
POLITECNICO DI TORINO

Collegio di ingegneria Informatica, del Cinema e Meccatronica

Master degree in Mechatronic Engineering

Communication interface between various drives

and programmable logic controllers.

Supervisor: Candidate:

Prof. Eng. Luigi Mazza Sebastiano De Luca

Company tutor:

Mr Alessandro Monge

April 2019

SUMMARY

2

SUMMARY

3

SUMMARY

Nowadays, the market pushes companies to make their production flexible and to develop their
productivity in order to be competitive. These conditions have led companies in the automation,
initially aiming at Industry 3.0 and now at Industry 4.0. The programmable logic controllers
(PLCs) are playing a key role in this industrial evolution. The PLC allows a complete control
of industrial plants because it is able to interface with all the devices of the factory. Specifically,
the control of the electric motors is carried out by means of drive. There are two types of drive:
inverter drive and servo drive. Inverter drive controls the speed of an electric motor, while a
servo drive adjusts the position of an electric motor. These devices interface with programmable
logic controllers through data structures. Therefore, communication is a fundamental aspect for
the execution of an electric motor control. Data communication structures depend on the type
of drive and the manufacturer of the drive. Particularly, Siemens communication structures are
called telegrams, while the Rockwell Automation ones are called data type. In addition,
Siemens company provides pre-set blocks to programmers. These blocks facilitate the
implementation of the control but they restrict the programmer and user manipulation.

The thesis objective is to construct an interface that eliminates these constraints. The interface
block aims to allow the communication between central processing unit (CPU) of PLC and
drive regardless of the type of drive and the manufacturer of drive.

To implement the interface block, the Siemens and Rockwell Automation communication
structures have been chosen, because they are very different from each other. Generally, other
producers base their communication structures on Siemens telegrams and Rockwell
Automation data types.

Initially, a thorough analysis of the communication modes between central processing unit of
PLC and drive has been performed both in the case of Siemens systems and in the case of
Rockwell Automation systems. Next, the interface block has been implemented, and finally a
series of tests have been executed to verify the block operation. The interface block has been
tested by using firstly a Siemens PLC and a Siemens drive inverter, secondly a Siemens PLC
and a Siemens servo drive and finally a Rockwell PLC and a Rockwell inverter.

The test results have been positive: all the features that were required for the block have been
executed and the communication between central processing unit of PLC and drive has been
successful.

A further development of this thesis could be the construction of a converter that allows a direct
conversion from a software environment to another. In this way, it would be possible not only
a communication between PLC and drive regardless of the drive type and the drive
manufacturer, but also a free implementation of the program regardless of the programming
software chosen.

SUMMARY

4

SUMMARY

5

INDEX

SUMMARY ... 3

INTRODUCTION... 7

1. THE PROGRAMMABLE LOGIC CONTROLLER .. 9

INTRODUCTION ... 9

1.1 PROGRAMMABLE LOGIC CONTROLLER DEFINITION AND DIFFERENCE BETWEEN PLC AND PC 10

1.2 APPLICATIONS FIELD ... 11

1.3 ADVANTAGES OF PLC ... 13

1.4 PROCESS CONTROL BY MEANS OF PLC ... 14

1.5 PLC ARCHITECTURE.. 16

1.5.1 Input and output modules ... 17

1.5.2 Input multiplexing technique... 22

1.5.3 Central processing unit (CPU) .. 25

1.5.4 Memory ... 26

1.5.5 Bus system ... 27

1.5.6 External peripherals .. 28

1.5.7 Power supply ... 29

1.6 BASIC PLC OPERATION ... 29

1.7 CONCEPT OF CYCLE IN PLC .. 31

1.8 ADDRESSING... 35

1.9 PROGRAM LANGUAGES OF PLC .. 38

1.10 SET OF OPERATIONS AND DATA TYPE .. 43

1.10.1 Basic instructions for the control of electrical circuits ... 45

1.10.2 The instructions for program managing ... 54

1.10.3 Data manipulation instructions ... 57

1.10.4 Instructions for manipulating numeric data.. 58

1.11 HOW PLC WORKS ... 60

1.12 COMMUNICATION: PROFINET NETWORK .. 61

1.13 LEGISLATION ... 63

2. THE CPU AND DRIVE COMMUNICATION .. 65

INTRODUCTION ... 65

2.1 DRIVE TYPES AND COMMUNICATION STRUCTURE .. 65

2.2 COMMUNICATION BETWEEN SIEMENS CPU AND SIEMENS DRIVE .. 67

2.2.1 SINA_POS block ... 68

2.2.2 SINA_SPEED block ... 83

2.2.3 Siemens Telegram 352 .. 87

SUMMARY

6

2.3 COMMUNICATION BETWEEN ROCKWELL AUTOMATION CPU AND ROCKWELL AUTOMATION DRIVE92

2.3.1 Rockwell inverter: PowerFlex series ...92

2.3.2 Rockwell Automation servo drive: Kinetix series ...95

2.4 COMMUNICATION INTERFACE ...96

3. THE COMMUNICATION INTERFACE APPLICATION: TEST RESULTS 111

INTRODUCTION ...111

3.1 PROGRAM APPLICATION ..112

3.2 TEST ABOUT STANDARD TELEGRAM 1 ..113

3.3 TEST ABOUT SIEMENS TELEGRAM 352 ...129

3.4 TEST ABOUT STANDARD TELEGRAM 111 ..141

3.5 TEST ABOUT ROCKWELL AUTOMATION INVERTER DRIVE...185

CONCLUSION ... 207

APPENDIX A ... 211

APPENDIX B .. 226

APPENDIX C ... 234

BIBLIOGRAPHY. .. 301

SITOGRAPHY. .. 304

7

INTRODUCTION

The main objective of this experimental thesis is the complete and detailed analysis of the

programmable logic controller system. Specifically, a communication interface between

Programmable Logic Controller (PLC) and drive will be implemented and tested.

My interest in programmable logic controllers is based on the high use of these devices

in the industrial environment. Indeed, the demand for better products has stimulated a new

industrial development. This industrial evolution registers a shift from the Industry 3.0 to the

Industry 4.0. The programmable logic controllers are the key players of this evolution because

they have allowed the birth of the Industry 3.0 and now the development towards the Industry

4.0.

The programmable logic controller is a digitally operating electronic system, designed for

the industrial environment, which uses programmable memory for implementing specific

functions.

The main advantages of PLCs are flexibility, cost, smoothness, modularity, size, safety

and durability. These characteristics make them suitable to interface with all the industrial

devices and to carry out a complete control of an industrial plant. These characteristics have led

to a wide diffusion of PLC in the industrial field.

The study has been divided into three parts: the first chapter shows the state of the art of

programmable logic controllers. This kind of analysis has been done to understand the various

components that form a system based on PLC and the potentialities of PLCs. Initially PLC

definition is reported and then there is a wide and detailed excursus about the PLC

characteristics and how PLCs have impacted on today's industrial evolution.

In the second chapter, the communication between central processing unit of PLC and

drive will be analyzed on the basis of two main PLC manufacturers and program implemented

by me. The control of electric motors by means of PLC is done through servo drives and inverter

drives. The communication between PLC and drive is the main feature for control to be properly

effectuated. Each company has its own and different communication structure from the other

structures on the market. Specifically, there is an analysis of the communication structures of

Siemens and Rockwell Automation. The communication structures are called telegrams by

Siemens and data type by Rockwell Automation. The telegrams are different from the data type

even if both allow the communication between PLC and drive. Based on the analysis of the

various communication structures, there is the implementation of a communication interface.

INTRODUCTION

8

The interface block allows communication between PLC and drive regardless of the drive type

and the drive manufacturer.

In the last chapter, the test results on the communication interface are reported. The test

results are divided in according to the communication structure tested. Initially, the test results

on communication telegrams between Siemens devices are analyzed in detail. Particularly, the

Standard Telegram 111 and its modalities are examined deeply and the analysis of the two

telegrams for the management of an inverter (Standard Telegram 1 and Siemens Telegram 352)

is executed. Finally, the test results about the data types of communication between Rockwell

Automation devices are fully described. In this case, the test results concerning the “PowerFlex

525” data type are analyzed.

At the bottom of the thesis there are the appendices with the Siemens and Rockwell

Automation communication structures and the interface block implemented in the Siemens and

the Rockwell Automation programming software.

The Programmable Logic Controller

9

1. The Programmable Logic Controller

INTRODUCTION

In this first chapter, it will be shown the state of the art of Programmable Logic

Controllers (PLCs). Particularly in the first paragraph, the PLC definition will be reported

according to IEC 61131 and main differences between PLC and PC will be analyzed. The

second paragraph analyzes the PLC application field by defining the reasons why PLC control

system is used. In addition, the paragraph will examine differences between Industry 3.0 and

Industry 4.0 and why PLC are fundamental to industrial evolution.

The advantages of the PLC will be listed and analyzed individually in paragraph 1.3.

In "Process control by means of PLC" paragraph, observation and controllability of

control process will be described. Moreover, the paragraph will list some of analog and digital

devices that can be connected to PLCs.

In paragraph 1.5, PLC architecture will be examined. Specifically, all main devices of

PLC system will be listed and then each device will be analyzed and studied in detail. This

paragraph is divided into 7 sub-paragraphs because each sub-paragraph will focus on PLC

system device.

Paragraph 1.6 is called "Basic PLC operation" because it will talk about the steps that

PLC performs to carry out the control.

In paragraph 1.7, the PLC cycle concept and the PLC cycle types will be analyzed,

describing cycle algorithms activates.

Successively, paragraph 1.8 will explain the addressing concept, focusing on how the

programmer should perform the address of each logical signal.

In paragraph 1.9, programming languages will be listed and examined. In this paragraph,

some functions examples will be reported and they will be represented according to different

programming languages.

In paragraph 1.10, there will be shown set of operations and data type that the CPUs of

PLCs can calculate. The paragraph 1.10 constitutes of 4 sub-paragraphs: each sub-paragraph

will study and explain set of operations thought application examples.

Next paragraph will analyze how PLCs work and specifically how they are implemented

by programmers.

In paragraph 1.12, an analysis of the communication cable among various devices of a

PLC will be described, focusing on “Profinet” network.

The Programmable Logic Controller

10

Finally, the last paragraph will describe IEC 61131 norm. All companies that produce

PLC and programmers must respect this norm so that their control devices system is defined

programmable logic controllers.

1.1 Programmable Logic Controller definition and difference between PLC and

PC

Nowadays the world economic market pushes companies to greater flexibility and

product improvement. Considering these needs, many companies use programmable logic

controllers in production control. The Programmable Logic Controller or PLC is "a digitally

operating electronic system, designed for use the industrial environment, which uses

programmable memory for implementing specific functions such as logic, sequencing, timing,

counting and arithmetic, to control, through digital or analog inputs and outputs, various types

of machines or processes " [Document No. 1 bibliography].

Programmable Logic Controller (PLC) is a device capable of controlling industrial

process. It is a particular industrial control system, because it guides processes in difficult

conditions that are characterized by electrical disturbances, vibrations, dust and wide variations

in temperature and humidity.

Controlled processes can be different types, like plant for printing newspapers or filling

plant or press for plastic molds.

PLC is a controller that is based on logic programming. Actually, PLCs perform not only

strictly logical functions such as AND, OR, NOT and NAND, but they are able to perform

count, timing, comparison, numerical calculation, and several operations of data manipulation

in bit, byte, word, int and Dint format, like CONV, FILL, SHIFT functions.

PLC can be identified as a personal computer with limited potential. As the table 1.1

shows, there are several differences between PC and PLC [Document No. 5 bibliography].

Features PC PLC
Data movement >500.00kByte/sec > 10 kByte/s

Size of programs >10.000 kByte < 10 kByte

Binary operations movement of 32 bit operations of 1 bit

Microprocessor frequency >1 GHz <100MHz

The Programmable Logic Controller

11

Typical operation 8 hours per day 24 hours on 24

Immunity to electrical disturbances poor High

Environmental conditions air-conditioned interior From 0 to 55 °C

Programming compiled in high-level

languages

direct, in "machine

language"

(Table 1.1 Differences between PLC and PC)

Focusing on the last feature, programming language is a significant difference between

PC and PLC. Contrary to the PC, the PLC language does not have to be particularly complex,

so that it can be used by technicians who do not have knowledge oriented to electronics and

computer science.

In summary, PLC is able to control industrial production in detail and in difficult

environmental conditions.

(Fig. 1.1 Structure of control system)

1.2 Applications field

 Application fields of PLCs range from construction to vibration control to industrial

control for production. Indeed, in order to be competitive, companies have to provide customers

with better and constant quality products, they have to make production flexible and to develop

productivity. This situation has pushed companies towards automation aiming at Industry 3.0

and at Industry 4.0. In this climate of industrial improvement, PLC has assumed primary role

in production, transformation and control sectors. Increase of the PLC use has led to their

The Programmable Logic Controller

12

technological improvement, sure enough they are not simple sequencers with the purpose of

controlling production process but they are capable to make self-diagnosis of the possible

failures.

Initially, PLCs were implemented in the context of the industry 3.0 (fig. 1.2).

(Fig. 1.2 Evolution of industry)

The industry 3.0 is characterized by hierarchical approach that is applied to the

automation of production processes. This approach is represented by so-called "automation

pyramid" and it is called vertical integration.

The automation pyramid consists of following levels: physical production processes,

supervision and data acquisition control (SCADA), production control and business processes

related to production planning and resource planning [Document No. 4 bibliography].

Evolution of Industry 3.0 is the Industry 4.0, that is based on RAMI 4.0 model (fig 1.3).

(Fig. 1.3 Structure of industry 4.0)

The Programmable Logic Controller

13

This structure integrates product life cycle and system architecture. System architecture

is defined as physical production processes and Company's production.

If factories are based on this model, they are considered like cyber-physical production

systems. In these systems components of factories (machines, various equipment and products)

communicate directly to exchange information, perform operations and control each other

autonomously.

This type of control system needs different objects to communicate reciprocally. In this

regard Digital Administration Shell was introduced.

The introduction of Digital Administration Shell was necessary to facilitate the

integration of the components. It involves insertion of physical component able to interface all

components of the factory allowing a standardized communication for the storage of all data

and acquired information.

The creation of data area in which to store and exchange data within a company or group

of companies, even in different branches, has generated in a simple and safe way a new type of

integration: the horizontal integration. In other words, with horizontal integration we mean the

possibility to communicate in real time safety analysis not only all the components of a factory

among themselves, but also company with other companies that use data area accessible for all

users. Thus, if Industry 3.0 was characterized only by vertical integration, Industry 4.0 is

characterized by both vertical integration and horizontal integration.

In the Industry 4.0 perspective, PLCs are perfect components as they enable state

observability, control activity and communication activity with external devices.

In conclusion, the scope of PLC use is industrial environment and in the specific Industry

3.0 and 4.0.

1.3 Advantages of PLC

The use of PLCs is very convenient for companies, because of their flexibility, cost,

smoothness, modularity, size, safety and durability [Document No. 1 bibliography]. Before the

advent of PLCs, the electromechanical and pneumatic components were used to perform

sequential and control activities. They had to be wired to perform a certain function, and the

entire wiring had to be re-run whenever a different extension or function was needed. The use

of PLC has eliminated this phase, sure enough, in case of expansion, new equipment is added

and connect physically without having to modify the connections of the other components;

while in case the automation cycle needs to be changed, the program instructions need to be

The Programmable Logic Controller

14

changed simply by leaving the physical connections unchanged. In other words, they are

extremely flexible, because the process can be changed very quickly. PLCs are economical:

• if plant must to be eliminated, it can be reused in another application;

• if the pneumatic or electromechanical circuit is obsolete, it can be replaced with PLC,

as the PLC is correctly adapted to the existing machines.

Moreover, the PLCs are compact and their structure is modular, so you can configure

them according to installation needs. They are able to perform a self-diagnosis and interface

with computers. This permit application of the Industry 4.0. Another important advantage of

PLCs is their small size, which makes it possible to test and refine program. In addition,

program test can be performed by means of suitable simulator software. In this case,

programmer chooses type of wanted PLC, program is loaded in the virtual PLC and then the

programmer starts simulation. Another advantage of PLC is safety. Particularly fatal accidents

cannot happen because in most cases there are voltages up to 30 V.

The cost of management is a key factor for PLC, they also have minimal wear and they

require little maintenance (fig 1.4).

(Fig. 1.4 Falure rate trend)

So, benefits of PLCs increase their use in industrial field, improving the control systems.

1.4 Process control by means of PLC

A control system is a system that allows to observe and control a plant. Specifically, the

observability is acquisition of process states in real time, while controllability is the ability of

PLCs to obtain states that user wants.

The Programmable Logic Controller

15

States observation is performed by means of input pins. They are connected to all devices

that can execute function of signal generators like switches, buttons, sensors, limit switches,

photocells, thermostat and thermometer.

These devices can be classified into analog and digital devices:

-analog device can take values in a range;

-digital device can take two values ON/OFF.

Switches, buttons, photocell, limit switches, thermostat are digital devices and they

produce digital inputs. Specifically, there are two types of contacts: normally open contacts and

normally closed contacts. Normally open contacts close when they are actuated; conversely,

normally closed contacts open when they are actuated. On the other hand, photocell produces

an open signal if it is reached by light, otherwise it produces a closed signal.

Operation of limit switch is the button that is actuated by mechanical action and not by

user.

Thermometer instead is an analog device. It is different from thermostat because

thermometer measures values of temperature of environment, while thermostat indicates if

temperature is above or below the reference value.

(Fig. 1.5 Scheme of process states)

The PLC acquires various states from the signal generators and then it executes

instructions of the program stored in its memory. This generates all tasks required to get states

that the user wanted.

At this point observability phase ends and the controllability function is performed

through the application of the activities determined by the program processing.

System control is performed through specific devices that are able to execute the functions

necessary for the process to run properly. These devices are connected to PLC outputs that can

be digital or analogue.

The Programmable Logic Controller

16

PLC commands actuators like motors, solenoid valves and other circuits, via digital

outputs, while the analogue outputs are used to operate proportional valves, indicators,

recorders, drives and inverters.

In other words, activities are performed by means of starting or stopping an engine,

opening or closing a valve, or turning the indicator light on or off (figure 1.6).

(Fig. 1.6 Scheme of process control)

In conclusion, PLC must be able to observe current system states and apply commands

to obtain desired states.

1.5 PLC architecture

PLC-based control system is characterized by a complex architecture. Basically, PLC first

acquires all the process states in real time, then it calculates the tasks necessary to implement

any changes to be made to current state, and finally it applies the evaluated operations based on

the instructions written in program.

PLC consists of the following elements (figure 1.7):

- input modules;

- output modules;

- central processing unit (CPU);

- memory;

- power supply;

- bus system.

In addition, PLC is equipped to connect with peripherals that let human-machine

interfaces (HMI), communication with other PLCs, use of mass storage, connection with online

servers and paper documentation. These devices collaborate for the execution of an effective

control system [Document No. 1 bibliography].

The Programmable Logic Controller

17

(Fig. 1.7 Scheme of PLC architecture)

1.5.1 Input and output modules

Input and output modules can be defined as interface between PLC and external

environment. The input modules are used to connect signal generators to PLC; the output

modules, instead, connect PLC with actuators allowing application of functions elaborated by

the PLC.

The number of input and output modules is a crucial feature for PLC, because the greater

the number of input and output modules the greater the number of sensors and actuators that

can be connected. This increases the PLC control capacity and its cost.

Input signals must be converted into signals that can be recognized by the control unit

because they are electrical signals and the CPU is unable to read electrical signals.

The conversion of these signals is performed by input boards, which are interfaces that

allow communication between PLC and power unit (servo drive, inverter, etc.).

The digital input board unit with internal generator is schematized in the following image

(figure 1.8):

(Fig. 1.8 Unit of digital input board)

The Programmable Logic Controller

18

Digital input unit of figure 1.9 consists of an internal generator (G) and a sensor (s) or an

external switch (s).

An internal generator is required when a passive element is attached, conversely when

board has no internal generator, connected device is active because it must have external

generator.

Sensor reveals the presence or absence of the current, while the external switch source

reacts the sensor state.

Digital input board is divided into groups and each group has more units (figure 1.9).

(Fig. 1.9 Digital input board with 2 groups and 4 units)

The input modules signals can be of binary type, i.e. they assume logical value 0 and

logical value 1 regardless of the type of signal that could be both digital (buttons, switches) and

analog (thermometer, pressure gauge).

In some cases, sure enough, the analogue signal must be treated as a digital binary signal,

for example to indicate the absence of voltage or the presence of voltage.

In other cases, the analogue signal must be treated as signal that varies over time within

predetermined range of values, such as when the liquid level in the tank or the oven temperature

is to be indicated. In these cases, the values of these signals are between minimum value and

maximum value. Generally, they are standard: ± 50 mV, ± 1 V, ± 5 V, ± 10 V, 0…10 V, 0…20

mA, ± 20 mA, + 4…20 mA.

The CPU is not able to read the analogue signal, so analog signal must be converted to

digital signal. This conversion is performed by A/D Converter (Fig 1.10)

The Programmable Logic Controller

19

(Fig. 1.10 A/D Converter)

The A / D converter transforms a continuous signal over time into a discrete one i.e.

digital signal (figure 1.11).

(Fig. 1.11 Analog and digital waves)

The main characteristics of A/D converter are accuracy and precision, which depends on

the resolution and on the number of bits. Indeed, the converter's resolution is:

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

2𝑛

where "n" is the number of bits.

Generally, number of bits of A/D converter are 8, 10 and 12, so the number of possible

combinations are: 2 ^ 8 = 256; 2 ^10 = 1024; 2 ^ 12 = 4096.

For example, if temperature range is between 0 °C and 100 °C, voltage field is between

0 V and 10 V and number of bits of A/D converter is 8, the resolution of the A/D converter is:

10 − 0

28
=

10 − 0

256
= 0.039 𝑉

The Programmable Logic Controller

20

This value corresponds to following temperature value:

100 − 0

28
=

100 − 0

256
= 0.39 °𝐶

Obviously, the greater the number of bits, the greater the accuracy of digital signal than

the analog one. Indeed, in our case resolution would be 0.0976 °C for n = 10 and 0.0244 °C for

n = 12.

(Fig. 1.12 Digital image of an analogue size)

The digital input boards with logical signal as input carry out a series of activities:

- recognize an ON signal;

- recognize an OFF signal;

- recognize the presence of a noise;

- protect the CPU against short circuits;

- preserve the CPU from overloads;

- shield the CPU from power surges;

The operating principle of the boards is based on the preset operating ranges, for example,

if measured voltage value is between 13 V and 24 V, board will provide an ON signal; if,

conversely, the value is between 0 V and 5 V, the board will provide an OFF signal; finally, if

the value is between 5 V and13 V, the logical signal remains unchanged, which means that if

the signal is turned off, it will remain unchanged until the input signal exceeds 13 V, similarly,

if the signal is ON, it will remain unchanged until the input signal do not exceed 5 V (figure

1.13).

The Programmable Logic Controller

21

(Fig. 1.13 Example of level bands to recognize variations of status)

Input signals may contain noises, so input boards must filter out parasitic information.

The filtration of parasitic information consists in measuring not only the logical level of the

signal but also its duration.

As we have already mentioned, the connection between actuators and PLC is via output

modules. In other words, the output modules are interfaces that permit the PLC to control

actuators.

Like the input modules, the output modules can also be analog and digital.

Particularly, digital output module has some drives and it is divided by group as digital

input module.

(Fig. 1.14 Scheme of digital output module)

The main feature of the digital output modules is the so-called "output emission time".

This is the time interval between the moment when the CPU loads the command in the PLC

memory and the moment in which the threshold voltage is reached. This value allows activation

of the command.

There are 2 types of digital output modules: relays and static outputs or transistors.

The Programmable Logic Controller

22

A relay is a switch triggered by the excitation of an electromagnet, while a transistor is a

semiconductor-driven switch (figure 1.15).

(Fig. 1.15 (A) transistor structure;(B) transistor scheme; (C) relays structure)

The duration of the emission time of the static output is lower than that of relay, since the

time of emission of the latter is caused by time of ascent of relays.

While analog output modules have boards that convert digital signals into analog signals.

In other words, the commands processed by PLC in digital mode are converted to analogue

quantities so that analogue actuators can easily read them.

The conversion from digital to analogue is performed by D/A converters that make up the

analog output modules. They allow to generate an analogue signal proportional to the digital

signal. Characteristics of the D/A converter are accuracy, precision and resolution. The

calculation of these quantities is analogue to that of the converter.

To conclude, input and output modules are indispensable for communicating between the

internal environment and the external environment.

1.5.2 Input multiplexing technique

Input multiplexing is a technique that consists in connecting some signals to a single input

port of the PLC [Document No. 1 bibliography]. Mainly, this technique is used when a

numerical value must be sent to the PLC. Generally, decimal binary encoders (BCD) is the

encoding used to perform data transition.

The translation from decimal number to the BCD is done through simple rules represented

in the next table.

The Programmable Logic Controller

23

 MSB BCD BCD LSB

Decimal 8 4 2 1

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

(Table 1.2 Rules for BCD code)

The representation of numbers from 1 to 9 requires 4 bits (table 1.2). As a result, the

number is divided in according to its position (units, tens, hundreds, thousands etc.) and 4 bits

are associated with each position; for example, if value between 10 to 99 needs to be encoded,

two blocks of 4 bits are required because one block represents the units and the other the tens.

In other words, for each of 4 bits is given an evaluation based on its column value in the binary

system.

Moreover, each bit has a specific weight that regulates the transmission of the data in

single port of the PLC. Particularly, the least significant bit (LSB) has a value 1, the next bits

(going left) take the values 2 and 4, and finally the most significant bit (MSB) assume the value

8 (table 1.2).

The application of this technique is done through the multiplex that transmit the signals

of the 4 bits. The figure 1.16 represents application of the multiplexing technique when a 4-

digit decimal number must be transmitted (maximum 9999).

The Programmable Logic Controller

24

(Fig. 1.16 Multiplex technique)

If this technique was not used, 4 encoders would be needed and each of them would

generate 4 signals for total of 16 signals. As a result, PLC should dedicate 16 input pins to this

activity.

The application of the multiplexing pin permits to reduce number of input signals to the

PLC. Indeed, the 16 signals from the encoders are connected to diodes, which disassemble the

signals and transmit them to just 4 PLC inputs (figure 1.16).

The main advantage of this technique is the reduction of the input pins number because

only 4 inputs are necessary. However, instead the main disadvantage is the complex

management of the software. This disadvantage is not a serious problem because today's PLC

are able to handle very complicated software.

The use of the multiplexing technique is performed similarly for analogue cards that can

have different inputs. In this case, the inputs are switched to a single converter. The figure 1.17

shows the switching of 4 signals (I1, I2, I3 and I4) in a single analogue signal. This last signal

is converted to digital signal by means of the A/D converter and it is sent to the CPU via

Optocouplers.

(Fig. 1.17 Multiplex technique for analog signal)

The Programmable Logic Controller

25

Benefit, also in this case, is the cost reduction thanks to reduction of the input pins;

instead, the increase in the data acquisition time is an inconvenience.

To conclude, multiplexing technique lets to reduce significantly number of PLC pins for

transmission of decimal numbers and cost of a control system: PLC, drives and additional

modules.

1.5.3 Central processing unit (CPU)

Central processing unit (CPU) is the part of automatic system in charge of executing and

coordinating all operations required for automation and it is considered the "brain" of the system

for this reason. Particularly, CPU task is to process the instructions described by programmer

starting from the signals of input pins, and generating the commands per unit of implementation.

Its main element is the microprocessor, that is able to perform all functions of calculation and

all functions of control. The main feature of CPU microprocessors is the possibility to be

programmed, because this characteristic has allowed the transition from wired logic to a

programmable logic. The wired logic is more expensive than the programmed one because it

consists in proper connection of different devices adapt to fulfill particular function. If the

function changes, whole connection must be changed and in some cases some devices have to

change.

On the other hand, the programmed logic allows to execute function through

predetermined functions and when the function varies, only the instruction must be changed

(figure 1.18).

(Fig. 1.18 Difference between wired logic and programmed logic)

The Programmable Logic Controller

26

The 1.18 A image shows physical connection of the "S1" and "S2" switches respectively

to motor and to power supply line in the case of the wired logic. Instead, in the case of the

programmable logic 2 switches are within the PLC program (figure 1.18 B).

There are many types of CPUs on the market and each manufacturer places the most

suitable CPU in the PLC arbitrarily because there is no standardization. For example, Siemens

company has some CPUs belonging to family 1200 and 1500.

In conclusion, CPU is that internal device to the PLC that permits program processing

and command generation.

1.5.4 Memory

Memory is an electronic device that is able to store information and lets other components

to read them.

The memories in the PLC can be classified in 2 groups: auxiliary memory and program

memory.

Specifically, program memory has both RAM and ROM components.

Read Only Memory (ROM) is used to store the PLC operating system, because it is a

read-only memory and is not volatile. In other words, it can be read but it cannot be deleted or

written; even if the power supply does not work and the spare battery is discharged, data remains

stored.

PLC can have different types of ROM memory: PROM, EPROM and EEPROM. The

choice depends on company and potential of the control system hardware.

Random Access Memory (RAM) stores the user program, because it can be read and

written. Indeed, in the test phase and run phase the user must be able to modify the program

every time he wants it to be according to his needs.

Auxiliary memory stores system inputs and outputs, program variables and intermediate

results during program execution. These values change continuously and therefore auxiliary

memory is RAM type memory.

Reserved auxiliary memory for intermediate results is called "Flags".

Generally, PLC reads flags as a word or double word, but flags are read as simple bits

when only logical value is to be read. Auxiliary memory partition that performs certain

functions of the program is called "registers".

The Programmable Logic Controller

27

Generally, there are at least 4 registers in the PLC:

• working log to store the results of logical arithmetic operations calculated by the CPU

following the program's instructions;

• auxiliary register that stores data during special situations;

• stack register to perform the same function as the log when the job is busy;

• status register that stores the system states.

To conclude, the memory is an indispensable element for PLC because it represents place

where data are collected, instructions and all information for correct execution of program.

1.5.5 Bus system

Bus system is an internal circuit that allows communication between various components

that are present in the PLC. It constitutes of a series of internal connections that manages the

communication between control units and input modules, communication between processing

units and output modules, supply voltage and mass potential.

The bus is divided in according to the functions carried out in:

• address bus, that lets access to the addresses of the individual boards;

• data bus that agrees to the reading of data from both input modules and output modules;

• command bus, that is used to manage command and control signals to perform control

of the actuators and to ensure the correct operation performance by the actuator.

In conclusion, the bus system can be defined as that network of cables which carries

signals for a correct internal communication.

(Fig. 1.19 Bus system structure)

The Programmable Logic Controller

28

1.5.6 External peripherals

External devices are all those devices that communicate with PLC from outside. Indeed,

PLCs can communicate with other PLCs, human machine interface devices, printers, devices

for emission of alarm signals and devices that perform some functions. Specifically,

programmable controller is connected to peripheral units like:

• programming console;

• mass memories;

• simulators;

• EPROM programmers;

• interface for printers and plotters;

• connection modules for personal computers;

• service unit (electronic keys).

(Fig. 1.20 Control panel for Siemens PLC)

The connection modules for personal computers are very important because they are able

to exchange of information between different computers of the same factory or between

different computers of different factories. In this way, it is possible to control the production,

the management data relating to process, the remote control and the modification of the

parameters and, above all, the detection of eventual faults even at distance, thus allowing the

remote diagnosis and the resolution of failures. In other words, they consent to apply the

definition of "Industry 4.0" in daily reality of factory at any level.

The Programmable Logic Controller

29

External peripherals extend the modular horizon of PLC, which is not a simple control

device applicable in special cases, but a flexible device capable of performing a large-scale

control.

1.5.7 Power supply

Power supply is a device that converts line current to direct current. Generally, the power

supply voltage of the PLC is either 12 V or 24 V.

Engineering characteristics of power supply depends on the type of PLC and its

components, because the power supply must be constant and must not damage all control

hardware. It constitutes of transformers, rectifiers for conversion of AC into DC and regulators

to provide proper power supply.

The device, which allows the switch to the backup battery, can be considered part of the

power supply, indeed it powers PLC when there is no current from electrical grid so that content

of RAM is not lost.

In conclusion, power supply is an AC-DC converter that transforms alternating current of

transmission line into direct current for operation of the PLC.

(Fig. 1.21 Power supply of PLC)

1.6 Basic PLC operation

The PLC operation is based on sequential and cyclic data processing, because instructions

are performed individually from first to last and PLC executes the first instruction after the last

processing.

The main key parameters of a sequential operation are the processing time and the

presence of contradictory statements.

The Programmable Logic Controller

30

Processing time is the time taken by the control unit to complete the execution of all

program instructions; instead, the presence of contradictory instructions creates situations of

uncertainty and even errors, visible even during the programming phase.

Processing time depends on the number of program instructions; also, instruction

execution time is not constant but depends on length and complexity of the given instruction.

The instruction execution time is the time interval that starts from the instant in which the CPU

loads the instruction from memory and ends at the instant the next instruction is read from

memory.

During the execution time, the instruction is loaded by means of memory address that is

held by the program counter. The instruction is decoded and executed by the CPU, and then the

CPU passes to the next instruction.

Another factor influencing reprocessing time is the CPU type of the PLC, which can vary

not only among PLC of different brands but also among PLC of same brand.

As a result, the sum of execution times of all the instructions is the program's processing

time and is called cycle time or scan time.

To these factors it is necessary to add a non-constant delay generated during acquisition

of new information. This delay is variable because it depends on when the input value changes.

This delay contributes to increase the reaction time that is calculated by adding the delay

time during the acquisition of the variation and the duration of the cycle. In other words,

reaction time is sum of the cycle duration and a forementioned delay and it is therefore also

variable.

The PLC cycle is characterized by following steps (figure 1.22):

1. after PLC is switched ON, the control unit reads input values to assess the

presence or absence of voltage. The presence or absence of voltage indicates the

status of inputs, which is represented in binary mode: presence of voltage status

= 1, absence of voltage status = 0;

2. the processing unit begins to process the program instructions by collecting

information about the input states. If it is necessary, during program execution,

the control unit accesses various memory cells that contain the variables and

characteristics of any counters, timers and markers. The results of each

instruction are obtained;

3. the results of each instruction are transferred to output modules, generating

actuator controls;

4. a new cycle is performed starting from the first instruction.

The Programmable Logic Controller

31

In conclusion, basic PLC operation consists of a sequential and cyclic processing of

variable duration that characterizes reaction time of control system.

(Fig. 1.22 Basic operation of PLC)

1.7 Concept of cycle in PLC

The PLC cycle is marked by 3 phases: the acquisition of input states, the data processing

and the sending of commands [Document No. 1 bibliography]. Steps about inputs reading and

outputs sending can occur directly or indirectly through a memory.

In the event that the input acquisition takes place directly, whenever state of an input

changes, it will be immediately updated in the PLC in real time. In other words, in this case the

PLC activities are:

1. acquisition of input states;

2. processing instructions;

3. update states even if the loop is not terminated.

This sequence is similar the one of outputs if sending commands occurs directly.

If there is an intermediate memory, the data is acquired from the CPU and memory at the

same time, but the update of any new states will occur at the cycle end. In this case PLC phases

are:

1. acquisition of input states;

2. processing instructions;

3. end of cycle;

4. state update.

The Programmable Logic Controller

32

Generally, the timeline of the cycle phases can be represented in the following figure:

(Fig. 1.23 Cycle phases of PLC)

Types of cycle that manage inputs acquisition and the output updating have been

standardized by companies of PLC like Siemens and Rockwell. There are 3 different types of

cycles: the input and output synchronous cycle, the input synchronous and output asynchronous

cycle and the input and output asynchronous cycle.

In the case of a synchronous cycle, the input and output processing phases performed by

the PLC are shown in figure 1.23:

(Fig. 1.23 phases of synchronous cycle)

The Programmable Logic Controller

33

The synchronous cycle does not perform a direct connection, but it uses intermediate

memories called process images. Process images are tables that store input and output states.

Especially process images for inputs are indicated with the acronym "PII", while those of

outputs are indicated by the acronym "PIQ" [Website No. 3 sitography].

The phases of a synchronous cycle (figure 1.23) are:

• reading of input states;

• write the input values to the "PII";

• program execution according to the states in memory;

• the storing of the commands in the "PIQ";

• application of the controls to the actuators.

This approach is typical of low-level PLCs.

The second type of loop is the synchronous cycle on the input and the asynchronous cycle

on the output.

It differs from the synchronous cycle in input and output for updating outputs, because it

manages the inputs by means of auxiliary memory and outputs directly. In other words,

calculation of single output and its updating take place at the same time without being used in

process image.

The synchronous cycle phases on the input and asynchronous on the output (figure 1.24)

are:

• reading of input states;

• write the input values to the "PII";

• calculation of commands according to states in memory and their application to

actuators in real time.

The Programmable Logic Controller

34

(Fig. 1.24 Phases of synchronous cycle in input and asynchronous in output.)

Finally, the asynchronous input and output cycle applies direct approach to both reading

inputs and sending commands.

The phases of asynchronous cycle (figure 1.25) are:

• reading of input states;

• implementation of the first instruction of program;

• application of command and acquisition of new input states.

The Programmable Logic Controller

35

These tasks are performed for each statement (figure 1.25).

(Fig. 1.25 Phases of asynchronous cycle.)

Generally, this approach is applied by high-level PLCs.

To conclude, the PLC cycle types are categorized in according to the handling of input

and output signals, and they are synchronous input and output cycle, synchronous input and

asynchronous output cycle, and asynchronous input and output cycle.

1.8 Addressing

The objective of the PLC is to manage state of outputs in according to input states and,

both the incoming signals and the outgoing signals are necessary. These signals are connected

to the PLC via modules that can be inside body containing the CPU (figure 1.26) or outside as

additional modules (figure 1.27).

The Programmable Logic Controller

36

(Fig. 1.26 CPU 1241 Siemens)

(Fig. 1.27 Siemens additional module SM 1231)

Each module has pins to which external devices, such as sensors and actuators, are

connected. In the case of input, the signals come from the outside, while in the case of output

the signals are sent by the CPU. In both cases, you need an interface that permits a connection

between hardware (physical pin) and software (logical signal value). The companies of PLC

impose to each bit an address that allows creation of this connection.

Particularly, each digital module has 8 pins which are divided into 2 groups of 4 pins

each. Each pin is associated with one bit, and each module has a byte, because a byte

corresponds with 8 bits. The byte address is the number that marks a module, instead the single

pin is marked with the bit address from 0 to 7, so the address of the first bit of any byte is 0,

and the address of the last bit of any byte is 7.

In addition, the input pins are indicated by capital letter "I", while the output pins are

indicated with capital letter "Q" (figure 1.28).

The Programmable Logic Controller

37

(Fig. 1.28 Scheme of Siemens CPU with digital input module 0 and 1, and digital output
module 4 and 5)

As a consequence, complete address of input pin is:

 𝐼 𝑋. 𝑌 (1.1)

where X is the byte address and Y is the pin address.

For example, given the PLC shown in figure 1.28, the address of the fifth input from

above is:

 𝐼 0.4 (1.2)

because the byte address is 0 and the bit address is 4.

While type of output pin complete address is:

 𝑄 𝑋. 𝑌 (1.3)

where X is the byte address and Y is the pin address.

For example, the address of the last exit is:

 𝑄 5. 7 (1.4)

because the byte address is 5 and the bit address is 7.

The Programmable Logic Controller

38

This type of addressing applies to both analog and digital signals. Specifically, an analog

signal's address indicates a word and not a single bit because analog signals are words.

In conclusion, addressing is activity that permits translation of a physical signal into a

virtual logical signal.

1.9 Program languages of PLC

The programming language is a set of elements, blocks and standardized rules that allows

the programming of processor to perform defined functions. In other words, the programmer

writes a set of instructions that the PLC must perform by means of default programming

language.

Generally, the programmers use high-level programming language, while the one of PLC

processor is of low level. The task, that allows conversion from a high-level programming

language to a low-level one, is called compilation and it is performed by compiler. In other

words, the compiler changes the program language by moving from a high-level programming

language to a low-level syntax.

All programming languages constitutes of a "set of operations" that the programmer must

use to implement any function regardless of its complexity.

Each programming language has its own set of operations and therefore the solution of a

single problem can be implemented in a different way; indeed, it is not possible to switch from

one programming language to another automatically. Generally, the set of operations are

elementary functions that come in logical operations, counts, compare, or timers.

Programming languages are divided on the basis of the visual representation of the

functions in two categories: graphical programming languages and literal programming

languages.

Graphical programming languages are characterized by the use of graphical symbols,

while literal programming languages use mnemonic literal codes.

The programming languages can follow the school of American thought and the school

of German thought.

The programming languages of the American school are:

• Ladder diagram, a language based on graphic symbols (figure 1.29);

• Boolean keys, a language based on “mneomonic” literal codes (figure

1.30);

The Programmable Logic Controller

39

• Functional block, a language based on functional blocks containing an

instruction (figure 1.31);

• High-level language (HLL), a language that can also be used by

computers (figure 1.32).

The programming languages of the German school were created by Siemens and they are:

• KOP, a contact programming language based on graphical symbols

corresponding to the Ladder diagram (figure 1.29);

• FUP or FBS, defined as a logical scheme corresponding to the functional

block (figure 1.31). It is a graphical language because it uses logical

blocks as symbols;

• AWL, a list of instructions (STL), which could also be called a symbolic

language because desired instructions are written using mnemonic literals

that identify the set of operations functions such as counters, timers and

logical functions (AND, OR, non, NAND, etc.). It corresponds to the

Boolean status keys (figure 1.30).

• Structured Control Language (SCL), a high-level structured programming

language. It is at the level of HLL language of American origin (figure

1.33).

(Fig. 1.29 Example of KOP or LAD programming language)

The Programmable Logic Controller

40

(Fig. 1.30 Example of STL programming language)

(Fig. 1.31 Example of FUP or FBS programming language)

(Fig. 1.32 Example of HLL programming language)

The Programmable Logic Controller

41

(Fig. 1.33 Example of SCL programming language)

Especially, the representation of the scale or the programming language KOP is very

intuitive, because it consists of sequences of networks. Each network constitutes of two parts:

a decision-making part and an implementation part.

Decision block is to the left of the segment and it is a combination of elementary functions

belonging to the set of KOP operations.

The implementation part is to the right of the segment and it consists of one or more

values, which depend on the result of decision-making party (figure 1.34).

(Fig. 1.34 General network of ladder diagram)

Scale diagram is similar to the representation of the electrical circuits, even if there are

some differences. For example, the power lines are shown vertically in the ladder diagrams and

horizontally in the electrical circuits; in addition, the electrical systems are shown in horizontal

position in the ladder diagram and in vertical position in the electrical circuits (figure 1.36).

The ladder scheme consists of switches and circles representing the coils (figure 1.35).

The Programmable Logic Controller

42

(Fig. 1.35 Basic elements of ladder diagram)

Switches are called operands and they can be negated (not denied) or no-negated (denied).

When a status of 1 is supplied, the no-negated switch activates, while a negated switch turns

off. Conversely, when a 0 state is supplied, a no-negated switch is deactivated, and a negated

switch activates.

Each operand represents the logical state (not the physical state) of a given signal

generator that can be actuator, memory or sensor.

Another difference between the diagram and the electric circuit is the operating logic: the

ladder diagram goes from the top to the bottom, while the one of electric circuit goes from left

to right.

(Fig. 1.36 A Electrical circuit of self-contained; B ladder diagram of self-contained)

Nowadays, Structured Control Language (SCL) is widely used by programmers, because

it eases some functions and it conforms to the PLC standard (IEC 61131).

The Programmable Logic Controller

43

It is a high-level programming language that is based on the Pascal programming

language. It allows structured programming using top-level elements and simple elements such

as input, output, timers, counters, etc. In other words, it integrates and expands the functions of

other lower-level programming languages such as the KOP.

In conclusion, PLC programming languages let the programmer create a complex

software by means of basic functions in a simple and intuitive way.

1.10 Set of operations and data type

The program of PLC must be implemented using programming languages. During the

implementation of program, the programmer needs different data types; therefore, the

programming languages must be able to evaluate different kinds of variables. The choice of

variable takes place in according to the type of operation to be performed. For example, the

implementation of the presence or absence of a signal requires a boolean variable, while the

measurement of magnitude requires a variable of real or integer type.

PLCs and programming languages are able to evaluate the following variables: boolean,

integer, double integer, word and real. Each type of variable has different characteristics that

make it suitable or not for certain situations.

The Boolean variable is indicated with the symbol "BOOL" in all programming software.

Since it is used to indicate the presence or absence of a condition, the transistor is the physical

element to which it is connected: if the transistor is open, the variable value will be 0, and if the

transistor is closed, the variable will assume the value 1. The perceived value is stored in

memory bit that is associated with the variable through the addressing activity.

Bits are grouped blocks of memory that are used to store values greater than 1.

Particularly, a set of 8 bits generates the byte. The byte is able to store a decimal number

between 0 and 255, because it has 256 possible combinations.

If the number of bits increases, even the maximum decimal number that can be stored

increases. For example, a word can represent a maximum decimal value of 65535, because it

constitutes of 16 bits (figure 1.37 A) and the number of possible combinations is 65536.

Among the types of variables used by PLCs there are also the integer variables and double

integer variables. The integer variable contains 16 bits and is used to store values ranging from

-32768 to 32767, while the double integer variable consists of 32 bits and can store values

ranging from −231 to −2(31−1).

The Programmable Logic Controller

44

Finally, there is the real variable (real) which is made up of 32 bits and can take values

ranging from −231 to −2(31−1).

The main difference between real and integer is that real data store real numbers, while

the integer variable only integer numbers.

(Fig. 1.37A Memory struct of data type)

In addition to these types of data related to memory, there are structures. The structure is

data type related to the types of information previously described but the programmer can model

freely. For instance, it is possible to create a structure composed of 2 words and 1 integer, or 2

words, 2 integers, and 1 bool etc. In other words, the possible combinations are chosen by the

programmer arbitrarily and, generally, it is based on the function he wants to elaborate (figure

1.37B).

(Fig. 1.37B Example of struct)

The Programmable Logic Controller

45

The programming languages have a library of elements that let the implementation of the

instructions. This library corresponds to the set of basic functions that are the same for all

programming languages, generally. The set of operations can be divided in according to their

complexity in:

• basic instructions for the control of electrical circuits;

• instructions for managing the program;

• data manipulation instructions;

• instructions for manipulating numeric data.

1.10.1 Basic instructions for the control of electrical circuits

The basic instructions for controlling electrical circuits constitutes of boolean “AND” and

“OR” logical functions on individual bits, timers and counter [Document No. 18 bibliography].

Especially, the logic function AND is represented in different ways in programming

languages (figure 1.38).

(Fig. 1.38 AND function implementation)

In this case, output Q 0.0 will become true if I 0.0 and I 0.1 switches are both true, as it

imposes truth table of the “AND” function (table 1.3).

I 0.0 I 0.1 Q 0.0

0 0 0

1 0 0

0 1 0

1 1 1

(Table 1.3 True table of AND function)

The Programmable Logic Controller

46

The logical OR function, like the AND function, has several representations that depend

on type of programming language (figure 1.39).

(Fig. 1.39 OR function implementation)

In this case, output Q 0.1 becomes true if I0.2 switch or I0.3 switch is true, as it imposes

the truth table of OR function (table 1.4).

I 0.2 I 0.3 Q 0.1

0 0 0

1 0 1

0 1 1

1 1 1

(Table 1.4 True table of OR function)

The application of the logical AND and OR functions is fundamental and often they are

used together. For example, figure 1.40 describes the following function:

 (𝐼 0.0 𝐴𝑁𝐷 𝐼 0.1) 𝑂𝑅 (𝐼 0.2 𝐴𝑁𝐷 𝐼 0.3) = 𝑄 0.1 (1.5)

The Programmable Logic Controller

47

(Fig. 1.40 Implementation of equation 1.5)

The logical AND and OR functions implement standard functions: exclusive-OR

operation, pure self-contained, self-contained, set and reset of variables and memories.

Exclusive-OR operation is based on following boolean equation:

 (𝐼 1.0 ∗ 𝐼 1.1̅̅ ̅̅ ̅̅) + (𝐼 1.0̅̅ ̅̅ ̅̅ 𝐴𝑁𝐷 𝐼 1.1) = 𝑄 1.0 (1.6)

It becomes:

 (𝐼 1.0 𝐴𝑁𝐷 𝐼 1.1̅̅ ̅̅ ̅̅) 𝑂𝑅 (𝐼 1.0̅̅ ̅̅ ̅̅ 𝐴𝑁𝐷 𝐼 1.1) = 𝑄 1.0 (1.7)

Output Q 1.0 is enabled if and only if one of the two inputs (I 1.0 or I 1.1) is active,

indeed, output will be false as evidenced by its truth table (table 1.5) if both inputs are true.

I 1.0 I 1.1 Q 1.0

0 0 0

1 0 1

0 1 1

1 1 0

(Table 1.5 True table of XOR function)

The implementation of XOR function depends on type of programming language used

(figure 1.41), but in all cases it can only be used with 2 inputs.

The Programmable Logic Controller

48

(Fig. 1.41 Implementation of XOR operation)

Another standard function is the pure self-contained (figure 1.42).

In this case, the "L" light bulb illuminates when the "P1" switch is active. When the bulb

lights up, the "L" switch is activated and light will always remain on even if the "P1" is

deactivated. This function is called pure self-contained because it cannot be switched off after

turning on the bulb.

(Fig. 1.42 Implementation of pure self-contained by means of ladder diagram)

Instead, the implementation of the self-contained is represented in figure 1.43.

(Fig. 1.43 Implementation of self-contained by means of ladder diagram)

The Programmable Logic Controller

49

In this case the bulb lights up when the"P1" switch is activated and the "P2" is deactivated.

When the light bulb is on, the "L" switch activates and the bulb stays on even if P1 is not active,

just like before. The difference is that the "L" bulb can be switched off by pressing the "P2"

switch. Indeed, when the "P2" switch is active, the contact opens and the current does not reach

the bulb, which turns off and at the same time the "L" contact opens, no longer allowing the

passage of the current towards the bulb even if the "P2" is disabled.

In the previous functions the implementation part assumes values that depend on the

decision-making part, while in the SET/RESET instructions the one may not happen.

The SET function imposes the value 1 at the output if decision-making part is verified;

while the RESET operation equally outputs to 0 if the decision-making part is verified.

The effect of the SET and RESET instructions may also be applied to several outputs at

the same time, provided that the addresses of the outputs are different, sure enough the number

“n” indicates the number of addresses to which it is connected (figure 1.44).

(Fig. 1.44 Set/Reset function structure)

The following figure shows the difference between the use of the SET instruction and the

use of a normal coil (figure 1.45).

(Fig. 1.45 A) Set function structure, B) coil structure)

The Programmable Logic Controller

50

Figure 1.45 B represents a normal coil: the lamp "L" illuminates when the switch "P" is

on and it turn off when switch “P” is deactivated. In the case of the SET instruction (figure 1.45

A), the lamp illuminates when the switch "P" is activated and it remains on even when the user

switches off the switch “P”.

In the latter case the programmer must add a RESET instruction to switch off the lamp L

(figure 1.46).

(Fig. 1.46 Example of SET/RESET function)

In the example of figure 1.46 the switch "P" turns on lamp, which will remain lighted

until the P switch is deactivated. When P turns off, the RESET function is activated and the

lamp goes out. Programmers very often use this statement because it permits them to manage

the activation and deactivation of an item according to the conditions that they want.

SET and RESET operations let to implement standard functions such as set dominant and

reset dominant.

Programmer implements set dominant function when he wants to provide priority to the

set function (figure 1.47).

(Fig. 1.47 SET Dominant function)

The Programmable Logic Controller

51

Programmer implements reset dominant function when he wants to provide apriority to

the reset function (figure 1.48).

(Fig. 1.48 RESET Dominant function)

AND and OR instructions are the simplest functions that belong to the basic function set.

It constitutes of more complex instructions: timers and counter.

The timer is an element that delays the execution of an action such as sending a command.

Figure 1.49 represents a timer using the ladder diagram as the programming language.

(Fig. 1.49 Working logic of timer)

When control logic is verified, the timer starts counting time, so it activates when it has

reached the default delay (PRESET).

Timer activation generates the application of the "U" output. In other words, the control

logic does not activate the "U" output immediately but after a predefined delay. The delay

The Programmable Logic Controller

52

depends on the timer resolution used. The resolution is the unit of time used for measuring time.

For instance, if the timer resolution is the second, you can set a multiple delay of the second.

There are two types of timers: the timer without memory and the timer with memory.

The time diagram for the timer without memory is shown in the next figure (figure 1.50).

(Fig. 1.50 Timeline for the no-memory timer)

As you can see from figure 1.50, the timer value becomes 1 after the PR delay has elapsed

and if the "IN" variable is still active.

If the "IN" input becomes 0 before the delay has elapsed, the timer will not activate.

The timer with memory, however, differs from the timer without memory because it is

able to memorize the time for which the condition "IN" has been activated (figure 1.51). As a

result, if the "IN" condition has been activated for a period less than the delay, the timer remains

in the logical state 0, but this time range is stored and each successive impulse increases it.

When time frame has exceeded the default delay, the timer will reach a value of 1.

In addition, the timer with memory needs a reset operation to be reset.

(Fig. 1.51 Timeline for the memory timer)

Another element for programming PLC is the counter.

The programmer inserts a counter when he has to count how many times an event

happens.

The Programmable Logic Controller

53

The event to monitor is the input of the counter, so the counter counts the number of

pulses that excite its input regardless of the event duration: an event can last 1 s or 50 s but is

counted only once (figure 1.51).

There are two types of counters: the forward counter (figure 1.52) and the forward and

backward counter (figure 1.54).

The forward counter starts at 0 and it activates its output when the number of pulses from

input "CU" reaches the default value of "PV". Thus, user must specify default value by means

of input "PV" and the reset condition as input “R”, otherwise the counter will not reset and

remain active. Figure 1.52 represents the timeline of forward counter that activates after

reaching a value of 3 and turns off only when reset condition occurs.

(Fig. 1.52 Forward counter)

(Fig. 1.53 Timeline for forward counter)

The Programmable Logic Controller

54

The forward and backward counter, on the other hand, is represented in the following

image (figure 1.54).

(Fig. 1.54 Forward/Backward counter)

In this type of counter, input CU is dedicated to a forward count, while input “CD” is

dedicated to a backward count.

“PV” input is used to record the default value and input "R" is connected to the reset

condition. The counter starts at 0 and counts forward when it has to count the number of pulses

coming from “CU”; while it starts from the value of “PV” and reaches 0 when it has to count

the number of pulses coming from “CD”. The forward/backward counter is activated when it

reaches the default “PV” value, which can be both positive and negative.

In conclusion, the basic instructions are the indispensable functions to implement a

program for electrical circuits control and uncomplicated activities control.

1.10.2 The instructions for program managing

The instructions for managing program are another type of instructions that are provided

by the programming languages.

They allow to organize the set of instructions and provide an execution priority.

When program is complex and long, programmer divides the program into blocks. In each

block he implements more or less complex functions. Each block must be recalled in the main

or another block regardless of programming language. Recalling a block inside another or main

is performed using the "CALL" function (figure 1.55)

The Programmable Logic Controller

55

(Fig. 1.55 Implementation of Call function in Siemens software)

In the image 1.55 functional block “FB1” is invoked by associating to it “DB20” data

block. It has two inputs and one output:

• inputs IN = IW1 and TEST;

• output is OUT.

Call function is related to the functions "CONDITIONAL CALL (CC)" and

"UNCONDITIONAL CALL (UC)".

Conditional call instruction lets to recall a block if and only if the condition has been

performed (figure 1.56).

(Fig. 1.56 Implementation of Conditional Call function in Siemens software)

The FC1 is invoked if only if the condition I 0.0 is true.

Unconditional call instruction permits the programmer recall a block independently of

the rest of the program as shown in figure 1.57.

The Programmable Logic Controller

56

(Fig. 1.57 Implementation of Unconditional Call function in Siemens software)

Another program management instructions example is the Jump function (JMP). It allows

PLC to skip over rungs and reach specific network, that is indicated by means of label

instruction (figure 1.58)

The jump and label instruction constitute of address number that permits their connection.

When Jump instruction is true, PLC jumps over rungs and continues to evaluate the

instructions following the label element (figure 1.58).

(Fig. 1.58 Implementation of jump function in ladder diagram)

In this case, “Network 2” is jumped when variable I 0.0 is true.

The program management instruction set contains "JUMPN" function. It is analogous to

the jump instruction, but, in this case, PLC skips over rungs and continues to evaluate the

instructions following the label element when the condition of the JUMPN instruction is false

(figure 1.59).

The Programmable Logic Controller

57

(Fig. 1.59 Implementation of jump function in ladder diagram of Siemens software)

So, network 7 is jumped when variable "Parameter" is false.

In conclusion, program management functions allow the programmer to split the program

into different sub-programs and activate them in according to the user needs.

1.10.3 Data manipulation instructions

A set of data manipulation instructions constitutes of instructions for moving data into

memory, comparing data comparisons, and boolean calculations to bytes and word.

The comparing block is the instruction that allows the comparison operation between

numbers. It is made up of 2 values and a comparison mark. In the programming language KOP

is represented in the following picture:

(Fig. 1.60 Comparing block in ladder diagram)

The Programmable Logic Controller

58

where:

• "x" is the value to compare;

• “n” is the comparison value;

• “Op” is the type of comparison that can be greater (>), minor (<), equals (=), greater

than or equal (> =), minor or equal (< =), or different (< >);

• “Type” is the type of data (real, integer...).

Comparing block is activated when the comparison is true.

Comparable numeric variables can be integer, real and double integer, but only numbers

of the same type can be compared. For example, if you want to compare two variables, they

must be either real or integer or double integer (figure 1.61).

(Fig. 1.61 Comparing blocks by means of LAD and SCL)

In this case the first comparing block becomes true if the variable"Parameter_2" is greater

than 6 (integer variable), while the second comparing block becomes true if the

variable"Parameter_3" is greater than 6.0 (real variable).

The data manipulation instructions allow programmer to express the conditions that the

basic instructions are not able to perform.

1.10.4 Instructions for manipulating numeric data

The instructions for manipulating numerical data permit many numeric operations,

including basic mathematical calculations, scientific calculations. An example of basic

mathematical calculations is the sum. It is performed by means of three variables: the two

The Programmable Logic Controller

59

addendes and the result. The implementation of the sum through the programming language

LAD is represented in figure 1.62.

(Fig. 1.62 ADD instruction by means of ladder diagram)

The operation performed by the ADD_I block is as follows:

 𝐼𝑁1 + 𝐼𝑁2 = 𝑂𝑈𝑇 (1.8)

The “SCALE_X” instruction is another function that belongs to the instructions for

manipulating numerical data. It lets to scale to floating-point number within value range.

Programmer imposes the maximum and minimum value of the range and the scale block

provides the result as an integer (figure 1.63). The formula that is applied is as follows:

 𝑂𝑈𝑇 = [𝑉𝐴𝐿𝑈𝐸 ∗ (𝑀𝐴𝑋 – 𝑀𝐼𝑁)] + 𝑀𝐼𝑁 (1.9)

(Fig. 1.63 SCALE_X function in ladder diagram)

The Programmable Logic Controller

60

Where user has set a range of values from 0 to 100, so the block will scale the value of

"Parameter_3" within this range and it will impose the result found at "Parameter_2".

Particularly, the equation 1.9 becomes:

 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_2 = [𝑃𝑎𝑟𝑎𝑚𝑡𝑒𝑟_3 ∗ (100 – 0)] + 0 (1.10)

In conclusion, the manipulation of numerical data lets to perform very simple operations

such as sum, multiplication and complex as mapping of given in a range of values

1.11 How PLC works

The programmer implements the set of instructions that the PLC must perform by means

of compilers. They are PC software that convert program from a high-level language to a

machine-readable and processor-executable language. Particularly, the largest PLC companies,

such as Siemens, Rockwell and Schneider, have a PC software that permits the programmer to

write and convert the program easily. For example, the manufacturer Siemens provides its

customers with software such as T.I.A. Portal, STEP7 and STARTER for writing a program

dedicated to Siemens CPUs and Siemens drive; while the management of Rockwell PLC must

be done by means of programs created with RsLogix500 and RsLogix5000; finally, software

Zelio Soft implements programs for Schneider PLC.

Moreover, the connection between PC and PLC must be done through these software and,

specifically, they let to download the program in the PLC and to test it during the

implementation phase. The connection between PC and PLC is via a normal cable such as the

USB cable or Ethernet cable. After the PC and the PLC are physically connected by a cable,

you can make the virtual connection and load the program. The program can be loaded only

when there is a connection between PC and PLC or when PC is in online mode.

In the first CPUs as the Siemens S7-300 CPU, loading the program into the PLC could

only happen when the CPU was in "STOP" mode, but now in the S7-1200 and S7-1500 CPUs

the program can be loaded even when they are in "RUN" mode. It is possible to start the test

phase after loading the program. During this phase all operations can be followed and analyzed

directly by the PC, because PLC and PC are in the ON-line mode. In case the user needs to

make changes, the programmer can only do them in OFF-line mode.

Generally, PLC has RUN and STOP states. When the PLC is in the STOP mode, it is on

standby, which permits the program to be downloaded to the PLC. In this stage, all PLC outputs

The Programmable Logic Controller

61

are disabled and therefore it is not possible to change the status of any actuator. The PLC

remains in STOP state until a RUN command is applied.

During RUN mode the PLC runs the program and manages the outputs by reading the

input states.

This mode can be changed manually by the user or automatically when an error occurs.

To conclude, the standard operation of the PLC depends on programming languages, but

the way to implement and the tools for loading the program in the PLC are constrained by

companies.

1.12 Communication: Profinet network

The core components of a PLC, such as CPUs and drives, are connected to each other

through an Ethernet cable. Communication between the various devices travels within the

ethernet cable that creates a network called Profinet. The Profinet network is a leading Industrial

Ethernet standard [Document No. 11 bibliography]. It permits high-speed communication and

high reliability of controlled processes, which are indispensable for automation.

The Profinet network is useful for the implementation of both Industry 3.0 and Industry

4.0, because it is able to manage vertical and horizontal integration.

It can handle TCP/IP (Transport Communication Protocol/Internet Protocol) without

limitation, for instance it allows the integration of PROFIBUS networks and other field bus

systems, such as AS-Interface.

Security is one of the most important parameters for a company and the network on which

the information travels must be able to guarantee it. The Profinet network has a high level of

security because it uses the PROFIsafe profile. The PROFIsafe profile is able to execute

standard and safety communication in a single bus cable. In other words, the user is able to

monitor all the parameters and information of the Profinet network at any time through internet

access.

The PROFIsafe standard is certified in according to “IEC 61508 (up to SIL 3), IEC62061

(up to Sil 3), en ISO 13849-1:2006 (up to PL e), EN 954 (up to category 4), NFPA 79-2002,

NFPA 85 as well as for use up to SIL 3 according to EN 62061".

The installation of a profinet-type network is flexible, because it can be applied in the

case of a linear, star, shaft and ring network.

The Programmable Logic Controller

62

The construction of the Profinet network is based on "Switching" technology with a data

transmission speed of 100 Mbit/s, which means that the data can travel in real time even in the

case of complex systems.

The application of "Switching" technology permits a free connection with the next switch

and therefore each node/partner can send or receive data in every instant. Additionally, devices

can send and receive data at the same time because the Profinet network bandwidth this 200

Mbit/s. In this way Profinet allows the application of the Industry 4.0 in a simple and fast way.

Its flexibility also concerns the use of standardized protocols: it can manage the

standardized protocols TCP/IP and UDP/IP. In addition, the network profinet uses Simple

Network Management Protocol (SNMP) that reads and writes data. In this way, user is able to

read and write data in a simple and secure way.

The task of a PLC is to manage actuators as a function of inputs; so PROFIBUS &

Profinet International has created the Profinet IO standard. This standard allows a fast and

correct communication between the various devices even in a decentralized architecture. It is

based on cyclic communication of all data from each device, supporting 1440 bytes/telegram

for each field device.

In conclusions, the qualities of the Profinet network permit a fast and secure

communication of data and make it better than any field bus tradition.

(Fig. 1.64 Example of PLC control system connection)

The Programmable Logic Controller

63

1.13 Legislation

PLCs are subject to the International Standard IEC 61131 defined by the International

Electrotechnical Commission (IEC) [Website No. 1 sitography]. The IEC is a world

organization composed of the National Electrotechnical Committees which aims to define the

rules in the electrical and electronic field. These rules are accepted and followed by the

international community. Generally, the rules defined by the IEC have an international

consensus because they are chosen in agreement with all the national technical committees,

therefore it collaborates with the International Organization for Standardization (ISO).

The standard IEC 61131 is made up of 8 parts, which describe every aspect of the PLC

and are constantly updated to adapt the legislation to technological development [Document

No. 2 bibliography].

The first part provides the definitions of programmable controllers and all peripheral

devices such as human-machine interface (HMI), sensors and drives, specifying their main

characteristics. In 1992 IEC defined the first edition of IEC 61131-1, which was replaced by

the current norm in 2003.

The second part of the IEC 61131 standard was created in 1992, but it was updated in

2003 and in 2007. The current version specifies all tests for programmable controllers and

peripherals and the minimum requirements of the PLC and its peripherals. Indeed, it defines

the characteristics in the field of functional, electrical, mechanical, environmental, construction,

safety, EMC and user programming.

The norm provides constraints on the use of the syntax and semantics of the most common

programming languages. In other words, this third part imposes the basic functions that it is

possible to use. As a consequence, if manufacturers want to create additional blocks, they

should only be based on the basic functions provided by the standard.

In addition, in IEC/TR 61131-4 there is an end user guide. This guide explains to the users

how to read the IEC 61131 series and assists them in the choice of devices based on the

characteristics of the equipment specified in the norm.

The communication, however, is defined in the fifth part of the a forementioned

legislation. The first draft of IEC 61131-5 was written in 2000 and it was updated in 2011. It

imposes the type of network to be used for the exchange of information between PLCs and all

the devices connected to it. In particular way, this part specifies the way in which PC must

interface with PLC to provide information from the application program or services of other

devices.

The Programmable Logic Controller

64

As we have already announced, security is a crucial parameter for PLCs, indeed the

International Electrotechnical Commission has dedicated the sixth part of the norm to security.

It describes all requirements that programmable controllers and its peripherals must have to be

considered suitable for use in a security system E/E/PE. In other words, if PLC complies with

IEC 61131-6, it is considered a programmable functional safety logic controller (FS-PLC). FS-

PLC constitutes of hardware subsystem or a software subsystem: there are predefined functional

blocks in the program that monitor security, generally.

The last two parts of the a forementioned legislation concern Fuzzy control and

application of programming languages. Specifically, IEC 61131-7 specifies the type of

programming language that must be applied for the implementation of a Fuzzy controller, while

the IEC/TR 61131-8 provides a guide for the program implementation that PLC must perform.

This guide takes into account the programming languages specified in the third part of the

standard in the programming support environments (PES) in writing phase and in the PLC's in

run phase.

So, norm IEC 61131 is the standard that all companies of international community have

to observe.

The CPU and drive communication

65

2. The CPU and drive communication

INTRODUCTION

In this second chapter, the communication between CPU and drive will be analyzed

according to two main PLC manufacturers and program implemented by me.

First paragraph will describe drive types, drive use and main parts that constitutes drive.

In addition, there will be how drive communicates with CPU and vice versa.

In paragraph 2.2, communication between Siemens CPU and Siemens drive will be

analyzed in detail. Particularly, after a brief introduction, the paragraph is divided into 3

subparagraphs: SINA_POS block, SINA_SPEED block and Siemens Telegram 352. First

subparagraph will analyze Siemens communication block for a position control and telegram

used, while second subparagraph will study Siemens communication block for speed control

and communication telegram, finally, third subparagraph will examine Siemens Telegram 352

for a speed control.

Paragraph 2.3 will explain communication between Rockwell Automation CPU and

Rockwell Automation drive. Specifically, communication structure of inverter (PowerFlex

series) drive will be describe in subparagraph 2.3.1, while the communication structure of a

servo drive (Kinetix series) will be studied in subparagraph 2.3.2.

Finally, the last paragraph will analyze technique that I use to implement my program.

Input and output signals will be examined and main functions will be described and analyzed

in detail. Paragraph 2.4 concludes with an analysis about advantages and disadvantages of my

control interface.

2.1 Drive types and communication structure

The control of a process characterized by electric motors is performed by means of a

drive. Drives consist of 2 parts: the “Control Unit” (CU) or “Control Module” (CM) and the

“Power Module” (PM). CU is a processor that filters information from the CPU, while the

power module is the power part that feeds the engine by adjusting the input power.

The CPU and drive communication

66

(Fig. 2.1 Disassembling a PowerFlex 525 drive)

Drives can be classified into two households: inverters and servo drives (positioner). The

inverters allow the control of the speed, while the servo drives allow the control of the position.

Specifically, the inverters impose only the desired speed, instead the servo drives perform a

closed loop by means of an internal encoder that provides the current position.

In other words, the difference between inverter and servo drive is the presence of an

internal encoder.

The position control can also be done with an external inverter and encoder. In this case,

the PID control uses the current position provided by the encoder to control acceleration, speed

and position.

(Fig. 2.2 Application of Siemens CPU and drive for motor control)

The CPU and drive communication

67

(Fig. 2.3 Example of application of Rockwell Automation CPU and drive)

The communication between these CPUs and drives depends on the manufacturer.

Indeed, every manufacturer has a defined structure that binds the user to the use of their

components. For example, the communication between CPU and Siemens drive comes through

the structures called telegrams (appendix A), while the communication between the CPU and

the Rockwell drive comes through the use of data types defined by the Rockwell (appendix B).

In addition, the position control through a CPU and a Siemens drive is achieved through

standardized Siemens blocks that cannot be applied in the Rockwell software and for Rockwell

devices. Sure enough, although it is possible that a Siemens CPU communicates with a

Rockwell drive and vice versa, but this activity remains quite difficult because it is not possible

to use standardized Siemens or Rockwell blocks. As a consequence, it is necessary to construct

an ad hoc software block.

So, the communication between CPU and drive is a key factor for the control of

production processes in the industrial field.

2.2 Communication between Siemens CPU and Siemens drive

The communication between Siemens CPU and Siemens drive is managed directly

through predefined telegrams [Document No. 14 bibliography]. Telegrams are data structures.

They have been pre-set by Siemens and the programmer is bound to them. These structures

represent a series of word and each word has a precise address. In other words, the commands

provided by the CPU are written in these data packets, which are sent to the drive. Then, the

drive split these data packets and activates the functions based on the transmitted value. The

data packets consist of “Words”. There are several Siemens telegrams, each of which has its

The CPU and drive communication

68

own internal structure. The internal structure depends on the amount and type of information

that is communicated.

Siemens provides several telegrams for communication between CPU and drive; The

most common are: Standard Telegram 1, Standard Telegram 20, Siemens Telegram 350,

Siemens Telegram 352, Siemens Telegram 353 and Siemens Telegram 354 [Document No. 12

bibliography].

The choice of the type of telegram that is used depends on the purpose of the control. For

example, if a speed control is needed, a Standard Telegram 1 or a Siemens Telegram 352 is

used, and if a position control is required, the programmer uses the Standard Telegram 111.

The choice of telegrams is driven by Siemens, indeed the company has designed

standardized blocks Siemens that allow programmer to manage control position and control

speed. In other words, these blocks allow the self-programming of Siemens PLC.

These blocks respect the standard on PLCs because they are designed through the proper

functions of programming languages, but can be used only with Siemens products

(programming software, CPU, drive, etc.).

The main blocks are SINA_POS and the SINA_SPEED.

The SINA_POS is a block that allows the control of the drive position, while the

SINA_SPEED allows the speed control.

2.2.1 SINA_POS block

The SINA_POS block is a standardized block for drive position command. It commands

servo drives like S110 and S120. SINA_POS manages the communication between CPU and

drive and the programmer must provide the right addressing for the connection with the buttons

of the HMI. The communication occurs through a predefined structure: Standard Telegram 111.

The Standard Telegram 111 contains all the bits that must be enabled for control

implementation and they cannot be changed. As a result, the programmer and the user are bound

to use of this structure.

The recall of the SINA_POS block is done through the call function [Document No. 14

bibliography]. The programmer calls function block FB 284. The graphical interface of this

block is represented in figure 2.4.

The CPU and drive communication

69

(Fig. 2.4 Siemens SINA_POS block interface)

The SINA_POS block has a series of inputs and a series of outputs: the inputs are the

commands that the programmer or directly the user wants to apply, while the outputs are the

states of the drive that the user can read.

Specifically, the number of inputs is 19 and the number of outputs is 16. Inputs and

outputs signals are different type because the setting of the drive requires different types of data

(tables 2.1, 2.2).

Input signal Type Default value Meaning

ModePos INT 0 Operation modes.

EnableAxis BOOL 0 Activation command.

CancelTravercing BOOL 1 It does not reject active traversing task.

IntermediateStop BOOL 1 It does not active traversing command

is interrupted.

The CPU and drive communication

70

Positive BOOL 0 It sets the positive direction of

movement

Negative BOOL 0 It sets the negative direction of

movement

Jog1 BOOL 0 When the mode is jog, it performs a

movement in the negative direction.

Jog2 BOOL 0 When the mode is jog, it performs a

movement in the positive direction.

FlyRef BOOL 0 It sets flying referencing.

AckError BOOL 0 When an unidentified error from the

PLC occurs, it allows the user to block

the activity.

ExecuteMode BOOL 0 Depending on the mode of operation

set, it activates traversing task, setpoint

accepts e activates reference function.

Position DINT 0 [LU] It sets the position that the user wants.

Velocity DINT 0

[LU/min]

It sets the maximum speed of the

engine.

OverV INT 100 [%] Speed ovveride.

OverAcc INT 100 [%] Acceleration ovveride.

OverDec INT 100 [%] Deceleration ovveride.

ConfigEpos DWORD 3h This array value is imposed by Siemens

company.

HWIDSTW HW_IO 0 Drive's state address.

HWIDZSW HW_IO 0 Drive's command address.

(Table 2.1 Input signals of SINA_POS block)

Output signal Type Default value Meaning

AxisEnabled BOOL 0 Drive is on and ready.

AxisPos BOOL 0 Target position is reached.

AxisRef BOOL 0 Reference point is setted.

AxisWarn BOOL 0 There is drive alarm.

AxisError BOOL 0 There is drive fault.

Lockout BOOL 0 Switching-on inhibit.

ActVelocity DINT 0 Actual velocity.

The CPU and drive communication

71

ActPosition DINT 0 [LU] Actual position.

ActMode INT 0 Currently active mode.

EPosZSW1 WORD 0 Status of EPos ZSW1.

EPosZSW2 WORD 0 Status of EPos ZSW2.

ActWarn WORD 0 Actual alarm number.

ActFault WORD 0 Actual fault number.

Error BOOL 0 Presence of error in drive.

Status INT 0 Actual status.

DiagID WORD 0 Presence of error during FB call.

(Table 2.2 Output signals of SINA_POS block)

The SINA_POS for the management of the position allows the programmer to operate in

8 different modes on the drive.

The 8 operating modes are:

• “Relative positioning”;

• “Absolute positioning”;

• “Setup mode”;

• “Reference point approach”;

• “Set reference point”;

• “Traversing block”;

• “Jog mode”;

• “Incremental jogging”.

In the positioning mode, the position of the motor rotor changes by taking the current

position as the initial point. In other words, when the user activates the enablement, the motor

rotor switches from position 0 to position 1 and the new position will be set as position 0

automatically.

Activating the positioning mode requires the activation of following inputs: Modepos =

1 and EnableAxis = 1. This mode activates "MDI relative positioning" drive function.

The velocity is another parameter that user must set through the "velocity" input. Instead,

it is not necessary to set the direction, because it always remains positive and therefore the

movement in negative direction is not possible.

Figure 2.5 shows how the relative positioning mode works. After setting the Modepos =

1 and EnableAxis = 1 parameters, the rotor is ready to perform relative positioning mode. If the

The CPU and drive communication

72

motor moves a carriage and position 1 is 3 meters from position 0, when the user sets the

position 1 and starts the movement, the trolley will run a path of 3 meters. This new location

will be identified as position 0. Then, if the user starts the movement by setting position 1, the

rotor will rotate and the trolley will run another 3 m. So, the final position is 6 m relative to the

initial position (figure 2.5).

(Fig. 2.5 Timeline of relative positioning mode)

The second mode of operation of the block is absolute positioning.

The "MDI absolute positioning" drive function is activated when absolute positioning

mode must be performed.

In the absolute positioning mode, the position is always calculated relative to position 0.

Activation of the absolute Positiong mode requires activation of specific inputs: Modepos

= 2 and EnableAxis = 1.

Also, in this case, the programmer or user sets the speed through the velocity input. In

this case, the movement direction can be either automatically set or forced by the user. When

absolute positioning mode is performed and the direction is not forced, it depends on the

distance between the current and the desired position. In this case the positive and negative

inputs remain at zero.

The CPU and drive communication

73

If the user forces the direction, the movement of the motor will follow the direction set.

The direction setting makes happen through the "Positive" input if the rotor has to go forward,

"Negative" if the rotor has to go backwards.

The absolute positioning mode operation is represented in figures 2.6 and 2.7.

After setting the Modepos = 2 and EnableAxis = 1 parameters, the rotor is ready to run

the absolute positioning mode. If the motor moves a trolley and position 1 is 3 m from position

0, when the user sets the position 1 and starts the movement, the trolley will run a path of 3 m.

If the user starts the movement by setting position 1, the rotor will not turn and the trolley will

remain stationary. This position is 3 m relative to the initial position (figure 2.6).

If the user wants the distance between position 0 and end position to be 6 m, he must set

another position: “Position 2” = 6 m. Thus, when applying position 2, the trolley will be 6

meters away from position 0, irrespective of position 1 (figures 2.6 and 2.7).

(Fig. 2.6 Timeline of absolute positioning mode (1° example))

The CPU and drive communication

74

(Fig. 2.7 Timeline of absolute positioning mode (2° example))

Absolute positioning and relative positioning modes are indispensable for controlling the

position of an electric motor.

The third mode of operation is the Setup mode. It allows the position-controlled traversing

of the axis without target position. The user must force the direction. The direction setting

makes happen as for absolute positioning: forcing the "Positive" input if the rotor has to go

forward or forcing the "Negative" input if the rotor has to go backwards. It uses the "MDI set

up" mode drive function. To perform this mode, the user must set following inputs: “velocity”,

“Modepos = 3” and “EnableAxis = 1”.

(Fig. 2.8 Timeline of setup mode)

The CPU and drive communication

75

It should be noted that, when positive input is active, the speed is positive and the rotor

turns forward, while when negative input is active the speed is negative and the rotor rotates

backwards (figure 2.8).

The Reference point approach mode is the fourth mode of operation of the engine. This

mode activates the “active referencing” drive function. Both the speed and the direction are set

by the user. Particularly, the speed is set by means of the “velocity” input and the direction is

set through negative and positive input.

Its activation requires the setting of the inputs Modepos = 3 and EnableAxis = 1; The axis

must also be stationary (figure 2.9).

(Fig. 2.9 Timeline of reference point approach mode)

Set reference point mode, on the other hand, enables axis referencing. It defines the

current position as the starting position. Therefore, it calculates all subsequent shifts depending

on this position. The function of the drive used is called “Set reference point”.

Its activation requires the stationary axis and the setting of the inputs Modepos = 5 and

EnableAxis = 1. Indeed, the drive will consider the current position like zero set point (figure

2.10).

(Fig. 2.10 Timeline of zero set point mode)

The CPU and drive communication

76

The sixth mode of operation is traversing block. It generates programs in an automatic

way that allows the stop of the movements and the set and reset of the commands. It is

performed by means of the “traversing block” drive function.

The user must set the inputs Modepos = 6 and EnableAxis = 1 to implement this task, and

the axis must also be stationary (figure 2.11).

(Fig. 2.11 Timeline of traversing block mode)

Jog mode, on the other hand, allows the control of the position manually and directly. The

speed of motion does not depend on the speed provided as input, but drive computes the speed

automatically based on the maximum speed the engine can reach. This mode is performed using

the "Jog" drive function.

Its operation is described in the following figure.

If the user needs jog mode, he must set the inputs Modepos = 7 and EnableAxis = 1 and

the axis must also be stationary.

After setting the Modepos = 7 and EnableAxis = 1 parameters, the rotor is ready to run

the jog mode. When the user sets Jog2 input equal to 1, the rotor will move in a positive

direction until the “jog active” input is active (figure 2.12).

Instead, if the user sets Jog1 input equal to 1, the rotor will move in a negative direction

until the jog active remains active (figure 2.13).

The CPU and drive communication

77

(Fig. 2.12 Timeline of Jog2 mode)

(Fig. 2.13 Timeline of Jog1 mode)

The incremental jogging mode enables the position-controlled and distance-dependent

traversing of axes. As in the previous case, the speed of movement does not depend on the

speed provided as input, but is calculated automatically based on the maximum speed that the

engine can reach. In addiction in a manner similar to jog mode, it is performed by means of the

"Jog" drive function. The requirements of this mode are Modepos = 8 and EnableAxis = 1 and

standstill axis. The operation of the incremental jog mode is the same as the jog mode (figure

2.14).

The CPU and drive communication

78

(Fig. 2.14 Timeline of incremental jogging mode)

The operating modes can be activated if and only if "canceltraversing" and

"intermediatestop" inputs have a value of 1. Specifically, "canceltraversing", it manages the

activation and the deactivation of the deceleration ramp: if it is at 1, the deceleration ramp is at

0%; on the contrary the deceleration ramp is at 100% if the parameter "canceltraversing" is

equal to 0. A deceleration ramp at 100% means that the movement speed tends to 0.

The “intermediatestop” input allows the user to stop the drive immediately when it is

equal to 0 and allows movement when it is equal to 1.

As we have previously highlighted, another crucial activity is the setting of position and

speed. The “Position” and “velocity” inputs belong to the double integer data type (DInt) and

can store a range of values from (-2)^31 to 2^((31-1)).

The unit of measurement used is the Siemens engineering unit named LU. Specifically,

“LU” is the position unit of measurement and “LU/min” is that of the velocity. There is no

standardized conversion, but it is set by the programmer within the list of drive experts during

the programming phase. The drive experts list is a list in which the programmer can modify the

drive internal parameters. These parameters can be modified only by the programmer in

commissioning phase. During this phase the programmer writes the engine's technical

characteristics in the drive, the value of the PID controller coefficients and the ratio of “LU” to

“rpm”. The programmer chooses this report without any specific constraint. In addition, he must

set the current, the voltage, the maximum speed and the motor frequency. In this way the drive

can recognize the motor connected to it and manage it correctly.

The CPU and drive communication

79

The speed that must be entered is the maximum speed that the drive can reach in LU,

while the desired speed is managed by the speed override. It varies from 0% to 100%. For

example, if the speed override is 0% the drive will be standstill, if it is at 50%, the drive speed

is equal to half of the maximum speed, of course if the drive has to move at maximum speed

the user is going to turn the speed override to 100%.

Acceleration and deceleration are set by their overrides. Their default values are 100%,

but they can be changed according to customer's needs.

This block allows the control of the position desired by the user starting from two types

of input: those managed by the user and the states of the drive.

The states of the drive are obtained through the Standard Telegram 111. The use of this

preset block only allows the use of the Standard Telegram 111: other telegrams cannot be used

because errors would be created during compile phase and the program would not be loaded

into CPU memory.

The structure of the Standard Telegram 111 constitutes of 24 words grouped in two parts:

status words (figure 2.15) and command words (figure 2.16).

(Fig. 2.15 Status word list of Standard telegram 111)

The CPU and drive communication

80

(Fig. 2.16 Command word list of Standard telegram 111)

Particularly, status words are data that would let to identify the drive states. The block

reads the states desired by the user and the states of the drive and it processes the right command

for them to coincide. In particular the block reads the state “Status_ready”, “Status_IOp” and

“Status_fault” to start the activities. The conditions required to run the control are:

• “Status_ready = 1”;

• “Status_IOp = 1”;

• “Status_fault = 0”.

If the condition of the drive state is correct, the block reads user inputs and processes the

commands. The sending of the commands is done by means of the 12 command words

(appendix A). In other words, the block imposes a specific value on 12 words and sends them

to the drive. Conversely, when the block reads the status words (appendix A), the drive imposes

values on the word and sends it to the block. The reading and writing of the word is done

through addressing. This procedure is analogous to the one described for the individual bits in

chapter 1. The addressing of status word and command word status is performed separately: the

programmer must set the addresses in two different inputs even if the write address is the same

as the reading one. Specifically, the HWIDSTW input maintains the address for reading the

states, while the HWIDZSW input sets the address for writing commands to the drive.

Status word (appendix A) shows that the commands sent from the drive to the block do

not correspond to the user-visible block outputs (table 2.2). The outputs of the SINA_POS block

are a limited number of states that the user is able to read. These data are all important to the

user, but "status" output is critical. Indeed, it describes the state of the drive and the PLC, both

in case they work correctly or in the presence of errors. The value obtained from this output is

The CPU and drive communication

81

a number because the data type is integer. As a result, the user needs a manual to convert the

numeric value to a specific state (table 2.3).

Status Meaning

16#7002 No fault – Correct execution.

16#8401 Drive fault.

16#8402 Switching-on inhibit.

16#8403 Flying referencing could not be started.

16#8600 Error DPRD_DAT.

16#8601 Error DPWR_DAT.

16#8202 Incorrect operating mode selected.

16#8203 Incorrect setpoints parameterized.

16#8204 Incorrect.

(Table 2.3 Status code list of Standard telegram 111)

Conversely, if there is an error, "Actfault" output gives us the type of error present.

Similarly, to the status it is an integer and therefore a conversion table is necessary (figure 2.17).

(Fig. 2.17 Error code list of Standard telegram 111)

The user can read only the main states for proper operation of the control.

The main advantage of the SINA_POS is the ability to manage a control in place easily.

Sure enough, the programmer does not have to implement complex functions but simply he has

to set the block inputs.

The CPU and drive communication

82

On the contrary, the main disadvantage of using this block is the reduced flexibility.

Indeed, the programmer cannot set single bit of drive structure manually, because drive

structure bits are set by block based on user input. Furthermore the "ConfigEPos" input is a

vector that the user or programmer cannot easily manage because it is set correctly by default

(figure 2.18) and any of its modifications could block the communication between CPU and

drive.

(Fig. 2.18 ConfigEPos structure of Standard telegram 111)

The CPU and drive communication

83

In conclusion, the SINA_POS is a block capable of controlling the position of an engine

through servo drives such as S110 and S120. This block is a first example of PLC self-

programming because the programmer must only set the block inputs without implementing

particular functions, limiting the manipulation of the command bits.

2.2.2 SINA_SPEED block

The SINA_SPEED block is a standardized Siemens block for managing the speed of a

drive. It controls inverters such as G110 and G120. This block manages the communica tion

between the CPU and the inverter by means of a predefined structure: Standard Telegram 1.

This structure contains the individual bits that must be enabled for speed control

implementation and cannot be changed. As a result, the programmer and the user are bound by

the use of this telegram. If a different telegram is used, a error would happen during compile

phase, interrupting the programming of the PLC.

The recall of the SINA_SPEED block is done through the call function [Document No.

14 bibliography]. The programmer calls the SINA_SPEED block by recalling the function

block FB285. The block graphical interface is represented by the following image.

(Fig. 2.19 Siemens SINA_SPEED block interface)

The SINA_SPEED block has a series of inputs and a series of outputs: the inputs are the

commands that the programmer or user manages, while the outputs are the states of the drive

that the user can read. From figure 2.19 it should be noted that the input parameters (table 2.4)

and output (table 2.5) are lower than the SINA_POS block. This is because speed management

The CPU and drive communication

84

is simpler than position management: to manage the position the user has to handle both

position and velocity, while to manage the speed the position is not considered.

Input signal Type Default value Meaning

EnableAxis BOOL 0 Activation command.

AckError BOOL 0 When an unidentified error from the PLC

occurs, it allows the user to block the activity.

SpeedSp REAL 0.0 [rpm] Speed setpoint.

RefSpeed REAL 0.0 [rpm] Rated speed of the drive.

ConfigAxis WORD 3 Value imposed by Siemens.

HWIDSTW HW_IO 0 Drive's states address.

HWIDZSW HW_IO 0 Drive's command address.

(Table 2.4 Input signals of SINA_SPEED block)

Output signal Type Default value Meaning

AxisEnabled BOOL 0 Drive is on and ready.

Lockout BOOL 0 Switching-on inhibit.

ActVelocity REAL 0.0 [rpm] Actual velocity.

Error BOOL 0 There is an error in the drive.

Status INT 0 Actual status.

DiagID WORD 0 Presence of error during FB call.

(Table 2.5 Output signals of SINA_SPEED block)

The SINA_SPEED block has only one operating mode, so it does not have the

“Modepos”. Drive starter occurs through the "EnableAxis" input, which initiates speed control.

During the commissioning phase the programmer sets the technical characteristics of the motor.

In particular, the maximum speed of the engine must be written in the "p2000" the list of drive

experts. The drive calculates the desired speed by the user according to the p2000 parameter.

For this reason, generally, the programmer manages the desired speed in percentage. For

example, if the rotor has to go at a speed equal to 20% of the maximum engine speed, the

programmer will set the following values:

• “SpeedSp” = 20;

• “Refspeed” = 100.

The CPU and drive communication

85

The code inside the block will process these inputs and will resize the drive speed to reach

the desired one.

As a result, the SINA_SPEED block allows the user to control the desired speed starting

from two types of inputs: user-managed and drive states.

The drive states are obtained through Standard Telegram 1. Using this preset block only

allows the use of Standard Telegram 1: other telegrams cannot be used because errors would

be created at compile time and the download to the CPU would not run.

The Standard Telegram 1 consists of two parts: status word (table 2.7) and command

word (table 2.6). Each of these parts consists of 2 words: the first word is divided into single

bits and the second word no (appendix A).

PZD Assigment of the process data

PZD 1 Control word

PZD 2 (bits 16 to 32) Speed setpoint

(Table 2.6 Command word list of Standard Telegram 1)

PZD Assigment of the process data

PZD 1 Status word

PZD 2 (bits 16 to 32) Bits 16 – 31 → actual speed value

(Table 2.7 Status word list of Standard Telegram 1)

As with the Standard Telegram 111, status words are data that would let to locate the

drive states. The block reads the states desired by the user and the states of the drive and

processes the right command for them to coincide. Particularly, the block reads the status "ready

to start", "ready to operate" and "fault active" to start the activities. The conditions required to

run the control are:

• “ready to start = 1”;

• “ready to operate = 1”;

The CPU and drive communication

86

• “fault active = 0”.

The block produces commands that are sent to the drive through the Standard Telegram

1. If the condition of the drive state is correct, the block reads user inputs and it processes the

commands. The sending of the commands is done by means of the 2 command words (appendix

A). In other words, the block imposes a specific value on the 2 words and sends them to the

drive. Conversely, when reading status word (appendix A), the drive imposes values at 2 words

and sends them to the block.

In a manner similar to SINA_POS block, the addressing of word and command word

status is performed separately: the programmer must set the addresses in two different inputs

even if the two addresses are equal. Specifically, the HWIDSTW input maintains the address

for reading the states, while the HWIDZSW input sets the address for writing commands to the

drive. The programmer must fill in the correct addresses so that the communication happens

correctly.

The reading of the drive states (appendix A) is very important, because it not only

indicates the presence or absence of fault in the drive but also the values of speed over time.

These data provide information about the drive that is useful not only to the block but also to

the user. Sure enough, the block outputs that are read by the user are connected to the drive

states. For example, "actvelocity" gives the user the current speed of the drive and "Error" is

set if there are any errors.

Specifically, "status" output describes the drive state and the PLC, both in case they

function correctly and in the presence of errors. The value obtained from this output is a number

because the data type is integer. As a result, the user needs a manual to convert the numeric

value to a specific state (table 2.8).

Error number status Meaning Remedy

16#7002 No fault active

16#8401 Drive fault active Evaluate active faults of the

SINAMICS via the acyclic

communication

16#8402 Drive switching on

inhibited active

Check whether axis is parked,

safety active, parameter p10 ≠ 0

16#8600

16#8601

Error of the SFB call

active

Correction of the

communication fault

(Table 2.8 Error code list of Standard Telegram 1)

The CPU and drive communication

87

The main advantage of the SINA_SPEED is the ability to manage a speed control easily.

Sure enough, the programmer must set the block inputs without implementing complex

functions.

On the contrary, the main disadvantage of using this block is the reduced flexibility.

Indeed, the programmer cannot set single bit of drive structure manually, because drive

structure bits are set by block based on user input. Furthermore the "Configaxis" input is a

vector that the user or programmer cannot easily manage because it is set correctly by default

(figure 2.20) and any of its modifications could interrupt the communication between CPU and

drive.

(Fig. 2.20 ConfigAxis structure of Standard telegram 1)

In conclusion, the SINA_SPEED is a block capable of controlling an engine speed

through inverters such as G110 and G120. This block is an example of self-programming of

PLCs because the programmer does not implement particular functions, but he simply set the

block inputs. The only disadvantage is the reduction of flexibility.

2.2.3 Siemens Telegram 352

The speed control can be carried out through the use of the Siemens Telegram 352

[Document No. 12 bibliography]. In this case it is not possible to use the SINA_SPEED block,

The CPU and drive communication

88

as this block is closely linked to Standard Telegram 1. The Siemens Telegram 352 is an

extension of the Standard Telegram 1, because it allows a speed control and transmits a greater

number of information on the drive. In particular, the total number of words of the Telegram 1

is 4, while the total number of words of the Siemens Telegram 352 is 12. The Siemens Telegram

352 is composed of 6 status word (table 2.10) and 6 control word (table 2.9). In addition, the

bit position of the first 2 command words of the Siemens Telegram 352 is equal to the bit

position of the command words of Standard Telegram 1; even the first 2 status words of the

telegram 352 are equal to the word status of Standard Telegram 1 (appendix A).

PZD Assigment of the process data

PZD Control word in bit

PZD NSOLL_A → Speed setpoint

PZD Spare word

PZD Spare word

PZD Spare word

PZD Spare word

(Table 2.9 Command word list of Standard telegram 352)

PZD Symbol

PZD 1 Status word

PZD 2 NIST_A_GLATT → Smoothed speed actual value

PZD 3 IAIST_GLATT → Smoothed actual corrent value

PZD 4 MIST_GLATT → Actual torque

PZD 5 WARN_CODE → Alarm number

PZD 6 FAULT_CODE → Fault number

(Table 2.10 Status word list of Standard telegram 352)

The command words structure has 2 predefined words from Siemens and 4 free word.

These 4 words can be freely managed by the programmer based on the customer's requests.

As we said previously, the drive is made up of a list of the experts that has all its states.

The telegrams do not transmit all the parameters of the expert list but they transmit only the

most important. So, if the customer needs to read further states of the drive, the programmer

can transmit additional states using spare words. In practice, the programmer connects the 4

words to the desired parameters and attaches them to a visible variable in the HMI.

The CPU and drive communication

89

The first command word handles the operation mode activation and deactivation

commands, while the second word controls the speed the drive must reach.

The status words of the Siemens Telegram 352 provide more information than the word

status of Standard Telegram 1: for example, Standard Telegram 1 transmits only the presence

of an error or a fault, while the Siemens Telegram 352 also transmits the error code and the

fault code.

Specifically, PZD 5 is linked to the parameter of the list of experts “r2122 [0]” (figure

2.21), while PZD 6 is connected to the parameter of the list of experts “r0945 [0]” (figure 2.22).

(Fig. 2.21 Parameters to display the alarm characteristics)

(Fig. 2.22 Parameters to display the fault characteristics)

Drives are able to store up to 8 alarms and 8 faults in their buffer. Alarms and faults

remain in memory even if they have been resolved. If a ninth alarm or fault is received and

none of the last eight alarms have been removed then the next to last alarm is overwritten.

Alarms (figure 2.23) and faults (figure 2.24) are saved according to the date and time with a

precision of the millisecond.

The CPU and drive communication

90

(Fig. 2.23 Alarms list and their characteristics)

(Fig. 2.24 Faults list and their characteristics)

Build order is chronological: from most recent to oldest.

In other words, the programmer can read the alarms and faults history up to a maximum

of 8, while the user is able to read only the most recent alarm by means of the Siemens Telegram

352.

Also in this case, as in the Standard Telegram 111, the drive transmits a number that can

be "fixed point" or "floating point" number (table 2.11).

The CPU and drive communication

91

Number Cause Remedy

F01000 Software fault in CU Replace CU.

F01001 Floating Point Exception Switch CU off and on again.

F01015 Software fault in CU Upgrade firmware or contact

technical support.

F01105 CU: Insufficient memory Reduce number of data

records.

F01250 CU hardware fault Replace CU.

A01028 Configuration error Explanation: Parameterization

on the memory card has been

created with a different type

of module (order number,

MLFB)

Check the module parameters

and recommission if

necessary.

A01920 PROFIBUS: Cyclic

connection interrupt

Explanation: The cyclic

connection to PROFIBUS

master is interrupted.

Establish the PROFIBUS

connection and activate the

PROFIBUS master with

cyclic operation.

A03520 Temperature sensor fault Check that the sensor is

connected correctly.

A05000

A05001

A05002

A05004

A05006

Power Module

overtemperature

Check the following:

- Is the ambient temperature

within the defined limit

values?

- Are the load conditions and

duty cycle configured

accordingly?

- Has the cooling failed?

(Table 2.11 Some error and fault code list of Siemens inverter drive)

The CPU and drive communication

92

So, the Siemens Telegram 352 with 12 words is an extension of the Standard Telegram

1, because Siemens Telegram 352 allows an information exchange greater than that of the

Standard Telegram 1.

2.3 Communication between Rockwell Automation CPU and Rockwell

Automation drive

The communication between Rockwell Automation CPU and Rockwell Automation

drive comes through a standardized communication structure provided by Rockwell

Automation. These structures are named "Data type" and they depend on the type of drive being

used. Rockwell company does not provide standardized blocks such as SINA_POS and

SINA_SPEED but it is necessary to construct a block that adapts to the drive's communication

structure.

The most used Rockwell drives belong to the Powerflex520 and PowerFlex750 series for

speed control, while for position control, Kinetix5500 are widely used.

Each drive family has a data type that manages the communication with the Rockwell

Automation CPU. Particularly, appendix B shows the data type that allows communication

between an inverter and a CPU.

2.3.1 Rockwell inverter: PowerFlex series

Rockwell Automation makes available to programmers of servo drives and inverters.

Specifically, the Powerflex 520 is a family of frequency converter that manages the rotational

speed of an engine (figure 2.25).

(Fig. 2.25 Example of PowerFlex 523 series configurations)

The CPU and drive communication

93

Figure 2.25 shows different configurations of the PowerFlex 523 drive. Particularly, the

CU of the drive is the same in all the configurations, while the power module changes: the range

of the power module goes from 0.2 kw (0.25 hp) to a maximum of 11 kw (15 hp) [Website No.

23 sitography].

The data type of Allen Bradley's Powerflex 525 is described in appendix B. Similar to

Siemens telegrams, this structure is composed of words. Particularly, the PowerFlex 525 data

type for speed consists of 2 command words and 2 status words. The first command word

describes bit commands to run the speed control, and the second command word is used to

communicate the desired speed. Unit of measurement of the speed must be in Hz. Indeed, the

Rockwell Automation drives are frequency converters and therefore they manage the speed

according to the frequency sent to the electric motor. In this case the conversion between “rpm”

and “Hz” is standard and it should not be set by the programmer during the software

configuration phase of the drive (equation 2.1):

 60 𝑟𝑝𝑚 = 1 𝐻𝑧 (2.1)

This conversion derives from the definition of “Hz” and “rpm”:

• A “Hz” is the number of times a periodic event repeats each 1 second;

• An “rpm” is the number of revolutions in one minute.

As a result:

 1 𝐻𝑧 = 1
𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑠𝑒𝑐𝑜𝑛𝑑
 → 60 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒 = 60 𝑟𝑝𝑚 (2.2)

The precision of the PowerFlex 525 drives is per cent, so the programmer must impose

the speed using the Hz cents. For example, if the engine is to run at a speed of 600 rpm, the

programmer must set a value equal to 1000 (equation 2.3):

 600 𝑟𝑝𝑚 = 10 𝐻𝑧 = 1000 ℎ𝑢𝑛𝑑𝑟𝑒𝑑𝑡ℎ𝑠 𝑜𝑓 𝐻𝑧 (2.3)

Rockwell Automation also provides the user with a keyboard called keypad. It is used to

command the drive in a direct way i.e. without a CPU. Obviously in this case programmer

The CPU and drive communication

94

cannot implement a program but user can start or stop the drive and set the parameters. For

example, user can increase the speed by means of the eighth bit of the first command word. In

this case the speed override depends on the setting that the programmer has included in the list

of drive experts. This function takes the name of MOP increment. Similarly, user can perform

a MOP decrement by setting the fifteenth bit of the first word. In addition, the list of drive

experts contains 3 parameters that can store three different speeds. These parameters are:

• "P047" corresponds to "Speed reference 1";

• "P049" corresponds to "Speed reference 2";

• "P051" corresponds to "Speed reference 3".

The user can decide rotor speed by selecting it directly through the Keypad. Specifically,

the bits to be activated are:

• "12" for "Speed reference 1";

• "13" for "Speed reference 2";

• "14" for "Speed reference 3";

Like Siemens inverters, the PowerFlex 520 is able to control a position if it is coupled to

an encoder. If the programmer implements such a system, the encoder would provide the rotor

current position while the PID control would handle the rotor speed to reset it to the desired

position [Document No. 17 bibliography].

Like PowerFlex 520 series, the PowerFlex 750 series is also a series of frequency

converters that handles the rotational speed of an engine (figure 2.25).

(Fig. 2.26 Example of PowerFlex 750 series configurations)

Figure 2.26 shows different configurations of the Powerflex 750 drive. In particular, drive

CU is the same in all configurations, while power module changes.

The CPU and drive communication

95

PowerFlex 750 executes position control by means of external encoder. In this case, the

data type of Allen Bradley's PowerFlex 750 is described in appendix B. The data type of the

PowerFlex 750 consists of 2 command words and 2 status words, as in the case of the PowerFlex

520.

The internal structure of the first command word is very similar to the data type of the

PowerFlex 520, but there are some differences. The main differences concern the presence of

the "Find Home" bit and the communication between CPU and drive if keypad is used. For

example, there is no "Find Home" bit in the case of a speed control while there is a position

control. In addition, if in the case of speed control, the bits 12, 13 and 14 set only the desired

frequency, in the case of a position control the bits 8, 9 and 10 set both position and frequency.

Note also that second command word sets the position and not the speed, indeed unit of measure

are degrees. In addiction PowerFlex 750 power range of three-phase 240v input drives runs

from 0.5 hp to 200 hp.

In conclusion, Rockwell Automation PowerFlex series is made up of inverters. They

perform a speed control and a control in position when coupled to an external encoder. The

communication between drive and CPU is through a structure similar to the Siemens inverters.

2.3.2 Rockwell Automation servo drive: Kinetix series

The servo drives made available by Rockwell Automation belong to the Kinetix family

of drives. In particular, Kinetix 300 is servomotor which has an internal encoder. So, the Kinetix

300 series manages the position of an engine (figure 2.27).

(Fig. 2.27 Example of Kinetix 300 series configurations)

The CPU and drive communication

96

Power range of servo drives Kinetix 300 ranges from 0.4 kw to 3 kw and input voltage

range goes from 115 V to 240 V for CA single-phase and from 230 V to 480 V for CA three-

phase [Website No. 27 sitography].

The data type of Allen Bradley's Kinetix 300 is described in appendix B.

It should be not that the structure is subdivided in bytes, but also in this case there are the

main commands and the words for the speed and position settings. In other words, Rockwell

Automation drives structures are similar to each other regardless of the subdivision type.

Again, speed must be expressed in cents of Hz and position in degrees.

The Rockwell Automation Company's Kinetix series corresponds to the Siemens

company S series (S 110 and S120).

There are several devices that belong to the Kinetix series like the Kinetix 5500 or the

Kinetix 7500, but the communication structures are the same.

In conclusion, Rockwell Automation's Kinetix series constitutes of servo drives that allow

a control in position by means of a communication structure between drives and CPUs in the

same way as Siemens drives.

2.4 Communication interface

A key factor for the communication between CPU and drive is the words structure. The

program is designed to create an interface capable of communicating drives and CPUs

independently of the word structure.

The ladder diagram is the programming language used to write the program. The choice

of this programming language allows the use of the block for the programming of all PLC on

the market, because the ladder diagram is in all the PLC programming software.

The program consists of two blocks: the first one performs the functions of control,

writing of command and reading of the drive states. The second block is internal to the first one

and it is the block that processes commands to run according to the drive states and the user's

commands.

The program allows the management of the communication through the single bit in case

of logic commands and whole word in case of transmission of numerical values. This is possible

because each word in the communication structure consists of bits (appendices B and A).

Specifically, the interface block has two types of inputs: user inputs (table 2.12) and drive

inputs (table 2.13).

The CPU and drive communication

97

Name Data type Meaning

IN_CmdSpeed Bool Speed mode command

IN_CmdJogPos_Speed Bool Positive jog speed mode command

IN_CmdJogNeg_Speed Bool Negative jog speed mode command

IN_CmdAbsolutePositioning Bool Absolute positioning mode command

IN_CmdHomeRes Bool Home Res mode command

IN_Home_Direction Bool Homing direction definition 0=Positive, 1=

negative.

IN_CmdHomeSet Bool Home Set mode command

IN_CmdJogPos Bool Positive jog mode command

IN_CmdJogNeg Bool Negative jog mode command

IN_StopCycle Bool Stop cycle command

IN_Direction Bool Direction definition 0=positive, 1= negative.

IN_PosTargetDest Real Position target

IN_SpeedMax DInt Max speed

IN_Override Int Wanted speed

IN_Enable_Axis Bool Axis activation command

IN_CancelTraversing Bool 0 = reject active traversing task.

IN_FlyRef Bool 1 = select flying referencing

IN_MDI_Mode Bool Activate traversing task / setpoint acceptance /

activate reference function

IN_Dec_Override Int Deceleration override active 0-100%

IN_Acc_Override Int Acceleration override active 0-100%

IN_ResetAlarm Bool Fault/Alarm cancellation

IN_Cmd_RockMOPIn Bool MOP increment command

IN_Cmd_RockMOPDec Bool MOP decrement command

Always_OFF2 Bool OFF2 activation

Always_OFF3 Bool OFF3 activation

Always_EnableControlPLC Bool Control PLC enabling

Always_EnableRamp Bool Ramp enabling

Always_ContinueRamp Bool Ramp continue correctly

Always_EnableOperation Bool Operation enabling

Always_EnableSpeed Bool Speed enabling

Always_EnablePos Bool Position enabling

(Table 2.12 User input signals of “R101_Control_Interface” block)

The CPU and drive communication

98

The user sets the desired settings by means of these inputs. Particularly, inputs are always

activated by default, but they can be managed by the user by connecting them to the HMI. In

other words, user inputs allow the choice of the control type and how the control should be

executed.

The inputs dedicated to the drive, however, read the states of the drive.

Name Data type Meaning

Status_Alarm Bool 1= there is alarm

Status_Ready Bool Drive is ready

Status_Blocked Bool 1=there is a fault → the drive is stopped

Status_AxisEnabled Bool Axis is enabled

Status_PositiveDir Bool Positive direction is defined

Status_NegativeDir Bool Negative direction is defined

Status_Direction Bool Direction type, if drive structure has only one bit.

Status_ReferenceDone Bool Homing executed

Status_SpeedReached Bool Speed setpoint reached

Status_PositionReached Bool Position setpoint reached

Status_AlarmCode Word Alarm code

Status_WarningCode Word Warning/ fault code

Status_ActualSpeed DInt Current speed value

Status_ActualPosition DInt Current position value

(Table 2.13 Drive input signals of R101_Control_Interface” block)

Specifically, “Status_Ready”, “Status_Blocked” and “Status_AxisEnable” inputs have

been used as conditions for the execution of the operating mode. While the remaining states are

transmitted to the user because they allow to monitor the drive operation (current speed, current

position, fault code and current alarm if there is a fault or an alarm).

Similar to inputs, the interface block has two types of outputs: user outputs (table 2.145)

and drive outputs (table 2.15).

The CPU and drive communication

99

Name Data type Meaning

OUT_Alarm Bool Presence of alarm

OUT_Blocked Bool Presence of fault

OUT_Reference_Setted Bool Homing executed

OUT_Speed_Reached Bool Speed setpoint reached

OUT_Position_Reached Bool Position setpoint reached

OUT_PositiveDir Bool Positive direction is defined

OUT_NegativeDir Bool Negative direction is defined

OUT_Alarm_Code Word Alarm code

OUT_Warning_Code Word Warning/Fault code

OUT_DriveActualPosition DInt Current position value

OUT_DriveActualSpeed DInt Current speed value

OUT_DriveAxisEnabled Bool Axis is enabled

OUT_ActualPosition_rpm Real Current position value [revolutions]

OUT_ActualSpeed_rpm Real Current speed value [rpm]

OUT_RockActSpeed_rpm Real Current speed value [Hz→rpm]

OUT_LU_ActSpeed_rpm Real Current speed value [LU→rpm]

(Table 2.14 User output signals of R101_Control_Interface” block)

The goal of the user outputs is the communication of the drive states to the user. In other

words, the user can read the main states of the drive by means of these outputs.

The outputs dedicated to the drive are the drive commands. Videlicet, the block controls

drive operation through these outputs.

Name Data type Meaning

Control_Start Bool Start or OFF 1

Control_JobStart Bool Drive starts to work

Control_noJOB_STOP Bool Job is blocked

Control_NOSTOP Bool Drive no stops working

Control_ControlFromPLC Bool Control from PLC enabling

Control_RUN Bool Running mode

Control_GoalPosition DInt Setpoint position

Control_SpeedPosition DInt Setpoint speed for position control

Control_OverrideV Int Wanted velocity

Control_OverridePosV Int Override velocity for position control

The CPU and drive communication

100

Control_Acceleration Int Setpoint acceleration

Control_Deceleration Int Setpoint deceleration

Control_GoalSpeed_LU Int Setpoint speed [LU]

Control_GoalSpeed_Hz Int Setpoint speed [Hz]

Control_GoalSpeed_rpm Int Setpoint speed [rpm]

Control_PositioningMode Int Positioning mode activation

Control_ReferenceSearchStart Int Start of reference search mode

Control_PositiveDir Int Positive direction definition

Control_NegativeDir Int Negative direction definition

Control_RefType Bool Reference type

Control_ReferenceSearchDir Bool Direction of reference search mode

Control_Jog1 Bool Jog 1 mode activation

Control_Jog2 Bool Jog 2 mode activation

Control_AlarmReset Bool Clear faults

Control_SetReferencePoint Bool Homing mode activation

Control_SpeedDirection Bool Direction of speed control (0=Positive

direction, 1= negative direction)

Control_EnableSpeed Bool Speed enabling

Control_OFF2 Bool OFF2 activation

Control_OFF3 Bool OFF3 activation

Control_EnableOperation Bool Operation enabling

Control_EnableRamp Bool Ramp enabling

Control_ContinueRamp Bool Ramp continue correctly

Control_EnablePos Bool Position enabling

Control_RockMOPIn Bool MOP increment command

Control_RockMOPDec Bool MOP decrement command

Control_RockJOG Bool Jog mode activation for Rockwell

Control_RockNegative Bool Negative direction definition for Rockwell

Control_RockPositive Bool Positive direction definition for Rockwell

Control_Stop Bool Drive stops working

(Table 2.15 Drive output signals of R101_Control_Interface” block)

All the main states for activating the drives have been entered. The choice of commands

was made according to the command word of Siemens telegrams and data type of Rockwell.

The choice of these brands is made because they are antipodes. Generally, nowadays drive

The CPU and drive communication

101

structures are similar to the Siemens telegrams or similar to the Rockwell data types. The main

difference is the bit position within the word. So, by working on a single bit programmer can

connect each bit to the type of communication he wants to have regardless of its position. In

other words, if the programmer is able to control the drives of both companies by means of this

block, it would be able to command most of the drives that are on the market.

To manage the communication structures by means of the individual bits the programmer

has to create an internal structure to the program that is equal to the communication structure

of the drive building.

Subsequently, the structure built by the programmer must be associated with the drive

outputs of the block for the commands management and the drive inputs of the block for the

states reading. The assignment of values must be made bit per bit according to the function that

the single bit performs. In this way, internal structure will be built. For writing commands, the

command word of the internal structure is copied into the drive structure. For the reading of

states, the same but inverse path occurs: in this case the communication structure of drive is

copied to the internal structure. In this way, the drive states can be read from the command-

processing block. These two phases are called reading data and writing data.

(Fig. 2.28 Ladder diagram block for reading function)

The CPU and drive communication

102

(Fig. 2.29 Ladder diagram block for writing function)

Reading and writing data are executed if the communication between CPU and drive is

successful. Sure enough, a control over the communication has been entered (figure 2.30).

(Fig. 2.30 Ladder diagram block for control function)

If the communication is interrupted, the new commands will not be applied and the drive

will be blocked.

The CPU and drive communication

103

Interface block "R101 Control_Interface" allows the activation of all the necessary bits

to manage the drive.

"R101 Control_Interface" function block performs all operations to enable and disable

bits. In particular, the second network manages the activation of all the modes that the block is

able to handle.

Modes that the block is able to handle are:

• “Speed mode command”;

• “Positive jog speed mode command”;

• “Negative jog speed mode command”;

• “Absolute positioning mode command”;

• “Home Res mode command”;

• “Home Set mode command”;

• “Positive jog mode command”;

• “Negative jog mode command”.

Specifically, a management is performed to avoid contradictory commands. Indeed, if the

programmer or user entered two commands at the same time, the block would not send any

command. This has been done because the drives are not able to perform two tasks in the same

time: for example the drive S110 Siemens is not able to execute a homing command and

positioning one at the same time, because for the execution of the homing the axis must remain

standstill to allow the zero position to be recorded while positioning must start from a reference

position (the zero position) to reach the desired position. Similarly, it happens for inverters:

they cannot run a speed control and at the same time a jog mode.

So, network 2 avoids the origin of a contrast inside the drive thus avoids the generation

of faults (appendix C).

The network 5 manages the command "Control_Start" and the "Control_JobStart" (figure

2.31). The conditions for activating these commands are:

• user has enabled the axis;

• user has not voluntarily blocked the cycle;

• user has activated a mode of operation;

• drive is not in fault state.

The CPU and drive communication

104

(Fig. 2.31 Ladder diagram network for “start” function)

Another important network is the network 9 "Always_ON Siemens". As specified

previously, "Configurationepos" (SINA_POS block) and the "Configurationaxis"

(SINA_SPEED block) are two vectors that have been set correctly. The programmer is able to

manage the main values inside these structures freely through the network 9 (appendix C). Also,

in this case “ConfigurationEPos” and “ConfigurationAxis” values have been activated by

default for the execution of the control, but they are easily manageable also through the HMI.

For example, if a user wanted to handle the "OFF2" bit of the Standard Telegram 111 or

Standard Telegram 1, the programmer would be able to provide this control by attaching the

variable "Always_OFF2" to an address on the user's HMI.

This network is important because it allows the management of all the drives that have a

similar structure to Siemens as ones of the Sew-eurodrives company.

The CPU and drive communication

105

The network 11 is studied for Rockwell to expand the possibility of managing its drives.

Indeed, “MOP increment” and “MOP decrement” functions were created for the execution of a

control similar to Keypad. The network 11 allows the management of these functionalities also

through a PLC and HMI (figure 2.32).

(Fig. 2.32 Ladder diagram network for Rockwell Automation commands)

Two of the main parameters for the drive management are the acceleration and the

deceleration. Particularly, the program let to set a wanted override of acceleration and wanted

override of deceleration. The maximum acceleration and maximum deceleration are

automatically set by the drive based on the engine nameplate data, but the programmer or

directly the user can manage acceleration and deceleration by entering a percentage value.

(Fig. 2.33 Ladder diagram network for Acceleration & deceleration management)

The CPU and drive communication

106

For example, if the user wants to always have maximum acceleration, the programmer

sets the variable "IN_Acc_Override" with a value of 100. While if user want a deceleration

equal to half of the maximum, the programmer must set 50 to the variable "IN_Dec_Override".

All numeric parameters entered by the user or programmer are controlled by the network

19 (appendix C).

For example, if the acceleration override value of is greater than 100, it will be

automatically set to 100 to avoid damage the engine and the drive; conversely, if the

acceleration is less than 0, it will automatically be set to 0.

(Fig. 2.34 Ladder diagram network to control acceleration and deceleration values)

It should be noted the drive can read and manage the speed by means of different units of

measurement. Indeed, if the unit of measurement of the speed desired by the drive is "rpm", the

calculation of the desired speed is performed by the network 22 "Compute of Velocity in rpm".

The CPU and drive communication

107

(Fig. 2.35 Ladder diagram network to compute of wanted velocity [rpm])
If, however, the unit of measurement of the drive is the hundredth of Hz, a conversion is

required: "Velocity_rpm_Real" must be divided by 0.6 (figure 2.36).

(Fig. 2.36 Ladder diagram network to compute of wanted velocity [LU/Hz])

In addition, Siemens drives calculate the desired speed by taking into account the “p2000”

parameter. This parameter is in the expert list and is set when the programmer performs the

drive commissioning. A Siemens drive reads the “p2000” parameter and applies the desired

speed (figures 2.36).

Note that the speed management in LU is particular: the maximum value is divided by

the constant "16384.0". This is because Siemens drive reads word by inverting bytes: the first

byte is read after the second byte. In other words, Siemens reverses the priority of bytes.

Therefore, the "16384.0" value must be divided by maximum value to make the reversal of the

imposed parameter (figure 2.36).

The new speed values are checked again to prevent faults in the drive. These controls are

performed in the network “Max speed writable in LU”, “Max speed writable in Hz” and “Max

speed writable in rpm” (appendix C).

The CPU and drive communication

108

At this point, the network 29 "Speed SetPoint" imposes the value of the speeds obtained

to the various outputs of the drive. In particular there are 3 types of variables because speeds

have been calculated with 3 different units of measure (figure 2.37).

(Fig. 2.37 Ladder diagram network to write the speed setpoint [rpm/LU/Hz])

From the network 31 "Direction definition" (appendix C) management phase of the

direction begins. Direction is managed according to the mode of operation that the user has set.

Indeed, each mode actives several bits, such as the direction management bits for absolute

positioning mode are different from those of the reference search mode (Standard Telegram

111, appendix A).

Jog function for the speed control is very important, because it allows to test the

movement of a motor in safety. This function is performed by the "Movement JOG – for speed

control" and "Movement JOG + for Speed control" networks. These networks allow an effective

manual control at low speed in the case of a speed control. They are an extension of the drive's

functionality, because in standardized Siemens blocks for the speed control there is not Jog

mode. Specifically, if the user wants to run the speed control jog mode, the speed will be set at

20% of the total speed regardless of the initially inserted override (IN_Override). In addition,

the direction will also be automatically set: it does not depend on the input "IN_Direction", but

it depends on the inputs "CmdJogNeg_Speed" and "CmdJogPos_Speed". For example, if the

user sets the input "CmdJogNeg_Speed" the rotor will move at a speed of 20% compared to the

maximum in the negative direction. While if the user sets the input "CmdJogPos_Speed", the

rotor will move with a speed of 20% compared to that maximum in positive direction.

The CPU and drive communication

109

This first part manages commands to be sent to the drive, while the second part reads

drive states and sends the states to the user.

Networks 51 and 57 perform user output compilation as a function of the drive states.

Particularly, the 57 network provides the user with the current speed of the drive and thus a

conversion from “LU” to “rpm” and a conversion from hundredths of Hz and rpm.

(Fig. 2.38 Ladder diagram network to convert actual speed to rpm)

The advantages of this program are: flexibility, cost and reduction of the programming

time.

Flexibility is a very important factor in the programming field because it allows to adapt

a program to different needs. In particular, this program can be adapted to the communication

structures of different types of drives thanks to the single bit manipulation. For example, a

Siemens CPU cannot communicate with a Rockwell drive via the SINA_POS and SINA_SEED

blocks, but this program is capable of communicating a Siemens CPU with a Rockwell drive

and vice versa. In addition, the program allows the management of the complete communication

structure. For example, the programmer can control the individual bits of the vector

"ConfigurationEPos" (SINA_POS block) and the vector "ConfigurationAxis" (SINA_SPEED

block). The interface is intuitive and easily manageable. This creates a reduction in

programming time and lower cost. Also, within the "R101 Control_Interface" block, the Jog

function for a speed Control has been implemented. The implementation of the Jog speed

control reduces programming time and increases the user's ease of handling.

On the contrary, the disadvantages of this program are: the number of operations and the

lack of an automatic converter.

The CPU and drive communication

110

The first disadvantage is not a very serious problem because the frequency of the PLC's

processors is high. As a result, the cycle time is very small respect to number of operations.

As can be seen from the appendix C, despite the functions performed are equal (figure

2.39), but graphical interface and compilation of software T.I.A. Portal (Siemens) and

RSLogix5000 (Rockwell) are different.

(Fig. 2.39 Example of same functions, but in T.I.A. Portal (Siemens) and Rslogix5000

(Rockwell) interface)

As a result, the lack of a converter generates the need to recopy the same program in

different environments based on CPU. For example, the programmer must copy this program

in Rockwell software environment to manage a drive with a Rockwell CPU or in Siemens

software to manage a drive with a Siemens CPU.

In conclusion, the program allows word management taking into account the single bit of

an internal structure that must be identical to the drive structure. By applying this technique,

the programmer is able to manipulate bits and associate them correctly according to their

function regardless of the order in the drive structure.

The communication interface application: test results

111

3. The communication interface application: test results

INTRODUCTION

In this chapter, the results of the tests performed will be reported. Tests were performed

using Siemens and Rockwell Automation PLCs and drives.

The first paragraph will explain the preliminary tasks that are required for the test to run;

also, in this chapter there will be a list of communication structures tested.

In the paragraph 2, the test of the communication between Siemens inverter and Siemens

CPU through the Standard Telegram 1 will be analyzed. Particularly, all the operating modes

of the inverter will be studied. Indeed, the first phase of the test will focus on positive speed

control; the second phase of the test will analyze negative speed control; finally, positive jog

mode and negative jog mode will be examined. The analysis describes in detail all the necessary

steps for a correct operation of the block and a correct communication between the PLC and

the drive.

Paragraph 3 will study the communication test between Siemens inverter and Siemens

CPU using the Siemens Telegram 352. Specifically, all operating modes of the inverter will be

analyzed and the difference between the Standard Telegram 1 and the Siemens Telegram 352

will be applied for the reading of the drive states. Sure enough, initially there will be a study

about the performance of the positive speed control, then the test will analyze negative speed

control and finally positive jog mode and negative jog mode functions will be examined. These

accurate analyses will describe in detail all the necessary steps for a correct operation of the

block and a correct communication between the PLC and the drive.

In paragraph 4, the test about communication between Siemens servo drive and Siemens

CPU using the Standard Telegram 111 will be analyzed. Specifically, the servo drive main

modes will be studied. Indeed, the first phase of the test will examine positive jog mode; the

second phase of test will analyze negative jog mode; in the third phase of the homing mode test

will be tested; then there will be the positive absolute positioning analysis and the negative

absolute positioning study and finally positive reference search point and the negative reference

search point will be analyzed. The study of these modalities will describe in detail all the

necessary steps for a correct functioning of block and a correct communication between PLC

and drive.

The communication interface application: test results

112

Finally, the last paragraph will accurately focus on the communication between Rockwell

Automation inverter and Rockwell Automation CPU. In this case, the PowerFlex 525 inverter

is chosen for communication analysis. In a manner similar to Siemens inverter test, all operating

modes of inverter will be analyzed. Sure enough, the first phase of the test will study positive

speed control; the second phase of the test will analyze negative speed control; the third phase

will examine the positive jog mode and finally the last phase of the test will describe negative

jog mode. The analyses will describe in detail the necessary steps for a correct operation of the

block and a correct communication between the PLC and the drive.

3.1 Program application

The program constitutes of 2 blocks: "R100_Standard_NAZARI [FB1]" and

"R101_Control_Interface [FB2]".

The slave block "R101_Control_Interface [FB2]" is inside the master block

"R100_Standard_NAZARI [FB1]". In this way, the programmer must recall a single block in

the main one. The master block is recalled through the recall function as for the standard

SINA_POS and SINA_SPEED blocks.

After the programmer has invoked the block, he must open the master block and must fill

out all the internal fields. The first variable to bind to the block is "Devicetelegramname"

(appendix C, network 2).

Then the programmer must complete the interface, associating user inputs variables and

user outputs variables according to the user's request and connecting drive inputs variables and

drive outputs variables according to the chosen telegram.

In other words, each bit of the drive's communication structure must be assigned to each

bit of the standard block's drive output signals. An example of the interface application is the

test on the Standard Telegram 1 (tables 3.1 and 3.2).

Generally, this structure can be applied regardless of the drive on the market. Specifically,

the tests were carried out for:

- “Standard Telegram 1”;

- “Siemens Telegram 352”;

- “Standard Telegram 111”;

- “PowerFlex 520 data type”.

The communication interface application: test results

113

3.2 Test about Standard Telegram 1

The test on the communication interface with the Siemens drive was performed using the

Siemens PLC 1511 F (figure 3.1), an electric motor and drive G120 without external encoder

(figure 3.2).

(Fig. 3.1 Siemens PLC 1511F)

(Fig. 3.2 Siemens inverter drive G120)

The motor characteristics are described in the following figure (figure 3.3).

(Fig. 3.3 Electric motor plate)

The communication interface application: test results

114

The G120 drive is an inverter and it is able to control the engine speed. The

communication structure between CPU and drive G120 is the Standard Telegram 1 and Siemens

Telegram 352 (appendix A).

The objective of the following test is the correct functioning of the Standard Telegram 1

for a correct communication between the inverter G120 and the PLC.

Initially the speed control running with a positive direction at a speed equal to half the

maximum speed will be tested.

The first two activities are the addressing (figure 3.4) and the variables assignment with

each communication bit of the interface. In this case, the interface used is represented in table

3.1 and table 3.2.

(Fig. 3.4 Addressing)

Control_Interface Siemens interface control word

Control_Start #PZD.CONTROL_WORD."STW1 1.0"

Control_JobStart

Control_noJOB_STOP

Control_NOSTOP

Control_ControlFromPLC #PZD.CONTROL_WORD."STW1 0.2"

Control_RUN

Control_GoalPosition

Control_SpeedPosition

Control_OverrideV

Control_OverridePosV

Control_Acceleration

The communication interface application: test results

115

Control_Deceleration

Control_GoalSpeed_LU #PZD.CONTROL_WORD.STW2

Control_GoalSpeed_Hz

Control_GoalSpeed_rpm

Control_PositioningMode

Control_ReferenceSearchStart

Control_PositiveDir

Control_NegativeDir

Control_RefType

Control_ReferenceSearchDir

Control_Jog1

Control_Jog2

Control_AlarmReset #PZD.CONTROL_WORD."STW1 1.7"

Control_SetReferencePoint

Control_SpeedDirection #PZD.CONTROL_WORD."STW1 0.3"

Control_EnableSpeed #PZD.CONTROL_WORD."STW1 1.6"

Control_OFF2 #PZD.CONTROL_WORD."STW1 1.1"

Control_OFF3 #PZD.CONTROL_WORD."STW1 1.2"

Control_EnableOperation #PZD.CONTROL_WORD."STW1 1.3"

Control_EnableRamp #PZD.CONTROL_WORD."STW1 1.4"

Control_ContinueRamp #PZD.CONTROL_WORD."STW1 1.5"

Control_EnablePos

Control_RockMOPIn

Control_RockMOPDec

Control_RockJOG

Control_RockNegative

Control_RockPositive

Control_Stop

(Table 3.1 Interface between Drive output signals of R101_Control_Interface” block

and Standard Telegram 1 control words)

The communication interface application: test results

116

Status_Interface Siemens interface status word

Status_Alarm #PZD.STATUS_WORD."ZSW1 1.7"

Status_Ready #PZD.STATUS_WORD."ZSW1 1.2"

Status_Blocked #PZD.STATUS_WORD."ZSW1 1.3"

Status_AxisEnabled #PZD.STATUS_WORD."ZSW1 1.0"

Status_PositiveDir

Status_NegativeDir

Status_Direction

Status_ReferenceDone

Status_SpeedReached #PZD.STATUS_WORD."ZSW1 0.2"

Status_PositionReached

Status_AlarmCode

Status_WarningCode

Status_ActualSpeed #PZD.STATUS_WORD.ZSW2

Status_ActualPosition

(Table 3.2 Interface between Drive input signals of R101_Control_Interface” block and

Standard Telegram 1 status words)

The third task is the setting of the type of control that must be executed and the setting of

its mode.

In this case the parameters to be set in the block "R101_Control_Interface" are:

• “IN_CmdSpeed” = 1;

• “IN_StopCycle” = 1;

• “IN_Direction” = 0;

• “IN_MaxSpeed” = 100 [%];

• “IN_Override” = 50 [%];

• “IN_ReseAlarm” = 0;

• “IN_Enable_Axis” = 1.

It should be noted that the “IN_MaxSpeed” value is different from the maximum engine

speed, but it is equal to 100. This peculiarity is caused by fact that the inverter calculates the

wanted speed according to the parameter "p2000" of the list of experts. In the specific case of

the test, the speed will be 50% of the value of the parameter "p2000".

Figure 3.5 represents the commands that the user has applied.

The communication interface application: test results

117

(Fig. 3.5 User-setted commands)

The block processes the user's commands and calculates the drive output variables (figure

3.6). Each Drive output variable is connected to internal structure (figure 3.7).

(Fig. 3.6 The values of drive outputs)

The communication interface application: test results

118

(Fig. 3.7 The values of command words of drive)

Drive output variables values are copied into the drive structure. In this way, the drive

activation bits are set correctly.

It should be noted that the structure of figure 3.7 is similar to the command words of

Standard Telegram 1 (appendix A). Indeed, the only difference is the bytes position that consists

of the command words. This difference depends on how Siemens devices read words.

Specifically, Siemens devices reverse the priority of the word bytes. In other words, firstly

Siemens devices read the second byte of the word and then the first byte of the word. This

difference is only present for Siemens devices.

At this point the motor starts spinning with a positive direction and at a rotational speed

equal to 675 rpm.

The operation of the drive can be monitored through the values of the drive status words.

The communication interface application: test results

119

(Fig. 3.8 The values of status words of drive)

In a manner similar to command words, the structure of figure 3.8 is similar to the status

words of Standard Telegram 1 (appendix A). These parameters provide the drive states and they

must be transmitted to the interface block. As a result, drive status words are copied into the

internal structure (figure 3.8). The most important bits of the internal structure status words are

connected to the drive input signals (figure 3.9).

(Fig. 3.9 The values of drive input signals.)

From the image 3.9 a correct operation of the drive is evident:

• drive is ready state (Status_Ready = TRUE);

• the measured speed is 675 [rpm] (Status_ActualSpeed = 675);

• the direction is positive (Status_Direction = TRUE).

The communication interface application: test results

120

Siemens control panel demonstrates the speed of the engine (figure 3.10).

(Fig. 3.10 Siemens control panel.)

Figure 3.10 shows that the drive is ready and it is running:

• ready for switching on LED is green (red circle);

• operation enabled LED is green (blue circle).

Speed is 675 [rpm] (equation 3.1)

 1350 ∗ (
50

100
) = 675 [𝑟𝑝𝑚] (3.1)

The value recorded by the control panel (yellow circle) is equal to about calculated value,

so drive works properly.

If the speed increases from 50% to 75% by means of the commands intended for the user,

the speed changes to about 1012 rpm (figure 3.11).

The communication interface application: test results

121

(Fig. 3.11 New values of user inputs variables.)

Siemens control panel demonstrates the new engine speed (figure 3.12).

(Fig. 3.12 Siemens control panel.)

It should be noted that the velocity is 1012 [rpm] (figure 3.12) for equation 3.2.

 1350 ∗ (
80

100
) = 1012 [𝑟𝑝𝑚] (3.2)

The value recorded by the control panel (yellow circle) is equal to about calculated value,

so drive works properly.

The communication interface application: test results

122

The second phase of the test concerns the speed control analysis with a negative direction

at a speed equal to half the maximum speed.

Similarly to before, the programmer must set the desired control type.

The parameters to be set in the block "R101_Control_Interface" are:
• “IN_Cmdspeed” = 1;

• “IN_StopCycle” = 1;

• “IN_Direction” = 1;

• “IN_MaxSpeed” = 100 [%];

• “IN_Override” = 50 [%];

• “IN_ReseAlarm” = 0;

• “IN_Enable_Axis” = 1.

The operating mode must be set by using the user inputs. Figure 3.13 represents the

correct values for user inputs to run a speed control with a negative direction at a speed equal

to half the maximum speed.

(Fig. 3.13 The values of user inputs)

The R101 Control_Interface block reads the user's commands and generates the correct

drive output values (figure 3.14). Each Drive output variable is connected to the internal

structure (figure 3.15).

The communication interface application: test results

123

(Fig. 3.14 The values of drive outputs)

(Fig. 3.15 The values of command words of drive)

Drive output variables values are copied into the drive structure. In this way, the drive

activation bits are set correctly.

The communication interface application: test results

124

As a result, the drive runs the speed control and the engine starts spinning with a negative

direction and at a speed equal to 675 rpm.

Drive status words are copied into the internal structure. Proper operation is demonstrated

by the word status of the drive (figure 3.16).

(Fig. 3.16 The values of status words of drive)

The figure 3.17 reports the most important information that block can read.

(Fig. 3.17 The values of drive input signals.)

From the image 3.17 a correct operation of the drive is evident:

• drive is ready state (Status_Ready = TRUE);

• the measured speed is -675 [rpm] (Status_ActualSpeed = -675);

• the direction is negative (Status_Direction = FALSE).

The communication interface application: test results

125

Siemens control panel demonstrates the speed at which the engine moves (figure 3.18).

(Fig. 3.18 Siemens control panel.)

The third phase of the test is about study of the manual control with a positive direction.

The speed of the jog mode is handled in the "R101_Control_Interface" block and independent

of the “IN_Override” input. The jog mode speed override is equal to 20% and so the speed is

20% of the maximum speed.

The parameters to be set in the block "R101_Control_Interface" are:

• “IN_CmdJogPos_Speed” = 1;

• “IN_StopCycle” = 1;

• “IN_Enable_Axis” = 1;

• “IN_ReseAlarm” = 0.

The operating mode must be set by using the user inputs. Figure 3.19 represents the

correct values for user inputs to perform positive jog mode.

The communication interface application: test results

126

(Fig. 3.19 The values of user inputs)

It should be noted that "IN_CmdSpeed" input is equal to "FALSE", and

"IN_CmdJogPos_Speed" is equal to "TRUE".

Jog mode for the speed control is an additional mode. As a result, jog mode is

implemented within the "R101_Control_Interface" block by exploiting the same bits of the

drive structure that have been used previously for speed control (figure 3.20). The procedure of

control execution is similar to that of the speed control and the only difference is the

management of the user inputs.

(Fig. 3.20 The values of command words of drive)

The communication interface application: test results

127

Correct operation of the jog mode is shown by the following figure.

(Fig. 3.21 Siemens control panel.)

Figure 3.21 shows that the drive is ready and it is running:

• ready for switching on LED is green (red circle);

• operation enabled LED is green (blue circle).

The speed of the jog mode must be 270 [rpm] (equation 3.3).

 1350 ∗ (
20

100
) = 270 [𝑟𝑝𝑚] (3.3)

The control panel provides an actual value (yellow circle) that is about the calculated

value. In addition, it should be noted that actual values (yellow circle) does not depend on the

"IN_Override" value (figure 3.19), but it depends on the value inside the block. As a result, the

drive works properly.

The fourth phase of the test consists in the analysis of the jog mode with a negative

direction. Here again, the speed of the jog mode is set at 20% of the maximum speed by the

"R101_Control_Interface" block and it is independent of the input override.

The parameters to be set in the block "R101_Control_Interface" are:

• “IN_CmdJogNeg_Speed” = 1;

• “IN_StopCycle” = 1;

• “IN_Enable_Axis” = 1;

• “IN_ReseAlarm” = 0.

The communication interface application: test results

128

The operating mode must be set by using the user inputs. Figure 3.22 represents the

correct values for user inputs to perform positive jog mode.

(Fig. 3.22 The values of user inputs)

It should be noted that "IN_CmdSpeed" inputs is equal to "FALSE", and

"IN_CmdJogNeg_Speed" is equal to "TRUE".

The procedure of control execution is similar to control process of the positive jog mode,

indeed the only difference is the management of user inputs (figure 3.23).

(Fig. 3.23 The values of command words of drive)

The communication interface application: test results

129

Control panel in figure 3.24 shows that the drive is ready and it is running:

• ready for switching on LED is green (red circle);

• operation enabled LED is green (blue circle).

The speed of the jog mode must be -270 [rpm] (equation 3.4) because the direction is

negative.

 −1350 ∗ (
20

100
) = −270 [𝑟𝑝𝑚] (3.4)

The control panel provides a value equal to about the calculated value, so drive works

properly. In addition, it should be noted that actual values (yellow circle) is independent of the

"IN_Override" value (figure 3.22) and it depends only on the internal value of the block

"R101_Control_Interface". As a result, the drive works rightly.

(Fig. 3.24 Siemens control panel.)

In conclusion, the test showed that the communication between Siemens PLC and

Siemens inverter drive by means of the Standard Telegram 1 was performed correctly.

Particularly, all the modes of operation required for the program have been executed

completely.

3.3 Test about Siemens Telegram 352

The test of the Siemens Telegram 352 was performed by using the Siemens PLC 1511 F

(figure 3.1), an electric motor and drive G120 without external encoder (figure 3.2).

The communication interface application: test results

130

The characteristics of the motor are described in figure 3.3.

The objective of the following test is the right functioning of the Standard Telegram 352

(appendix A) for a correct communication between the inverter G120 and the PLC.

The first phase of the test consists of a speed control with a positive direction at a speed

equal to 80% of the maximum speed.

In a manner similar to test about the Standard Telegram 1, the first two tasks are the

addressing (figure 3.25) and assigning variables to each communication bit of the interface. In

this case, the interface used is represented in table 3.3 and table 3.4.

(Fig. 3.25 Addressing)

Control_Interface Siemens interface control word

Control_Start #PZD.CONTROL_WORD."STW1 1.0"

Control_JobStart

Control_noJOB_STOP

Control_NOSTOP

Control_ControlFromPLC #PZD.CONTROL_WORD."STW1 0.2"

Control_RUN

Control_GoalPosition

Control_SpeedPosition

Control_OverrideV

Control_OverridePosV

Control_Acceleration

Control_Deceleration

Control_GoalSpeed_LU #PZD.CONTROL_WORD. NSOLL_A

Control_GoalSpeed_Hz

The communication interface application: test results

131

Control_GoalSpeed_rpm

Control_PositioningMode

Control_ReferenceSearchStart

Control_PositiveDir

Control_NegativeDir

Control_RefType

Control_ReferenceSearchDir

Control_Jog1

Control_Jog2

Control_AlarmReset #PZD.CONTROL_WORD."STW1 1.7"

Control_SetReferencePoint

Control_SpeedDirection #PZD.CONTROL_WORD."STW1 0.3"

Control_EnableSpeed #PZD.CONTROL_WORD."STW1 1.6"

Control_OFF2 #PZD.CONTROL_WORD."STW1 1.1"

Control_OFF3 #PZD.CONTROL_WORD."STW1 1.2"

Control_EnableOperation #PZD.CONTROL_WORD."STW1 1.3"

Control_EnableRamp #PZD.CONTROL_WORD."STW1 1.4"

Control_ContinueRamp #PZD.CONTROL_WORD."STW1 1.5"

Control_EnablePos

Control_RockMOPIn

Control_RockMOPDec

Control_RockJOG

Control_RockNegative

Control_RockPositive

Control_Stop

(Table 3.3 Interface between Drive output signals of R101_Control_Interface” block

and Siemens Telegram 352 control words)

Status_Interface Siemens interface status word

Status_Alarm #PZD.STATUS_WORD."ZSW1 1.7"

Status_Ready #PZD.STATUS_WORD."ZSW1 1.2"

Status_Blocked #PZD.STATUS_WORD."ZSW1 1.3"

Status_AxisEnabled #PZD.STATUS_WORD."ZSW1 1.0"

Status_PositiveDir

Status_NegativeDir

Status_Direction

The communication interface application: test results

132

Status_ReferenceDone

Status_SpeedReached #PZD.STATUS_WORD."ZSW1 0.2"

Status_PositionReached

Status_AlarmCode #PZD.STATUS_WORD.ZSW5

Status_WarningCode #PZD.STATUS_WORD.ZSW6

Status_ActualSpeed #PZD.STATUS_WORD.ZSW2

Status_ActualPosition

(Table 3.4 Interface between Drive input signals of R101_Control_Interface” block and

Siemens Telegram 352 status words)

The third task is the setting of the type of control that must be executed and its mode.

In this case the parameters to be set in the block "R101_Control_Interface" are:

• “IN_CmdSpeed” = 1;

• “IN_StopCycle” = 1;

• “IN_Direction” = 0;

• “IN_MaxSpeed” = 100 [%];

• “IN_Override” = 80 [%];

• “IN_ReseAlarm” = 0;

• “IN_Enable_Axis” = 1.

Also in this case, the inverter calculates the desired speed according to the parameter

"p2000" of the expert list.

The operating mode must be set by using the user inputs. Figure 3.26 represents the

correct values for user inputs to perform a speed control with a positive direction at a speed

equal to 80% of the maximum speed.

(Fig. 3.26 Values of user inputs variables)

The communication interface application: test results

133

The block processes the user's commands and calculates the drive output variables (figure

3.27). Each Drive output variable is connected to internal structure (figure 3.28).

(Fig. 3.27 The values of drive outputs)

The communication interface application: test results

134

(Fig. 3.28 The values of command words of drive)

It should be noted that the structure of figure 3.28 has the same words of command

structure of Siemens Telegram 352 (appendix A).

Drive output variables values are copied into the drive structure. In this way, the drive

activation bits are set correctly.

At this point the motor starts spinning with a positive direction and at a rotational speed

equal to 1080 rpm.

The operation of the drive can be monitored through the values of the drive status words.

(Fig. 3.29 The values of status words of drive)

The communication interface application: test results

135

It should be noted that the structure of figure 3.29 is similar to the status words of the

Siemens Telegram 352 (appendix A). These parameters provide the drive states and they must

be transmitted to the interface block. As a result, drive status words are copied into the internal

structure (figure 3.29). The most important bits of the internal structure status words are

connected to the drive input signals (figure 3.30).

(Fig. 3.30 The values of drive input signals.)

From the image 3.30 a correct functioning of the drive is evident. Specifically, drive is

ready (Status_Ready = TRUE), there are not alarms (Status_AlarmCode = 16 # 0000) and there

are not faults (Status_WarningCode = 16 # 0000). In addition, the measured speed is 1080 [rpm]

(Status_ActualSpeed = 1080) and the direction is positive (Status_Direction = TRUE).

Siemens control panel demonstrates the speed of the engine (figure3.31).

(Fig. 3.31 Siemens control panel.)

The communication interface application: test results

136

Figure 3.31 shows that the drive is ready and it is running:

• ready for switching on LED is green (red circle);

• operation enabled LED is green (blue circle).

Speed is 1080 [rpm] (equation 3.5)

 1350 ∗ (
80

100
) = 1080 [𝑟𝑝𝑚] (3.5)

Value recorded by the control panel (yellow circle) is about calculated value, so drive is

working properly.

The second phase of the test is the analysis of the speed control with a negative direction

at a speed equal to 80% of the maximum speed.

The parameters to be set in the block "R101_Control_Interface" are:

• “IN_CmdSpeed” = 1;

• “IN_StopCycle” = 1;

• “IN_Direction” = 1;

• “IN_MaxSpeed” = 100 [%];

• “IN_Override” = 80 [%];

• “IN_ReseAlarm” = 0;

• “IN_Enable_Axis” = 1.

The following figure shows the set of values for performing this mode.

(Fig. 3.32 The values of user inputs)

The communication interface application: test results

137

In a manner similar to speed control with a positive direction at a speed equal to 80% of

the maximum speed, the execution phases of the control are:

1. the R101 Control_Interface block reads the user's commands;

2. the R101 Control_Interface block generates the correct drive output values;

3. drive output variables values are copied into the drive structure;

4. the drive will run the speed control and the motor starts spinning with a negative

direction and at a speed equal to -1080 rpm.

The correct operation of the drive is highlighted by the Siemens control panel (figure

3.33).

(Fig 3.33 Siemens control panel.)

Figure 3.33 shows that the drive is ready and it is running:

• ready for switching on LED is green (red circle);

• operation enabled LED is green (blue circle).

The speed of the jog mode is -1080 [rpm] (equation 3.6)

 −1350 ∗ (
80

100
) = −1080 [𝑟𝑝𝑚] (3.6)

In other words, the value measured by the control panel (yellow circle) is equal to around

the calculated value.

The third phase of the test is the study of the manual control with a positive direction. In

a manner similar to “Jog mode” of Standard Telegram 1, speed of the jog mode is handled in

The communication interface application: test results

138

the "R101_Control_Interface" block and it is independent of the input speed override. The jog

mode override is set to 20% and therefore the speed is 20% of the maximum speed.

The parameters to be set in the block "Control_Interface" are:

• “IN_CmdJogPos_Speed” = 1;

• “IN_StopCycle” = 1;

• “IN_ReseAlarm” = 0;

• “IN_Enable_Axis” = 1.

The following figure depicts the set of values for performing this mode.

(Fig. 3.34 The values of user inputs)

After imposing the user inputs parameters, the block processes the commands and sends

them to the drive as it happened for the second phase of the test.

At this point the motor starts spinning and the drive controls the engine speed (figure

3.35).

The communication interface application: test results

139

(Fig 3.35 Siemens control panel.)

Figure 3.35 shows that the drive is ready and is running:

• ready for switching on LED is green (red circle);

• operation enabled LED is green (blue circle).

Speed of the jog mode must be 270 [rpm] (equation 3.7)

 1350 ∗ (
20

100
) = 270 [𝑟𝑝𝑚] (3.7)

The control panel provides an actual value (yellow circle) equal to about the calculated

value. In addition, it should be noted that actual values (yellow circle) depend on the internal

value of the block and it is independent of the value "IN_Override" (figure 3.34). As a result,

the drive works correctly.

The last phase of the test is the jog mode analysis with a negative direction. Again, the

override of jog mode is set to 20% automatically by the "R101 Control_Interface block" and

then the speed is 20% of the maximum speed.

The parameters to set in the block "R101 Control_Interface" are:

• “IN_CmdJogNeg_Speed” = 1;

• “IN_StopCycle” = 1;

• “IN_ReseAlarm” = 0;

• “IN_Enable_Axis” = 1.

The communication interface application: test results

140

This way the user sets the user inputs (figure 3.36).

(Fig. 3.36 The values of user inputs)

As a result, "R101 Control_Interface" block produces the drive commands and the engine

starts spinning at approximate -270 rpm (figure 3.37).

It should be noted that actual values (yellow circle) is independent of the value

"IN_Override" (figure 3.36) because it depends only on the internal value of the block

"R101_Control_Interface".

(Fig 3.37 Siemens control panel.)

In conclusion, the test showed that the communication between PLC and Siemens inverter

drive via the Siemens Telegram 352 was performed correctly. Specifically, all the functions of

the program have been performed correctly and completely.

The communication interface application: test results

141

3.4 Test about Standard Telegram 111

The test on the communication interface with the Siemens Servo drive was performed

using the PLC Siemens 1511 F (figure 3.1), Servo drive S120 with a “Double motor module”

(figure 3.38) and an electric motor.

(Fig. 3.38 Siemens servo drive S120)

The motor characteristics are described in the following table (table 3.5).

Parameters Value Unit

Rated motor voltage 186 Veff

Rated motor current 1.40 Aeff

Number of revolutions rated motor 6000.0 1/min

Number of pairs of motor poles 3

Motor torque constant 0.46 Nm/A

Maximum motor speed 10000.0 1/min

Maximum motor current 7.50 Aeff

Number of maximum laps 10000.000 1/min

(Table 3.5 Motor data)

The servo drive S120 is able to control the position of an engine. The communication

structure between CPU and servo drive S120 is the Standard Telegram 111 (appendix A).

The communication interface application: test results

142

The objective of the following test is the correct functioning of the Standard Telegram

111 for the correct communication between Siemens PLC and Siemens servo drives.

Initially the positive jog mode will be tested.

The first two activities are the addressing (figure 3.39) and the assigning variables to each

communication bit of the interface. In this case, the interface used is represented in table 3.6

and table 3.7.

(Fig. 3.39 Addressing)

Control_Interface Siemens interface control word

Control_Start #PZD.CONTROL_WORD.Control_Word_1.Off1

Control_JobStart #PZD.CONTROL_WORD.Control_Word_1.TrvStart

Control_noJOB_STOP #PZD.CONTROL_WORD.Control_Word_1.RejTrvTsk

Control_NOSTOP #PZD.CONTROL_WORD.Control_Word_1.IntMStop

Control_ControlFromPLC #PZD.CONTROL_WORD.Control_Word_1.LB

Control_RUN #PZD.CONTROL_WORD."EPosSTW 1".MdiStart

Control_GoalPosition #PZD.CONTROL_WORD.Position

Control_SpeedPosition #PZD.CONTROL_WORD.Velocity

Control_OverrideV

Control_OverridePosV #PZD.CONTROL_WORD.OverrideV

Control_Acceleration #PZD.CONTROL_WORD.OverrideA

Control_Deceleration #PZD.CONTROL_WORD.OverrideD

Control_GoalSpeed_LU

Control_GoalSpeed_Hz

Control_GoalSpeed_rpm

The communication interface application: test results

143

Control_PositioningMode #PZD.CONTROL_WORD."EPosSTW 1".MdiTyp

Control_ReferenceSearchStart #PZD.CONTROL_WORD.Control_Word_1.RefStart

Control_PositiveDir #PZD.CONTROL_WORD."EPosSTW 1".MdiPos

Control_NegativeDir #PZD.CONTROL_WORD."EPosSTW 1".MdiNeg

Control_RefType #PZD.CONTROL_WORD."EPosSTW 2".RefTyp

Control_ReferenceSearchDir #PZD.CONTROL_WORD."EPosSTW 2".RefStDi

Control_Jog1 #PZD.CONTROL_WORD.Control_Word_1.Jog1

Control_Jog2 #PZD.CONTROL_WORD.Control_Word_1.Jog2

Control_AlarmReset #PZD.CONTROL_WORD.Control_Word_1.AckFault

Control_SetReferencePoint #PZD.CONTROL_WORD."EPosSTW 2".SetRefPt

Control_SpeedDirection

Control_EnableSpeed

Control_OFF2 #PZD.CONTROL_WORD.Control_Word_1.Off2

Control_OFF3 #PZD.CONTROL_WORD.Control_Word_1.Off3

Control_EnableOperation

Control_EnableRamp

Control_ContinueRamp

Control_EnablePos #PZD.CONTROL_WORD.Control_Word_1.Enc

Control_RockMOPIn

Control_RockMOPDec

Control_RockJOG

Control_RockNegative

Control_RockPositive

Control_Stop

(Table 3.6 Interface between Drive output signals of R101_Control_Interface” block

and Standard Telegram 111 control words)

Status_Interface Siemens interface status word

Status_Alarm #PZD."STATUS WORD".Status_Word_1.Alarm

Status_Ready #PZD."STATUS WORD".Status_Word_1.IOp

Status_Blocked #PZD."STATUS WORD".Status_Word_1.Fault

Status_AxisEnabled

Status_PositiveDir #PZD."STATUS WORD"."EPosZSW 2".FWD

Status_NegativeDir #PZD."STATUS WORD"."EPosZSW 2".BWD

Status_Direction #PZD."STATUS WORD".Status_Word_1.RTS

The communication interface application: test results

144

Status_ReferenceDone #PZD."STATUS

WORD".Status_Word_1.RefPset

Status_SpeedReached

Status_PositionReached #PZD."STATUS

WORD".Status_Word_1.TargPos

Status_AlarmCode #PZD."STATUS WORD".ErrNr

Status_WarningCode #PZD."STATUS WORD".WarnNr

Status_ActualSpeed #PZD."STATUS WORD".Velocity

Status_ActualPosition #PZD."STATUS WORD".Position

(Table 3.7 Interface between Drive input signals of R101_Control_Interface” block and

Standard Telegram 111 status words)

The second task is setting the type of control that must be executed and its mode.

In this case the parameters to be set in the block "R101_Control_Interface" are:

• “IN_CmdJogPos” = 1;

• “IN_StopCycle” = 0;

• “IN_SpeedMax” = 100 [%];

• “IN_Enable_Axis” = 1;

• “IN_CancelTraversing” =1.

It should be noted that the "IN_SpeedMax" value is different from the maximum engine

speed, but it is equal to 100. This peculiarity is caused by how Siemens Servo drive calculates

the wanted speed. It calculates the desired speed according to the "p2000" parameter of the

expert list, like the Siemens inverter. In the specific case of the test, the speed will be set by

servo drive automatically. In other words, the speed does not depend on “IN_Override” input.

Figure 3.40 represents the commands that the user has applied.

The communication interface application: test results

145

(Fig. 3.40 User inputs)

The "R101_Control_Interface" block calculates the commands that must be sent to the

servo drive according to the user inputs (figure 3.41).

The communication interface application: test results

146

(Fig. 3.41 The values of drive outputs)

Drive output variables are associated with bits of internal structure (figure 3.42).

It should be noted that the structure of figure 3.42 is similar to the command words of the

Standard Telegram 111 (appendix A). Indeed, the only difference is the bytes position that

consists of the command words. This difference depends on how Siemens devices read words.

Specifically, Siemens devices reverse the priority of the word bytes. In other words, firstly

Siemens devices read the second byte of the word and then the first byte of the word. This

difference is only present for Siemens devices.

The communication interface application: test results

147

(Fig. 3.42 A The values of command words of drive)

(Fig. 3.42 B The values of command words of drive)

The internal structure is copied into the drive structure to activate a series of bits and

consequently the start of the drive (figure 3.42).

As a result, the motor starts spinning.

The reading values of the drive status words shows the operation of the drive (figure

3.43).

The communication interface application: test results

148

(Fig. 3.43 A The values of status words of drive)

(Fig. 3.43 B The values of status words of drive)

(Fig. 3.43 C The values of status words of drive)

The communication interface application: test results

149

(Fig. 3.43 D The values of status words of drive)

(Fig. 3.43 E The values of status words of drive)

It should be noted that the structure of figure 3.43 is similar to the status words of the

Standard Telegram 111 (appendix A). The "jog2" bit in the word "Status_Word_1" is equal to

"TRUE"; sure enough, this bit performs the positive jog mode.

As command words structure, the only difference is the position of command words bytes.

These parameters provide the drive states and they must be sent to the interface block to transmit

them to the end user and for the interface block normal function (figure 3.45). As a result, drive

status words are copied into the internal structure (figure 3.43) and the most important bits are

connected to the drive input signals (figure 3.44).

The communication interface application: test results

150

(Fig. 3.44 The values of drive input signals.)

From the image 3.44 a correct operation of the drive is evident:

• drive is ready state (Status_Ready = TRUE);

• the direction is positive (Status_PositiveDir = TRUE);

• there are not alarms (Status_Alarm = FALSE and Status_Warning = FALSE).

(Fig. 3.45 The values of user outputs)

The second phase of the test is the analysis of the negative jog mode. In this case, the

desired motor behavior is a manual movement with a negative movement direction.

In a manner similar to positive jog mode, the programmer must set the desired control

type.

The parameters to be set in the block "R101_Control_Interface" are:

• “IN_CmdJogNeg” = 1;

• “IN_StopCycle” = 0;

• “IN_SpeedMax” = 100 [%];

• “IN_Enable_Axis” = 1;

• “IN_CancelTraversing” =1.

The communication interface application: test results

151

The operating mode must be set by using user inputs. Figure 3.46 represents the correct

user inputs values for running the negative jog mode.

(Fig. 3.46 The values of user inputs)

The R101 Control_Interface block reads the user's commands and generates the correct

drive output values (figure 3.47). Each Drive output variable is connected to internal structure

(figure 3.48).

The communication interface application: test results

152

(Fig. 3.47 The values of drive outputs)

(Fig. 3.48 A The values of command words of drive)

The communication interface application: test results

153

(Fig. 3.48 B The values of command words of drive)

Drive output variables values are copied into the drive structure. In this way, the drive

activation bits are set.

As a result, the drive performs the negative jog mode.

Proper operation is demonstrated by the word status of the drive (figure 3.49).

(Fig. 3.49 A The values of status words of drive)

(Fig. 3.49 B The values of status words of drive)

The communication interface application: test results

154

(Fig. 3.49 C The values of status words of drive)

(Fig. 3.49 D The values of status words of drive)

(Fig. 3.49 E The values of status words of drive)

The communication interface application: test results

155

It should be noted that the "jog1" bit of the word "Status_word_1" is equal to "TRUE";

indeed, this bit executes the negative jog mode.

In a manner similar to positive jog mode, drive status words are copied to the internal

structure (figure 3.49). Figure 3.50 shows the most important information.

(Fig. 3.50 The values of drive input signals.)

The correct functioning is highlighted by the following statuses of the figure 3.50:

• drive is ready state (Status_Ready = TRUE);

• the direction is negative (Status_NegativeDir = TRUE);

• there are not alarms (Status_Alarm = FALSE and Status_Warning = FALSE).

Finally, the figure 3.51 shows the parameters transmitted to the user.

(Fig. 3.51 The values of user outputs)

The communication interface application: test results

156

In the third phase of the "Home Set" test mode is studied in detail. This mode is used to

set the zero position, i.e. the reference position for the subsequent positions calculation.

The programmer must set the following parameters of the "R101_Control_Interface"

block to execute the desired function:

• “IN_CmdHomeSet” = 1;

• “IN_StopCycle” = 0;

• “IN_CancelTraversing” =1.

The correct user inputs to be set are shown in figure 3.52.

(Fig. 3.52 The values of user inputs)

The R101 Control_Interface block reads user commands and generates the correct drive

output values (figure 3.53).

The communication interface application: test results

157

(Fig. 3.53 The values of drive outputs)

Each drive output is connected to internal structure (figure 3.54).

(Fig. 3.54 A The values of command words of drive)

The communication interface application: test results

158

(Fig. 3.54 B The values of command words of drive)

(Fig. 3.54 C The values of command words of drive)

Drive structure is compiled through the copy of the drive output variables values. This

procedure let the execution of the “Home Set” function.

The "Home Set" command was transmitted to the drive by means of "SetRefPt" bit of the

command word "EPosSTW2".

At this point the current position becomes the zero position (figure 3.55).

The communication interface application: test results

159

(Fig. 3.55 A The values of status words of drive)

(Fig. 3.55 B The values of status words of drive)

(Fig. 3.55 C The values of status words of drive)

The communication interface application: test results

160

(Fig. 3.55 D The values of status words of drive)

(Fig. 3.55 E The values of status words of drive)

In a manner similar to previous tests, drive status words are copied to the internal structure

(figure 3.55). Figure 3.56 shows the most important information.

The communication interface application: test results

161

(Fig. 3.56 The values of drive input signals)

It should be noted that the actual position is zero, indeed Status_ActualPosition = 0 (figure

3.56) and Position = 16#0000_0000 (figure 3.55 A), while previous value of position is different

from zero (figure 3.49 A). In addition, the value "Status_ReferenceDone" = TRUE. This value

demonstrates the correct functioning of the drive.

The transmission of drive states to the user is performed by user outputs (figure 3.57).

(Fig. 3.57 The values of user outputs)

The fourth phase of the test is the execution of the positive absolute position mode.

To perform this mode, the user must impose the following parameters:

• “IN_CmdAbsolutePositioning” = 1;

• “IN_StopCycle” = 0;

• “IN_Direction” = 0;

• “IN_PosTargetDest” = 70000;

• “IN_SpeedMax” = 100 [%];

• “IN_Override” = 50 [%];

• “IN_Enable_Axis” = 1;

The communication interface application: test results

162

• “IN_CancelTraversing” =1;

• “IN_MDI_Mode” = 1.

These parameters are set by means of user inputs (figure 3.58).

(Fig. 3.58 User inputs)

The "R101_Control_Interface" block processes the commands that must be sent to the

servo drive according to user inputs (figure 3.59).

The communication interface application: test results

163

(Fig. 3.59 The values of drive outputs)

The search for the final position is performed if a series of drive bits are active (figure

3.60).

(Fig. 3.60 A The values of command words of drive)

The communication interface application: test results

164

(Fig. 3.60 B The values of command words of drive)

(Fig. 3.60 C The values of command words of drive)

These bits are activated by copying the drive output variables values into the drive

structure. At this point the engine starts spinning in a positive direction until it reaches the

desired position.

The drive status words are copied to the internal structure (figure 3.61) and the most

important bits are connected to the drive input signals (figure 3.62).

The communication interface application: test results

165

(Fig. 3.61 A The values of status words of drive)

(Fig. 3.61 B The values of status words of drive)

(Fig. 3.61 C The values of status words of drive)

The communication interface application: test results

166

(Fig. 3.61 D The values of status words of drive)

(Fig. 3.61 E The values of status words of drive)

The communication interface application: test results

167

(Fig. 3.62 The values of drive input signals.)

The following bits demonstrate the correct operation of the drive (figure 3.62):

• drive is ready state (Status_Ready=1);

• current position is correct (Status_Position=70000);

• wanted position is reached (Position reached = 1).

The user can read this information by means of user outputs (figure 3.63).

(Fig. 3.63 The values of user outputs)

The fifth phase of the test is the execution of the negative absolute position mode.

To perform this mode, the user must impose the following parameters:

• “IN_CmdAbsolutePositioning” = 1;

• “IN_StopCycle” = 0;

• “IN_Direction” = 1;

• “IN_PosTargetDest” = 10000;

• “IN_SpeedMax” = 100 [%];

• “IN_Override” = 50 [%];

• “IN_Enable_Axis” = 1;

The communication interface application: test results

168

• “IN_CancelTraversing” =1;

• “IN_MDI_Mode” = 1.

Figure 3.64 shows the correct user inputs that are necessary for the execution of the

negative absolute position mode.

(Fig. 3.64 User inputs)

Subsequently, the "R101_Control_Interface" block calculates the commands and sends

them to the servo drive (figure 3.65).

The communication interface application: test results

169

(Fig. 3.65 The values of drive outputs)

Each bit is connected to internal structure (figure 3.66).

(Fig. 3.66 A The values of command words of drive)

The communication interface application: test results

170

(Fig. 3.66 B The values of command words of drive)

(Fig. 3.66 C The values of command words of drive)

Drive output values are copied to the command drive structure to allow desired position

research.

At this point the engine starts spinning in a negative direction until it reaches the desired

position.

All drive states are copied to the internal structure (figure 3.67) and the most important

bits are connected to the drive input signals (figure 3.68).

The communication interface application: test results

171

(Fig. 3.67 A The values of status words of drive)

(Fig. 3.67 B The values of status words of drive)

(Fig. 3.67 C The values of status words of drive)

The communication interface application: test results

172

(Fig. 3.67 D The values of status words of drive)

(Fig. 3.67 E The values of status words of drive)

The communication interface application: test results

173

(Fig. 3.68 The values of drive input signals.)

The following bits demonstrate the correct operation of the drive (figure 3.68):

• drive is ready state (Status_Ready=1);

• current position is correct (Status_Position=10000);

• wanted position is reached (Status_Position reached = 1).

The user can read this information by means of user outputs (figure 3.69).

(Fig. 3.69 The values of user outputs)

In the sixth phase of the test the execution of the positive reference search mode is studied.

This mode is executed when the user imposes the following parameters:

• “IN_CmdHomeRes” = 1;

• “IN_Home_Direction” = 0;

• “IN_StopCycle” = 0;

• “IN_CancelTraversing” =1;

• “IN_Enable_Axis” = 1;

• “IN_MDI_Mode” = 1.

The communication interface application: test results

174

The right user inputs values are represented in figure 3.70.

(Fig. 3.70 User inputs)

The interface block processes all the inputs and generates the servo drive commands

(figure 3.71).

The communication interface application: test results

175

(Fig. 3.71 The values of drive outputs)

Drive outputs are associated with the internal structure (figure 3.72).

The communication interface application: test results

176

(Fig. 3.72 A The values of command words of drive)

(Fig. 3.72 B The values of command words of drive)

(Fig. 3.72 C The values of command words of drive)

The communication interface application: test results

177

The internal structure is copied into the command drive structure to allow the search of

the initial position.

At this point the motor starts spinning in a positive direction until the physical zero

position coincides with the virtual zero position.

The drive activities are monitored by means of the drive status words (figure 3.73).

(Fig. 3.73 A The values of status words of drive)

(Fig. 3.73 B The values of status words of drive)

The communication interface application: test results

178

(Fig. 3.73 C The values of status words of drive)

(Fig. 3.73 D The values of status words of drive)

The communication interface application: test results

179

(Fig. 3.73 E The values of status words of drive)

In a manner similar to previous tests, all drive states are copied to the internal structure

(figures 3.73) and the most important bits are connected to the drive input signals (figure 3.74).

(Fig. 3.74 The values of drive input signals.)

It should be noted that regardless of the value of the input "IN_Direction" which is equal

to 1, the rotation of the rotor is positive (Status_PositiveDir = TRUE). This happens because in

the case of a reference search mode the direction is managed only by "IN_Home_Direction"

input.

The user can read the drive states through user outputs (figure 3.75).

The communication interface application: test results

180

(Fig. 3.75 The values of user outputs)

The last phase of the test analyzes the negative reference search mode.

This mode is executed when the user imposes the following parameters:

• “IN_CmdHomeRes” = 1;

• “IN_Home_Direction” = 1;

• “IN_StopCycle” = 0;

• “IN_CancelTraversing” =1;

• “IN_Enable_Axis” = 1;

• “IN_MDI_Mode” = 1.

The parameters correspond to user inputs (figure 3.76).

(Fig. 3.76 User inputs)

The communication interface application: test results

181

Drive outputs of the "R101_Control_Interface" block are shown in figure 3.77).

(Fig. 3.77 The values of drive outputs)

Subsequently, drive outputs are associated with the internal structure (figure 3.78) that is

copied to the command drive structure.

The communication interface application: test results

182

(Fig. 3.78 A The values of command words of drive)

(Fig. 3.78 B The values of command words of drive)

(Fig. 3.78 C The values of command words of drive)

The communication interface application: test results

183

At this point the motor starts running in a negative direction until the physical zero

position coincides with the virtual zero position.

The drive states are shown in the drive status words (figure 3.79).

(Fig. 3.79 A The values of status words of drive)

(Fig. 3.79 B The values of status words of drive)

(Fig. 3.79 C The values of status words of drive)

The communication interface application: test results

184

(Fig. 3.79 D The values of status words of drive)

(Fig. 3.79 E The values of status words of drive)

After the status drive structure has been copied to internal structure (figures 3.79), the

most important bits are connected to the drive input signals (figure 3.80).

(Fig. 3.80 The values of drive input signals.)

The communication interface application: test results

185

In a manner similar to positive reference search mode, the rotation of the rotor is negative

(Status_NegativeDir = TRUE) even if input "IN_Direction" is equal to 0.

The user can read the drive states through user outputs (figure 3.81).

(Fig. 3.81 The values of user outputs)

In conclusion, the test showed that the communication between Siemens PLC and

Siemens S120 servo drive by means of the Standard Telegram 111 has been carried out

correctly and all the functions of the program have been completely executed.

3.5 Test about Rockwell Automation inverter drive

The test on the interface of communication with Rockwell Automation drive was

executed by means of the "Logix5563” CPU (figure 3.82), an asynchronous electric motor and

the PowerFlex 525 drive without external encoder (figure 3.83).

(Fig. 3.82 Rockwell Automation Logix5563 CPU)

The communication interface application: test results

186

(Fig. 3.83 Rockwell Automation PowerFlex 525 inverter drive)

The characteristics of the engine are in the motor plate (figure 3.84).

(Fig. 3.84 Electric motor plate)

This data was insert into the drive's expert list to impose engine characteristics on the

drive.

(Fig. 3.85 Electric motor plate)

The communication interface application: test results

187

The PowerFlex 525 drive is an inverter and it is able to control the engine speed. The

communication structure of the drives belonging to the 52x family is described in appendix B.

The objective of the following test is the exact functioning of a Rockwell inverter by

means of the PowerFlex 525 communication structure.

The first test involves running the speed control with a positive direction at a speed equal

to half the maximum speed.

The first two activities are the addressing and the variables assignment with each

communication bit of the interface. In this case, the interface used is represented in table 3.8

and table 3.9.

Control_Interface Rockwell Automation interface control word

Control_Start My_Structure.Output.Start

Control_JobStart

Control_noJOB_STOP

Control_NOSTOP

Control_ControlFromPLC

Control_RUN

Control_GoalPosition

Control_SpeedPosition

Control_OverrideV

Control_OverridePosV

Control_Acceleration

Control_Deceleration

Control_GoalSpeed_LU

Control_GoalSpeed_Hz My_Structure.Output.FreqCommand

Control_GoalSpeed_rpm

Control_PositioningMode

Control_ReferenceSearchStart

Control_PositiveDir

Control_NegativeDir

Control_RefType

Control_ReferenceSearchDir

Control_Jog1

Control_Jog2

Control_AlarmReset My_Structure.Output.ClearFaults

The communication interface application: test results

188

Control_SetReferencePoint

Control_SpeedDirection

Control_EnableSpeed

Control_OFF2

Control_OFF3

Control_EnableOperation

Control_EnableRamp

Control_ContinueRamp

Control_EnablePos

Control_RockMOPIn My_Structure.Output.MOPIncrement

Control_RockMOPDec My_Structure.Output.MOPDecrement

Control_RockJOG My_Structure.Output.Jog

Control_RockNegative My_Structure.Output.Reverse

Control_RockPositive My_Structure.Output.Forward

Control_Stop My_Structure.Output.Stop

(Table 3.8 Interface between Drive output signals of R101_Control_Interface” block

and PowerFlex525 drive structure control words)

Status_Interface Rockwell Automation interface status word

Status_Alarm

Status_Ready My_Structure.Input.Ready

Status_Blocked My_Structure.Input.Faulted

Status_AxisEnabled My_Structure.Input.Active

Status_PositiveDir

Status_NegativeDir

Status_Direction My_Structure.Input.ActualDir

Status_ReferenceDone

Status_SpeedReached My_Structure.Input.AtReference

Status_PositionReached

Status_AlarmCode

Status_WarningCode

Status_ActualSpeed My_Structure.Input.OutputFreq

Status_ActualPosition

(Table 3.9 Interface between Drive input signals of R101_Control_Interface” block and

PowerFlex525 drive structure status words)

The communication interface application: test results

189

The procedure for activating this drive type depends on a specific sequence of commands.

The sequence is given by the following bits:

1. “ClearFaults” inputs activation to reset the drive and alarms;

2. “Start” inputs activation to start the movement;

3. “Stop” inputs activation to lock the movement;

4. “Start” and “Stop” inputs reset;

5. the starting procedure again from step 1.

The second task is setting of the type of control that must be executed and its mode.

The parameters to set in the block "R101_Control_Interface" are:

• “IN_CmdSpeed” = 1;

• “IN_StopCycle” = 0;

• “IN_Direction” = 0;

• “IN_MaxSpeed” = 1425 [rpm];

• “IN_Override” = 50 [%].

It should be noted that the "IN_MaxSpeed" value is equal to the maximum engine speed.

Indeed, unlike Siemens, Rockwell inverter does not calculate the desired speed according to

expert list parameter, but the inverter imposes on the motor the transmitted speed.

The operating mode must be set using the user inputs. Figure 3.86 represents the correct

values for user inputs to run a speed control with a positive direction at a speed equal to half

the maximum speed.

(Fig. 3.86 The values of user inputs)

The communication interface application: test results

190

To activate the motion the Rockwell sequence must be performed.

The first activity is "IN_ReseAlarm" activation (figure 3.87).

(Fig. 3.87 Set of IN_ResetAlarm)

The following operations are:

• reset of “IN_ResetAlarm” input (IN_ResetAlarm = 0);

• set of “IN_EnableAxis” input (IN_EnableAxis = 1).

These operations update user inputs values (figure 3.88).

(Fig. 3.88 New values of user inputs)

The R101 Control_Interface block reads the user's commands and generates the correct

drive output values (figure 3.89). Each Drive output variable is connected to internal structure.

The communication interface application: test results

191

(Fig. 3.89 The values of drive outputs)

Drive output variables values are copied into the drive structure. In this way, the drive

activation bits are set correctly (figure 3.90).

(Fig. 3.90 The values of command words of drive)

The communication interface application: test results

192

As a result, the engine starts rotating at the desired speed (1188 Hz = 712.8 rpm) with a

positive direction, because the drive is running the speed control.

Proper operation is demonstrated by the word status of the drive (figure 3.91).

(Fig. 3.91 The values of status words of drive)

It should be noted that the structure of figure 3.91 is equal to the status words of

PowerFlex 525 data type (appendix B). These parameters provide the drive states and they must

be transmitted to the interface block. As a result, drive status words are copied into the internal

structure. The most important bits of the internal structure status words are connected to the

drive input signals (figure 3.92).

(Fig. 3.92 The values of drive input signals.)

The communication interface application: test results

193

Figure 3.92 shows that the drive works correctly:

• “Struct_Control_Interface.Status_Ready” = 1;

• “Struct_Control_Interface.Status_Direction” =1 (positive direction);

• “Struct_Control_Interface.Status_Blocked” = 0;

• “Struct_Control_Interface.Status_SpeedReached” =1;

• “Struct_Control_Interface.Status_ActualSpeed” = 1188.

It should be noted that the speed supplied is different from 712,5 [rpm] (equation 3.8).

 1350 ∗ (
50

100
) = 712,5 [𝑟𝑝𝑚] (3.8)

This difference is caused by the unit of measure: as has been observed in chapter 2, the

Rockwell Automation speed unit is the Hz cent (equation 3.9).

 1188 = 11,88 [𝐻𝑧] = 712,8 [𝑟𝑝𝑚] (3.9)

As a result, the drive's response value is equivalent to the desired speed value. In other

words, the drive is working properly.

Finally, figure 3.93 expresses the parameters transmitted to the user.

(Fig. 3.93 The values of user outputs)

The communication interface application: test results

194

The second phase of the test is the study of the speed control with a negative direction at

a speed equal to half the maximum speed.

In this case, the parameters to set in the block "R101_Control_Interface" are:

• “IN_CmdSpeed” = 1;

• “IN_StopCycle” = 0;

• “IN_Direction” = 1;

• “IN_MaxSpeed” = 1425 [rpm];

• “IN_Override” = 50 [%];

The operating mode must be set using the user inputs. Figure 3.94 represents the correct

values for user inputs to run a speed control with a negative direction at a speed equal to half

the maximum speed.

(Fig. 3.94 The values of user inputs)

In a manner similar to positive speed control, the procedure of activation must be

performed.

The following operations are:

1. set of “IN_ResetAlarm” input (IN_ResetAlarm = 1);

2. reset of “IN_ResetAlarm” input (IN_ResetAlarm = 0);

3. set of “IN_EnableAxis” input (IN_EnableAxis = 1).

As a consequence, user input values change (figure 3.95).

The communication interface application: test results

195

(Fig. 3.95 New values of user inputs)

The R101 Control_Interface block generates the exact drive output values according to

the user commands (figure 3.96). Each drive output is connected to internal structure through

the R101 Control_Interface block interface.

The communication interface application: test results

196

(Fig. 3.96 The values of drive outputs)

The block copies drive output structure into the drive structure and then the drive

activation bits are set (figure 3.97).

(Fig. 3.97 The values of command words of drive)

The communication interface application: test results

197

As a result, the engine starts spinning at the desired speed in a negative direction because

the drive is performing speed control.

The correct functioning is demonstrated by the status words of the drive (figure 3.98).

(Fig. 3.98 The values of status words of drive)

Drive status words must be copied to the internal structure so that the user can read the

states and the block can correctly process the commands. The most important bits of the status

words of the internal structure are connected to the drive input signals (figure 3.99).

(Fig. 3.99 The values of drive input signals.)

Figure 3.99 shows that the drive works correctly:

• “Struct_Control_Interface.Status_Ready” = 1;

• “Struct_Control_Interface.Status_Direction” =0 (negative direction);

• “Struct_Control_Interface.Status_Blocked” = 0;

• “Struct_Control_Interface.Status_SpeedReached” =1;

The communication interface application: test results

198

• “Struct_Control_Interface.Status_ActualSpeed” = 1188 (equation 3.10).

 1425 ∗ (
50

100
) = 712,5 [𝑟𝑝𝑚] ≅ 11,88 [𝐻𝑧] = 1188 [ℎ𝑢𝑛𝑑𝑟𝑒𝑎𝑡ℎ 𝑜𝑓 𝐻𝑧] (3.10)

Finally, some drive states are transmitted to the user, because the user must be able to

read the states of the main drive (figure 3.100).

(Fig. 3.100 The values of user outputs)

The third phase of the test examines the positive jog speed control, in other words the

manual speed control with a positive direction. In a manner similar to Siemens tests, the speed

of the jog mode is set to 20% of the maximum speed by the "R101_Control_Interface" block

and is independent of the input override.

The parameters to be set in the "R101_Control_Interface" block are:

• IN_CmdSpeed = 0;

• IN_CmdJogPos_Speed = 1;

• IN_StopCycle = 0;

• IN_MaxSpeed = 1425 [rpm].

These values set the operating mode by means of user inputs. Figure 3.101 represents the

current values of user inputs to perform a jog speed control with a positive direction at a speed

equal to 20% of the maximum speed.

The communication interface application: test results

199

(Fig. 3.101 The values of user inputs)

Also, in this case, the activation procedure is:

1. set of “IN_ResetAlarm” input (IN_ResetAlarm = 1);

2. reset of “IN_ResetAlarm” input (IN_ResetAlarm = 0);

3. set of “IN_EnableAxis” input (IN_EnableAxis = 1).

As a result, the user input values change (figure 3.102).

(Fig. 3.102 New values of user inputs)

The R101 Control_Interface block generates the correct drive output values according to

the user's commands (figure 3.103).

The communication interface application: test results

200

Each drive output is connected to the internal structure through the R101

Control_Interface block interface.

(Fig. 3.103 The values of drive outputs)

The values of the internal structure are copied into drive structure (figure 3.104).

(Fig. 3.104 The values of command words of drive)

The communication interface application: test results

201

As a result, the engine starts spinning at a speed of 285 [rpm] in a positive direction.

The correct functioning is shown by the drive status words (figure 3.105).

(Fig. 3.105 The values of status words of drive)

Also in this case, the most important bits of the status words of the internal structure are

transmitted to the drive input signals (figure 3.106).

(Fig. 3.106 The values of drive input signals.)

The drive works correctly (figure 3.106):

• “Struct_Control_Interface.Status_Ready” = 1;

• “Struct_Control_Interface.Status_Direction” =1 (positive direction);

• “Struct_Control_Interface.Status_Blocked” = 0;

• “Struct_Control_Interface.Status_SpeedReached” =1;

• “Struct_Control_Interface.Status_ActualSpeed” = 475 (equation 3.11).

 1425 ∗ (
20

100
) = 285 [𝑟𝑝𝑚] = 4,75 [𝐻𝑧] = 475 [ℎ𝑢𝑛𝑑𝑟𝑒𝑎𝑡ℎ 𝑜𝑓 𝐻𝑧] (3.11)

The communication interface application: test results

202

Finally, the main drive states are transmitted to the user by means of user output variables

(figure 3.107).

(Fig. 3.107 The values of user outputs)

The fourth phase of the test consist of the analysis of the negative jog speed control.

Negative jog speed mode consists of a manual command with a negative direction at a speed

equal to 20% of the maximum speed.

The parameters to be set in the "Control_Interface" block are:

• “IN_CmdSpeed = 0”;

• “IN_CmdJogNeg_Speed = 1”;

• “IN_StopCycle = 0”;

• “IN_MaxSpeed” = 1425 [rpm]”;

As a result, initial user inputs values are the values shown in the figure 3.108.

(Fig. 3.108 The values of user inputs)

The communication interface application: test results

203

The activation procedure is repeated:

1. set of “IN_ResetAlarm” input (IN_ResetAlarm = 1);

2. reset of “IN_ResetAlarm” input (IN_ResetAlarm = 0);

3. set of “IN_EnableAxis” input (IN_EnableAxis = 1).

As a result, user input values change (figure 3.109).

(Fig. 3.109 New values of user inputs)

The calculation of the drive output values is performed by the R101 Control_Interface

block and these values are transmitted to the internal structure (figure 3.110).

The communication interface application: test results

204

(Fig. 3.110 The values of drive outputs)

The values of the internal structure update the values of the drive structure by means of

the writing function (figure 3.111).

(Fig. 3.111 The values of command words of drive)

The communication interface application: test results

205

As a result, the engine starts spinning at -285 [rpm] because it has a negative direction.

The correct functioning is demonstrated by the status words of the drive (figure 3.112).

(Fig. 3.112 The values of status words of drive)

The main states of the drive are copied to the internal structure by means of the read

function (figure 3.113).

(Fig. 3.113 The values of drive input signals.)

The operation of the drive is correct (figure 3.113):

• “Struct_Control_Interface.Status_Ready” = 1;

• “Struct_Control_Interface.Status_Direction” =0 (negative direction);

• “Struct_Control_Interface.Status_Blocked” = 0;

• “Struct_Control_Interface.Status_SpeedReached” =1;

• “Struct_Control_Interface.Status_ActualSpeed” = 475.

The communication interface application: test results

206

Finally, some drive states are transmitted to the user by means of user output variables

(figure 3.114).

(Fig. 3.114 The values of user outputs)

In conclusion, the test showed that the communication between PLC and Rockwell

Automation inverter drive by means of the drive structure of PowerFlex 525 was performed

correctly and all functions of the program were executed correctly and completely.

CONCLUSION

207

CONCLUSION

Current industrial evolution is characterized by the transition from Industry 3.0 to

Industry 4.0. Programmable logic controllers are the main devices that have allowed this

evolution, because they permit a complete control of the industrial plants. The programmable

logic controllers perform a total control of an industrial system by using communication

interfaces. Specifically, the communication interface between programmable logic controller

and drive is extremely important for electric motors control.

This thesis has analyzed the communication between PLC and drive, and it has

implemented an interface that is able to communicate programmable logic controllers and

drives independently of type and manufacturer.

The experimental work has been articulated in 4 sections.

The first section has been the analysis of the communication between a Siemens inverter

and a Siemens PLC by means of the Standard Telegram 1. This telegram is the communication

structure that allows the information exchange between Siemens drive and Siemens

programmable logic controllers. During this test, the tested modes were positive speed control,

negative speed control, positive jog mode and negative jog mode. The test results were right,

because all the modes worked properly. Specifically, the positive speed control and the negative

speed control have been performed correctly. In the first case the rotor rotated at the wanted

speed with a positive direction, while in the second case the rotor rotation was with a negative

direction and at the wanted speed. Therefore, in both cases the communication interface worked

correctly. Furthermore, during the positive jog mode test the motor rotor rotated at a speed of

20% of the maximum speed with a positive direction confirming the expectations. The

information exchange between inverter drive and PLC also functioned during the negative jog

mode test. Indeed, the engine rotated at a speed of 20% of the maximum speed with a negative

direction.

The second section has been an analysis of communication between a Siemens inverter

and Siemens PLC using the Siemens Telegram 352. In a manner similar to Standard Telegram

1, this telegram is the communication structure that allows the information exchange between

Siemens drive and Siemens programmable logic controllers. The difference between the

Standard Telegram 1 and the Siemens Telegram 352 is the amount of information that are

exchanged. Indeed, the number of information exchanged through the Siemens Telegram 352

is greater than the number of data that are exchanged with Standard Telegram 1. The tested

modes were the same as those tested for the Standard Telegram 1: positive speed control,

CONCLUSION

208

negative speed control, positive jog mode and negative jog mode. Particularly, the largest

number of transmissible information has been verified. Again, the test results were great,

because all modes worked correctly and the possible error code was read through a special

interface variable.

The third section has analyzed the communication between a Siemens servo drive and a

Siemens PLC by means of the Standard Telegram 111. This telegram is the communication

structure that allows information exchange between Siemens servo drive and Siemens PLC. At

this stage, all required operating modes have been tested. The tested modes are positive jog

mode, negative jog mode, homing mode, positive absolute positioning, negative absolute

positioning, positive reference search mode and negative reference search mode. The results

have showed a correct communication exchange. Particularly, during positive jog mode test,

the servo drive performed this mode correctly. Indeed, the electric motor turned in manual mode

with a positive direction. During negative jog mode test, a manual rotation with a negative

direction was performed by the electric motor, confirming the expectations. The homing mode

test has been performed correctly and the servo drive has set the current position of the rotor as

its starting position. The main activity of a servo drive is the positioning. Tests about positive

absolute positioning and negative absolute positioning are fundamental. Both tests have been

completed and they showed proper functioning of the servo drive. Particularly, during the

positive absolute positioning the servo drive rotated the rotor in a positive direction until it

obtained the desired position, while during the negative absolute positioning the servo drive led

the rotor to wanted position by rotating it in negative direction. The last tests performed about

servo drive were positive reference search mode and negative reference search mode. Both tests

have been performed correctly because during the first test the rotor started turning in a positive

direction to search a suitable reference point, while in the second test the rotor started to turn in

a negative direction in search of a reference point.

The last section has been the analysis of the communication between a Rockwell

Automation inverter and a Rockwell Automation PLC by means of the PowerFlex 525 data

type. This structure allows the information exchange between PowerFlex 525 inverter and

programmable logic controllers. During this test, the tested modes were positive speed control,

negative speed control, positive jog mode and negative jog mode. During the test about positive

speed control, the rotor rotation was with a positive direction and at the desired speed, while

during the test about negative speed control the electric motor rotor rotated at the wanted speed

with negative direction. Therefore, in both cases the communication interface worked and

modes were correct. In a manner similar to Siemens test, the positive jog mode test tested the

CONCLUSION

209

manual mode with positive direction. Also in this case, the information exchange between

inverter drive and PLC has worked perfectly. Indeed, the engine response was a positive

rotation at a speed of 20% of the maximum speed. The last test performed was negative jog

mode. During this activity, the engine rotated at a speed of 20% of the maximum speed with a

negative direction, confirming the expectations.

In conclusion, the communication interface block that I have implemented is able to adapt

to various types of communication structures, independently of the drive type and the drive

manufacturers.

The possible future development of my research could be the converter implementation

that can easily convert the interface block from one programming environment to another.

Therefore, if programmer wants to switch from one company's programming software to

another company's programming software, he should not copy it. This converter would increase

the flexibility of the interface block.

CONCLUSION

210

APPENDIX A

211

APPENDIX A

Siemens structure of Telegram 111.

Control words.

PZD Assignment of the process data

PZD 1 Control word 1

PZD 2 EPosSTW 1

PZD 3 EPosSTW 2

PZD 4 Control word 2

PZD 5 Velocity override for all operating modes (4000HEX = 100%)

PZD 6 Position setpoint in [LU] for direct setpoint specification / MDI mode

PZD 7

PZD 8 Velocity setpoint in the MDI mode

PZD 9

PZD 10 Acceleration override for direct setpoint input / MDI mode

PZD 11 Deceleration override for direct setpoint input / MDI mode

PZD 12 Reserved

Assignment of control word 1.

Bit Abbr. Designation

0 Off1 ON command: 0 = OFF1 active, 1 = ON

1 Off2 0 =: OFF2 active

1 = signal: Operating condition

No coasting down active

2 Off3 0 = OFF3 active

1 = operating condition no rapid stop active

3 Enc Enable inverter

APPENDIX A

212

4 RejTrvTsk Traversing blocks and direct setpoint input / MDI
Reject traversing task 0 = active traversing command is rejected / axis
brakes with 100% deceleration override

1 = do not reject traversing task (axis can be traversed)

5 IntMStop Intermediate STOP traversing blocks and MDI/direct setpoint input –
intermediate stop 0 = active traversing command is interrupted / axis
brakes with specified deceleration override
1 = no intermediate stop (axis can be traversed)

6 TrvStart Activate traversing task Setpoint acceptance edge if MdiTyp = 0

7 AckFault Acknowledge fault

8 Jog1 Jog signal source 1

9 Jog2 Jog signal source 2

10 LB Life bit (control requested from PLC)

11 RefStart Start referencing

12 Bit12 Reserved

13 Bit13 External block change (0 →1)

14 Bit14 Reserved

15 Bit15 Reserved

Assignment of EPosSTW 1

Bit Abbr Designation

0 TrvBit0 Block selection, bit 0

1 TrvBit1 Block selection, bit 1

2 TrvBit2 Block selection, bit 2

3 TrvBit3 Block selection, bit 3

4 TrvBit4 Block selection, bit 4

5 TrvBit5 Block selection, bit 5

6 Bit6 Reserved

7 Bit7 Reserved

APPENDIX A

213

8 MdiTyp Positioning type 0 = relative positioning

1 = absolute positioning

9 MdiPos Direction selection for the setup, or absolute positioning of rotary axes,
in positive direction

10 MdiNeg Direction selection for the setup, or absolute positioning of rotary axes,
in negative direction

11 Bit11 Reserved

12 MdiTrTyp Transfer type 0 = value acceptance through 0 1 edge at MdiEdge 1
signal: continuous setpoint acceptance

13 Bit13 Reserved

14 MdiSetup Direct setpoint input/MDI – setup selection

Select MDI mode setup 0 = positioning

1 = setup

15 MdiStart MDI / direct setpoint input mode

Assignment of EPosSTW 2

Bit Abbr. Designation

0 TrkMode Start follow-up mode

1 SetRefPt Set reference point

2 ActRefCam Activate reference cam

3 Bit3 Activate fixed stop

4 Bit4 Reserved

5 JogInc Jogging:

0 = endless traversing

1 = traverse by parameterized distance

6 Bit6 Reserved

7 Bit7 Reserved

APPENDIX A

214

8 RefTyp Referencing type selection

0 = reference point approach 1 = flying referencing

9 RefStDi Reference point approach, start direction

0 = positive start direction

1 = negative start direction

10 RefInpS Sets the signal source for the selection of the probe for flying (passive)
referencing

0 = probe 1 is activated

1 = probe 2 is activated

11 RefEdge Passive referencing: Setting the edge evaluation

0: positive edge

1: negative edge

12 Bit12 Reserved

13 Bit13 Reserved

14 SftLimAct Activation of the software limit switches

15 StpCamAct Activation of the stop cams

Assignment of STW2

Bit Abbr. Designation

0 DDSBit0 Drive data set, bit 0

1 DDSBit1 Drive data set, bit 1

2 DDSBit2 Drive data set, bit 2

3 DDSBit3 Drive data set, bit 3

4 DDSBit4 Drive data set, bit 4

5 GlbStart Global start

6 ResIComp Reset I-component of speed controller

APPENDIX A

215

7 ActPrkAxis Activate parking axis

8 TrvFixedStp Travel to fixed stop

9 GlbTrgCom Global trigger command

10 Bit10 Reserved

11 MotSwOver Motor switchover completed (0 → 1)

12 MsZykBit0 Master sign-of-life, bit 0

13 MsZykBit1 Master sign-of-life, bit 1

14 MsZykBit2 Master sign-of-life, bit 2

15 MsZykBit3 Master sign-of-life, bit 3

Setpoint overview

PZD Abbr. Setpoint

5 OverrideV Velocity override

6+7 Position Position setpoint

8+9 Velocity Velocity setpoint

10 OverrideA Acceleration override

11 OverrideD Deceleration override

12 Word 12 Reserved

Status words.

PZD Assignment of the process data

PZD 1 Status word 1

PZD 2 EPosZSW 1

PZD 3 EPosZSW 2

PZD 4 Status word 2

PZD 5 MELDW

APPENDIX A

216

PZD 6 Position actual value [LU]

PZD 7

PZD 8 Velocity actual value (refers to the reference speed p2000)

Note: 40000000HEX = 100% PZD 9

PZD 10 Fault (transfer of the active fault number)

PZD 11 Alarm (transfer of the active alarm number)

PZD 12 Reserved

Assignment of status word 1

Bit Abbr. Designation

0 RTS Ready to start

1 RDY Ready to operate

2 IOp Drive is switched on (condition for the mode selection of the EPos)

3 Fault Fault active

4 NoOff2Act OFF2 not activated (partial condition for switching on)

5 NoOff3Act OFF3 not activated (partial condition for switching on)

6 PowInhbt Switching on inhibited active

7 Alarm Alarm/warning active

8 NoFlwErr Following error within tolerance

9 LbCr Control requested

10 TargPos Target position reached

11 RefPSet Reference point set

12 TrvTskAck Acknowledgment, traversing block activated

13 StndStill |n_act| < speed threshold value 3 [p2161]

This bit is used for the standstill detection

14 Accel Axis accelerates

15 Decel Axis decelerates

APPENDIX A

217

Assignment of EPosZSW 1

Bit Abbr. Designation

0 ActTrvBit0 Active traversing block, bit 0

1 ActTrvBit1 Active traversing block, bit 1

2 ActTrvBit2 Active traversing block, bit 2

3 ActTrvBit3 Active traversing block, bit 3

4 ActTrvBit4 Active traversing block, bit 4

5 ActTrvBit5 Active traversing block, bit 5

6 Bit6 Reserved

7 Bit7 Reserved

8 StpCamMinAct STOP cam minus active

9 StpCamPlsAct STOP cam plus active

10 JogAct Jog mode is active

11 RefAct Reference point approach mode active

12 FlyRefAct Flying referencing active

13 TrvBlAct Traversing blocks mode active

14 MdiStupAct In the direct setpoint input / MDI mode, setup is active

15 MdiPosAct In the direct setpoint input / MDI mode, positioning is active

Assignment of EPosZSW 2

Bit Abbr. Designation

0 TrkModeAct Follow-up/tracking mode active

1 VeloLimAct Velocity limitation active

2 SetPStat Setpoint static

APPENDIX A

218

3 PrntMrkOut Print mark outside outer window

4 FWD Axis moves forward

5 BWD Axis moves backward

6 SftSwMinAct Minus software limit switch actuated

7 SftSwPlsAct Plus software limit switch actuated

8 PosSmCam1 Position actual value  cam switching position 1

9 PosSmCam2 Position actual value  cam switching position 2

10 TrvOut1 Direct output 1 via the traversing block

11 TrvOut2 Direct output 2 via the traversing block

12 FxStpRd Fixed stop reached

13 FxStpTrRd Fixed stop clamping torque reached

14 TrvFxStpAct Travel to fixed stop active

15 CmdAct Traversing active

Assignment of status word 2

Bit Abbr Designation

0 ActDDSBit0 Drive data set, bit 0

1 ActDDSBit1 Drive data set, bit 1

2 ActDDSBit2 Drive data set, bit 2

3 ActDDSBit3 Drive data set, bit 3

4 ActDDSBit4 Drive data set, bit 4

5 CmdActRelBrk Open holding brake active

6 T rqContMode Torque-controlled operation

7 ParkAxisAct Parking axis selected

8 Bit8 Reserved

APPENDIX A

219

9 GlbTrgReq Global trigger request

10 PulsEn Pulses enabled

11 MotSwOverAct Motor data set switchover active

12 SlvZykBit0 Slave sign-of-life, bit 0

13 SlvZykBit1 Slave sign-of-life, bit 1

14 SlvZykBit2 Slave sign-of-life, bit 2

15 SlvZykBit3 Slave sign-of-life, bit 3

Actual value overview

PZD Abbr. Actual value

5 Word6 Reserved

6+7 Position Position actual value

8+9 Velocity Velocity actual value

10 ErrNr Error

11 WarnNr Alarm

12 Reserved Reserved

APPENDIX A

220

Siemens structure of Standard Telegram 1.

Control words.

S7 bit display (drive) Meaning

STW1 1.0 (bit 0) OFF1/ON (pulse enable possible)

STW1 1.1 (bit 1) OFF2/ON (pulse enable possible)

STW1 1.2 (bit 2) OFF3/ON (pulse enable possible)

STW1 1.3 (bit 3) Enable or disable operation

STW1 1.4 (bit 4) Enable ramp-function generator

STW1 1.5 (bit 5) Continue ramp-function generator

STW1 1.6 (bit 6) Enable speed setpoint

STW1 1.7 (bit 7) Acknowledge fault

STW1 0.0 (bit 8) Reserved

STW1 0.1 (bit 9) Reserved

STW1 0.2 (bit 10) Master control by PLC

STW1 0.3 (bit 11) Direction of rotation

STW1 0.4 (bit 12) Unconditionally open holding brake

STW1 0.5 (bit 13) Motorized potentiometer, increase setpoint

STW1 0.6 (bit 14) Motorized potentiometer, decrease setpoint

STW1 0.7 (bit 15) Reserved

STW2 (bits 16 to 32) Speed setpoint

APPENDIX A

221

Status words

S7 bit display (drive) Meaning

ZTW1 1.0 (bit 0) Ready to start

ZTW1 1.1 (bit 1) Ready to operate

ZTW1 1.2 (bit 2) Operation enabled

ZTW1 1.3 (bit 3) Fault active

ZTW1 1.4 (bit 4) No coast to stop active (OFF2 active)

ZTW1 1.5 (bit 5) No coast to stop active (OFF3 inactive)

ZTW1 1.6 (bit 6) Switching on inhibited active

ZTW1 1.7 (bit 7) Alarm active

ZTW1 0.0 (bit 8) Following error within the tolerance range

ZTW1 0.1 (bit 9) PZD control assumed

ZTW1 0.2 (bit 10) Target position reached

ZTW1 0.3 (bit 11) Open holding brake

ZTW1 0.4 (bit 12) Acknowledgment, traversing block activated

ZTW1 0.5 (bit 13) No alarm for motor overtemperature

ZTW1 0.6 (bit 14) Direction of rotation

ZTW1 0.7 (bit 15) No thermal overload in power unit alarm

ZTW2 (bits 16 to 32) Bits 16 – 31 actual speed value

APPENDIX A

222

Siemens structure of Telegram 352.

Control words.

PZD Assigment of the process data

PZD 1 Control word in bit

PZD 2 NSOLL_A → Speed setpoint

PZD 3 Spare word

PZD 4 Spare word

PZD 5 Spare word

PZD 6 Spare word

Control word in bit

S7 bit display (drive) Meaning

STW1 1.0 (bit 0) OFF1/ON (pulse enable possible)

STW1 1.1 (bit 1) OFF2/ON (pulse enable possible)

STW1 1.2 (bit 2) OFF3/ON (pulse enable possible)

STW1 1.3 (bit 3) Enable or disable operation

STW1 1.4 (bit 4) Enable ramp-function generator

STW1 1.5 (bit 5) Continue ramp-function generator

STW1 1.6 (bit 6) Enable speed setpoint

STW1 1.7 (bit 7) Acknowledge fault

STW1 0.0 (bit 8) Reserved

STW1 0.1 (bit 9) Reserved

STW1 0.2 (bit 10) Master control by PLC

APPENDIX A

223

STW1 0.3 (bit 11) Direction of rotation

STW1 0.4 (bit 12) Unconditionally open holding brake

STW1 0.5 (bit 13) Motorized potentiometer, increase setpoint

STW1 0.6 (bit 14) Motorized potentiometer, decrease setpoint

STW1 0.7 (bit 15) Reserved

Setpoint overview

PZD Setpoint overview

PZD 2 NSOLL_A → Speed setpoint

PZD 3 Spare word

PZD 4 Spare word

PZD 5 Spare word

PZD 6 Spare word

Status words

PZD Symbol

PZD 1 Status word

PZD 2 NIST_A_GLATT → Smoothed speed actual value

PZD 3 IAIST_GLATT → Smoothed actual corrent value

PZD 4 MIST_GLATT → Actual torque

PZD 5 WARN_CODE → Alarm number

PZD 6 FAULT_CODE → Fault number

APPENDIX A

224

Status word

S7 bit display (drive) Meaning

ZTW1 1.0 (bit 0) Ready to start

ZTW1 1.1 (bit 1) Ready to operate

ZTW1 1.2 (bit 2) Operation enabled

ZTW1 1.3 (bit 3) Fault active

ZTW1 1.4 (bit 4) No coast to stop active (OFF2 active)

ZTW1 1.5 (bit 5) No coast to stop active (OFF3 inactive)

ZTW1 1.6 (bit 6) Switching on inhibited active

ZTW1 1.7 (bit 7) Alarm active

ZTW1 0.0 (bit 8) Following error within the tolerance range

ZTW1 0.1 (bit 9) PZD control assumed

ZTW1 0.2 (bit 10) Target position reached

ZTW1 0.3 (bit 11) Open holding brake

ZTW1 0.4 (bit 12) Acknowledgment, traversing block activated

ZTW1 0.5 (bit 13) No alarm for motor overtemperature

ZTW1 0.6 (bit 14) Direction of rotation

ZTW1 0.7 (bit 15) No thermal overload in power unit alarm

ZTW2 (bits 16 to 32) Bits 16 – 31 → actual speed value

APPENDIX A

225

Actual value overview

PZD Actual value overview

PZD 2 NIST_A_GLATT → Smoothed speed actual value

PZD 3 IAIST_GLATT → Smoothed actual corrent value

PZD 4 MIST_GLATT → Actual torque

PZD 5 WARN_CODE → Alarm number

PZD 6 FAULT_CODE → Fault number

APPENDIX B

226

APPENDIX B

Rockwell Automation structure of PowerFlex 520 Allen Bradley inverter for speed control.

Command words.

Words Designation

1° integer Logic command word

2° integer Frequency command word

Logic command word.

Name Data type Meaning

Stop Bool Motion stops

Start Bool Motion starts

Jog Bool Jog mode activates

ClearFaults Bool The alarms are resetted.

Forward Bool Positive start direction

Reverse Bool Negative start direction

ForceKeypadCtrl Bool Keypad forces operations

MOPIncrement Bool Frequency command increases

AccelRate1 Bool It selects the first acceleration rate

AccelRate2 Bool It selects the second acceleration rate

DecelRate1 Bool It selects the first deceleration rate

APPENDIX B

227

DecelRate2 Bool It selects the second deceleration rate

FreqSel01 Bool It selects the first frequency

FreqSel02 Bool It selects the second frequency

FreqSel03 Bool It selects the third frequency

MOPDecrement Bool Frequency command decreases

Frequency command word.

Name Data type Meaning

FreqCommand INT It sets the wanted frequency.

Status words.

Words Designation

1° integer Drive status word

2° integer Frequency actual value

APPENDIX B

228

Drive logic status word.

Name Data type Meaning

Ready Bool The drive is ready

Active Bool The drive is actived

CommandDir Bool Command direction

ActualDir Bool Actual direction

Accelerating Bool Accelarating state

Decelerating Bool Decelarating state

Faulted Bool There is a fault and the drive is blocked

AtReference Bool The speed setpoint is reached

CommFreqCnt Bool Main frequency is commanded by the active
command

CommandLogicCnt Bool The “cnd” operation is controlled by active

command

ParmsLocked Bool Parameters are safe

DigIn1Active Bool Active state of digital input 1

DigIn2Active Bool Active state of digital input 2

DigIn3Active Bool Active state of digital input 3

DigIn4Active Bool Active state of digital input 4

APPENDIX B

229

Frequency status word.

Name Data type Meaning

OutputFreq INT Speed actual value

Rockwell Automation structure of PowerFlex 750 Allen Bradley inverter for position
control.

Command words.

Words Designation

1° integer Logic command word

2° integer Logic command word

3° Position command word

Logic command word.

Bit Name Data type Meaning

0 Stop Bool Motion stops

1 Start Bool Motion starts

2 Jog1 Bool Jog signal source 1

3 ClearFaults Bool The alarms are resetted.

APPENDIX B

230

4 Forward Bool Positive start direction

5 Reverse Bool Negative start direction

6 Manual Bool Manual mode is setted

7 Reserved Bool Reserved

8 AccelRate1 Bool It selects the first acceleration rate

9 AccelRate2 Bool It selects the second acceleration rate

10 DecelRate1 Bool It selects the first deceleration rate

11 DecelRate2 Bool It selects the second deceleration rate

12 FreqSel01 Bool It selects the first frequency

13 FreqSel02 Bool It selects the second frequency

14 FreqSel03 Bool It selects the third frequency

15 Reserved Bool Reserved

16 InertiaStop Bool Stop by inertia

17 CurLimStop Bool Current limit stop

18 March Bool March starts

19 Jog2 Bool Jog signal source 2

20 Reserved Bool Reserved

21 Reserved Bool Reserved

22 Reserved Bool Reserved

23 Reserved Bool Reserved

24 Reserved Bool Reserved

25 Reserved Bool Reserved

26 Reserved Bool Reserved

27 Reserved Bool Reserved

28 Reserved Bool Reserved

29 Reserved Bool Reserved

30 Reserved Bool Reserved

31 Reserved Bool Reserved

APPENDIX B

231

Position command word.

Name Data type Meaning

Reference Real It sets the wanted position

Status words.

Words Designation

1° integer Drive logic status words

2° integer Drive logic status words

3°integer Position status word

Drive status words

Bit Name Data type Meaning

0 Ready Bool The drive is ready

1 Active Bool The drive is actived

2 CommandDir Bool Command direction

3 ActualDir Bool Actual direction

4 Accelerating Bool Accelarating state

5 Decelerating Bool Decelarating state

APPENDIX B

232

6 Alarm Bool There is alarm

7 Error Bool There is error

8 AtReference Bool The speed setpoint is reached

9 Manual Bool Manual mode is active

10 IDRifVel0 Bool Preset speed 3 (Parameter 573)

11 IDRifVel1 Bool Preset speed 4 (Parameter 574)

12 IDRifVel2 Bool Preset speed 5 (Parameter 575)

13 IDRifVel3 Bool Preset speed 6 (Parameter 576)

14 IDRifVel4 Preset speed 7 (Parameter 577)

15 Reserved Bool Reserved

16 Running Bool Engine is in gear

17 InMovement Bool Running jog mode

18 InArrest Bool Engine is stopped

19 CCBrake Bool CC brake is active

20 DBActive Bool Dynamic brake is active

21 SpeedMode Bool Speed control is active

22 PositionMode Bool Position control is active

23 TorqueMode Bool Torque control is active

24 AtZeroVel Bool Velocity is zero

25 InitialPosition Bool In home position

26 AtLimit Bool At limit

27 ActualLimit Bool Motor has reached the current limit

28 RegFreqBus Bool Reg frequency bus

29 OnEnable Bool Enabling

30 OverloadMotor Bool Motor overload

31 Rigen Bool regeneration

APPENDIX B

233

Position status words

Name Data type Meaning

Feedback Real Actual value

APPENDIX C

234

APPENDIX C

APPENDIX C

235

APPENDIX C

236

APPENDIX C

237

APPENDIX C

238

APPENDIX C

239

APPENDIX C

240

APPENDIX C

241

APPENDIX C

242

APPENDIX C

243

APPENDIX C

244

APPENDIX C

245

APPENDIX C

246

APPENDIX C

247

APPENDIX C

248

APPENDIX C

249

APPENDIX C

250

APPENDIX C

251

APPENDIX C

252

APPENDIX C

253

APPENDIX C

254

APPENDIX C

255

APPENDIX C

256

APPENDIX C

257

APPENDIX C

258

APPENDIX C

259

APPENDIX C

260

APPENDIX C

261

APPENDIX C

262

APPENDIX C

263

APPENDIX C

264

APPENDIX C

265

APPENDIX C

266

APPENDIX C

267

APPENDIX C

268

APPENDIX C

269

APPENDIX C

270

APPENDIX C

271

APPENDIX C

272

APPENDIX C

273

APPENDIX C

274

APPENDIX C

275

APPENDIX C

276

APPENDIX C

277

APPENDIX C

278

APPENDIX C

279

APPENDIX C

280

APPENDIX C

281

APPENDIX C

282

APPENDIX C

283

APPENDIX C

284

APPENDIX C

285

APPENDIX C

286

APPENDIX C

287

APPENDIX C

288

APPENDIX C

289

APPENDIX C

290

APPENDIX C

291

APPENDIX C

292

APPENDIX C

293

APPENDIX C

294

APPENDIX C

295

APPENDIX C

296

APPENDIX C

297

APPENDIX C

298

APPENDIX C

299

APPENDIX C

300

Bibliography.

301

Bibliography.

1. Tudisco, Giuseppe. “Generalità sui PLC”. [PDF file].

http://www.iisgalileiartiglio.gov.it/appunti-

lezioni/elettronica/Dispensa_PLC.pdf

2. International Electrotechnical Commission (2003). “International Standard”.

[PDF file]. https://webstore.iec.ch/preview/info_iec61131-

1%7Bed2.0%7Den.pdf

3. Mauri, Marco (2001). “Introduzione alla norma IEC 61131-3”. [PDF file].

http://docenti.etec.polimi.it/IND32/Didattica/AzionamentixAutomazione/file

s/Introduzione%20alla%20norma%20IEC%201131-3.pdf

4. Holtkamp, Bernhard and Iyer, Anandi (2017). “Industry 4.0. The Future of

Indo-German Industrial Collaboration”. [PDF file]. https://www.bertelsmann-

stiftung.de/fileadmin/files/user_upload/BSt_Industrie4.0_STUDIE_web.pdf

5. Dal Prà, Marco (2005). “Manuale di programmazione dei PLC”. [PDF file].

http://www.plcforum.info/didattica/dalpra/Manuale_PLC_Software.pdf

6. Dr. D. J. Jackson. “Programmable Logic Controllers”. [PDF file].

http://jjackson.eng.ua.edu/courses/ece485/lectures/LECT03.pdf

7. Weerts, Mariëlle. “Function Block Diagrams for Programmable Logic

Controllers”. [PDF file].

https://pdfs.semanticscholar.org/8f32/0bb0f7a902ca2a5a552e0562f4c1fe340

b1e.pdf

8. Siemens (2012). “TIA Portal V12”. [PDF file].

https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemi

automazionenew/Eventi/Documents/presentazioni%20simatic%2

0live/1500_Programmazione.pdf?istablet=true,_blank

9. Siemens (2008). “High Level Language Programming with S7-SCL”. [PDF

file].

https://w3.siemens.com/mcms/sce/en/advanced_training/training_material/cl

assic-modules/tabcardpages/Documents/programming-

languages/c02_s7scl_en.pdf

http://www.iisgalileiartiglio.gov.it/appunti-lezioni/elettronica/Dispensa_PLC.pdf
http://www.iisgalileiartiglio.gov.it/appunti-lezioni/elettronica/Dispensa_PLC.pdf
https://webstore.iec.ch/preview/info_iec61131-1%7Bed2.0%7Den.pdf
https://webstore.iec.ch/preview/info_iec61131-1%7Bed2.0%7Den.pdf
http://docenti.etec.polimi.it/IND32/Didattica/AzionamentixAutomazione/files/Introduzione%20alla%20norma%20IEC%201131-3.pdf
http://docenti.etec.polimi.it/IND32/Didattica/AzionamentixAutomazione/files/Introduzione%20alla%20norma%20IEC%201131-3.pdf
https://www.bertelsmann-stiftung.de/fileadmin/files/user_upload/BSt_Industrie4.0_STUDIE_web.pdf
https://www.bertelsmann-stiftung.de/fileadmin/files/user_upload/BSt_Industrie4.0_STUDIE_web.pdf
http://www.plcforum.info/didattica/dalpra/Manuale_PLC_Software.pdf
http://jjackson.eng.ua.edu/courses/ece485/lectures/LECT03.pdf
https://pdfs.semanticscholar.org/8f32/0bb0f7a902ca2a5a552e0562f4c1fe340b1e.pdf
https://pdfs.semanticscholar.org/8f32/0bb0f7a902ca2a5a552e0562f4c1fe340b1e.pdf
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/Eventi/Documents/presentazioni%20simatic%20live/1500_Programmazione.pdf?istablet=true,_blank
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/Eventi/Documents/presentazioni%20simatic%20live/1500_Programmazione.pdf?istablet=true,_blank
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/Eventi/Documents/presentazioni%20simatic%20live/1500_Programmazione.pdf?istablet=true,_blank
https://w3.siemens.com/mcms/sce/en/advanced_training/training_material/classic-modules/tabcardpages/Documents/programming-languages/c02_s7scl_en.pdf
https://w3.siemens.com/mcms/sce/en/advanced_training/training_material/classic-modules/tabcardpages/Documents/programming-languages/c02_s7scl_en.pdf
https://w3.siemens.com/mcms/sce/en/advanced_training/training_material/classic-modules/tabcardpages/Documents/programming-languages/c02_s7scl_en.pdf

Bibliography.

302

10. Capuzzimati, Mario. “Operazioni aritmatiche”. [PDF file].

http://www.cumacini.altervista.org/Sistemi/PLC_Operazioni_arit

metiche.pdf

11. Siemens (2010). “Automatizzare e trarre immediato profitto con lo standard

leader Industrial Ethernet.”. [PDF file].

https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazion

enew/homepageProfinet/Documents/Brochure_PROFINET.pdf

12. Siemens (2011). “SINAMICS G120. Frequency inverters with Control Units

CU230P-2 HVAC, CU230P-2 DP, CU230P-2 CAN”. [PDF file].

https://w5.siemens.com/web/cz/cz/corporate/portal/home/produkty_a_sluzby

/IBT/mereni_a_regulace/frekvencni_menice/Documents/G120P-

0.37_35A_Operating_Instructions_en.pdf

13. Siemens (2011). “Structured Control Language per Step7 V11”. [PDF file].

https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazion

enew/Eventi/Documents/presentazioni%20simatic%20live/TIA_PORTAL-

SCL.pdf?ismobile=true

14. Siemens (2016). “Function blocks to control the SINAMICS with SIMATIC

S7 in TIA-Portal”. [PDF file].

https://support.industry.siemens.com/cs/document/109475044/sinamics-

blocks-drivelib-for-the-control-in-the-tia-portal?dti=0&lc=en-WW

15. Siemens (2017). “Configurazione dell'hardware e progettazione di

collegamenti STEP 7”. [PDF file].

https://support.industry.siemens.com/cs/document/109751824/simatic-

configurazione-dell'hardware-e-progettazione-di-collegamenti-step-

7?dti=0&lc=it-IT

16. Siemens (2010). “Ladder Logic (LAD) for S7-300 and S7-400 Programming”.

[PDF file].

https://cache.industry.siemens.com/dl/files/822/45523822/att_82001/v1/s7ko

p__b.pdf

17. Rockwell Automation (2017). “Convertitore di frequenza PowerFlex serie

520. Guida di messa in funzione rapida”. [PDF file].

https://literature.rockwellautomation.com/idc/groups/literature/do

cuments/qs/520-qs001_-it-e.pdf

http://www.cumacini.altervista.org/Sistemi/PLC_Operazioni_aritmetiche.pdf
http://www.cumacini.altervista.org/Sistemi/PLC_Operazioni_aritmetiche.pdf
http://www.cumacini.altervista.org/Sistemi/PLC_Operazioni_aritmetiche.pdf
http://www.cumacini.altervista.org/Sistemi/PLC_Operazioni_aritmetiche.pdf
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/homepageProfinet/Documents/Brochure_PROFINET.pdf
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/homepageProfinet/Documents/Brochure_PROFINET.pdf
https://w5.siemens.com/web/cz/cz/corporate/portal/home/produkty_a_sluzby/IBT/mereni_a_regulace/frekvencni_menice/Documents/G120P-0.37_35A_Operating_Instructions_en.pdf
https://w5.siemens.com/web/cz/cz/corporate/portal/home/produkty_a_sluzby/IBT/mereni_a_regulace/frekvencni_menice/Documents/G120P-0.37_35A_Operating_Instructions_en.pdf
https://w5.siemens.com/web/cz/cz/corporate/portal/home/produkty_a_sluzby/IBT/mereni_a_regulace/frekvencni_menice/Documents/G120P-0.37_35A_Operating_Instructions_en.pdf
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/Eventi/Documents/presentazioni%20simatic%20live/TIA_PORTAL-SCL.pdf?ismobile=true
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/Eventi/Documents/presentazioni%20simatic%20live/TIA_PORTAL-SCL.pdf?ismobile=true
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/Eventi/Documents/presentazioni%20simatic%20live/TIA_PORTAL-SCL.pdf?ismobile=true
https://support.industry.siemens.com/cs/document/109475044/sinamics-blocks-drivelib-for-the-control-in-the-tia-portal?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/109475044/sinamics-blocks-drivelib-for-the-control-in-the-tia-portal?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/109751824/simatic-configurazione-dell'hardware-e-progettazione-di-collegamenti-step-7?dti=0&lc=it-IT
https://support.industry.siemens.com/cs/document/109751824/simatic-configurazione-dell'hardware-e-progettazione-di-collegamenti-step-7?dti=0&lc=it-IT
https://support.industry.siemens.com/cs/document/109751824/simatic-configurazione-dell'hardware-e-progettazione-di-collegamenti-step-7?dti=0&lc=it-IT
https://cache.industry.siemens.com/dl/files/822/45523822/att_82001/v1/s7kop__b.pdf
https://cache.industry.siemens.com/dl/files/822/45523822/att_82001/v1/s7kop__b.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/qs/520-qs001_-it-e.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/qs/520-qs001_-it-e.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/qs/520-qs001_-it-e.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/qs/520-qs001_-it-e.pdf

Bibliography.

303

18. Porcaro, Giuseppe e Tattoli, Maria. “I controllori a logica programmabile”.

[PDF file].

Sitography.

304

Sitography.

1. https://ec.europa.eu/eip/ageing/standards/ict-and-communication/user-interface/iec-

61131_en

2. http://www.learnabout-electronics.org/Digital/dig16.php

3. http://www.plccenter.cn/Siemens_Step7/bas00086.htm

4. https://www.plcacademy.com/ladder-logic-tutorial/

5. https://www.quora.com/What-is-the-most-obsolete-high-level-programming-language

6. https://www.electroyou.it/gilberto/wiki/il-linguaggio-scl-nella-programmazione-dei-

plc

7. https://automationforum.in/t/counters-in-plc-ladder-diaghram/2745

8. https://www.courses.psu.edu/e_met/e_met430_jar14/prgflo/jmp.html

9. http://automation-bd.blogspot.com/2012/07/conditional-jump.html

10. https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/ho

mepageProfinet/X/Pages/ProfinetIORealTime.aspx

11. https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/ho

mepageProfinet/X/Pages/ProfinetIRT.aspx

12. https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/ho

mepageProfinet/X/Pages/ProfinetCBA.aspx

13. https://www.google.it/search?q=funzionamento+base+dei+plc&source=lnms&tbm=is

ch&sa=X&ved=0ahUKEwj3x_Gite_eAhWisKQKHb6MC7UQ_AUIDigB&biw=153

6&bih=734#imgrc=UfeAw0Zt851lxM:

14. https://www.google.com/search?q=bus+system&source=lnms&tbm=isch&sa=X&ved

=0ahUKEwjuvuzgh5bfAhXBp4sKHav5AnQQ_AUIDigB&biw=1536&bih=734#imgr

c=o9Bmp3KwQNf2EM:

15. https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=CskOXO

vZJMWckwX_sIXoCw&q=pannello+operatore+per+plc&oq=pannello+operatore+per

+plc&gs_l=img.3...28129.32697..32944...0.0..1.199.2342.22j4......1....1. .gws-wiz-

img.......0j0i67j0i8i30j0i24j0i30.FYZ2iJbIEfk#imgrc=6OxoVzQOKQicvM:

16. https://www.ecosia.org/images?q=onda+analogica#id=85E341536A74286B73127720

3F78A6EBC86FEE54

17. http://laboratorioscolastico.altervista.org/it_IT/il-releelettromagnetico-principio-di-

funzionamento/

18. http://www.treccani.it/enciclopedia/transistor/

https://ec.europa.eu/eip/ageing/standards/ict-and-communication/user-interface/iec-61131_en
https://ec.europa.eu/eip/ageing/standards/ict-and-communication/user-interface/iec-61131_en
http://www.learnabout-electronics.org/Digital/dig16.php
http://www.plccenter.cn/Siemens_Step7/bas00086.htm
https://www.plcacademy.com/ladder-logic-tutorial/
https://www.quora.com/What-is-the-most-obsolete-high-level-programming-language
https://www.electroyou.it/gilberto/wiki/il-linguaggio-scl-nella-programmazione-dei-plc
https://www.electroyou.it/gilberto/wiki/il-linguaggio-scl-nella-programmazione-dei-plc
https://automationforum.in/t/counters-in-plc-ladder-diaghram/2745
https://www.courses.psu.edu/e_met/e_met430_jar14/prgflo/jmp.html
http://automation-bd.blogspot.com/2012/07/conditional-jump.html
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/homepageProfinet/X/Pages/ProfinetIORealTime.aspx
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/homepageProfinet/X/Pages/ProfinetIORealTime.aspx
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/homepageProfinet/X/Pages/ProfinetIRT.aspx
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/homepageProfinet/X/Pages/ProfinetIRT.aspx
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/homepageProfinet/X/Pages/ProfinetCBA.aspx
https://w5.siemens.com/italy/web/AD/ProdottieSoluzioni/Sistemiautomazionenew/homepageProfinet/X/Pages/ProfinetCBA.aspx
https://www.google.it/search?q=funzionamento+base+dei+plc&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj3x_Gite_eAhWisKQKHb6MC7UQ_AUIDigB&biw=1536&bih=734#imgrc=UfeAw0Zt851lxM
https://www.google.it/search?q=funzionamento+base+dei+plc&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj3x_Gite_eAhWisKQKHb6MC7UQ_AUIDigB&biw=1536&bih=734#imgrc=UfeAw0Zt851lxM
https://www.google.it/search?q=funzionamento+base+dei+plc&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj3x_Gite_eAhWisKQKHb6MC7UQ_AUIDigB&biw=1536&bih=734#imgrc=UfeAw0Zt851lxM
https://www.google.com/search?q=bus+system&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjuvuzgh5bfAhXBp4sKHav5AnQQ_AUIDigB&biw=1536&bih=734#imgrc=o9Bmp3KwQNf2EM
https://www.google.com/search?q=bus+system&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjuvuzgh5bfAhXBp4sKHav5AnQQ_AUIDigB&biw=1536&bih=734#imgrc=o9Bmp3KwQNf2EM
https://www.google.com/search?q=bus+system&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjuvuzgh5bfAhXBp4sKHav5AnQQ_AUIDigB&biw=1536&bih=734#imgrc=o9Bmp3KwQNf2EM
https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=CskOXOvZJMWckwX_sIXoCw&q=pannello+operatore+per+plc&oq=pannello+operatore+per+plc&gs_l=img.3...28129.32697..32944...0.0..1.199.2342.22j4......1....1..gws-wiz-img.......0j0i67j0i8i30j0i24j0i30.FYZ2iJbIEfk#imgrc=6OxoVzQOKQicvM
https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=CskOXOvZJMWckwX_sIXoCw&q=pannello+operatore+per+plc&oq=pannello+operatore+per+plc&gs_l=img.3...28129.32697..32944...0.0..1.199.2342.22j4......1....1..gws-wiz-img.......0j0i67j0i8i30j0i24j0i30.FYZ2iJbIEfk#imgrc=6OxoVzQOKQicvM
https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=CskOXOvZJMWckwX_sIXoCw&q=pannello+operatore+per+plc&oq=pannello+operatore+per+plc&gs_l=img.3...28129.32697..32944...0.0..1.199.2342.22j4......1....1..gws-wiz-img.......0j0i67j0i8i30j0i24j0i30.FYZ2iJbIEfk#imgrc=6OxoVzQOKQicvM
https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=CskOXOvZJMWckwX_sIXoCw&q=pannello+operatore+per+plc&oq=pannello+operatore+per+plc&gs_l=img.3...28129.32697..32944...0.0..1.199.2342.22j4......1....1..gws-wiz-img.......0j0i67j0i8i30j0i24j0i30.FYZ2iJbIEfk#imgrc=6OxoVzQOKQicvM
https://www.ecosia.org/images?q=onda+analogica#id=85E341536A74286B731277203F78A6EBC86FEE54
https://www.ecosia.org/images?q=onda+analogica#id=85E341536A74286B731277203F78A6EBC86FEE54
http://laboratorioscolastico.altervista.org/it_IT/il-releelettromagnetico-principio-di-funzionamento/
http://laboratorioscolastico.altervista.org/it_IT/il-releelettromagnetico-principio-di-funzionamento/
http://www.treccani.it/enciclopedia/transistor/

Sitography.

305

19. https://www.google.com/search?q=transistor&source=lnms&tbm=isch&sa=X&ved=0

ahUKEwiajqbSr6XfAhWQjqQKHd8NApcQ_AUIDigB&biw=1536&bih=734#imgrc

=gaLwKmYnRGdSyM:

20. https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=k8YYXO

uFD8m2kwXAq4igCw&q=industry+4.0+structure&oq=industry+4.0+structure&gs_l

=img.3...35106.35440..35711...0.0..0.160.307.0j2......1....1..gws-wiz-

img.dvLuk1kNheI#imgrc=heENoVA6cW-oFM:

21. https://www.ecosia.org/images?q=industry+3.0+#id=49F249191E9104589C705583B

86A422EE91CF299

22. https://instrumentsignpost.files.wordpress.com/2013/07/3rd_cit_year_student_project_

energy_generation_and_monitoring.jpg

23. https://www.processindustryinformer.it/prodotto-update/espanso-powerflex-520-serie-

di-compact-ac-drive-Debutti-powerflex-523-ac-drive-to-meet-macchine-builder-

needs-per-appena-abbastanza-control/

24. https://www.youmath.it/lezioni/fisica/unita-di-misura/misure-di-frequenza/3101-rpm-

giri-al-minuto.html

25. https://www.revereelectric.com/rockwellautomationhighlights

26. https://www.controleng.com/articles/ec-allen-bradley-kinetix-5500-servo-drive-with-

integrated-safety/

27. https://ab.rockwellautomation.com/it/Motion-Control/Servo-Drives/Kinetix-Indexing-

and-Component/Kinetix-300-Servo-Drive

28. https://www.plc-city.com/shop/9419-large_default/6sl3200-3ax00-0ul1-nfs.jpg

29. https://w3.siemens.com/mcms/topics/en/sidemo/systeme/pages/default.aspx

30. https://www.plc-city.com/shop/en/siemens-simatic-s7-1500-cpu/6es7511-1fk01-

0ab0.html

31. https://it.emcelettronica.com/comunicazione-dati-in-tcpip

https://www.google.com/search?q=transistor&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiajqbSr6XfAhWQjqQKHd8NApcQ_AUIDigB&biw=1536&bih=734#imgrc=gaLwKmYnRGdSyM
https://www.google.com/search?q=transistor&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiajqbSr6XfAhWQjqQKHd8NApcQ_AUIDigB&biw=1536&bih=734#imgrc=gaLwKmYnRGdSyM
https://www.google.com/search?q=transistor&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiajqbSr6XfAhWQjqQKHd8NApcQ_AUIDigB&biw=1536&bih=734#imgrc=gaLwKmYnRGdSyM
https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=k8YYXOuFD8m2kwXAq4igCw&q=industry+4.0+structure&oq=industry+4.0+structure&gs_l=img.3...35106.35440..35711...0.0..0.160.307.0j2......1....1..gws-wiz-img.dvLuk1kNheI#imgrc=heENoVA6cW-oFM
https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=k8YYXOuFD8m2kwXAq4igCw&q=industry+4.0+structure&oq=industry+4.0+structure&gs_l=img.3...35106.35440..35711...0.0..0.160.307.0j2......1....1..gws-wiz-img.dvLuk1kNheI#imgrc=heENoVA6cW-oFM
https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=k8YYXOuFD8m2kwXAq4igCw&q=industry+4.0+structure&oq=industry+4.0+structure&gs_l=img.3...35106.35440..35711...0.0..0.160.307.0j2......1....1..gws-wiz-img.dvLuk1kNheI#imgrc=heENoVA6cW-oFM
https://www.google.com/search?biw=1536&bih=734&tbm=isch&sa=1&ei=k8YYXOuFD8m2kwXAq4igCw&q=industry+4.0+structure&oq=industry+4.0+structure&gs_l=img.3...35106.35440..35711...0.0..0.160.307.0j2......1....1..gws-wiz-img.dvLuk1kNheI#imgrc=heENoVA6cW-oFM
https://www.ecosia.org/images?q=industry+3.0+#id=49F249191E9104589C705583B86A422EE91CF299
https://www.ecosia.org/images?q=industry+3.0+#id=49F249191E9104589C705583B86A422EE91CF299
https://instrumentsignpost.files.wordpress.com/2013/07/3rd_cit_year_student_project_energy_generation_and_monitoring.jpg
https://instrumentsignpost.files.wordpress.com/2013/07/3rd_cit_year_student_project_energy_generation_and_monitoring.jpg
https://www.processindustryinformer.it/prodotto-update/espanso-powerflex-520-serie-di-compact-ac-drive-Debutti-powerflex-523-ac-drive-to-meet-macchine-builder-needs-per-appena-abbastanza-control/
https://www.processindustryinformer.it/prodotto-update/espanso-powerflex-520-serie-di-compact-ac-drive-Debutti-powerflex-523-ac-drive-to-meet-macchine-builder-needs-per-appena-abbastanza-control/
https://www.processindustryinformer.it/prodotto-update/espanso-powerflex-520-serie-di-compact-ac-drive-Debutti-powerflex-523-ac-drive-to-meet-macchine-builder-needs-per-appena-abbastanza-control/
https://www.youmath.it/lezioni/fisica/unita-di-misura/misure-di-frequenza/3101-rpm-giri-al-minuto.html
https://www.youmath.it/lezioni/fisica/unita-di-misura/misure-di-frequenza/3101-rpm-giri-al-minuto.html
https://www.revereelectric.com/rockwellautomationhighlights
https://www.controleng.com/articles/ec-allen-bradley-kinetix-5500-servo-drive-with-integrated-safety/
https://www.controleng.com/articles/ec-allen-bradley-kinetix-5500-servo-drive-with-integrated-safety/
https://ab.rockwellautomation.com/it/Motion-Control/Servo-Drives/Kinetix-Indexing-and-Component/Kinetix-300-Servo-Drive
https://ab.rockwellautomation.com/it/Motion-Control/Servo-Drives/Kinetix-Indexing-and-Component/Kinetix-300-Servo-Drive
https://www.plc-city.com/shop/9419-large_default/6sl3200-3ax00-0ul1-nfs.jpg
https://w3.siemens.com/mcms/topics/en/sidemo/systeme/pages/default.aspx
https://www.plc-city.com/shop/en/siemens-simatic-s7-1500-cpu/6es7511-1fk01-0ab0.html
https://www.plc-city.com/shop/en/siemens-simatic-s7-1500-cpu/6es7511-1fk01-0ab0.html
https://it.emcelettronica.com/comunicazione-dati-in-tcpip

