −

�̇� − 𝐿Ѱ̇

𝑉௫
ቇ 

                                                       = ቆ𝐶𝛿 − 𝐶

�̇�

𝑉௫
− 𝐶

−𝐿Ѱ̇

𝑉௫
ቇ + ቆ𝐶𝛿 − 𝐶

�̇�

𝑉௫
− 𝐶

−𝐿Ѱ̇

𝑉௫
ቇ 

                                              = −𝐶

�̇�

𝑉௫
− 𝐶

�̇�

𝑉௫
− 𝐶

−𝐿Ѱ̇

𝑉௫
− 𝐶

−𝐿Ѱ̇

𝑉௫
+ 𝐶0 + 𝐶𝛿 

                                              = ൬−𝐶

1

𝑉௫
− 𝐶

1

𝑉௫
൰ �̇� + ൬−𝐶

−𝐿

𝑉௫
− 𝐶

−𝐿

𝑉௫
൰ Ѱ̇ + 𝐶𝛿 

 

𝑚൫�̈� + 𝑉௫Ѱ̇൯ = ൬−
𝐶 + 𝐶

𝑉௫
൰ �̇� + ൬

𝐶𝐿 − 𝐶𝐿

𝑉௫
൰ Ѱ̇ + 𝐶𝛿 
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Finally, we obtain the equation describing the behaviour of �̈�, which is also the first derivative 

of the first element of the state vector: 

 

�̈� = ൬−
𝐶 + 𝐶

𝑚𝑉௫
൰ �̇� + ൬

𝐶𝐿 − 𝐶𝐿

𝑚𝑉௫
− 𝑉௫൰ Ѱ̇ +

𝐶

𝑚
𝛿 

 

Going back to the equilibrium equation of the moments, and making the appropriate 

substitutions: 

 

𝐼௭Ѱ̈ ≅ −𝐶 ቆ𝛿 −
�̇� − 𝐿Ѱ̇

𝑉௫
ቇ 𝐿 + 𝐶 ቆ𝛿 −

�̇� − 𝐿Ѱ̇

𝑉௫
ቇ 𝐿 

𝐼௭Ѱ̈ ≅ −𝐶 ቆ−
�̇� − 𝐿Ѱ̇

𝑉௫
ቇ 𝐿 + 𝐶 ቆ𝛿 −

�̇� − 𝐿Ѱ̇

𝑉௫
ቇ 𝐿 

 

We finally obtain the equation that describes the behaviour of Ѱ̈, which is instead the derivative 

of the second element of the state vector: 

 

Ѱ̈ = ൬
𝐶𝐿 − 𝐶𝐿

𝐼௭𝑉௫
൰ 𝑦 − ቆ

𝐶𝐿
ଶ + 𝐶𝐿

ଶ

𝐼௭𝑉௫
ቇ Ѱ̇ +

𝐶𝐿

𝐼௭
𝛿

̇
 

 

The final system, taking into consideration the structure of the type: 

 

൜
�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

 

 

will be described by the matrices 𝐴, 𝐵, 𝐶 and 𝐷. 

As can be seen, the state is given by the vector 𝑥 = (𝑦 �̇� Ѱ Ѱ̇)′, while the input is  

𝑢 = 𝛿 = 𝛿. 

The matrices 𝐴, 𝐵, 𝐶 and 𝐷, according to the previous demonstrations and other simplifications, 

are therefore represented as follows: 
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𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0

0 −
2 ∗ 𝐶 + 2 ∗ 𝐶

𝑚𝑉௫

2 ∗ 𝐶 + 2 ∗ 𝐶

𝑚

2 ∗ 𝐶𝐿 − 2 ∗ 𝐶𝐿

𝑚𝑉௫

0 0 0 1

0
2 ∗ 𝐶𝐿 − 2 ∗ 𝐶𝐿

𝐼௭𝑉௫

−2 ∗ 𝐶𝐿 + 2 ∗ 𝐶𝐿

𝐼௭
−

2 ∗ 𝐶𝐿
ଶ + 2 ∗ 𝐶𝐿

ଶ

𝐼௭𝑉௫ ⎦
⎥
⎥
⎥
⎥
⎤

 

 

 

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

0

2 ∗
𝐶

𝑚
0

2 ∗
𝐶𝐿

𝐼௭ ⎦
⎥
⎥
⎥
⎥
⎤

 

 

 

𝐶 = ൦

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

൪ 

 

𝐷 = 0 
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CHAPTER 4 – LQR/LQI CONTROL 

4.1   Control Theory 

The Control Theory is a branch of engineering that aims to study the trend of a dynamic system, 

whose parameters are therefore variable over time. 

In practice, it takes care of modifying the behavior of this system by manipulating appropriate 

input quantities: it may be required that the output remains constant at a preset value as the 

input varies (regulation problem), or that it follows the dynamics of the input itself (command 

problem). 

 

 
Figure 24 – Control Theory 

 

The control system is the result of an in-depth study of the definition of the mathematical model 

that most faithfully describes the trend of the real model. 

Depending on the number of inputs and outputs, a system can be defined as SISO if it has only 

one input and only one output, while it is of the MIMO type when it is characterized by multiple 

inputs and outputs. 

At the same time, we can classify the input variables as follows: 

 Control Variables: they can always be measured; 

 Disturbances: sometimes they cannot be measured, and they negatively affect control. 
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As for the output variables, however, we have: 

 Performance Variables: they are the controlled quantities, they can be directly or 

indirectly measured; 

 Intermediate Variables: these are the physical variables that can be used to indirectly 

calculate the performance variables. 

 

An automatic control system, depending on the type of problem studied, can be designed in 

different ways: the most common structures are open-loop control and closed-loop control. 

Open-loop control is a predictive type of control, which can be implemented in the presence of 

a mathematical model so precise that it does not require knowledge of the output value. 

The closed-loop control, instead, is a feedback control, which has a greater complexity but is 

able to stabilize a system that is not. In general, the output value is subtracted from the reference 

signal, in order to give the so-called error signal to the control system. 

 

 
Figure 25 – Closed-Loop Control System 

 

The input signals can be of various types, but the most common are: 

 Dirac Delta Function; 

 Ramp Function; 

 Step Function; 

 Sinusoidal Function. 
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Once the characteristics of the problem under examination are identified, the most appropriate 

control solution is adopted. To guarantee reliability and stability to the system, we tend to 

choose feedback control, whose possible types are the followings: 

 PID Control (Proportional Integrative Derivative); 

 Sliding Mode Control; 

 Adaptive Control; 

 Optimal Control; 

 Robust Control; 

 Dead-Beat Control. 

 

For this study, the optimal control was selected, which is a set of control algorithms that 

stabilize a dynamic system thanks to the minimization of a cost function indicated with 

𝐽(𝑥, 𝑢). With 𝑥 we indicate the state of the system, while with 𝑢 we indicate the input generated 

by the controller following the same minimization.  

In particular, the control solution adopted in the present project is the one called LQR (Linear 

Quadratic Regulator), and it has been compared to the LQI (Linear Quadratic with Integral) 

variant. 

 

4.2   LQR: Linear Quadratic Regulator 

As part of the optimal control, as already mentioned, the LQR controller is a dynamic 

compensator able to minimize the quadratic cost function 𝐽(𝑥, 𝑢) with carefully chosen 

weighting factors. This means that the error tends to zero under steady conditions, through the 

accurate selection of the weighted matrices 𝑄 and 𝑅.  

Indicating with 𝑥 the state, with 𝑢 the input to be generated, and with 𝑦 the obtained output, the 

linear system is described by the following equations: 

 

൜
�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

 

 

where 𝑥 ∈ 𝑅, 𝑢 ∈ 𝑅 𝑎𝑛𝑑 𝑦 ∈ 𝑅, while 𝐴, 𝐵, 𝐶 and 𝐷 are matrices that do not depend on 

time. In particular, 𝐴 is an 𝑛 × 𝑛 matrix, 𝐵 is an 𝑛 × 𝑞 matrix, 𝐶 is a 𝑝 × 𝑛 matrix and 𝐷 is a 

𝑝 × 𝑞 matrix. 

The cost function to be minimized is shown as follows: 
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𝐽 = න (
ஶ



𝑥்𝑄𝑥 + 𝑢்𝑅𝑢 + 2𝑥்𝑁𝑢)𝑑𝑡 

 

The resulting controller depends on the solution of a predetermined Equation of Riccati, that is 

an ordinary differential equation which is quadratic in the unknown function. 

The control law in feedback, which minimizes the mentioned cost, is: 

 
𝑢 = −𝐾𝑥 

 
where 𝐾 is given by: 
 

𝐾 = 𝑅ିଵ𝐵்𝑃 
 

and 𝑃 is found thanks to the Equation of Riccati chosen as follows: 

 
𝐴்𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅ିଵ𝐵்𝑃 + 𝑄 = 0 

 
According to the theorem of the solution existence, for each positive semidefinite 𝑄 matrix, and 

for every positive definite 𝑅 matrix, there is always a solution 𝑢 that is optimal for the 

minimization of the cost function.  

In the case in question, which is not limited to a finite time horizon, 𝑄 and 𝑅 must also be 

constant to ensure that the cost function is always positive. Furthermore, to ensure that the same 

function is also limited, 𝐴 and 𝐵 must be controllable. 

About the stability problem, which is fundamental for the correct functioning of the controller, 

the LQR regulator guarantees this property without requiring design changes: if the system is 

stabilizable and detectable, limiting the cost index also stabilizes the system. 

 

 
Figure 26 – Error Signal 
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4.3   LQI: Linear Quadratic with Integral Regulator 

As an alternative to the LQR controller, here we also study the LQI variant to our controller. 

The LQI controllers (Linear Quadratic with Integral) are the static feedback controllers based 

not only on the system status, but also on the integral of the tracking error. They stabilize 

external circuits and minimize the quadratic cost functions associated with the step exogenous 

inputs, which is defined as follows: 

 

𝐽 = න (
ஶ



𝑧்𝑄𝑧 + 𝑢்𝑅𝑢 + 2𝑧்𝑆𝑢)𝑑𝑡 

 

where 𝑧 = [𝑥; 𝑥], 𝑥 is the integrator state and 𝑄 and 𝑅 dimensions must be adapted according 

to the matrix computation. 

The control law in feedback, which minimizes the mentioned cost and ensures that the output 

follows the reference signal, is: 

 
𝑢 = −𝐾[𝑥; 𝑥] 

 
with 𝐾 optimal gain. 

The LQI version solves the LQR problem for the augmented system: 

 


�̇�
𝑥ప̇

൨ = ቂ
𝐴 0

−𝐶 0
ቃ ቂ

𝑥
𝑥

ቃ + ቂ
𝐵

−𝐺
ቃ 𝑢 

 

where 𝐺 is the plant. 

LQI control systems have been applied to many fields: motion and vibration control of the 

three-dimensional flexible vibrating table, man-machine robotic systems, electrodynamic 

suspension control, dynamic positioning of the floating platform and ocean shuttles, and 

direction control of unmanned submarine vehicles and navigation of tunnelling robots. 

However, what we know is that the problem of synthesising the LQI controllers which stabilize 

the internal loops remains unsolved. With LQI control systems, external circuits are based on 

unit feedback and their stability is guaranteed by the LQI design. Furthermore, their open-loop 

stability is equivalent to the one of the internal loop. Therefore, in order to remove the 

fundamental constraints on the performance of external circuits caused by the open circuit in 

stability, it is always better if the LQI controllers stabilize the inner rings. 
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4.4   The Vehicle Controller 

In the current case, considering the first treated Bicycle Model, it was convenient to study the 

behaviour of the errors and to base the problem on their minimization. Here, we apply the 

demonstration to the LQR case, but similar reasoning can be made about the LQI variant. 

Considering the structure of the linear system: 

 

൜
�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

 

 

and remembering the expression of the input for the LQR control: 

 

𝑢 = −𝐾𝑥 
 

we can define the vectors involved in the studied problem: 

 

𝑥 = 

𝑦
�̇�
Ѱ
Ѱ̇

 = ൦

𝑦
𝑉௬

Ѱ
Ѱ̇

൪               ,              𝑢 = 𝛿 = 𝛿              ,              𝑦 = 𝑥 

 

In order to revising the model, aimed at basing the study on error minimization, here we define 

the error vectors: 

𝑒 = 𝑥 − 𝑥ௗ 

 

𝑣 = 𝑢 − 𝑢ௗ  

 

It is demonstrable that it is possible to rewrite the first equation of the system by using these 

vectors, without altering the matrices described above, and obtaining the following law: 

 

�̇� = 𝐴𝑒 + 𝐵𝑣 

 

where, according to the input structure of the LQR regulator, we obtain: 

 

𝑣 = −𝐾𝑒 
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𝑢 − 𝑢ௗ = −𝐾𝑒 

 

From here, the final equation for system input can be obtained: 

 

𝑢 = −𝐾𝑒 + 𝑢ௗ 

 

which, considering that 𝑢 = 𝛿 = 𝛿, and that 𝛿ௗ is the value of the desired steering angle, it 

becomes: 

 

𝛿 = −𝐾𝑒 + 𝛿ௗ 

 

The vector 𝑒, whose elements are the lateral position error, the lateral velocity error, the yaw 

angle error and the yaw rate error, thus becomes the new vector of interest. 

Thanks to this new way of designing the model, the LQR controller, succeeding in itself in 

minimizing the cost function, will be able to make zero the above mentioned errors and to push 

the vehicle to follow the pre-established trajectory. 

 

4.5   The State Observer 

In the real applications, the state vector is not always directly measurable. When this happens, 

it is necessary to design a device that allows knowing the 𝑥(𝑡) behaviour through the knowledge 

of the initial conditions, the input and the output of the system. 

This kind of state estimator is called Observer, and it is a dynamic system used to find, starting 

from 𝑦(𝑡) and 𝑢(𝑡), an estimation of the state, which is called  𝑥ො(𝑡). 

 

 
Figure 27 – Observer Scheme 
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The purpose of the Observer implementation is usually to make the estimation error tend to 

zero: 

 

𝑒 = 𝑥ො − 𝑥 

 

lim
௧→ஶ

‖𝑒(𝑡)‖ = lim
௧→ஶ

‖𝑥ො(𝑡) − 𝑥(𝑡)‖ = 0 

 

The error dynamics depends on the eigenvalues of the matrix 𝐴: if the system is unstable, the 

estimation diverges. This means that the error estimation goes to zero, for 𝑡 tending to infinite, 

only if the system is asymptotically stable. 

In order to take into account the output measurement, it is possible to add a correction factor, 

which depends on the real output and its estimation: 

 

−𝐿(𝑦ො − 𝑦) 

 

where 𝐿 ∈ 𝑅௫ଵ is a matrix called Observer Gain matrix. In this way, the system becomes as 

follows: 

 

൜
𝑥ො̇ = 𝐴𝑥ො + 𝐵𝑢 − 𝐿(𝑦ො − 𝑦)

𝑦ො = 𝐶𝑥ො + 𝐷𝑢
 

 

The estimation error will satisfy the following equation: 

 

�̇� = (𝐴 − 𝐿𝐶)𝑒 

 

It is necessary that the natural modes corresponding to the eigenvalues of (𝐴 − 𝐿𝐶) are 

convergent: this means that the system must be asymptotically stable, i.e. the eigenvalues of 

(𝐴 − 𝐿𝐶) must have negative real part. 

The presence of the estimator does not affect the input-output relationship of the system: the 

transfer matrix of the system does not change using a feedback of the state 𝑥 instead of the 

estimated state. 
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CHAPTER 5 – CONTROL DESIGN 

5.1   An Overview 

A control scheme manages, determines actions or regulates the behaviour of devices and 

systems, through continuous control cycles. 

The control scheme adopted for the Path Following problem, as anticipated, allows checking 

the output errors at the feedback node, obtained from the difference between the desired values 

and the currently detected values. 

For the following study, this difference concerns, in particular, the lateral deviation of the 

vehicle with respect to the desired trajectory. The control scheme was implemented on the 

Simulink platform, and the related code was linked to the scheme using MATLAB. 

 

 
Figure 28 – Simulink LQR Control Scheme 

 

 

 
Figure 29 – Simulink LQI Control Scheme 
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As can be seen from the above diagrams, the system receives as input the lateral position of the 

vehicle in the body reference frame. It was necessary to distinguish the global reference system 

from the vehicle one, intended as the point of view of an observer who, positioned on the origin 

that the two systems share, rotates around the z-axis according to the vehicle, whose 

longitudinal axis will be parallel to the x-axis of the aforementioned relative system. 

At this point, the input enters the block that will generate the reference signal, i.e. a vector of 

four elements placed in the following order: 

 

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 = [𝑦, 𝑉௬,, Ψ , Ψ̇]′ 

 

 
Figure 30 – Body RF 

 

The reference signal is compared to the state vector generated at the output of the dynamics 

block, whose entity has been discussed in the previous chapters. 

From this comparison, the error vector is obtained. This is the vector used by the controller to 

calculate the optimal steering angle. 

Therefore, the control block will receive this vector and will elaborate the control parameters 

in order to generate in output the steering angle which, together with the predetermined 

longitudinal speed 𝑉௫, will constitute an input for the dynamics block. 



44 
 

Finally, the structure of the bicycle model, which is described inside the dynamics block, will 

process the state parameters using the equations of motion described in the previous chapters. 

The same considerations have been made for the schemes which includes the observer 

estimator. 

 

 
Figure 31 – Simulink LQR Control Scheme with Observer Estimator 

 

 

 

 
Figure 32 – Simulink LQI Control Scheme with Observer Estimator 

  

 

5.2   The “Reference Signal” Block 

The first interesting block of the schemes presented above is the one that generates the reference 

signal, which our system has to follow. 

In order to simulate the described model, it was necessary to hypothesize the input parameters, 

i.e. to write a function that describes the trend of the (x,y) coordinates of a plausible trajectory. 
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Figure 33 – Reference Signal Block 

 

 

In particular, the current discussion studies four different paths, which are represented in the 

figures showed below. 

 

 

 

 
Figure 34 – Absolute Trajectory #1 
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Figure 35 – Absolute Trajectory #2 

 

 

 

 

Figure 36 – Absolute Trajectory #3 
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Figure 37 – Absolute Trajectory #4 

 

Starting from this, a transformation was applied to obtain the (x,y) coordinates represented on 

the reference system which rotates firmly with the vehicle. 

The yaw angle has been calculated starting from the inverse function of the tangent, using as 

argument the division between the ordinate and the abscissa of the current point of the 

trajectory: 

 

Ψ = 𝑡𝑔ିଵ ቆ
𝑌

𝑋
ቇ 

 

The yaw angle is useful in the calculation of the rotation matrix required for the 

transformation process: since these are two systems sharing the same axes origin, a simple 

rotation will be enough to express one reference frame as function of the other one. 

Given a vector 𝑝, represented in an absolute reference system, it is possible to express its 

coordinates in another reference system, rotated at an 𝛼 angle with respect to the first one, 

in the following way: 

 

𝑝ᇱሬሬሬ⃗ = 𝑅்𝑝 
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where the matrix R is described as follows: 

 

𝑅 = 
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1
൩ 

 

It is possible to obtain the desired relative behaviour by replacing 𝛼 with Ψ. 

 

 
Figure 38 – Relative Trajectory #1 

 

 

 

Figure 39 – Relative Trajectory #2 
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Figure 40 – Relative Trajectory #3 

 

 

 

Figure 41 – Relative Trajectory #4 
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5.3   The “Vehicle Dynamics – Bicycle Model” Block 

Regarding vehicle dynamics, it has already been stated that this will be approximated to the 

dynamics of the bicycle model. The block in question receives the longitudinal velocity, which 

is a constant value, and the steering angle processed by the controller. The other input 

parameters are useful to facilitate the computation process. 

 

 
Figure 42 – Dynamics Block 

 

The internal structure of the block was designed to reproduce the state equations presented in 

the previous chapters. 

 

 
Figure 43 – Bicycle Model Block 
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5.4   The Controller Block 

The most relevant part of the scheme is the controller: from the parameters characterizing the 

controller, the input of the system is determined, and the same input is the one that will minimize 

the cost function by making the deviations tend to zero. 

 
Figure 44 – Control Block 

 

The internal structural is showed below. 

 

 
Figure 45 – Controller 
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CHAPTER 6 – VIRTUAL SIMULATIONS 

6.1   The Simulation Approach 

For the performance of the simulations, some cases have been considered, which are different 

for the weight values of the Q matrix. For the LQR variant, four scenarios have been generated, 

both with and without the state observer. For the LQI variant, however, it was not possible to 

consider more than one case, since only one of the weights combinations considered could 

stabilize the system. 

To better appreciate the obtained results, it was necessary to go backwards in the calculation of 

the resulting trajectory: starting from the vehicle coordinates obtained as output of the plant, 

which are referred to the body system, it was possible to trace the coordinates in the absolute 

system through the inverse transformation. In this way, it was possible to compare the real 

trajectories with the reference ones. 

 

6.2   Tests and Results 

LQR WITHOUT THE STATE OBSERVER  

 Case 1 

 

𝑄 = ൦

1000 0 0 0
0 10 0 0
0 0 0 0
0 0 0 0.5

൪   ,   𝑅 = 0.001   ,   𝐾 = [1000 99.3 13.4 2.3] 

 

 

 
Figure 46 – Case 1: Error Vector 
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Figure 47 – Case 1: Real y VS Desired y 

 

 

 Case 2 

 

𝑄 = ൦

100 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0.05

൪   ,   𝑅 = 0.001   ,   𝐾 = [316.2 31.3 5.8 0.7] 

 

 

 
Figure 48 – Case 2: Error Vector 
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Figure 49 – Case 2: Real y VS Desired y 

 

 

 Case 3 

 

𝑄 = ൦

500 0 0 0
0 5 0 0
0 0 0 0
0 0 0 0.1

൪   ,   𝑅 = 0.001   ,   𝐾 = [707.1 70.4 5.5 0.6] 

 

 

 
Figure 50 – Case 3: Error Vector 
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Figure 51 – Case 3: Real y VS Desired y 

 

 

 Case 4 

 

𝑄 = ൦

50 0 0 0
0 0.5 0 0
0 0 0 0
0 0 0 0.01

൪   ,   𝑅 = 0.001   ,   𝐾 = [223.6 22.1 3.3 0.2] 

 

 

 
Figure 52 – Case 4: Error Vector 
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Figure 53 – Case 4: Real y VS Desired y 

 

 

LQR WITH THE STATE OBSERVER  

 Case 1 

 

𝑄 = ൦

1000 0 0 0
0 10 0 0
0 0 0 0
0 0 0 0.5

൪   ,   𝑅 = 0.001   ,   𝐾 = [1000 99.3 13.4 2.3] 

 

 

 
Figure 54 – State Observer Case 1: Error Vector 
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Figure 55 – State Observer Case 1: Estimation Error 

 

 

 Case 2 

 

𝑄 = ൦

100 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0.05

൪   ,   𝑅 = 0.001   ,   𝐾 = [316.2 31.3 5.8 0.7] 

 

 

 
Figure 56 – State Observer Case 2: Error Vector 
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Figure 57 – State Observer Case 2: Estimation Error 

 

 

 Case 3 

 

𝑄 = ൦

500 0 0 0
0 5 0 0
0 0 0 0
0 0 0 0.1

൪   ,   𝑅 = 0.001   ,   𝐾 = [707.1 70.4 5.5 0.6] 

 

 

 
Figure 58 – State Observer Case 3: Error Vector 
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Figure 59 – State Observer Case 3: Estimation Error 

 

 

 Case 4 

 

𝑄 = ൦

50 0 0 0
0 0.5 0 0
0 0 0 0
0 0 0 0.01

൪   ,   𝑅 = 0.001   ,   𝐾 = [223.6 22.1 3.3 0.2] 

 

 

 
Figure 60 – State Observer Case 4: Error Vector 
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Figure 61 – State Observer Case 4: Estimation Error 

 

 

 

LQR BEST RESULTING TRAJECTORIES 

 

 
Figure 62 – LQR Trajectory #1 
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Figure 63 – LQR Trajectory #2 

 

 

 

 
Figure 64 – LQR Trajectory #3 
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Figure 65 – LQR Trajectory #4 

 

 

LQI VARIANT  

 Case 1 

 

𝑄 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
5000 0 0 0 0 0 0 0

0 4000 0 0 0 0 0 0
0 0 3000 0 0 0 0 0
0 0 0 2000 0 0 0 0
0 0 0 0 6000 0 0 0
0 0 0 0 0 5500 0 0
0 0 0 0 0 0 4500 0
0 0 0 0 0 0 0 3500⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑅 = 500 

 

𝐾 = [6.6 2.2 5 0.8 −3.5 0 0 0] 
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Figure 66 – LQI Case: Error Vector 

 

 

 

 

 
Figure 67 – LQI Case: Real y VS Desired y 
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Figure 68 – LQI Observer Case: Estimation Error 

 

 

LQI BEST RESULTING TRAJECTORIES 

 

 

 
Figure 69 – LQI Trajectory #1 
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Figure 70 – LQI Trajectory #2 

 

 

 

 

 
Figure 71 – LQI Trajectory #3 
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Figure 72 – LQI Trajectory #4 
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CHAPTER 7 – CONCLUSIONS 

This control design work has achieved very satisfying results. As can be seen from the previous 

chapter, in fact, simulation tests have shown how much the type of control implemented was 

robust. 

In particular, the LQR controller is the most efficient, since the system is easily stabilizable by 

combinations of weights of the 𝑄 matrix of different orders of magnitude. The resulting 

trajectories, compared to the ideal ones, are very similar. Furthermore, confirming the fact that 

the system was well implemented, there are no consistent differences between the LQR 

controller without observer and the one with the state estimation. 

The same considerations cannot be made for the LQI controller, because it is very sensitive to 

changes in the weights of the 𝑄 matrix. In fact, only one case was studied because the range of 

weight values, which manage to stabilize the system, is very restricted. The resulting trajectory, 

therefore, will not present the same level of accuracy in following the ideal one. Despite this, 

the result obtained by LQI is generally not a bad one. 

The bicycle model has well represented the dynamics of the vehicle, even if it did it in a 

simplified way. 

The reflection carried out by this analysis leads us to say that autonomous driving is certainly 

not a distant reality. With the right correction terms, and an accurate machine learning process, 

the world of mobility would be completely revolutionized. 

Certainly, a project of this type will be valid and efficient only if all the vehicles will adopt the 

autonomous driving systems. In fact, if all the vehicles drive autonomously, the car will be able 

to predict external stimuli much more easily, because those same external stimuli are actions 

generated by cars adopting the same logic. Human actions, on the other hand, appear to be less 

obvious from the point of view of a machine. Furthermore, in this case, it is assumed that the 

vehicles would be able to communicate with each other through an exchange of data and 

collaborate in avoiding critical situations. 

Finally, to raise the level of success, it would be advisable to adapt the urban environment to 

this new mobility, so that the car can keep a wide variety of scenarios in its database and 

recognize road signs more easily. 

No matter how many years it will take, we should only trust in the technological progress. 
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APPENDIX 

APPENDIX A: LQR SCRIPT 
 
clear all 
close all 
clc 
  
%PARAMETERS 
  
ts=(0:0.003:48)'; 
global lf lr Cf Cr m g Iz V_x mult L 
lf=1.210; 
lr=1.220; 
m=1404; 
g=9.81; 
Cf=25000; 
Cr=33000; 
Iz=2600; 
V_x=5; 
L=lf+lf; 
mult=m*(lr*Cr-lf*Cf)/(2*Cf*Cr*L); 
T=48; 
  
%SYSTEM 
  
A=[0, 1, 0, 0; 
   0, -(2*Cf+2*Cr)/(m*V_x), (2*Cf+2*Cr)/m, -V_x+(-2*Cf*lf+2*Cr*lr)/(m*V_x); 
   0, 0, 0, 1; 
   0, -(2*Cf*lf-2*Cr*lr)/(Iz*V_x), (2*Cf*lf-2*Cr*lr)/(Iz), -
(2*Cf*lf^2+2*Cr*lr^2)/(Iz*V_x)]; 
  
B=[0; 
    2*Cf/m; 
    0; 
    2*Cf*lf/Iz]; 
 
C=eye(4); 
 
D=zeros(4,1); 
  
sys=ss(A,B,C,D); 
  
%TRAJECTORY 
  
t=0; 
des_yaw=zeros(1,16001); 
ts=(0:0.003:48)'; 
for i=1:16001 
    X(i)=300*cos(0.2*t); 
    Y(i)=200*sin(0.2*t);     
    des_yaw(i)=atan2(Y(i),X(i))+1.57;     
    Rot=[cos(des_yaw(i)), -sin(des_yaw(i)), 0; 
        sin(des_yaw(i)), cos(des_yaw(i)), 0; 
        0, 0, 1]; 
    Rt=Rot'; 
    x(i)=X(i)*Rt(1,1)+Y(i)*Rt(1,2); 
    y(i)=X(i)*Rt(2,1)+Y(i)*Rt(2,2); 
    t=t+0.003; 
end 
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psi_dot=[0,diff(des_yaw)/0.003]; 
X=X'; 
Y=Y'; 
x_ref=x'; 
y_ref=y'; 
psi_dot_ref=psi_dot'; 
des_yaw=des_yaw'; 
 
des_pos_x=timeseries(x,ts); 
des_pos_y=timeseries(y_ref,ts); 
des_psi_dot=timeseries(psi_dot_ref,ts); 
 
x_ref=des_pos_x; 
y_ref=des_pos_y; 
psi_dot_ref=des_psi_dot; 
 
%%LQR WITHOUT OBSERVATOR 
 
q=[1000 10 0 0.5]; 
r=[0.00001]; 
rho=100; 
Q=diag(q); 
R=rho*diag(r); 
[K,S,e]=lqry(sys,Q,R); 
open(‘LQR_Simulink’), sim(‘LQR_Simulink’) 
 
 
yreal=yreal.data; 
t=0; 
des_yaw=zeros(1,16001); 
ts=(0:0.003:48)'; 
 
for i=1:16001 
    X(i)=300*cos(0.2*t); 
    Y(i)=200*sin(0.2*t); 
    des_yaw(i)=atan2(Y(i),X(i))+1.57;     
    Rot=[cos(des_yaw(i)), -sin(des_yaw(i)), 0; 
        sin(des_yaw(i)), cos(des_yaw(i)), 0; 
        0, 0, 1]; 
    Rt=Rot'; 
    Yreal(i)=(yreal(i)*tan(0.2*t))/(tan(0.2*t)*Rt(2,2)+1.5*Rt(2,1)); 
    Xreal(i)=(1.5*Yreal(i))/tan(0.2*t); 
    t=t+0.003; 
end 
 
figure(1),  
plot(Xreal,Yreal), title('REAL PATH'), xlabel('[m]'), ylabel('[m]'), grid 
on, hold on, plot(X,Y) 
 
%%LQR WITH OBSERVATOR 
  
P_des=single([-2,-2,-2,-2]'); 
Lo=place(A',C',P_des)'; 
Ao=double(A-Lo*C); 
Bo=double([B Lo]); 
Co=C; 
Do=double(zeros(4,5)); 
open('LQR_Obs'), sim('LQR_Obs') 
 
yreal=yreal.data; 
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t=0; 
des_yaw=zeros(1,16001); 
ts=(0:0.003:48)'; 
 
for i=1:16001 
    X(i)=300*cos(0.2*t); 
    Y(i)=200*sin(0.2*t); 
    des_yaw(i)=atan2(Y(i),X(i))+1.57;     
    Rot=[cos(des_yaw(i)), -sin(des_yaw(i)), 0; 
        sin(des_yaw(i)), cos(des_yaw(i)), 0; 
        0, 0, 1]; 
    Rt=Rot'; 
    Yreal(i)=(yreal(i)*tan(0.2*t))/(tan(0.2*t)*Rt(2,2)+1.5*Rt(2,1)); 
    Xreal(i)=(1.5*Yreal(i))/tan(0.2*t); 
    t=t+0.003; 
end 
  
figure(2),  
plot(Xreal,Yreal), title('REAL PATH'), xlabel('[m]'), ylabel('[m]'), grid 
on, hold on, plot(X,Y) 
 

APPENDIX B: LQI SCRIPT 
 
clear all 
close all 
clc 
  
%PARAMETERS 
  
ts=(0:0.003:48)'; 
global lf lr Cf Cr m g Iz V_x mult L 
lf=1.210; 
lr=1.220; 
m=1404; 
g=9.81; 
Cf=25000; 
Cr=33000; 
Iz=2600; 
V_x=5; 
L=lf+lf; 
mult=m*(lr*Cr-lf*Cf)/(2*Cf*Cr*L); 
T=48; 
  
%SYSTEM 
  
A=[0, 1, 0, 0; 
    0, -(2*Cf+2*Cr)/(m*V_x), (2*Cf+2*Cr)/m, -V_x+(-
2*Cf*lf+2*Cr*lr)/(m*V_x); 
    0, 0, 0, 1; 
    0, -(2*Cf*lf-2*Cr*lr)/(Iz*V_x), (2*Cf*lf-2*Cr*lr)/(Iz), -
(2*Cf*lf^2+2*Cr*lr^2)/(Iz*V_x)]; 
  
B=[0; 
    2*Cf/m; 
    0; 
    2*Cf*lf/Iz]; 
 
C=eye(4); 
 
D=zeros(4,1); 
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sys=minreal(ss(A,B,C,D)); 
  
%TRAJECTORY 
  
t=0; 
des_yaw=zeros(1,16001); 
ts=(0:0.003:48)'; 
 
for i=1:16001 
    X(i)=t; 
    Y(i)=-0.02*t^2+t-3; 
    des_yaw(i)=atan2(Y(i),X(i))+1.57;     
    Rot=[cos(des_yaw(i)), -sin(des_yaw(i)), 0; 
        sin(des_yaw(i)), cos(des_yaw(i)), 0; 
        0, 0, 1]; 
    Rt=Rot'; 
    x(i)=X(i)*Rt(1,1)+Y(i)*Rt(1,2); 
    y(i)=X(i)*Rt(2,1)+Y(i)*Rt(2,2); 
    t=t+0.003; 
end 
 
psi_dot=[0,diff(des_yaw)/0.003]; 
X=X'; 
Y=Y'; 
x_ref=x'; 
y_ref=y'; 
psi_dot_ref=psi_dot'; 
des_yaw=des_yaw'; 
  
des_pos_x=timeseries(x,ts); 
des_pos_y=timeseries(y_ref,ts); 
des_psi_dot=timeseries(psi_dot_ref,ts); 
  
x_ref=des_pos_x; 
y_ref=des_pos_y; 
psi_dot_ref=des_psi_dot; 
  
%%LQI WITHOUT OBSERVATOR 
 
q=[5000 4000 3000 2000 6000 5500 4500 3500]; 
r=[5]; 
rho=10^2; 
Q=diag(q); 
R=rho*diag(r); 
  
[K,S,e]=lqi(sys,Q,R); 
open('LQI_No_Obs'), sim('LQI_No_Obs') 
  
yreal0=yreal0.data; 
t=0; 
des_yaw=zeros(1,16001); 
ts=(0:0.003:48)'; 
 
for i=1:16001 
    X(i)=t; 
    Y(i)=-0.02*t^2+t-3; 
    des_yaw(i)=atan2(Y(i),X(i))+1.57;     
    Rot=[cos(des_yaw(i)), -sin(des_yaw(i)), 0; 
        sin(des_yaw(i)), cos(des_yaw(i)), 0; 
        0, 0, 1]; 
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    Rt=Rot'; 
    Yreal0(i)=(yreal0(i)*(-0.02*t^2+t-3))/(t*Rt(2,1)+Rt(2,2)*(-0.02*t^2+t-
3)); 
    Xreal0(i)=Yreal0(i)*(t/(-0.02*t^2+t-3)); 
    t=t+0.003; 
end 
  
figure(1),  
plot(Xreal0,Yreal0), title('REAL PATH'), xlabel('[m]'), ylabel('[m]'), grid 
on, hold on, plot(X,Y) 
  
  
%%LQI WITH OBSERVATOR 
  
P_des=single([-2.5,-2.5,-2.5,-2.5]'); 
Lo=place(A',C',P_des)'; 
Ao=double(A-Lo*C); 
Bo=double([B Lo]); 
Co=C; 
Do=double(zeros(4,5)); 
open('LQI_Obs'), sim('LQI_Obs') 
  
yreal=yreal.data; 
t=0; 
des_yaw=zeros(1,16001); 
des_steer=zeros(1,16001); 
ts=(0:0.003:48)'; 
 
for i=1:16001 
    X(i)=t; 
    Y(i)=-0.02*t^2+t-3; 
    des_yaw(i)=atan2(Y(i),X(i))+1.57;     
    Rot=[cos(des_yaw(i)), -sin(des_yaw(i)), 0; 
        sin(des_yaw(i)), cos(des_yaw(i)), 0; 
        0, 0, 1]; 
    Rt=Rot'; 
    Yreal(i)=(yreal(i)*(-0.02*t^2+t-3))/(t*Rt(2,1)+Rt(2,2)*(-0.02*t^2+t-
3)); 
    Xreal(i)=Yreal(i)*(t/(-0.02*t^2+t-3)); 
    t=t+0.003; 
end 
  
figure(2),  
plot(Xreal,Yreal), title('REAL PATH'), xlabel('[m]'), ylabel('[m]'), grid 
on, hold on, plot(X,Y) 
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